
IBML

ABCs of OS/390 System Programming
Volume 4

P. Rogers, G. Capobianco, D. Carey, N. Davies, L. Fadel, K. Hewitt,
J. Oliveira, F. Pita, A. Salla, V. Sokal, Y. F. Tay, H. Timm

International Technical Support Organization

www.redbooks.ibm.com

SG24-5654-00

International Technical Support Organization

ABCs of OS/390 System Programming
Volume 4

April 2000

SG24-5654-00

IBML

Take Note!

Before using this information and the product it supports, be sure to read the general information in
Appendix B, “Special Notices” on page 349.

First Edition (April 2000)

This edition applies to OS/390 Version 2 Release 8, Program Number 5647-A01, and to all subsequent releases
and modifications.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. HYJ Mail Station P099
2455 South Road
Poughkeepsie, New York 12601-5400

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 2000. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Figures . ix

Tables . xii i

Preface . xv
The team that wrote this redbook . xv
Comments welcome . xvi

Chapter 1. Network Management . 1
1.1 Mainframe connectivity overview . 2
1.2 eNetwork Communications Server . 4
1.3 eNetwork Communications Server . 6
1.4 Network Computing Services . 8
1.5 OS/390 Distributed Computing . 10
1.6 Networking Products . 12

1.6.1 VTAM . 12
1.6.2 SNA . 13

1.7 SNA Layered Architecture . 14
1.8 Hardware and software components . 16
1.9 The Network Blueprint . 18
1.10 A subarea network . 22
1.11 An APPN network . 24

1.11.1 Subareas . 27
1.11.2 Domains in a subarea network . 28
1.11.3 Network node domains in APPN . 29

1.12 Starting VTAM . 30
1.12.1 VTAM procedure . 31
1.12.2 VTAM data sets . 34
1.12.3 VTAM commands . 35
1.12.4 VTAM major nodes . 38

1.13 TCP/IP . 40
1.14 TCP/IP layered structure . 41

1.14.1 TCP/IP terminology . 43
1.14.2 Sockets . 45

1.15 Internet technology . 47
1.15.1 Internet components . 49
1.15.2 Internet concepts . 51

1.16 The Internet versus an internet . 53
1.17 Internet guiding entities . 55

1.17.1 Internet addressing . 57
1.17.2 IP address classes . 59
1.17.3 Subnetwork addressing . 61

1.18 Network definitions . 63
1.19 Internet gateways . 65

1.19.1 Basic gateways . 66
1.19.2 Full-function gateways . 67
1.19.3 Gateway protocols . 68

1.20 Routing information protocol . 70
1.21 TCP/IP protocol suite . 72

1.21.1 Protocol layers . 74
1.21.2 Internet Protocol (IP) . 76

 Copyright IBM Corp. 2000 iii

1.21.3 IP datagrams . 78
1.21.4 Internet Control Message Protocol (ICMP) 80
1.21.5 Address nuances . 82
1.21.6 Address Resolution Protocol (ARP) . 84
1.21.7 Reverse Address Resolution Protocol (RARP) 87
1.21.8 Proxy ARP . 88

1.22 Domain Name System . 90
1.22.1 Name servers . 92

1.23 Ports and sockets . 94
1.24 Transport layer protocols . 96

1.24.1 Transmission Control Protocol (TCP) 98
1.24.2 User Datagram Protocol (UDP) . 102

1.25 Clients and servers . 104
1.26 TCP/IP Application Layer Protocol . 105

1.26.1 TELNET: an illustration . 106
1.26.2 Simple Mail Transfer Protocol (SMTP) 108
1.26.3 FTP: an illustration . 110
1.26.4 X-Windows: an illustration . 112
1.26.5 REXEC support . 114
1.26.6 Network File System . 115

1.27 TCP/IP data sets . 117
1.27.1 Configuring TCP/IP - Profile data set 119
1.27.2 Configuring TCP/IP - TCPDATA . 121
1.27.3 Customizing TCP/IP . 123
1.27.4 Customizing TCP/IP . 125
1.27.5 Routing . 126
1.27.6 Routing . 127

1.28 TCP/IP applications . 128
1.28.1 TN3270 parms . 130
1.28.2 FTP . 131
1.28.3 FTP setup . 133
1.28.4 FTP daemon . 137
1.28.5 Logging in to OS/390 UNIX shell . 139
1.28.6 Using inetd - master of daemons . 141
1.28.7 Customize inetd (part 1) . 142
1.28.8 Customize inetd (part 2) . 144
1.28.9 Start options for daemons . 146
1.28.10 Define daemon security . 148

1.29 OSA/SF . 150
1.30 OSA/SF configuration . 151

1.30.1 OSA/SF definitions . 152
1.30.2 Setting up OSA/SF . 154
1.30.3 OSA/SF and APPC definitions . 157
1.30.4 OSA/SF TSO/E commands . 159
1.30.5 OSA Address Table . 161
1.30.6 Configuring OSA/SF . 163
1.30.7 TCP/IP Passthrough . 164

Chapter 2. Security and RACF . 169
2.1 Components of OS/390 security . 170
2.2 OS/390 Firewall Technologies . 172
2.3 What is RACF . 174
2.4 System Authorization Facility (SAF) . 176

2.4.1 Resource managers . 177
2.4.2 Token support . 177

iv ABCs of OS/390 System Programming

2.4.3 Resource validation overview . 178
2.5 RACF functions . 180
2.6 Using RACF . 182

2.6.1 System options . 184
2.6.2 SETROPTS LIST command . 186
2.6.3 Define users . 187
2.6.4 User attributes . 189
2.6.5 RACF user segments . 191
2.6.6 RACF user ID passwords . 193

2.7 How to use RACF ISPF panels . 195
2.7.1 RACF resource profiles . 196

2.8 RACF commands . 198
2.8.2 How to add a user . 201
2.8.3 How to reset a password . 202
2.8.4 How to alter a user ID segment . 205
2.8.5 How to connect a user to a group . 206
2.8.6 How to remove a user from a group 207
2.8.7 How to a change a user′s password interval 208
2.8.8 How to a delete a user . 209

2.9 RACF groups . 211
2.9.1 RACF group structure . 213
2.9.2 How to add a group . 214
2.9.3 How to alter a group . 215
2.9.4 How to connect a user to a group . 217
2.9.5 How to remove a user from a group 218
2.9.6 How to delete a group . 219
2.9.7 Controlling access to resources . 220
2.9.8 RACF data sets and general resources 222
2.9.9 Defining data set profiles . 224
2.9.10 Data set profile access list . 226
2.9.11 How to add a data set profile . 228
2.9.12 How to alter a data set profile . 229
2.9.13 List a data set profile matching a mask 230
2.9.14 List a catalogued data set . 231
2.9.15 List who has access to a data set profile 232
2.9.16 How to add a general resource profile 233
2.9.17 How to change universal access authority 234
2.9.18 How to permit access to a resource profile 235

2.10 RACF monitoring . 236
2.10.1 Example of RACF immediate notification - example 1 237
2.10.2 Example of RACF immediate notification - example 2 238

2.11 RACF auditing tools . 239
2.11.1 SMF Data Unload Utility (IRRADU00 program) 241
2.11.2 How to run the SMF Data Unload Utility (IRRADU00) 242

2.12 RACF report writer . 244
2.12.1 How to run RACF report writer . 245

2.13 RACF Data Security Monitor . 246
2.13.2 How to run the DSMON program . 250

2.14 RACF Database Unload Utility . 251
2.14.1 How to run IRRDBU00 . 252

Chapter 3. OS/390 UNIX System Services . 253
3.1 Products and components with OS/390 UNIX 254
3.2 UNIX System Services . 255
3.3 POSIX standards overview . 256

Contents v

3.4 X/Open Portability Guide . 257
3.5 OS/390 operating system with OS/390 UNIX 259

3.5.1 OS/390 UNIX programs (processes) 262
3.5.2 Create a process . 264
3.5.3 OS/390 UNIX processes . 267
3.5.4 OS/390 UNIX components . 269

3.6 Hierarchical file system (HFS) . 271
3.6.1 HFS data sets . 273
3.6.2 DFSMSdss enhancement for HFS data sets 275
3.6.3 HFS naming convention . 276
3.6.4 Comparison of file systems . 278

3.7 OS/390 UNIX interactive interfaces . 279
3.7.2 UNIX System Services from TSO/E . 281
3.7.3 ISPF Option 6 . 282
3.7.4 ISHELL command panel . 283
3.7.5 Files and directories . 284
3.7.6 OMVS command . 285
3.7.7 OMVS command results . 287

3.8 RACF definitions . 288
3.8.1 RACF OMVS segments . 289

3.9 IEASYSxx parmlib member . 291
3.9.1 OS/390 UNIX minimum mode . 292
3.9.2 Minimum mode TFS . 293
3.9.3 OS/390 UNIX full-function mode . 295

3.10 OS/390 UNIX installation . 297

Chapter 4. Language Environment . 299
4.1 Language Environment (LE) . 300

4.1.1 HLL concepts and LE . 301
4.1.2 LE components . 302
4.1.3 LE′s common run-time environment 303
4.1.4 HLLs demanding LE . 305
4.1.5 LE standards . 307
4.1.6 LE terms and HLL equivalents . 308
4.1.7 LE program management . 310
4.1.8 Assembler language and programs 312
4.1.9 Sample assembler routine . 315

Chapter 5. Infoprint Server . 317
5.1 OS/390 Print Server . 318

5.1.1 TCP/IP Print Protocol . 320
5.1.2 Components of OS/390 Print Server 321

5.2 Infoprint Server overview . 322
5.2.1 OS/390 Infoprint Server benefits . 324
5.2.2 Print Interface . 326
5.2.3 NetSpool . 328
5.2.4 IP PrintWay . 330
5.2.5 Windows 95 and Windows NT support 332
5.2.6 OS/390 UNIX System Services . 334

5.3 Printer Inventory Manager . 336
5.3.1 Migration program . 337

5.4 Infoprint Server installation . 338

Appendix A. Network Management . 339
A.1 Major node definitions . 339

vi ABCs of OS/390 System Programming

A.2 XCA Major Node . 342
A.3 Switched major node . 343
A.4 Sample FTP start procedure . 344
A.5 Sample OAT . 345

Appendix B. Special Notices . 349

Appendix C. Related Publications . 351
C.1 IBM Redbooks . 351
C.2 IBM Redbooks collections . 352
C.3 Other resources . 352

How to get IBM Redbooks . 355
IBM Redbooks fax order form . 356

Glossary . 357

IBM Redbooks evaluation . 371

Contents vii

viii ABCs of OS/390 System Programming

Figures

 1. Mainframe connectivity overview . 2
 2. OS/390 eNetwork Communications Server 4
 3. LAN Services . 6
 4. OS/390 Network Computing . 8
 5. OS/390 Distibuted Computing . 10
 6. eNetwork . 12
 7. SNA Layered Architecture . 14
 8. Hardware and software components . 16
 9. The network blueprint . 18
10. A subarea network . 22
11. An APPN network . 24
12. Subareas . 27
13. Domains in a subarea network . 28
14. Network node domains in APPN . 29
15. VTAM startup . 30
16. VTAM procedure . 31
17. VTAM data sets . 34
18. VTAM commands . 35
19. VTAM major nodes . 38
20. TCP/IP layers . 41
21. TCP/IP terminology . 43
22. What are sockets, anyway? . 45
23. Internet technology . 47
24. Internet components . 49
25. Internet concepts . 51
26. Internet versus an internet . 53
27. Internet guiding entities . 55
28. Internet addressing . 57
29. Internet address classes . 59
30. Subnetwork addressing . 61
31. Definitions . 63
32. Internet gateways . 65
33. Basic gateways . 66
34. Full-function gateways . 67
35. Gateway protocols . 68
36. Routing information protocol . 70
37. TCP/IP protocol suite . 72
38. Protocol layers . 74
39. Internet Protocol . 76
40. IP datagrams . 78
41. ICMP . 80
42. Address nuances . 82
43. Address Resolution Protocol (ARP) . 84
44. Reverse Address Resolution Protocol (RARP) 87
45. Proxy ARP . 88
46. Domain Name System . 90
47. Name servers . 92
48. Ports and sockets . 94
49. TCP/IP transport layer protocols . 96
50. TCP . 98
51. TCP segment . 101

 Copyright IBM Corp. 2000 ix

52. User Datagram Protocol (UDP) . 102
53. TCP/IP clients and servers . 104
54. TCP/IP Application Layer Protocol . 105
55. TELNET . 106
56. Simple Mail Transfer Protocol . 108
57. File Transfer Protocol . 110
58. X-Windows . 112
59. REXEC support . 114
60. Network File System . 115
61. TCP/IP data sets . 117
62. Configuring TCP/IP - Profile data set . 119
63. Configuring TCP/IP - TCPDATA . 121
64. Customizing TCP/IP . 123
65. Customizing TCP/IP . 125
66. Routing . 126
67. Routing . 127
68. TCP/IP applications . 128
69. TN3270 parms . 130
70. FTP . 131
71. FTP setup . 133
72. FTP daemon . 137
73. Logging in to OS/390 UNIX shell . 139
74. Using inetd - master of daemons . 141
75. Customize inetd (part 1) . 142
76. Customize inetd (part 2) . 144
77. Start options for daemons . 146
78. Define daemon security . 148
79. OSA/SF configuration . 151
80. OSA/SF definitions . 152
81. Setting up OSA/SF . 154
82. OSA/SF and APPC definitions . 157
83. OSA/SF TSO/E commands . 159
84. OSA Address Table . 161
85. Configuring OSA/SF . 163
86. TCP/IP Passthrough . 164
87. SNA . 166
88. TCP/IP Passthrough and SNA port sharing 168
89. Components of OS/390 security . 170
90. Firewall . 172
91. What is RACF? . 174
92. System Authorization Facility (SAF) . 176
93. Resource managers . 178
94. RACF functions . 180
95. Using RACF . 182
96. System options . 184
97. Display RACF system options . 186
98. Define users . 187
99. RACF user privileged attributes . 189
100. RACF user segments . 191
101. User RACF user ID passwords . 193
102. How to use RACF ISPF panels . 195
103. RACF resource profiles . 196
104. RACF commands . 198
105. How to add a user . 201
106. How to reset a password . 202

x ABCs of OS/390 System Programming

107. RACF Change User menu . 203
108. How to alter a user ID segment . 205
109. How to connect a user to a group . 206
110. How to remove a user from a group . 207
111. How to a change a user . 208
112. How to a delete a user . 209
113. RACF groups . 211
114. RACF group structure . 213
115. How to add a group . 214
116. How to alter a group . 215
117. How to connect a user to a group . 217
118. How to remove a user from a group . 218
119. How to delete a group . 219
120. Controlling access to resources . 220
121. RACF data sets and general resources 222
122. Defining data set profiles . 224
123. Data set profile access list . 226
124. How to add a data set profile . 228
125. How to alter a data set profile . 229
126. List a data set profile matching a mask 230
127. List a catalogued data set . 231
128. List who has access to a data set profile 232
129. How to add a general resource profile 233
130. How to change universal access authority 234
131. How to permit access to a resource profile 235
132. RACF monitoring . 236
133. RACF immediate notification - example 1 237
134. RACF immediate notification - example 2 238
135. RACF auditing tools . 239
136. SMF Data Unload Utility . 241
137. How to run the SMF Data Unload Utility 242
138. RACF report writer . 244
139. How to run RACF report writer . 245
140. The RACF Data Security Monitor . 246
141. How to run DSMON . 250
142. RACF Database Unload Utility . 251
143. How to run the RACF Data Unload Utility 252
144. Component support for UNIX services 254
145. UNIX System Services . 255
146. POSIX standards overview . 256
147. X/Open Portability Guide Issue 4/4.2 . 257
148. OS/390 operating system with OS/390 UNIX 259
149. OS/390 UNIX programs (processes) . 262
150. Create a process . 264
151. OS/390 UNIX processes . 267
152. OS/390 UNIX components . 269
153. Hierarchical file system (HFS) . 271
154. HFS data set . 273
155. DFSMSdss enhancement . 275
156. Naming convention for HFS . 276
157. Comparison of file systems . 278
158. OS/390 UNIX interactive interfaces . 279
159. UNIX System Services from TSO/E . 281
160. ISPF Option 6 . 282
161. ISHELL command panel . 283

Figures xi

162. Files and directories . 284
163. OMVS command . 285
164. Files in a user′s root directory . 287
165. RACF definitions . 288
166. RACF OMVS segments . 289
167. IEASYSxx parmlib member . 291
168. OS/390 UNIX minimum mode . 292
169. Minimum mode TFS . 293
170. OS/390 UNIX full-function mode . 295
171. OS/390 UNIX installation . 297
172. Language Environment (LE) . 300
173. HLL concepts and LE . 301
174. LE components . 302
175. LE . 303
176. HLLs demanding LE . 305
177. LE standards . 307
178. LE terms and HLL equivalents . 308
179. LE program management . 310
180. Assembler language and programs . 312
181. Sample assembler routine . 315
182. OS/390 Print Server components . 318
183. TCP/IP Print Protocol . 320
184. Components of OS/390 Print Server . 321
185. Infoprint Server overview . 322
186. OS/390 Infoprint Server benefits . 324
187. Print Interface . 326
188. NetSpool . 328
189. IP PrintWay . 330
190. Windows 95 and Windows NT support . 332
191. OS/390 UNIX System Services . 334
192. Printer Inventory Manager . 336
193. Infoprint Server installation . 338

xii ABCs of OS/390 System Programming

Tables

 1. VTAM Display commands . 36
 2. VTAM Vary commands . 36
 3. VTAM Modify commands . 36
 4. VTAM Halt commands . 37
 5. Correspondence between OAT parameters and TCP/IP parameters . 165
 6. Correspondence between OAT parameters and VTAM parameters . . 167

 Copyright IBM Corp. 2000 xiii

xiv ABCs of OS/390 System Programming

Preface

This redbook is Volume 4 of a five-volume set that is designed to introduce the
structure of an OS/390 and S/390 operating environment. The set will help you
install, tailor, and configure an OS/390 operating system, and is intended for
system programmers who are new to an OS/390 environment.

In this Volume, Chapter 1 provides an introduction to the basics of mainframe
networking concepts, including hardware connectivity, OSA/SF, SecureWay
Communications Server, SNA (VTAM), and IP (TCP/IP).

Chapter 2 describes OS/390 security with RACF.

Chapter 3 provides on overview of OS/390 UNIX System Services.

Chapter 4 describes the Language Environment which provides a common
run-time environment for IBM versions of certain high-level languages (HLLs),
namely, C, C++, COBOL, Fortran, and PL/I.

Chapter 5 describes the Infoprint Server which is an optional feature of OS/390
Version 2 Release 8 that uses OS/390 UNIX System Services. This feature is the
basis for a total print serving solution for the OS/390 environment. It lets you
consolidate your print workload from many servers onto a central OS/390 print
server.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization Poughkeepsie
Center.

Paul Rogers is an OS/390 specialist at the International Technical Support
Organization, Poughkeepsie Center. He writes extensively and teaches IBM
classes worldwide on various aspects of OS/390. Before joining the ITSO 11
years ago, he worked in the IBM Installation Support Center (ISC) in Greenford,
England as OS/390 and JES support for IBM EMEA.

Guillermo Capobianco is an IT Specialist in IBM Global Services PSS Argentina.
He has five years of experience working with customers on MVS, MVS-related
program products, and OS/390. He is currently leading a technical group
providing on-site customer support for the OS/390 platform.

David Carey is a Senior IT Availability Specialist with the IBM Support Center in
Sydney, Australia, where he provides defect and nondefect support for CICS,
CICSPlex/SM, MQSeries, and OS/390. David has 19 years of experience within
the information technology industry, and was an MVS systems programmer for
12 years prior to joining IBM.

T. Nigel Davies is a Systems Specialist in IBM Global Services Product Support
Services (PSS) in the United Kingdom. He has 10 years of IT experience in
various roles, ranging from operations to PC and LAN support to mainframe
systems programming. He joined IBM in 1997 with eight years of experience as
a VM/VSE systems programmer, and since joining IBM has cross-trained in
OS/390 systems skills. His areas of expertise include VM and VSE systems

 Copyright IBM Corp. 2000 xv

programming, installation, and technical support, and more recently, OS/390
installation and support. Luiz Fadel

Ken Hewitt is an IT Specialist in IBM Australia. He has over 10 years of
experience working with S/390 customers in a range of roles from CE to System
Engineer. His areas of expertise include I/O and OSA configuration.

Joao Natalino Oliveira

Joao Natalino de Oliveira is a certified I/T consulting specialist working for the
S/390 in Brazil providing support for Brazil and Latin America. He has 24 years
of experience in large systems including MVS-OS/390. His areas of expertise
include performance and capacity planning, server consolidation and system
programming. He has a bachelor degree in Math and Data Processing from
Fundação Santo André Brazil.

Fabio Chaves Pita

Alvaro Salla has 30 years of experience in OS operating systems (since MVT).
He has written several redbooks on S/390 subjects. Retired from IBM Brasil, he
is now a consultant for IBM customers.

Valeria Sokal is an MVS system programmer at Banco do Brasil. She has 11
years of experience in the mainframe arena. Her areas of expertise include
MVS, TSO/ISPF, SLR, and WLM.

Yoon Foh Tay is an IT Specialist with IBM Singapore PSS (S/390). He has six
years of experience on the S/390 platform, providing on-site support to
customers.

Hans-Juergen Timm is an Advisory Systems Engineer in IBM Global Services
PSS Germany. He has 20 years of experience working with customers in the
areas of MVS and OS/390, software and technical support, and planning and
management. He also worked six years as an MVS Instructor in the IBM
Education Centers in Mainz and Essen, Germany. His areas of expertise include
implementation support for OS/390, Parallel Sysplex, UNIX System Services, and
Batch Management.

Comments welcome
Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

• Fax the evaluation form found in “IBM Redbooks evaluation” on page 371 to
the fax number shown on the form.

• Use the online evaluation form found at http://www.redbooks.ibm.com/

• Send your comments in an Internet note to redbook@us.ibm.com

xvi ABCs of OS/390 System Programming

Chapter 1. Network Management

This chapter is an introduction to the basics of mainframe networking concepts, including hardware
connectivity, OSA/SF and eNetwork Communications Server, SNA (VTAM), and IP (TCP/IP).

Included in this chapter are the following topics that will help you to:

• Understand the basics of mainframe connectivity

• Describe the various hardware and software options

• Distinguish between VTAM and TCP/IP

• Start and stop VTAM

• Identify and describe different VTAMLST members

• Understand the basics of SNA network definition

• Identify and describe different TCP/IP control files

• Understand the basics of TCP/IP

• Understand the basics of the OSA

• Set up OSA/SF

• Use OSA/SF to configure an OSA

Transmission Control Protocol/Internet Protocol (TCP/IP) is a set of industry-standard protocols and
applications that enable you to share data and computing resources with other computers, both IBM
and non-IBM. By using TCP/IP commands at your workstation, you can perform tasks and
communicate easily with a variety of other systems and workstations. SecureWay Communications
Server for OS/390 (CS for OS/390) enables the user to interactively run TCP/IP applications (TCP/IP
commands) from both the Time Sharing Option (TSO) and the OS/390 shell.

 Copyright IBM Corp. 2000 1

Mainframe connectivity overview

Figure 1. Mainframe connectivity overview

1.1 Mainframe connectivity overview
In order to communicate on any network, the mainframe must be attached to that network. A physical
network consists of electrical wiring and components, such as modems, bridges, controllers, access
units, telephone lines, fiber optic cables, and co-axial cables. These are used to connect the computer
nodes together. The physical network can connect two nodes in a single room or thousands of nodes
communicating across large geographic areas. The most common networks in use today are Local
Area Networks (LANs) and Wide Area Networks (WANs). LANs cover a limited distance, generally one
or two floors or buildings, while WANs, using telecommunication facilities, are used for longer
distances.

Network protocols are the rules that define how information is delivered between nodes. They describe
the sequence and contents of the data exchanged between nodes on the network. Network protocols
determine how a computer node functions during communication with another node, how data is
enclosed to reach its destination safely, and what path it should follow. Protocols coordinate the flow
of messages and can specify which node a message is destined for in the network. A variety of
protocols are used to take advantage of the characteristics of each of the physical network types. The
most common protocols are Ethernet, 802.3, Token-Ring X.25, IP, and System Network Architecture
(SNA).

S/390 supports the following types of network devices:

• 3172 LAN Channel Station (LCS)

2 ABCs of OS/390 System Programming

• Channel-to-channel (CTC)

• Common link access to workstation (CLAW)

• ATM

• HYPERchannel A220

• MPCPTP

• OSA-Express (MPCIPA)

• SNA LU0 Links

• SNA LU 6.2 Links

• X.25 NPSI Connections

• Virtual Devices (VIPA)

• 3745/46 Channel DLC

The most common way to attach a S/390 processor to a network is via the following communication
controllers:

• IBM 3172 Interconnect Controller for Token-Ring, Ethernet, fiber distributed data interface (FDDI)
and asynchronous transfer mode (ATM).

• IBM 3174 Establishment Controller for Token-ring, Ethernet, Frame Relay, X.21/X.25 Switched
Autocall/Autodisc, X.35/X.21, and up to 64 3270 ports.

• IBM 3745/3746 Multiprotocol Controller for Token-Ring, Ethernet, ATM, Fast Ethernet, FDDI, lines up
to 2Mbps, HSSI(T3/E#) and WW primary ISDN,

• IBM 2216 Multiaccess Connector model 400 for WAN connection speeds from 9.6 Kbps to 52 Mbps
(HSSI), interface attachments (V.35/V.36, X.21, X.24, V.25bis), and data link controls, including X.25,
SDLC, ISDN Primary, Frame Relay, PPP,. FDDI, 10/100 Mbps Ethernet, and ATM both MM and SM.

• OSA-2 or OSA-Express for Token-Ring, Ethernet, Gigabit Ethernet, FDDI, Fast Ethernet, ATM 155 Mb
Multi Mode, ATM 155 Mb Single Mode.

• IBM 3274 for local SNA for coax or LAN-attached SDLC.

Old CPU types, such as the IBM 9221 or the IBM 9370, have an Integrated ′ Channel Adapter for SNA
connectivity.

Chapter 1. Network Management 3

Figure 2. OS/390 eNetwork Communications Server

1.2 eNetwork Communications Server

The eNetwork Communications Server for OS/390 provides the networking foundation for S/390
e-business. Users can access S/390 application data over SNA, TCP/IP or mixed networks, WANs and
LANs, and a wide variety of connection types such as frame relay, gigabit Ethernet, and ATM to
connect their employees, suppliers, customers or business partners worldwide. In other words, it
provides end-to-end universal connectivity.

It includes a wide variety of programming interfaces, such as sockets, remote procedure call (RPC),
and APPC using wide area network protocols provided by IP and SNA. The eNetwork Communications
Server SNA element also includes Advanced Peer-to-Peer Networking (APPN), which is an extension to
SNA and offers enhanced functions suitable for doing client/server and cooperative processing in
mixed LAN/WAN networks.

The eNetwork Communications Server IP stack services have been completely rewritten in OS/390 R5
to provide significantly improved performance.

The support for Multiprotocol Transport Networking (MPTN) by the OS/390 network services provides
the ability to have UNIX applications communicating over a SNA network, or have APPC (SNA)
applications communicating over a TCP/IP network. This enables application program types to
communicate, without change, over different transport networks and across interconnected networks.

OS/390 R5 provides a facility called High Speed Web Access (HSWA), which is intended for users with
high-demand Web-serving requirements.

4 ABCs of OS/390 System Programming

The integrated Communications Server make it possible for a S/390 server to manage and share
information and transactions across different system platforms and multivendor networks.

The OS/390 operating system includes communication services. These services are essential for a
server operating system, and enables support for open, distributed computing services.

Traditionally, MVS applications have communicated with other applications on MVS, VM, OS/400, or
OS/2 platforms using an SNA network. The application interface has been the Advanced Program to
Program Communication (APPC). APPC builds on the Common Programming Interface for
Communication (CPI-C).

UNIX applications can communicate with other UNIX applications using the RPC or socket interfaces
over a TCP/IP network. TCP/IP has been supported on MVS for quite a few years. However, the UNIX
support on MVS (UNIX Services) makes TCP/IP more important than before. Both SNA and TCP/IP
support is included in OS/390.

The MPTN architecture provides the capability to use any program interface over any network protocol.
The AnyNet feature of VTAM allows sockets and RPC calls to be transferred over a SNA network, and
TCP/IP allows APPC calls over a TCP/IP network. The only limitation is that a program interface must
communicate with the same interface (APPC to APPC, socket to socket, and RPC to RPC).

The terminal input output controller (TIOC) is the interface between TSO and VTAM. It allows TSO to
communicate with the terminal hardware.

The VTAM element in OS/390 includes Advanced Peer-to-Peer Networking (APPN) support which
provides a dynamic way of connecting nodes in a network with a minimal amount of system definition.
The nodes must be of type 2.1 which means a programmable node, for example, a PC workstation, an
AS/400, a RISC/6000, or a VTAM node. High Performance Routing (HPR) is an addition to APPN, often
written APPN/HPR. HPR enhances data routing performance and reliability. It increases the
performance of an APPN network by reducing the processing required in intermediate nodes. The
intermediate node passes data to the next node without examining any session identifier or performing
pacing. (Pacing is a technique by which a receiving node controls the rate of transmission of a
sending node to prevent overrun.)

Chapter 1. Network Management 5

Figure 3. LAN Services

1.3 eNetwork Communications Server

OS/390 includes local area network (LAN) services which allow LAN users to store and access data on
an S/390 system, and to use the print services of OS/390. These services provide central
management, high capacity, and high performance for a distributed computing solution.

The LAN services are provided by:

• LANRES/MVS provides disk serving, bidirectional print serving, data distribution, and central
administration for Novell NetWare LANs. It also supports the IBM AFP Printer Driver for Windows.

• LAN Server provides an OS/2 high-performance file serving system to OS/2 WARP and NFS LAN
clients connected to the S/390 Servers. In conjunction with the OS/2 Ultimedia product, LAN Server
supports end-to-end Quality-of-Service (QoS) multimedia delivery to OS/2 LAN Server and WARP
clients in a timely, useable and quality manner. It provides the capability for OS/2 LAN Server and
NFS clients to share a common data repository with full update capability. The LAN Server for
OS/390 R3 is enhanced in the areas of availability, scalability, performance, inter-operability,
security, and administration to support the needs of large user workstation configuration growth.
One of these enhancements is to the managed access function which provides for a server to
dynamically control access to OS/2 or NFS files stored by LAN Server by using a token generated
by the application server. The workstation client, using the token, can then access the file,
overriding OS file attributes or NFS permissions. Also, the LAN Server for OS/390 provides an
open interoperability for UNIX application s to access and utilize LAN user data in an integrated
client server heterogeneous environment.

6 ABCs of OS/390 System Programming

The OS/390 LAN services are based on LANRES/MVS and LAN Server for MVS. These products are
included in the OS/390 system and are part of the base elements.

• LANRES/MVS provides server capabilities for Novell NetWare LANs. The services include data
serving, print serving, and central management of the NetWare LANs. With LANRES/MVS a single
NetWare server can communicate with a VM, MVS, and OS/400 operating system at the same time.

• LAN Server for MVS provides disk server capabilities and central management for Token Ring
LANs and Ethernet LANs. It interacts with two other LAN server products: OS/2 LAN Server which
serves OS/2 and DOS clients on Token Rings, Network File System (NFS) clients on Ethernet LANs.
LAN Server allows sharing of data between OS/2 LAN Servers and NFS clients. LAN Server does
not provide any print services.

The OSA feature is available for 9121 511-based and 9021 711-based ES/9000 processors and for the
9672 S/390 Parallel Server (CMOS). The OSA feature allows connection to a local LAN without using a
communication controller (37x5 or 3172). This makes a LAN connection less expensive and easier to
implement. For large LAN environments with high performance requirements, and for any remote LAN
connection, a communication controller is needed.

Chapter 1. Network Management 7

Figure 4. OS/390 Network Computing

1.4 Network Computing Services

OS/390 provides Lotus Domino Go Webserver for OS/390 which includes the Internet Connection
Security Server (ICSS). This allows the OS/390 system to become a World Wide Web server with a
data repository for text, images, sound, and video clips stored in the hierarchical file system (HFS).

The Domino Go Webserver for OS/390 also includes NetQuestion which is a powerful, full-text indexing
and search server.

The Internet Connection Security Server (ICSS) for MVS is based on UNIX Services services. The
Internet Connection Security Server is delivered as a no-cost feature with Lotus Domino Go Webserver
for OS/390.

The OS/390 Internet Bonus Pak II is a set of sample HTML pages, programs, and redbooks that
demonstrate how to:

• Retrieve data from DB2, IMS, and CICS databases and present this data to a client browser
• Write simple Hypertext Markup Language (HTML) pages
• Write simple Common Gateway Interface (CGI) programs
• Write simple Java programs
• Write simple DB2 WWW macros
• Use secure sockets
• Use Server Side Includes

8 ABCs of OS/390 System Programming

Physically, the sample HTML pages and executables reside in directories in the UNIX Services MVS
Hierarchical File System (HFS).

Chapter 1. Network Management 9

Figure 5. OS/390 Distibuted Computing

1.5 OS/390 Distributed Computing

OpenEdition Distributed Computing Environment (DCE) provides support for the open client/server
technology from Open Software Foundation (OSF) called DCE. DCE is a set of services and tools that
support the creation, use, and maintenance of distributed applications in a heterogeneous
environment.

Support for distributed file systems are provided by:

• The Distributed File System (DFS) is part of the DCE solution and provides transparent access to
remote files from anywhere in the DCE network. It allows users to easily share data in a
distributed environment.

• The Network File System (NFS) is a solution which allows users to share and access data in a
heterogeneous environment. It is widely used in a UNIX environment. NFS provides workstation
access to data sets on an OS/390 system.

OS/390 provides the Internet Connection Security Server (ICSS) as a no-cost Feature of OS/390
Distributed Computing Services and it is automatically shipped with OS/390. This allows the OS/390
system to become a World Wide Web server with a data repository for text, images, sound, and video
clips stored in the hierarchical file system (HFS). The OS/390 Internet BonusPak II is also shipped
automatically, but separately, and it must be installed after the ICSS.

10 ABCs of OS/390 System Programming

The OS/390 system includes OpenEdition DCE which is a solution for distributed computing. DCE is
supported by the Open Software Foundation (OSF), which looked at multiple open distributed solutions
from multiple vendors and selected the best functions to be integrated into one solution called DCE.

The OpenEdition DCE for OS/390 consists of:

• OpenEdition DCE Base Services (base element in OS/390)
• OpenEdition DCE Security Server (optional feature)
• OpenEdition DCE Distributed File Server (base element)
• OpenEdition DCE Application Support (optional feature)

Distributed applications use a client/server model based on Remote Procedure Call (RPC) to provide
connectivity from client application through the network to the server application. A quick overview of
the DCE client/server model: A client application uses RPC to call a service (function) from a server,
RPC uses the services of the DCE Distributed Directory to locate the server, Distributed Security is
invoked to authenticate both the client and the server, Distributed Time Services will synchronize the
client and server processing, and threads allows parallelism in execution.

DFS is a distributed client/server application which uses the DCE services. DFS provides access to the
OpenEdition HFS or to local DFS file systems. Some of the advantages of DFS over similar distributed
file system solutions is that DFS provides caching of data which reduces network load and improves
performance. Data can be replicated (shadow copies) across multiple servers, resulting in improved
reliability and availability.

NFS is a solution well known in the UNIX environment. The DFSMS/MVS NFS feature now provides
both server and client support. This enables one OS/390 system to exchange data files with another
using NFS client/server technology. Each OS/390 system with the DFSMS/MVS 1.3 NFS feature can
read from or write to any other OS/390 system which has the DFSMS/MVS NFS feature installed.
DFSMS/MVS NFS enables OS/390 UNIX applications on one OS/390 system to read or write MVS
conventional data sets and/or OS/390 UNIX Hierarchical File System (HFS) files on another OS/390
system.

DFS and NFS provide file server capabilities for OS/390 in a distributed heterogeneous environment.
The LAN services previously introduced are limited to LANs, while NFS and DFS are available for use
on both LANs and WANs (TCP/IP, VTAM AnyNet).

The Internet Connection Security Server (ICSS) for MVS is based on OS/390 UNIX services. The
Internet Connection Security Server is delivered as a no-cost feature with OS/390.

The OS/390 Internet Bonus Pak II is a set of sample HTML pages, programs, and redbooks that
demonstrate how to:

• Retrieve data from DB2, IMS, and CICS databases and present this data to a client browser
• Write simple Hypertext Markup Language (HTML) pages
• Write simple Common Gateway Interface (CGI) programs
• Write simple Java programs
• Write simple DB2 WWW macros
• Use secure sockets
• Use Server Side Includes

Physically, the sample HTML pages and executables reside in directories in the OS/390 UNIX MVS
Hierarchical File System (HFS).

Chapter 1. Network Management 11

Figure 6. eNetwork

1.6 Networking Products

Until OS/390 V2R5, IBM marketed two separate networking products:

• Virtual Telecommunications Method (VTAM)

• Transmission Control Protocol / Internet Protocol (TCP/IP)

VTAM has been around for some time and forms the backbone of IBM ′s Systems Network Architecture
(SNA) networking protocol including basic connectivity such as 3270, SDLC and NJE.

TCP/IP is a relative newcomer and is the basis for OS/390′s presence on the WWW. It enables FTP
and Telnet (both client and server), as well as webserving, LPR, and LPD, to name a few.

As of OS/390 Version 2 Release 6, both products were merged under the banner of eNetwork
Communications Server. However, they still remain functionally separate components as eNetwork
Communications Server SNA and eNetwork Communications Server IP.

1.6.1 VTAM

VTAM provides a method by which application programs can communicate with telecommunication
devices and their users. VTAM was the first IBM program to allow programmers to deal with devices
as “logical units” without having to understand the details of line protocols and device operation. Prior
to VTAM, programmers used IBM′s Basic Telecommunications Access Method (BTAM) to communicate
with devices that used the binary synchronous (BSC) and start-stop line protocols.

12 ABCs of OS/390 System Programming

1.6.2 SNA
Systems Network Architecture (SNA) is IBM′s proprietary network architecture and set of implementing
products for network computing within an enterprise. It existed prior to and became part of IBM′s
Systems Application Architecture (SAA) and it is currently part of IBM′s Open Blueprint. With the
advent of multi-enterprise network computing, the Internet, and the industry standard open network
architecture of TCP/IP, IBM is blurring the edges between VTAM/SNA and TCP/IP application support
via the enterprise-wide product eNetwork Communications Server.

SNA itself contains several functional layers and includes a communications protocol for the exchange
of control information and data, and a data link layer, Synchronous Data Link Control (SDLC). SNA
includes the concepts of nodes that can contain both physical units that provide certain setup functions
and logical units, each associated with a particular network transaction.

1.6.2.1 SDLC
Synchronous Data Link Control (SDLC) is a transmission protocol developed by IBM in the 1970s as a
replacement for its binary synchronous (BSC) protocol.

SDLC became part of IBM′s Systems Network Architecture (SNA) and the more comprehensive
Systems Application Architecture (SAA) and its more recent Open Blueprint. SDLC is still commonly
encountered and probably the prevalent data link protocol in today′s mainframe environment.

It utilizes the concept of a Primary and a Secondary partner in any communications link, referred to as
the Primary Logical Unit (PLU) and the Secondary Logical Unit (SLU). Typically in IBM mainframe
networks, the host mainframe is the PLU and workstations, for example a 3270 device, and other
devices are SLUs. Each SLU has its own address in the network, thus enabling it to be identified
individually. Typically, multiple devices or SLUs are attached to a common line in what is known as a
multipoint or multidrop configuration. SDLC is primarily intended for remote communication on
corporate wide-area networks (WANs).

1.6.2.2 APPN
Advanced Peer to Peer Networking (APPN) protocol was developed by IBM to support
computer-to-computer (not necessarily 3270) communications, often referred to as LU6.2. It is a
non-hierarchical protocol, that is, either end can initiate a session based around the concept of:

• End Nodes - The application programs, either clients or servers
• Network Nodes - Used to route information around the network between end nodes.

1.6.2.3 3270
3270 is the session protocol used to establish a screen connection to a System/390 mainframe.

It started life as the traditional 24x80 green screen and developed into the more usable, but still
essentially dumb screens or terminal emulators we use today:

• The 3270 model 2 24x80
• The 3270 model 3 32x80
• The 3270 model 4 43x80
• The 3270 model 5 27x132
• Extended Attribute Support (colors, blink, etc.)

Chapter 1. Network Management 13

Figure 7. SNA Layered Architecture

1.7 SNA Layered Architecture

This section provides an overview of SNA, including its architectural objectives, network components,
data transport services, transaction services, and network management services.

A data communication network is a collection of hardware and software components that enable end
users to exchange data. To send or receive data through a network, end users interact with
communication devices such as telephones, terminals, or computers. The term end user is used to
identify both (1) individuals who interact with the network through a workstation and (2) application
programs. The architecture views end users as the ultimate sources and destinations of information
that flows through a network.

Data communication requires that network components agree on both the layouts of the messages
they exchange and the actions they take based on the kinds of data they receive. The layouts are
referred to as formats, and the actions taken are referred to as protocols. Formats and protocols
together constitute an architecture.

Systems Network Architecture (SNA) is a data communication architecture established by IBM to
specify common conventions for communication among the wide array of IBM hardware and software
data communication products. The manner in which products internally implement these common
conventions can differ from one product to another. But because the external interface of each
implementation is compatible, different products can communicate without the need to distinguish
among the many possible product implementations.

14 ABCs of OS/390 System Programming

SNA functions are divided into a hierarchical structure that consists of seven well-defined layers. Each
layer in the architecture performs a specific set of functions. In the graphic you can see the SNA ′s
seven layers and their major functions.

SNA defines formats and protocols between layers that permit equivalent layers (layers at the same
level within the hierarchy) to communicate with one another. Each layer performs services for the next
higher layer, requests services from the next lower layer, and communicates with equivalent layers.
To illustrate this concept, consider end-user data that requires encryption. The two transmission
control layers encipher and decipher data independently of the functions of any other layer. The
transmission control layer in the originating node enciphers the data it receives from the data flow
control layer. It then requests that the path control layer route the enciphered data to the destination
node. The transmission control layer in the destination node deciphers the data that the path control
layer delivered. It then requests that the data flow control layer give the deciphered data to the
destination end user.

Chapter 1. Network Management 15

Figure 8. Hardware and software components

1.8 Hardware and software components

Hardware and software components implement the functions of the seven architectural layers.
Hardware components include:

• Processors such as the ES/9000(*) family

• Distributed processors such as the Application System/400(*)

• Communication controllers such as the 372X and 374X series

• Cluster controllers

• Workstations

• Printers

The software components that implement SNA functions include:

• Operating systems such as Multiple Virtual Storage/Enterprise Systems Architecture (MVS/ESA(*)),
and Operating System/400(*) (OS/400(*))

• Telecommunication access methods such as the Virtual Telecommunications Access Method
(VTAM(*)) and Communications Manager/2 (CM/2(*))

• Application subsystems such as Customer Information Control System (CICS)

• Network control programs such as the Advanced Communication Function for Network Control
Program (NCP)

16 ABCs of OS/390 System Programming

The graphic illustrates one possible network configuration of these hardware and software
components.

Chapter 1. Network Management 17

Figure 9. The network blueprint

1.9 The Network Blueprint

IBM ′s networking design strategy employs a “Networking Blueprint” that provides an open, highly
modular framework for structuring networks using industry-wide standards. The blueprint is designed
to facilitate the creation of an evolutionary and flexible plan that an organization can specifically tailor
to meet its needs; this is much needed considering today ′s fast-moving technologies and the diversity
of networks. The graphic shows the modules used to describe the Networking Blueprint.

The Networking Blueprint supports the implementation of multiple protocols, as well as integrating
these protocols into a cohesive, modular structure. The Networking Blueprint defines layers of
functions, plus a systems management backplane. SNA Advanced Peer-to-Peer Networking(*) SNA
Advanced Peer-to-Peer Networking (APPN), is part of the transport layer, and it is one of the protocols
that can be used in this layer.

APPN′s any-to-any connectivity makes it possible for large and small networks alike to communicate
over local- and wide-area networks, across slow and fast links.

APPN provides two basic functions: keeping track of the location of resources in the network, and
selecting the best path to route data between resources. APPN nodes dynamically exchange
information about each other; therefore, customers may never have to deal with complicated system
and path definitions. APPN nodes limit the information they exchange, enabling more efficient use of
network resources.

18 ABCs of OS/390 System Programming

High-performance routing (HPR) is a small but powerful evolutionary extension to APPN. It enhances
data routing performance via decreasing intermediate node processing. HPR also increases session
reliability via “nondisruptive path switch.” The two main components of HPR are rapid-transport
protocol (RTP) and automatic network routing (ANR).

Systems Network Architecture was designed with certain objectives in mind. These objectives address
common concerns of data communication network users. One such concern is the reliability of the
network. Recoverable data communication errors must be handled transparently to the user. At the
data link layer of the architecture, error-checking protocols ensure that error detection and message
retries are performed automatically. When errors are not recoverable, communicating partners must
be able to achieve a mutual understanding as to the results of attempted message transfers. Protocols
at the presentation services layer provide positive-negative responses and establish synchronization
points, which enable communicating partners to ensure the consistency of their resources.

For some applications, consistent, fast performance is needed to handle updates immediately; for other
applications, it is important to send data as inexpensively as possible. APPN includes several features
that can handle this type of traffic mix efficiently. APPN′s priority services ensure that important data
moves through the network quickly. Similarly, by using intelligent class-of-service routing, APPN nodes
consider factors such as security, cost, delay, and throughput to select the best route for different types
of data. Unlike other protocols that react to network bottlenecks by dropping and resending packets,
APPN avoids network congestion by using adaptive pacing, which ensures a higher, more consistent
traffic volume.

High-performance routing (HPR) improves on APPN ′s reliability by providing greater session reliability
in case of link and node failure via nondisruptive path switch. It is accomplished transparently to both
the sessions and end users.

An SNA network is dependable because SNA products recognize and recover from loss of data during
transmission, use flow control procedures to prevent data overrun and avoid network congestion,
identify failures quickly, and recover from many errors with minimal involvement of network users.
SNA products also increase network availability through options such as the extended recovery facility,
backup host, alternate routing capability, and maintenance and recovery procedures integrated into
workstations, modems, and controllers.

Another concern is the efficiency with which data is transferred. Components within SNA act to
promote efficiency both by selecting options that maximize data transmission throughput and by taking
action to reduce network congestion when it is detected. Route selection services, for example, can
select optimal routes for data transmission.

When too much data is introduced into the network, congestion can occur. Severe congestion blocks
the flow of messages and can result in the loss of data. Protocols at the transmission control and path
control layers prevent overload and deadlocks by controlling the pace at which messages flow through
the network.

APPN features help eliminate unnecessary network control traffic, thus providing more bandwidth for
moving data through the network. APPN nodes never broadcast changes to all machines in the
network. Instead, only network nodes exchange topology information, and they exchange this
information only when changes occur in the backbone of the network. Other protocols broadcast
routing information at frequent regular intervals, even if nothing changes in the network. Other APPN
features, like directory caching and central directory servers, limit searches for other resources in the
network, and, as a result, improve network performance. In summary, APPN permits more bandwidth
for real work for applications, without the need to invest in new equipment.

An ongoing objective of SNA is ease of use, both for end users and network personnel. Because SNA
products have compatible interfaces, they can connect and communicate with one another.
Application program interfaces at the presentation services layer, for example, shield end users from

Chapter 1. Network Management 19

concern with the underlying details of communication protocols. When hardware and software
upgrades are required, the functional independence of the SNA layers enables any one layer to be
enhanced or modified without disrupting the functions of any other layer. To link independent
networks, network interconnection protocols are provided that enable the networks to communicate
without redefining network identifiers. An example of this is Common Programming Interface for
Communications (CPI-C), which can protect an organization′s investment in application programming.
The services provided by APPN include network topology updates and automatic route selection, which
make it unnecessary to predefine node locations and routes between nodes. Thus, network operators
can add new components to the network without affecting the network availability for existing users.

With peer-to-peer communication protocols, end users benefit through more timely access to their
applications because they are less dependent on the system programming staff to code network
definitions. As workstations and applications first become available in the network, or are moved,
APPN directory functions locate them dynamically without requiring coordinated definitions to be coded
by the system programmer. This improves network availability and end-user productivity.

Resource sharing addresses the concern for fair and effective resource utilization. The sharing of
access to storage devices, output devices, and data communication lines is paramount for containing
network costs. Resource sharing is addressed at many levels within SNA, from the multiplexing of
data links to the sharing of sessions by individual end-user transactions.

At the same time other mechanisms control the equitability with which services are provided to
network users. Transmission priorities and classes of service enable equal service to be given to
sessions of equal priority, or preference given to sessions of higher priority.

The security of data is an increasing need for today ′s networks, which have become the vehicles for
such sensitive data as banking transactions. Protocols for data encryption at the transmission control
layer, and password verification at the transaction services layer and the presentation services layer,
serve the data security objective.

Tools for resource management provide the ability to identify errors, help in problem determination,
and maintain accounting data on network resource usage. Capabilities exist within all layers of SNA
for monitoring and reporting errors relating to the functions for which they are responsible. Usage
statistics facilitate fair charging of network users, performance tuning, capacity planning, and capital
budgeting.

IBM offers communication products that conform to SNA specifications. Because of IBM′s ongoing
development of products compatible with this architecture, organizations often can substitute one type
of SNA product for another as their needs change. In an SNA network, newer devices with improved
capabilities can coexist with older ones. As an organization′s SNA network evolves with the addition
of new workstations, processors, communication facilities, and applications, it can continue using the
applications already in place.

• Subarea Networks

Networks that use peer-to-peer communication protocols can be integrated with subarea networks,
allowing application sessions between peer-to-peer nodes and hierarchical nodes.

• Dependent LU Support

Users of APPN can carry their investment in dependent LUs into the future of dynamic Advanced
Peer-To-Peer (APPN) networking. Dependent LUs can continue to access VTAM applications in the
same VTAM domain, or in different domains, using subarea protocols. In addition, dependent LUs
in one domain can access VTAM applications in a different domain utilizing APPN protocols
between domains. This allows the user to begin implementing APPN instead of subarea protocols
between VTAM domains, while continuing to provide access to VTAM applications from dependent
LUs in different domains.

20 ABCs of OS/390 System Programming

• Applications

Existing applications continue to be supported for dependent LUs and independent LUs. There is
no change to APIs.

• Ease of Migration

Migrating to a client/server environment does not have e to be complex,
time-consuming, and expensive. Advanced Peer-to-Peer Networking (APPN) provides a better
solution for migrating both networks and applications. With APPN, a network can be migrated to
the client/server environment at any pace. The new version of VTAM, for example, allows
traditional SNA networks to be integrated with APPN networks. APPN also enables running both
existing mainframe applications and new client/server applications at the same time.

SNA helps find and resolve problems that can occur in a network. SNA management services
functions in each network component to assist in problem determination. Also, the NetView(*) family of
products, which is network management software that runs on a host processor, has components that
monitor, collect, and store network data. Other system management functions built into the NetView
program allow rapid problem determination, increase network availability, and minimize the number of
the personnel needed to operate and maintain the SNA network.

An SNA network accommodates such facilities and technologies as:

• Digital networks

• Digitized voice

• Distributed systems

• Fiber optics

• Graphics

• Public packet-switching data networks

• Satellites

• Token-ring networks

• Videotex

• Client/server

• Ethernet

• Frame relay

• Security.

The SNA Network Interconnection (SNI) facility helps exchange information with another independent
organization or merge separately-administered subarea networks into one.

The SNA Network Interconnection facility allows users in one SNA network to access information and
application programs in other SNA networks. Each interconnected network can maintain its existing
management procedures and controls. A “gateway” between two or more SNA networks connects
them operationally while isolating their administrative characteristics from one another. Network users
are not aware of network boundaries.

Two APPN subnets may communicate with each other via a border node. The border node allows
sessions between users in different APPN subnets while isolating the subnets′ topology information
from one another.

Chapter 1. Network Management 21

Figure 10. A subarea network

1.10 A subarea network

A data communication network can be described as a configuration of nodes and links. Nodes are the
network components that send data over, and receive data from, the network. Node implementations
include processors, controllers, and workstations. Links are the network components that connect
adjacent nodes. Nodes and links work together in transferring data through a network.

A node is a set of hardware and associated software components that implement the functions of the
seven architectural layers. Although all seven layers are implemented within a given node, nodes can
differ based on their architectural components and the sets of functional capabilities they implement.
Nodes with different architectural components represent different node types. Four types of nodes
exist: type 5 (T5), type 4 (T4), type 2.0 (T2.0), and type 2.1 (T2.1).

Nodes that perform different network functions are said to act in different network roles. It is possible
for a given node type to act in multiple network roles. A T4 node, for example, can perform an
interconnection role between nodes at different levels of the subarea network hierarchy, or between
nodes in different subarea networks. The functions performed in these two roles are referred to as
boundary function and gateway function, respectively. T2.1 and T5 nodes can also act in several
different network roles. Node roles fall into two broad categories: hierarchical roles and peer-oriented
roles.

Hierarchical roles are those in which certain nodes have a controlling or mediating function with
respect to the actions of other nodes. Hierarchical networks are characterized by nodes of all four
types acting in hierarchical roles. Within such networks, nodes are categorized as either subarea

22 ABCs of OS/390 System Programming

nodes (SNs) or peripheral nodes (PNs). Subarea nodes provide services for and control over
peripheral nodes. Networks consisting of subarea and peripheral nodes are referred to as subarea
networks.

• Subarea nodes

Type 5 (T5) and type 4 (T4) nodes can act as subarea nodes. T5 subarea nodes provide the SNA
functions that control network resources, support transaction programs, support network operators,
and provide end-user services. Because these functions are provided by host processors, T5
nodes are also referred to as host nodes.

T4 subarea nodes provide the SNA functions that route and control the flow of data in a subarea
network. Because these functions are provided by communication controllers, T4 nodes are also
referred to as communication controller nodes.

• Peripheral nodes

Type 2.0 (T2.0) and type 2.1 (T2.1) nodes can act as peripheral nodes attached to either T4 or T5
subarea nodes. Peripheral nodes are typically devices such as distributed processors, cluster
controllers, or workstations. A T2.1 node differs from a T2.0 node by the T2.1 node′s ability to
support peer-oriented protocols as well as the hierarchical protocols of a simple T2.0 node. A T2.0
node requires the mediation of a T5 node in order to communicate with any other node. Subarea
nodes to which peripheral nodes are attached perform a boundary function and act as subarea
boundary nodes.

Chapter 1. Network Management 23

Figure 11. An APPN network

1.11 An APPN network

APPN extensions allow greater distribution of network control by enhancing the dynamic capabilities of
the node. Nodes with these extensions are referred to as APPN nodes, and a network of APPN nodes
makes up an APPN network. A low-entry networking (LEN) node can also attach to an APPN network.
An APPN node can dynamically find the location of a partner node, place the location information in
directories, compute potential routes to the partner, and select the best route from among those
computed. These dynamic capabilities relieve network personnel from having to predefine those
locations, directory entries, and routes. APPN nodes can include processors of varying sizes such as
the Application System/400 (AS/400), the Enterprise System/9370(*) (ES/9370(*)) running under
Distributed Processing Program Executive/370 (DPPX/370), the Personal System/2(*) (PS/2(*)) running
under Operating System/2(*) (OS/2(*)), and VTAM running under Multiple Virtual Storage/Enterprise
Systems Architecture (MVS/ESA).

Peer-oriented protocols enable nodes to communicate without requiring mediation by a T5 node, giving
them increased connection flexibility. APPN defines two possible roles for a node in an APPN network,
that of an end node and that of a network node. (Network nodes provide additional options that can
further distinguish them.)

T2.1 nodes can act as either APPN or LEN nodes. T5 nodes can also act as APPN or LEN nodes, but
have additional capability to interconnect subarea and APPN networks by interchanging protocols
between them. (In this capacity, they are called interchange nodes). Together with its subordinate T4
nodes, a T5 node can also form a composite LEN node or a composite network node. As composite

24 ABCs of OS/390 System Programming

nodes, they appear as single LEN or network nodes to other LEN or APPN nodes to which they are
interconnected.

If two network nodes do not support the border node option and are located in two separate net-ID
subnetworks, CP-CP sessions cannot be established between them. For the two network nodes to
communicate, a LEN connection may be established between the two. This allows the two net-ID
subnetworks to communicate, but does not support any APPN function. If NN1 in subnet A is to
establish a session with NN2 in subnet B, all LUs in subnet A must be predefined to NN2 in subnet B.
The network nodes in both subnets are APPN nodes, but since they communicate across net-ID
subnetwork boundaries, they are defined to each other via LEN links.

• End nodes

These are located on the periphery of an APPN network. An end node obtains full access to the
APPN network through one of the network nodes to which it is directly attached--its network node
server. The two kinds of end nodes are APPN end nodes and LEN end nodes. An APPN end node
supports APPN protocols through explicit interactions with a network node server. Such protocols
support dynamic searching for resources and provide resource information for the calculation of
routes by network nodes. A LEN end node is a LEN node attached to a network node. Although
LEN nodes lack the APPN extensions, they are able to be supported in APPN networks using the
services provided them by network nodes. In an APPN network, when a LEN node is connected to
another LEN node, or to an APPN end node, it is referred to simply as a LEN node. When
connected to an APPN network node, however, it is referred to as a LEN end node.

• Network nodes

Together with the links interconnecting them, network nodes form the intermediate routing network
of an APPN network. Network nodes connect end nodes to the network and provide resource
location and route selection services for them. Routes used to interconnect network users are
selected based on network topology information that can change dynamically. The graphic
represents one possible APPN network configuration and contains LEN end nodes as well as APPN
nodes.

• Network node server

This is a network node that provides resource location and route selection services to the LUs it
serves. These LUs can be in the network node, itself, or in the client end nodes. A network node
server uses CP-CP sessions to provide network information for session setup in order to support
the LUs on served APPN end nodes. In addition, LEN end nodes can also take advantage of the
services of the network node server. A LEN end node, unlike an APPN end node, must be
predefined by the network operator as a client end node for which the network node acts as
server. Any network node can be a network node server for end nodes that are attached to it. The
served end nodes are defined as being in that network node server′s domain.

• Central directory server

This is a network node that builds and maintains a directory of resources from the network. The
purpose of a CDS is to reduce the number of network broadcast searches to a maximum of one
per resource. Network nodes and APPN end nodes can register their resources with a CDS, which
acts as a focal point for resource location information.

A CDS can be involved in APPN end node resource registration. An APPN end node registers its
its resources to improve network search performance. When an APPN end node registers its
resources with its network node server, it can request that its network node server also register
them with a CDS. Entries in a directory database can be registered, defined, or dynamic.

When a network node receives a search request for a resource that has no location information,
the network node first sends a directed search request to a CDS if there is one. The CDS searches
in its directory for information about the location of the resource. If it does not find the location of
the resource, the CDS searches end nodes in its domain, other CDSs, and, if necessary, the entire
network (via a “broadcast search”). If the resource is still not found, the CDS notifies the network

Chapter 1. Network Management 25

node that originally requested the search that the search is unsuccessful. A central directory client
is a network node that forwards directory searches to a CDS.

26 ABCs of OS/390 System Programming

Figure 12. Subareas

1.11.1 Subareas

SNA defines the following network configurations:

• A hierarchical network consisting of subarea nodes and peripheral nodes

• A peer-oriented network consisting of APPN and LEN nodes

• A mixed network that combines one or more hierarchical subnets with one or more peer-oriented
subnets.

The organization of a hierarchical network structure is determined by the way control of network
services is maintained. Host nodes containing SSCPs are responsible for overall control of
communication in the hierarchical network.

A hierarchical network might include LEN or APPN nodes that are attached as peripheral nodes.
These nodes can communicate with each other through a subarea network if the boundary nodes to
which they are attached support the basic SSCP-independent LU-LU protocols needed for such peer
interactions.

A subarea consists of one subarea node and the peripheral nodes that are attached to that subarea
node. The concept of a subarea applies only to subarea networks and composite networks. The
network configuration in the visual contains five subarea nodes and seven peripheral nodes. Because
each subarea node and its attached peripheral nodes constitute a subarea,

Chapter 1. Network Management 27

Figure 13. Domains in a subarea network

1.11.2 Domains in a subarea network

A domain is an area of control. The concept of a domain within a subarea network differs from that
within an APPN network. Within a subarea network, a domain is that portion of the network managed
by the control point in a T5 subarea node. The control point in a T5 subarea node is called a system
services control point (SSCP).

When a subarea network has only one T5 node, that node must manage all of the network resources.
A subarea network that contains only one T5 node is a single-domain subarea network. When there
are multiple T5 nodes in the network, each T5 node may control a portion of the network resources. A
subarea network that contains more than one T5 node is a multiple-domain subarea network. In a
multiple-domain subarea network, the control of some resources can be shared between SSCPs.
Some resources can be shared serially and some concurrently. For more information on resource
sharing in subarea networks, see “Defining Shared Control of Resources in Subarea Networks” in
Chapter 4, “Defining Network Resources.” The visual illustrates two domains, A and B, joined by
direct-attached T4 nodes to form a multiple-domain subarea network.

28 ABCs of OS/390 System Programming

Figure 14. Network node domains in APPN

1.11.3 Network node domains in APPN

An APPN network constitutes a peer-oriented SNA network. All APPN nodes are considered to be
peers and do not rely on other nodes to control communication in the network the way a subarea node
controls communication between peripheral nodes. There is, however, a measure of hierarchical
control because a network node server provides certain network services to its attached end nodes.
The difference is that, in APPN networks, hierarchical control is not determined by product or
processor type as it is in subarea networks, where only large host processors contain SSCPs and node
types generally reflect product types.

The domain of a node in an APPN network is that portion of the network served by the control point in
the node. The control point in an APPN node is called simply a control point (CP). An end node
control point′s domain consists solely of its local resources. It is included within the domain of its
network node server. A network node control point′s domain includes the resources in the network
node and in any client end nodes (nodes for which the network node is acting as the network node
server) attached directly to the network node.

APPN networks are by definition multiple-domain networks. The graphic illustrates an APPN network
containing four network node domains, A, B, C, and D. The domains of the end nodes are included
within the domains of their respective network node servers.

Chapter 1. Network Management 29

Figure 15. VTAM startup

1.12 Starting VTAM

VTAM can be started manually by entering the command:

� �
S VTAM,,,(LIST=xx)� �

This will cause the VTAM start procedure to be executed.

In the following example of a basic VTAM proc, note the VTAMLST DD statement which specifies the
location of the network definition members and the VTAMLIB DD statement which specifies the location
of VTAM′s executable code.

30 ABCs of OS/390 System Programming

Figure 16. VTAM procedure

1.12.1 VTAM procedure

The first thing VTAM looks for is an ATCSTRxx member in its VTAMLST data set, where xx is the
LIST=xx value and can be any 2-character alphanumeric value.

The ATCSTRxx member contains VTAM start parameters that define VTAM′s identity on the network as
well as tuning options and a pointer to the major node startup list, ATCCONxx.

If no LIST= parameter was specified on the S VTAM command, the default value of 00 is used.

For example:

The command S VTAM,,,(LIST=Z9) will cause VTAM to read startup parameters from ATCSTRZ9

The command S VTAM,,,(LIST=EX) will cause VTAM to read startup parameters from ATCSTREX

The command S VTAM,,,(LIST=99) will cause VTAM to read startup parameters from ATCSTR99

The command S VTAM will cause VTAM to read startup parameters from the default ATCSTR00

A typical ATCSTRxx member might contain:

Chapter 1. Network Management 31

� �
SSCPID=0061,
CONFIG=00,
HOSTSA=130,
NETID=GBIBMPGX,
SSCPNAME=PGXYA,
IOBUF=(100,256,19,,12,30)

� �

For a complete description of the parameters and their values refer to OS/390 eNetwork
Communications Server: SNA Resource Definition Reference, SC31-8565.

Following is a brief description:

SSCPID A decimal integer in the range of 0-65535 that uniquely identifies this VTAM to any other
connected VTAMs that will communicate with it. It is used in the setup of cross-domain
sessions.

SSCPNAME This is a 1 to 8-character name that uniquely identifies this VTAM to any other connected
VTAMs that will communicate with it. It is also used in the setup of cross-domain
sessions.

HOSTSA This defines this VTAM′s subarea number.

NETID This specifies the name of the network containing this VTAM.

CONFIG This is a 2-character suffix of the ATCCONxx member that contains the list of major nodes
to be automatically activated at startup.

IOBUF This is one of the many VTAM tuning parameters. The values inside the brackets
determine how VTAM allocates and manages storage associated with a particular buffer
pool.

1.12.1.1 ATCCONxx

The ATCCONxx member, where xx is the value specified on the CONFIG=.. parameter on ATCSTRxx,
contains a list of the members or major nodes that VTAM will automatically activate on startup.

Typically, these will include at least:

• The TSO application major node

• One or more CICS application major nodes

• A local 3270 terminal′s major node

Examples of other major nodes, depending on the hardware and software installed, can include:

• An NCP major node

• An XCA major node

• An adjacent SSCP table major node

• A PATH table major node

• A Cross-Domain Resource Manager major node

• A Cross-Domain Resources major node

• A channel-to-channel Adapter major node

• Additional application major nodes, for example, NetView

32 ABCs of OS/390 System Programming

The above list is not intended to be exhaustive, merely to give examples of the major nodes that might
be included in a typical production startup list.

Major nodes are discussed further in 1.12.4, “VTAM major nodes” on page 38.

For reference, see OS/390 eNetwork Communications Server SNA Resource Definition Reference,
SC31-8565 and OS/390 eNetwork Communications Server SNA Resource Definition Samples, SC31-8566.

Chapter 1. Network Management 33

Figure 17. VTAM data sets

1.12.2 VTAM data sets

VTAM configuration depends on the customization of various control or parameter files. Advanced
VTAM customization can involve writing complex user exits and changes to such items as the
Unformatted System Services (USS) table, the LOGMODE table, and the Class Of Service (COS) table,
to name just a few. These members are located in the VTAMLIB data set, usually SYS1.VTAMLIB.

To start with, however, basic VTAM configuration can be achieved by tailoring the following:

• The VTAM start procedure SYS1.PROCLIB(VTAM).

• The VTAM startup member SYS1.VTAMLST(ATCSTRxx).

• The VTAM major node activation list SYS1.VTAMLST(ATCCONxx).

• Major node members, usually located in SYS1.VTAMLST. These members are used to define the
SNA network, and are discussed in 1.12.4, “VTAM major nodes” on page 38.

34 ABCs of OS/390 System Programming

Figure 18. VTAM commands

1.12.3 VTAM commands

VTAM operator commands fall into four categories:

 1. The Display commands
D NET,...

 2. The VARY commands
V NET,...

 3. The Modify commands
F NET,...

 4. The Halt commands
Z NET,...

The following command descriptions and examples give an overview of the VTAM Operator commands
available. For a complete list of VTAM Operator commands and their syntax and use refer to OS/390
eNetwork Communications Server: SNA Operation, SC31-8567.

Chapter 1. Network Management 35

1.12.3.1 Display commands

The basic VTAM Display commands can be used to interrogate VTAM for information about the status
of communications links, devices, applications, and even the state of VTAM itself.

The experienced VTAM operator or systems programmer can often successfully diagnose many VTAM
related problems simply by analyzing the output of the various Display commands.

Some of the more useful include:

Table 1. VTAM Display commands

Command Description

D NET,VTAMOPTS Display VTAM options, including SUBAREA Number, NETID, SSCPNAME,
SSCPID

D NET,BFRUSE Display information about VTAM ′s virtual storage and buffer pool usage

D NET,APPLS Display the applications (APPLIDS) that VTAM knows about

D NET,PATHTAB Display the status of communications PATHs between subareas in the VTAM
network

D NET,MAJNODES Display details about major nodes

D NET,ID=..... Display information about the specified VTAM resource

D NET,ID=.....,E Display more information about the specified VTAM resource

1.12.3.2 Vary commands

These commands can be used to deactivate a resource, thereby making it unavailable on the network,
or to reactivate a failed resource, for example.

Table 2. VTAM Vary commands

Command Description

V NET,ACT,ID=..... Activate the specified resource

V NET,INACT,ID=..... Deactivate the specified resource

V NET,INACT,ID=.....,I Immediately deactivate the specified resource

V NET,INACT,ID=.....,F Force-deactivate the specified resource

V NET,ACQ,ID=..... Acquire the specified resource (NCP or non-switched PU) without activating it
- used during network recovery whereby this VTAM can take ownership of
another VTAM ′s resource

1.12.3.3 Modify commands

The VTAM Modify commands are used for the more advanced VTAM functions such as replacing an
active LOGMODE table, for example, without having to restart VTAM, or to start and stop VTAM
tracing.

Table 3. VTAM Modify commands

Command Description

F NET,TNSTAT,CNSL=YES Activate the VTAM tuning statistics display and output to the console

F NET,NOTNSTAT Deactivate the VTAM tuning statistics display

F NET,TRACE,............ Initiate or Modify VTAM tracing

F NET,NOTRACE,............ Terminate VTAM tracing

36 ABCs of OS/390 System Programming

1.12.3.4 Halt commands

The VTAM Halt commands are used to stop VTAM processing.

Table 4. VTAM Halt commands

Command Description

Z NET Terminate VTAM processing normally

Z NET,QUICK Terminate VTAM processing immediately without waiting for normal
termination of existing sessions - should only be used when normal
termination does not complete successfully

Z NET,CANCEL Abends VTAM - should only be used when both Z NET and Z NET,QUICK are
unsuccessful

Chapter 1. Network Management 37

Figure 19. VTAM major nodes

1.12.4 VTAM major nodes

To define the attachment of any device, or set of devices, to VTAM you need to code a major node
member in the VTAMLST data set.

A major node is a list of parameters that define a specific type of network device or group of related
devices that VTAM can address. The different types of SNA major node are:

• Adjacent control point (ADJCP)

• Application program (APPL)

• Channel attachment (CA)

• Cross-domain resource (CDRSC)

• Cross-domain resource manager (CDRM)

• External communication adapter (XCA)

• Local non-SNA (LBUILD)

• Local SNA (LOCAL)

• LU group (LUGROUP)

• Model (MODEL)

• Network Control Program (NCP)

• Switched (SWNET)

38 ABCs of OS/390 System Programming

• Transport resource list (TRL)

For a complete description of each of these, including syntax and coding rules, refer to eNetwork
Communications Server: SNA Resource Definition Reference, SC31-8565 and eNetwork Communications
Server: SNA Resource Definition Samples, SC31-8566.

1.12.4.1 Local non-SNA major node

See A.1, “Major node definitions” on page 339 for an example of a local non-SNA major node to define
coax-attached 3270 terminals connected to a channel-attached 3174-type controller.

An XCA major node is used to define an External Communication Adapter to VTAM. For an example of
an OSA device attached to a token ring network definition, see A.2, “XCA Major Node” on page 342.

For an example of a switched major node to define switched communication links to VTAM, see A.3,
“Switched major node” on page 343.

Chapter 1. Network Management 39

1.13 TCP/IP

TCP/IP is a set of protocols and applications that allow you to perform certain computer functions in a
similar manner independent of the types of computers or networks being used. When you use TCP/IP,
you are using a network of computers to communicate with other users, share data with each other,
and share the processing resources of the computers connected to the TCP/IP network.

The TCP/IP component of eNetwork Communications Server supports the following functions:

• Log on to a remote host

• Transfer data sets

• Send and receive electronic mail

• Print on remote printers

• Authenticate network users

• Display IBM GDDM/MVS graphics on X Window System workstations

• Run a command on another host

• Monitor the network

• Query name servers

• Manage network resources

In the following topics we will present an overview and a brief discussion of some of the more
significant concepts or setup steps to help you get going.

For more information, see eNetwork Communications Server: IP User′s Guide, GC31-8514, and OS/390
TCP/IP OpenEdition: Configuration Guide, SC31-8304.

40 ABCs of OS/390 System Programming

Figure 20. TCP/IP layers

1.14 TCP/IP layered structure

The four layers that make up the TCP/IP protocol suite are:

 1. Network Interface - The lowest layer is the physical layer and is not actually specified by TCP/IP.
The user can access any physical transmission approach including both wide area (WAN) and local
area networks (LAN). The common protocols at this level have been X.25 and Ethernet. This
independence from the type of underlying physical network is one of the benefits of TCP/IP.

 2. Internetwork layer - This layer provides for routing of datagrams (messages) from one device to
another. This could be from one local device to another, or it could be across a wide area network
with many intervening networks that must be crossed. Every TCP/IP host has a unique internet
address which is a combination of a network ID that is assigned centrally, and a local host address
that is locally administrated. This permits the routing of datagrams (messages between, as well as
within, enterprises since all hosts have a unique address.

 3. Transport layer - The TCP implementation of the transport layer provides for reliable transmission
of data. At the lower layers, all transmissions are in individual packets. The TCP level involves
both error checking, re-transmission and assembly/disassembly of packets into/from logical
messages. The TCP level is optional, and an alternative protocol, User Datagram Protocol (UDP)
may be used. UDP provides no error checking and no assembly/disassembly of packets.

 4. Applications - The application layer consists of many different application types that may or may
not be implemented in a particular TCP/IP installation. Certain applications are implemented in
nearly all TCP/IP installations. These include TELNET (terminal emulation), SMTP (simple mail
transfer protocol - E-mail), and FTP (file transfer protocol).

Chapter 1. Network Management 41

With TCP/IP it is possible to have connectivity between different vendors′ systems, but not have all
the applications that a user may require. Therefore, the user must compare each vendor′s
implementation and set of functions supported in order to insure that all the requirements are met.

42 ABCs of OS/390 System Programming

Figure 21. TCP/IP terminology

1.14.1 TCP/IP terminology

The following are commonly used terms:

Host In the Internet suite of protocols, this is an end system. The end system can be
any workstation; it does not have to be a mainframe.

Gateway A functional unit that interconnects two computer networks with different network
architectures. A gateway connects networks or systems of different
architectures. A bridge interconnects networks or systems with the same or
similar architectures. In TCP/IP, this is a synonym for router.

Port Each process that wants to communicate with another process identifies itself to
the TCP/IP protocol suite by one or more ports. A port is a 16-bit number, used
by the host-to-host protocol to identify to which higher level protocol or
application program (process) it must deliver incoming messages. There are
two types of port:

Well-known Well-known ports belong to standard servers, for example
TELNET uses port 23. Well-known port numbers range between 1
to 1023 (prior to 1992, the range between 256 to 1023 was used for
UNIX-specific servers). Well-known port numbers are typically
odd, because early systems using the port concept required an
odd/even pair of ports for duplex operations. Most servers
require only a single port. The well-known ports are controlled
and assigned by the Internet central authority (IANA) and on most

Chapter 1. Network Management 43

systems can only be used by system processes or by programs
executed by privileged users. The reason for well-known ports is
to allow clients to be able to find servers without configuration
information.

Ephemeral Clients do not need well-known port numbers because they
initiate communication with servers and the port number they are
using is contained in the UDP datagrams sent to the server. Each
client process is allocated a port number for as long as it needs
by the host it is running on. Ephemeral port numbers have
values greater than 1023, normally in the range 1024 to 65535.

Socket An endpoint for communication between processes or application programs. A
synonym for port.

Socket address The address of an application program that uses the socket interface on the
network. In Internet format, it consists of the IP address of the socket′s host and
the port number of the socket. The application program is usually not aware of
the structure of the address.

Socket interface A Berkeley Software Distribution (BSD) application programming interface (API)
that allows users to easily write their own programs.

Router A router interconnects networks at the internetwork layer level and routes
packets between them. The router must understand the addressing structure
associated with the networking protocols it supports and make decisions on
whether, or how, to forward packets. Routers are able to select the best
transmission paths and optimal packet sizes. The basic routing function is
implemented in the IP layer of the TCP/IP protocol stack, so any host or
workstation running TCP/IP over more than one interface could, in theory and
also with most of today′s TCP/IP implementations, forward IP datagrams.
However, dedicated routers provide much more sophisticated routing than the
minimum functions implemented by IP.

44 ABCs of OS/390 System Programming

Figure 22. What are sockets, anyway?

1.14.2 Sockets

As originally defined by the BSD UNIX, sockets and the associated set of interface calls were
developed to enable UNIX processes to communicate across a TCP/IP network in a simple, file-based
manner. As POSIX programs in OS/390 UNIX are essentially UNIX processes, sockets provide an
important means of process-to-process communication irrespective of process location.

A good SNA analogy to sockets is the Logical Unit (LU). An LU has a “logical” address as represented
by the unique LU name and it is used to represent a communications endpoint for an application. The
SNA support also provides a set of LU interface calls that an application uses to drive the
communication process.

In the visual there are three examples of communication between process A on the left and other
processes. In each case, a socket has to be allocated on each side of a communication link with a
corresponding socket ID or address. In fact, three elements are needed to totally define a socket:

• The interface IP address

• The port number

• The interface protocol to be used on the socket-to-socket connection. Although the protocol does
not affect the socket address, it must be specified to fully define each socket. I have left it out for
simplicity.

The term socket has two associated meanings. In TCP/IP network terms, a socket represents a
communication end point in the network, used by an application to communicate with a remote partner.

Chapter 1. Network Management 45

The term “sockets” is also associated with a particular set of networking program calls (API) supported
in POSIX/UNIX.

A socket is identified by an Internet network address comprising:

• A unique system or IP address for the host system network interface, which is a 32-bit “dotted
decimal” number.

• A local port address, which is a two-byte binary number expressed in decimal form. A port
represents a duplex logical connection to the TCP/IP network, and provides the anchor for queues
for sending and receiving session data. Port numbers are divided into well-known ports (1− 1 0 2 4) ,
which are reserved for special TCP protocols, and dynamically allocated ports (greater than 1024)
allocated to ordinary applications on an as-requested basis.

A set of C-based program calls enable applications to use file-based semantics on sockets in order to
communicate with applications on a remote socket. Such a program is said to be using the “socket”
communications API. Although originally defined to support TCP/IP network communication across the
Internet, this interface is increasingly becoming a generic inter-process communication (IPC) interface.

46 ABCs of OS/390 System Programming

Figure 23. Internet technology

1.15 Internet technology

An internet is a set of interconnected data networks and associated protocols which form a
coordinated unit, independent of the underlying physical networks, permitting communications between
two or or more processes (applications) in a manner independent of the underlying physical networks
being used.

The goal of an internet is to build a unified, cooperative interconnection of networks that supports a
common communication service. Within each physical network, computers will use the underlying
technology-dependent communication software and hardware (X.25, SNA, Ethernet, etc.). New software
(TCP, IP, etc.), inserted between the technology-dependent communication mechanisms and
application programs, hide the low-level details and make the collection of separate physical networks
appear to be a single large network. Such an interconnection scheme is called an internetwork or an
internet.

The first design goal of the TCP/IP protocol suite was to build an interconnection of networks that
provide universal communication services, an internet.

• Internet technology makes it possible to interconnect different existing physical networks and make
them appear to the user as a single coordinated unit.

• This internet technology hides the details of the network hardware and allows computers to
communicate independently of the underlying physical network.

Chapter 1. Network Management 47

• Internet technology supports peer-to-peer communications between computers attached anywhere
on the internet.

In this visual, we see the actual internet on the left consisting of different networks, with different
physical media, different protocols, and different performances. Using Internet technology, this would
appear to a user as a single composite network, as shown on the right.

48 ABCs of OS/390 System Programming

Figure 24. Internet components

1.15.1 Internet components

As shown in this visual, an internet is comprised of various networks, gateways, and protocols. In
addition, there are the processors and processes that we refer to as the attached entities to the
internet. Processes can be considered equivalent to users and applications, and processors can be
considered equivalent to hosts or machines.

The internet components are as follows:

Processor A processor is a machine that runs the TCP/IP Protocol suite.

Process A process is a program that utilizes, and has defined interfaces to, TCP/IP. Examples
include TELNET, FTP, NFS, and so on.

Network A network is any existing physical network, including LANs, WANs, X.25, and so on.

Gateway A gateway is a special processor, or a function added to an existing processor, which
supports addressing and routing of datagrams from one physical network to another in an
internet.

A protocol is a member of the extended TCP/IP Protocol suite.

These components provide as follows:

• The ability to collect open system data.

• The ability to provide names to managed objects.

Chapter 1. Network Management 49

• The ability to change the configuration of an internet (for example, delete or add systems) without
interrupting communications between hosts currently on the internet.

50 ABCs of OS/390 System Programming

Figure 25. Internet concepts

1.15.2 Internet concepts

The basic concepts behind the internet technology are:

• Network technology independence

− Use existing transport networks

• Universal interconnection

− Universal addressing and naming

• End-to-end acknowledgements

− No acknowledgements within the underlying “unreliable” networks

• Multi-vendor interoperability at the application level

The basic concept behind an internet is to utilize the existing network transport mechanisms by adding
an additional layer of addressing between an application and the communication facilities. As much as
possible, isolate users from the details of the structure of the internet and its operations such as
routing, management, and so on.

• Network technology independence - While TCP/IP is based on conventional packet switching
technology, it is independent of any particular vendor′s hardware. An internet may include a
variety of network technologies ranging from networks designed to operate within a single building
to those designed to span large distances. TCP/IP protocols define the internet unit of data
transmission, called a datagram, and specify how to transmit datagrams on a particular network.

Chapter 1. Network Management 51

• Universal interconnection - A TCP/IP internet allows any pair of computers to which it attaches to
communicate. Each computer is assigned an internet address that is universally recognized
throughout the internet. Every datagram carries the addresses of its source and destination.
Intermediate switching computers use the destination address to make routing decisions.

• End-to-end acknowledgements - The TCP/IP internet protocols provide acknowledgements between
the source and ultimate destination instead of between successive machines along the path, even
when the two machines do not connect to a common physical network.

The internet technology also allows for distribution of the responsibility and control of an internet as
much as possible in the areas of routing, naming, network management, and addressing.

52 ABCs of OS/390 System Programming

Figure 26. Internet versus an internet

1.16 The Internet versus an internet

A distinction must be made between “an internet” and “The Internet” (sometimes referred to as the
connected Internet).

“The Internet” (capital I) is a specific, large internet that connects most major research institutions,
including universities, corporate and government labs, businesses (both local and international) your
home, and so on. It was created when the Defense Advanced Research Projects Agency (DARPA)
began working toward an internet technology in the mid 1970s.

The Internet has experience explosive growth in the past few years. This is especially due to the
growth of the World Wide Web, a collection of sites on the Internet that support easy, end-user-friendly
access and links to data stored at Internet sites all over the world.

Because of this explosive growth, a true picture of the Internet is probably impossible to draw. The
picture shown on this visual is a reasonable approximation of the Internet as it appeared around
1990− 1 9 9 1 .

Remember from the previous visuals that an internet is a group of separate physical networks
connected together allowing for communication between any computers attached to the internet.

However, the Internet is a specific internet that has been formed through the work and cooperation of
various military, educational, and corporate research organizations. It is sometimes also referred to
as the connected Internet.

Chapter 1. Network Management 53

The first pieces of the Internet came together around 1980, when DARPA first started converting its
machines to use TCP/IP protocols. The ARPANET, DARPA′s packet-switching network that was already
in place, quickly became the backbone of the new Internet and was used for many early experiments
with TCP/IP. The transition to the Internet was completed in 1983 when TCP/IP became mandatory for
connections to the DARPA network, ARPANET.

The success of the TCP/IP technology and the Internet led other networks to adopt it. The National
Science Foundation (NFS) took an active role in expanding the TCP/IP Internet to reach as many
scientists as possible. Starting in 1985, the NSF began a program to establish access networks
centered around its six supercomputer centers. In 1986 it expanded networking efforts by funding a
new backbone network called the NSFNET, that reached all its supercomputer centers and tied them to
ARPANET, all becoming part of the Internet. Advances in technology caused the ARPANET to be
dropped in favor of the NSFNET.

Today, the NSFNET backbone network is no longer supported by the National Science Foundation. It is
instead now a commercial network with installations all over the world.

• MILNET - Military network
• CREN - Corporation for Research and Educational Networking—merger of CSNET (the

Computer+Science Network) and BITNET (the Because It′s Time Network)
• DRI - Defense Research Internet
• NREN - National Research and Education Network
• NSFnet - The National Science Foundation network links the supercomputer sites to each other

through a high speed backbone. The network then interconnects to the many regional networks
forming a network of networks. IBM, in a joint development project with MCI and Merit Inc.,
provides software and switching system hardware for NSFnet.

• NYSERnet - New York State
• JVNNSC - John von Neuman Center Consortium
• SURANET - Southeastern Universities Regional Network
• SDSC - San Diego State Consortium
• MIDnet - Midwest Networks
• BARRNET - Bay Area Regional Networks

54 ABCs of OS/390 System Programming

Figure 27. Internet guiding entities

1.17 Internet guiding entities

There are various organizations, or guiding entities, that provide the focus for the research and
development of the Internet protocols, as listed here.

There are also “Requests for Comment” or RFCs that are reports of work, proposals for protocols, and
protocol standards.

The various Internet guiding entities are listed on this visual. These entities include:

• The Internet Activities Board (IAB) which provides the focus for most of the Internet Research and
Development. The IAB consists of:

− Internet Engineering Task Force (IETF) which is comprised of the Internet Engineering Steering
Group (IESG) and members who make up the working groups in each of eight areas. The IETF
concentrates on short-term or medium-term engineering problems.

− Internet Research Task Force (IRTF) which is comprised of the Internet Research Steering
Group (IRSG) and members who make up the research groups. The IRTF coordinates research
activities related to TCP/IP protocols or internet architecture in general.

• The Network Information Center (NIC) which is run by SRI International under contract and is
responsible for the assignment of network addresses. The NIC also maintains and distributes
information about TCP/IP and the connected Internet.

Chapter 1. Network Management 55

Requests For Comments (RFC) contain Internet standards and other useful information. They may
be long or short and may be wide or narrow in scope. The Network Information Center distributes
the RFCs to the community either electronically or in hard copy.

• The Network Operations Center (NOC) which manages key Internet networks, core gateways, and
does network management on behalf of all users. The NOC is operated by MERIT, Inc. and is
funded by NSF. It is located in Ann Arbor, Michigan, USA.

56 ABCs of OS/390 System Programming

Figure 28. Internet addressing

1.17.1 Internet addressing

Because of the ability to interconnect computers across multiple networks, an appropriate addressing
scheme was designed along with the networking protocols. All users of the network (including
applications) are located at hosts. “Host” means any computer, whether it be a large system, a small
PC, or anything in between.

Each host must have an unique address to communicate with other hosts on the same internet. An
internet address contains 32 bits and is divided into four octets (8 bits each). The address consists of
two major parts:

• A network address - used to address a specific network in an internet

• A host address - used to address a specific host within a network

The two major parts of the internet address are often shown as follows:

in te rne t address = <network address><host address>

The internet address can be represented in a dotted-decimal form, where each octet is denoted as the
decimal representation of the binary octet.

As you can see in the visual, a sample 32-bit address is shown:

10000100 00001101 00001110 00000010

Chapter 1. Network Management 57

However, humans have a difficult time interpreting a 32-bit binary address. Therefore, a
dotted-decimal form of notation is used to represent an internet address. So the binary number shown
above becomes:

132.13.14.2

 As mentioned before, an IP internet address consists of two parts; the <network address> and the
<hos t add ress> . Depending on the number of octets used to represent the <network address> part
of the internet address, there are four main classes of internet addresses. We will discuss those on
the next visual.

The important thing to remember is that each host on an internet must have a unique internet address
to be attached to the internet. If a host is on a private internet, then the group who manages access to
that internet must be consulted for a unique address. If you wish to connect a host to the Internet, then
you must have the NIC assign the <network address> part of your internet address to be assured of
a unique address on the Internet.

58 ABCs of OS/390 System Programming

Figure 29. Internet address classes

1.17.2 IP address classes

Each IP internet address is a pair of addresses (<network address><host address>), where
<network address> identif ies a network, and <host address> identif ies a specif ic host on that
network. Each host attached to the same physical network has the same <network address>.

• The <network address> portion of an internet address is assigned by a central authority. In the
case of the Internet, the NIC must assign the <network address> part of the Internet address.
This <network address> must be unique throughout the big Internet.

• The <host address> is assigned by the local authority and must be unique within the specific
network.

The number of bits in an internet address that are assigned to the <network address> part are
variable, resulting in four main classes of networks:

• Class A networks are very large networks (many hosts)
• Class B networks are moderately large networks
• Class C networks are small networks (256 or less hosts)
• Class D addresses are used for ′multicast ′ addresses

For the four classes mentioned above the division between the <network address> and the <host
address> is :

Chapter 1. Network Management 59

• Class A allows seven bits of the internet address to be used for the <network address> portion;
and the remaining 24 bits to be used for the hosts in the network. It allows for a total of 128
different networks with 16.777.216 hosts in each network.

• Class B allows 14 bits of the internet address to be used for the <network address> portion; and
the remaining 16 bits to be used for the hosts in the network. It allows for a total of 16.384 different
networks with 65.536 hosts in each network.

• Class C allows 21 bits of the internet address to be used for the <network address> portion; and
the remaining eight bits to be used for the hosts in the network. It allows for a total of 2.097.152
different networks with 256 hosts in each network.

• Class D is used for “multicast” address (limited broadcast addresses).

When hosts are moved from one network to another they must have the network address portion of
their internet address changed and will probably also require a change in the host address portion of
their internet address.

Address nuances:

• The <host address> is never set to zero, so an address with host address equal to zero refers to
the network itself. For example

The IBM network is 9.0.0.0

Further convention: eliminate trailing zeros in dotted-decimal notation, so the IBM network is
often written as simply 9.

• A <host address> of all ones is a broadcast address (on the local network).

• A <network address> of 0 is taken to mean “this network.”

60 ABCs of OS/390 System Programming

Figure 30. Subnetwork addressing

1.17.3 Subnetwork addressing

Subnetwork addressing allows large networks to be broken into smaller networks called subnets.

Where:

• Subnets are implemented by maintaining the integrity of the <network address> portion of the
internet address, but dividing the <host address> portion into two separate parts:

− Subnetwork address (sometimes referred to as a “local network address”)

− Host Address

• The resulting IP address can then be represented as follows:

<ne twork add ress><subne twork add ress><hos t add ress>

When the IP addressing scheme was developed, the designers worked in the world of expensive
mainframes. They planned for tens of networks with hundreds of hosts. They did not plan for tens of
thousands of small networks (LANs) with hundreds of thousands of personal computers. Growth in the
connected Internet is most apparent. A large number of trivial networks stresses the entire Internet
design because it means:

• Large administrative overhead is required to manage network addresses.

• Routing tables in gateways are extremely large.

Chapter 1. Network Management 61

Therefore, the principle of assigned IP addresses is too inflexible to allow easy changes to local
network configurations. Those changes might be:

• A new type of physical network installed at a location

• Growth of the number of hosts (personal computers) requires splitting the local network into two or
more separate networks

• Growing distances require splitting a network into smaller networks with gateways between them

To avoid having to request additional IP network addresses for every change in a local network, the
concept of subnets was introduced. Subnets are an extension to the base IP addressing scheme that
considers a part of the <host address> to be a “ local network address” or <subnetwork address>.
IP internet addresses are then interpreted as:

<ne twork address><subnetwork address><hos t address>

• The assignment of subnets can be done locally, as the whole local network still appears to be on
IP network to the outside world.

• Divis ion of the or iginal <host address> part into a <subnetwork address> and <host address>
part can be chosen freely by the local administrator. However, once it has been established, it
must be used consistently throughout the whole local network.

• Implementation of subnets requires that all the hosts have the IP code which supports
subnetworking.

We will discuss subnets in more detail when we discuss routing.

62 ABCs of OS/390 System Programming

Figure 31. Definitions

1.18 Network definitions

There are several ways to interconnect networks together. Bridges, routers, and gateways all
interconnect networks; however, each does so differently.

• Bridges

− A bridge connects networks at the Link Control Layer. It is protocol independent. It does not
have an IP addresses.

− Bridges connect networks, or segments of the same network, at a very low functional level.

− Portions of the link header and trailer may need to be changed, but most of the data in the
frame is left unaltered.

− Bridges are the most efficient, since they operate at the Data Link Control layer and usually
require the least amount of processing.

• Routers

− A router connects networks at the Network Layer. It is protocol dependent. In TCP/IP, a router
is often referred to as a gateway.

A TCP/IP router has an IP address for each network it is attached to.

− Routers are used to route frames (or packets as they are also called) from one network to
another.

Chapter 1. Network Management 63

− Routing requires changing one or more addresses, making decisions as to the best route or
path to take through the interconnected networks and possibly changing link headers and
trailers.

− Routers usually are less efficient than bridges, but more efficient than gateways.

− A source of confusion in the TCP/IP world is that computers which perform routing functions
are often referred to as “gateways.” A TCP/IP “gateway” is not a gateway as described below;
it is a router.

• Gateways

− A gateway (non-TCP/IP gateway) connects networks of same or different protocols. It is
protocol dependent.

− Gateways are used to change protocols from one set to another. This usually means removing
the information from all the protocol envelopes and repackaging it in another set of protocol
envelopes.

− Gateways are the least efficient way to interconnect networks, but allow the interconnection of
networks with different protocol implementations.

TCP/IP “gateways” can connect networks with different physical implementations (for example, LAN
and X.25), as long as the same higher-level network implementation (that is, IP) is used.

Therefore TCP/IP gateways are in reality routers.

64 ABCs of OS/390 System Programming

Figure 32. Internet gateways

1.19 Internet gateways

TCP/IP can be found in many different types of networks, and, in fact was designed to support the
interconnection of these networks using what is known as the “gateway” function.

Internet gateways have more than one address; an address is used to represent the gateway on each
network the gateway is attached to. TCP/IP hosts with addresses on more than one network are called
“mult i -homed.”

TCP/IP gateways can connect networks with different physical implementations (for example, LAN and
X.25) as long as the same higher-level network implementation, that is, IP is used. As mentioned
earlier, the TCP/IP gateway function is really a “router” function. TCP/IP gateways perform their
routing function based upon the destination <network address>, not the destinat ion <host
address> . Packets are routed through the network based upon their target <network address>. The
<host address> portion of the internet address is ignored during inter-network routing.

Hosts and gateways know nothing about the subsequent routing. Routing is a basic gateway function
and part of the base IP code; it is available in any node running TCP/IP.

On the next two visuals we will take a brief look at basic and full-function gateways.

Chapter 1. Network Management 65

Figure 33. Basic gateways

1.19.1 Basic gateways

Basic gateways provide the function to connect two networks together. The gateway has limited
knowledge of the network; it only knows about the hosts on the networks to which it is connected.
Remember that gateways are “multi-homed”—they have IP addresses on each network they are
attached to.

Basic gateways support “direct routing” if the destination and source hosts are on the same physical
networks (same <network address>). Basic gateways also support “indirect routing” if the
destination and source hosts are on different networks (routing must be done via one or more
gateways). Datagrams are simply routed to the next gateway along the path.

• A source host only needs to know the address of the first gateway.

• Each gateway will forward the packet until the destination network is reached; the packet is then
sent using direct routing.

• In the example on the visual, a datagram from network 192.1.115 that is destined for network
193.10.4 will be routed by gateway G1 to gateway G2.

Each host must keep an IP routing table which maps:

• Local addresses as direct routes.

• Off-network destination host addresses as indirect routes through a locally attached gateway.

• A default route for packets with a destination network address not listed in the routing table.

66 ABCs of OS/390 System Programming

Figure 34. Full-function gateways

1.19.2 Full-function gateways

Full-function gateways provide more sophisticated functions, where the gateway knows about all
interconnected networks. They maintain and update routing information dynamically to reflect network
topology changes.

Each gateway has information about:

• Networks that can be reached

• Number of hops to each network (gateway hops)

Here, for example Gateway A′s routing table is shown, with the information on reaching Networks 1, 2,
3, and 4.

Full-function gateways are divided into two classes: core and non-core gateways.

• Core gateways are maintained by NIC and are used to interconnect major user networks to
NSFNET.

• Non-core gateways are used to interconnect multiple user networks together.

Both core and non-core gateways must know about all of the networks they support. This is
accomplished using one of the different gateway protocols.

We will discuss the different gateway protocols on the next visual.

Chapter 1. Network Management 67

Figure 35. Gateway protocols

1.19.3 Gateway protocols

There are several protocols associated with the transfer of information between gateways (routers).
The specific protocol(s) used are determined by the gateway type:

• Gateway-to-gateway protocol (GGP)

− Used to transfer information between “neighbor” gateways.
− Each gateway will update its tables based upon the received information and will send

information about changes to its neighbors.
− Information transferred includes the networks reachable by this gateway, and the path length

for reaching the networks.

• Exterior gateway protocol (EGP)

− Used to transfer information between “exterior” gateways. (Exterior gateways are ones that
connect physical networks in different autonomous networks, where an autonomous network is
a group of physical networks connected together and administered by a single authority.)

− The EGP protocol supports passing of route information as well as other dialogs between the
exterior gateways.

− Exterior gateways collect information from interior gateways (gateways within an autonomous
network.

• Interior gateway protocols (IGP)

− A set of protocols used to transfer information between “interior” gateways.

68 ABCs of OS/390 System Programming

− Examples of IGP protocols include the Routing Information Protocol (RIP) and the HELLO
protocol.

− RIP is a class of protocols based upon the Xerox network XNS routing protocols.

Chapter 1. Network Management 69

Figure 36. Routing information protocol

1.20 Routing information protocol

Autonomous networks implement the RIP protocol. RIP or routing information protocol is a widely
used interior gateway protocol. It relies on physical network broadcasts to make routing exchanges
quickly.

RIP routing tables consist of the distance to each physical network in the autonomous network that the
gateway is aware of. The distance to that network is measured as the number of hops (gateways
between the sending gateway and the network).

RIP partitions hosts in the autonomous network into active and passive (silent) machines. Active
gateways advertise their routes to others; passive machines listen and update their routes based on
advertisements, but do not advertise. Typically, gateways run RIP in active mode, while hosts use
passive mode. The routing information that is broadcast is that of the sender of the broadcast. Active
gateways broadcast their routing table every 30 seconds.

In this example, Gateway A sends Gateway B its current routing database, consisting of the
information that Network 1 is 0 hops from A and Network 4 is 2 hops from A. Similarly, Gateway B
sends Gateway A and C, its current routing database, with the information that Network 1 is 1 hop from
B and Network 4 is 1 hop from B. Each gateway updates its routing database with the latest
information that it receives.

A hop count of 15 denotes infinity, so as to avoid routing loops.

70 ABCs of OS/390 System Programming

RIP uses vector-distance routing for local networks. RIP is also known as route-d.

Chapter 1. Network Management 71

Figure 37. TCP/IP protocol suite

1.21 TCP/IP protocol suite

Remember that the TCP/IP protocol suite does not refer just to TCP and IP. It consists of:

• Application protocols, such as TELNET, FTP, SMTP, and others.

• The key inter-networking protocols:

− Transmission Control Protocol (TCP)

− the Internet Protocol (IP)

• Other networking protocols include User Datagram Protocol (UDP), Internet Control Message
Protocol (ICMP), Address Resolution Protocol (ARP), and so forth.

• The TCP/IP protocol suite also includes the Network Access Interface protocols, which are the
interface protocols for the underlying physical network.

In this subtopic, we will go into a little more detail about some of the TCP/IP protocols and what they
are used for. The purpose of this architecture review is to make sure you are familiar with the purpose
of these protocols before we get into implementation specifics.

Remember that architecturally, TCP/IP is a layered architecture, consisting of a protocol stack
comprised of four basic layers as seen in this visual. They are:

• The application layer, with the application protocols, which provide applications that the users can
invoke to access network services. The application layer is built on the services of the transport
layer.

72 ABCs of OS/390 System Programming

Some of the application protocols are shown here. We will cover these in more detail in the section
on TCP/IP Applications.

• The transport layer consisting of the two different protocols: User Datagram Protocol (UDP) and
Transmission Control Protocol (TCP)—TCP and UDP. TCP is a connection oriented protocol,
whereas UDP is a connection-less protocol.

• The internet layer consisting of the protocols Internet Protocol (IP), Internet Control Message
Protocol (ICMP), Address Resolution Protocol (ARP), Routing Information Protocol (RIP), and
Reverse Address Resolution Protocol (RARP).

IP is a connection-less protocol.

• The data link or physical layer with protocols such as Ethernet, X.25, Token Ring, and so forth.

First, we will discuss the concept of protocol layering in the next visual and then over the next series of
visuals we will provide an overview of the TCP/IP layers and the protocols at each layer.

Chapter 1. Network Management 73

Figure 38. Protocol layers

1.21.1 Protocol layers

Each separate layer of a layered protocol is responsible for adding its own headers (and sometimes
trailers) for successful peer-to-peer communication with the same layer in a protocol stack in a
different machine. Each layer “N” passes transparently the information it receives from the next
higher layer “N+1” after it adds the required headers (and trailers, if required). A layer “N” Protocol
Data Unit (PDU) is simply a layer “N+1” Service Data Unit (SDU) plus the required layer “N” headers.

As you can see from the visual, the TCP/IP protocol suite has different names to describe the PDUs
created at each layer.

The operation of layered protocols is based on a fundamental idea called the “layering” principle. It
can be described as follows:

Layered protocols are designed so that layer “N” at the destination receives exactly the same
object sent by layer “N” at the source.

The layering principle explains why layering is such a powerful idea. It allows the protocol designer to
focus attention on one layer at a time, without worrying about how lower layers perform. Also, as
enhancements and advances are made to both software and hardware, a specific item in a protocol
stack can be improved without having to completely replace all the protocol software/hardware in a
network.

• The layer N Protocol Data Unit (PDU) = Layer N+1 Service Data Unit (SDU) + layer N headers.

• TCP PDUs are called segments.

74 ABCs of OS/390 System Programming

• IP PDUs are called datagrams, in recognition of IP Connectionless Orientation.

Depending on the requirements of the underlying physical network, IP may further divide
datagrams into fragments, each carrying a replica of the IP header. These fragments will be less
than or equal to the maximum size of the physical data unit supported by the physical network.

• PDUs for the Network Access Layer(s) depend upon the type of network utilized:

− X.25 PDUs are called packets.

− Data Link PDUs are called frames.

Within a layered protocol such as TCP/IP, each layer invokes the services of the layer below it while
providing services to the layer above it. The commands and responses between the layers of a
protocol stack are called primitives and are distinct from the flow of peer-to-peer information described
above (PDUs, segments, datagrams, and so forth).

Chapter 1. Network Management 75

Figure 39. Internet Protocol

1.21.2 Internet Protocol (IP)

Internet Protocol or IP is the inter-network layer protocol in the TCP/IP protocol suite. It provides
connectionless “datagram” delivery of data packets on an unreliable “best effort” basis. It provides no
error recovery or protection against data loss. IP is faster, simpler, and more efficient than
connection-oriented oriented protocols; but with less or no control of route selection and priority.

IP provides the foundation upon which the rest of the TCP/IP services rest. The most fundamental
internet service consists of a packet delivery system. The service is defined as an unreliable,
best-effort, connectionless packet delivery system. The service is unreliable because delivery is not
guaranteed. The packet may be lost, duplicated, delayed, or delivered out of order, but the service will
not detect such conditions, nor will it inform the sender or receiver. The service is called
connectionless because each packet is treated independently from all others. A sequence of packets
sent from one machine to another may travel over different paths, or some may be lost while others
are delivered. Finally, the service is said to use best-effort delivery because the internet software
makes a concerted attempt to deliver packets. That is, the internet does not discard packets for no
apparent reason; unreliability arises only when resources are exhausted or underlying networks fail.

IP provides three important definitions:

• IP defines the basic unit of data transfer used throughout a TCP/IP internet. It specifies the exact
format of all data as it passes across an internet.

• IP software performs the routing function, choosing a path over which data will be sent.

76 ABCs of OS/390 System Programming

• IP includes a set of rules that define the unreliable packet delivery. The rules define how hosts
and gateways should process packets, how and when error messages should be generated, and
the conditions under which packets can be discarded.

The data travels across the network in “packets.” The basic packet used to move information is called
the IP datagram. Since IP is a connectionless protocol, it does not provide delivery verification,
guaranteed sequential delivery of packets, or error recovery. All these functions will be the
responsibility of some higher-level function, such as TCP or an application.

Because of the underlying physical network limitations, IP will sometimes have to fragment a packet.

• IP expects all physical sub-networks to be able to support a packet size of at least 576 bytes.

• Data packets are assigned a unique identification number prior to fragmentation.

• When the packets are fragmented, each is sent with an offset value.

• The receiving IP can reassemble the packet using the identification number and the offset values.

Chapter 1. Network Management 77

Figure 40. IP datagrams

1.21.3 IP datagrams

An IP datagram consists of:

• Header

The header is built by IP using the data received from the next higher layer along with “primitives”
from the next higher layer giving additional information on how to handle the data.

• Data

Data is made up of information that is received from the next higher layer, or information received
from the network that is passed up from the physical layer.

Some of the fields contained in the IP header include:

• The version of IP being used.
• Length of the IP header and total packet.
• Identification number (and offset values if fragmentation is being used).
• Higher level protocol (for example, TCP) to which IP should deliver the packet.
• Source and destination IP address.

When the IP datagram fields are completed, the packet is passed to the DLC layer where it is further
enveloped.

At the destination host, IP reassembles the fragments (if any), removes the IP headers and delivers the
original segments to the correct high-level protocol (TCP, UDP, and so forth).

78 ABCs of OS/390 System Programming

Segments are delivered to the higher layer in whatever order they are received.

Chapter 1. Network Management 79

Figure 41. ICMP

1.21.4 Internet Control Message Protocol (ICMP)

The Internet Control Message Protocol allows hosts and gateways to send error or control messages
to other hosts or gateways. It provides communications between the internet software on one machine
with the internet software on another machine.

ICMP messages travel across the network encapsulated in the data portion of IP datagrams. There is
no added reliability, therefore the messages themselves may be lost or discarded (IP is
connectionless).

ICMP is a required part of IP, and cannot be considered a higher-level protocol.

The final destination of an ICMP message is the IP software itself on the destination machine.
Therefore, the ICMP error message is handled by the IP software and not sent to the application
program. However, if ICMP determines that a particular higher-level protocol or application program
has caused a problem, it will inform the appropriate module. ICMP messages are of various types,
some of the types include:

• Echo request and reply (Packet InterNet Groper - PING)
• Destination unreachable
• Redirect (change a route)
• Time exceeded for a datagram
• Time stamping request/reply
• Overrun conditions
• Information (address) request/reply

80 ABCs of OS/390 System Programming

So ICMP is used for basic error reporting (not correction) between two hosts at the inter-network level,
and is an integral part of the Internet Protocol (IP) that handles error and control messages.

The intent of ICMP is to support some level of error reporting, not to address every error situation. In
other words, ICMP does not relieve the upper-level protocols from the responsibility of ensuring error
free data.

Chapter 1. Network Management 81

Figure 42. Address nuances

1.21.5 Address nuances

The problem:

• Hosts in an IP network are known by their 32-bit internet address.

• Networks need to know the physical network address of hosts to allow communication between
hosts on the network.

Therefore, some mechanism is required to translate a 32-bit internet host address to the hardware
address for that host on its physical network.

Remember that each host in an internet must have a unique 32-bit IP address. Also remember that an
internet may consist of many different kinds of physical networks. Each one of these physical networks
may have a different method of physical hardware addressing for the hosts on that network. In
general, the hardware address for a host on a network is much different from the 32-bit software
address used by IP for software running on that host.

We need to address the problem of mapping internet addresses (software addresses) to the actual
physical hardware addresses.

One option is to set the host IP address equal to the physical network address. However, this does not
work because in some cases:

• Physical address length exceed the host internet address
• Physical address can change. (for example, Ethernet)

82 ABCs of OS/390 System Programming

The solution could be either:

• Simple algorithms to translate software IP addresses to hardware addresses
• Address Resolution Protocol (ARP)
• A mapping table
• Reverse Address Resolution Protocol (RARP)
• Proxy ARP

We will discuss ARP, RARP, and ProxyARP in greater detail.

Chapter 1. Network Management 83

Figure 43. Address Resolution Protocol (ARP)

1.21.6 Address Resolution Protocol (ARP)

The Address Resolution Protocol, ARP, allows a host to find the physical address of a target host on
the same physical network given only the target host′s IP address.

• The basic notion behind ARP is:
− The sending host broadcasts a packet containing the target internet address to all the stations

on the local network.
− All stations on the local network receive the packet.
− The correct station will send back a reply identifying its local network address.

Suppose a host (source) wants to send a packet to another host (destination) on the same physical
network. The source host will turn the packet over to IP. The IP routing function will attempt to match
the destination IP address to a physical address.

Nodes supporting the ARP function will maintain a table that equates IP addresses to physical
addresses. Packets containing an IP address that is not in the table (also called the ARP “cache”) will
result in an ARP broadcast being sent across the physical (local) network in an attempt to locate the
address. A host recognizing its IP address in the ARP packet will respond allowing the originator of
the broadcast to identify the physical address of the destination. (This is similar to the way NETBIOS
works.)

Some refinements to ARP include:

• “Caching” of address resolution information.

84 ABCs of OS/390 System Programming

• Utilization by all stations of information contained in the special broadcast packet.

Chapter 1. Network Management 85

An ARP packet contains information such as:

• Type of hardware and protocol being used (for example, Ethernet).
• Source and target IP address (32 bits).
• Source and target hardware (physical) address (48 bits).

An important advantage of the ARP process is that it is dynamic—no tables are maintained by systems
programmers.

86 ABCs of OS/390 System Programming

Figure 44. Reverse Address Resolution Protocol (RARP)

1.21.7 Reverse Address Resolution Protocol (RARP)

There are some kinds of workstations referred to as “diskless workstations.” They have no access to
secondary storage, and therefore cannot store an IP address for use to communicate with other hosts
on an internet. A method is required that allows a workstation that knows its hardware address to
acquire an internet address.

The basic notion behind RARP is:

• How to determine the internet address given a physical address.

The RARP process works as follows:

• The host diskless workstation (source) sends a broadcast request to special RARP server(s). The
host workstation probably does not know the IP address of the RARP server, so it sends its
broadcast request at the physical address level to all machines on its local network.

The broadcast request includes the physical address of the host workstation.

• Only machines authorized to supply the RARP services process the request and send a reply. The
RARP server will have a pre-defined mapping table to support this function. It receives the
broadcast request and searches its tables for the IP address that matches the physical address
received in the broadcast request. The RARP server then responds to the requestor with the
required internet address.

• This requires the specific function of an RARP server in the network.

• The contents of the RARP packet are very similar to the ARP packet.

Chapter 1. Network Management 87

Figure 45. Proxy ARP

1.21.8 Proxy ARP

The goal of Proxy ARP is to allow multiple physical networks to share a single internet <network
address> and thereby simplify internet routing and administration. In the visual above, note that there
are two separate physical networks joined by gateway 163.10.1.4. Also note that the <network
address> for all the hosts on both networks is 163.10.1!

Proxy ARP works on a network that uses ARP to do the internet-to-physical address translation. In this
example, the MAIN NETWORK is the original network and the SECONDARY NETWORK was added at a
later date. The gateway “G” connecting the two networks uses ARP to maintain the illusion that only
one network exists. To make the illusion work, G keeps the location of hosts completely hidden,
allowing all other machines on the network to communicate as if directly connected.

• H1 (163.10.1.1) has an IP datagram destined for H8 (163.10.1.8).

• H1 invokes ARP to map H8′s IP address to a physical address.

• Because gateway “G” runs proxy ARP software, it captures the broadcast ARP and responds with
its (the gateway′s) local network address, hence it assumes the proxy role.

• H1 receives the ARP response and installs the mapping in its ARP cache.

• H1 sends the datagram that is destined for H8, but actually sends it to gateway “G.”

• When G receives a datagram, is searches a special routing table to determine how to route the
datagram.

• G forwards the datagram destined for H8 over the secondary network.

88 ABCs of OS/390 System Programming

To allow hosts on the secondary network to reach hosts on the main network, G performs the proxy
ARP service on that network as well. Proxy ARP is good only in limited configurations.

Chapter 1. Network Management 89

Figure 46. Domain Name System

1.22 Domain Name System

It is difficult for a user to remember the 32-bit IP address for each host that the user may require
communications with. The use of symbolic high-level machine names makes it much easier for users
to remember host names and establish communications with applications running on many different
TCP/IP hosts.

As the acceptance and use of TCP/IP grew, the use of numeric IP addresses was replaced by the use
of symbolic names. Initially, host names-to-address mappings were maintained by the Network
Information Center (NIC) in a single file which was fetched by all hosts using the File Transfer Program
(FTP). Due to rapid growth in the number of hosts on the Connected Internet, this mechanism became
too slow and inefficient and was replaced by the Domain Name System.

• Domain names, like IP addresses, are concatenated. For example nm1.nm2.nm3.

• The Domain Name System is used to structure network names in a hierarchical fashion. This
means that the Internet is divided into hierarchical domains.

• In this system, and shown in this visual, the highest level domain (below the unnamed root) is a
major network type. For example, as seen here COM is the highest level domain for commercial
organizations and EDU is the highest level domain for educational institutions.

The top-level domain namespace is partitioned by the Internet authority. The current top-level
names are:

90 ABCs of OS/390 System Programming

Domain Name Meaning
edu Educational institutions
com Commercial organizations
gov Government institutions
mil Military groups

 net Major network support centers
 org Organizations other than those above
 arpa Temporary ARPANET domain (obsolete) *
 int Internation organizations
 country code International standard two-letter identifier

• The next level represents major networks within a network type. In this example, IBM is a major
network within the COM or commercial organizations domain.

• At the next level, the network domains are divided into individual networks, such as network
RALEIGH shown here.

• The network name is a concatenation of various domain names.

• In this example, the name VM9.RALEIGH.IBM.COM represents a host, VM9 on the network
RALEIGH, which is a domain on the IBM network, which is connected to the top level network
COM.

An important feature of the Domain Name System to remember is that the Internet authority is
responsible for partitioning and naming only the top level domain namespace. Authority for names
and partitioning at the lower levels is the responsibility of the designated agent at that level For
example, IBM might choose to partition its namespace based on site name and to delegate to each site
responsibility for maintaining names within its partition (an administrative group at RALEIGH would be
responsible for names and further subdivision within its location). The idea is to keep subdividing the
namespace until each subdivision is small enough to be manageable. The topmost level (the Internet
authority) divides the namespace and delegates authority for each division; it is not bothered by
changes within one division.

For these reasons, the TCP/IP Domain Name System naming scheme allows delegation of authority for
the hierarchical namespace without regard to physical connections.

Now we must have some way of mapping the names maintained by the Domain Name System to the
actual IP addresses of the hosts. This function is performed by cooperative systems called name
servers.

Chapter 1. Network Management 91

Figure 47. Name servers

1.22.1 Name servers

Before a packet can be sent through the network, the target host name identified by the user sending
the packet must be mapped to a valid IP (numeric) address.

This mapping function may be done by using a table at the source host, or the services of a
name-server.

A name server is a server program that supplies name-to-address translation (mapping) from Domain
Names to IP addresses.

Name servers map (translate) user-friendly host Domain Names into network friendly IP addresses.
Often name server software executes on a dedicated processor, and the machine itself is called the
name server.

The client function (running on the host that needs a Domain Name translated into an IP address) is
called a name resolver since it has the responsibility for converting the name to an IP address. If the
client name resolver function cannot locate the name in its cached resident mapping table, it will send
the request to a “name-server.”

• The IP address of the local name server must be known to the client.

• The client can request recursive or non-recursive services to be used in the event that the local
name server does not have the target host name in its cache mapping table.

92 ABCs of OS/390 System Programming

− Recursive service means that the local name server will contact other name servers and report
the results back to the client (IP address or a negative response).

− Non-recursive service means that the local name server will return the IP addresses of other
name servers back to the client; the client must then contact them directly.

• In the interest of efficiency, name servers cache resolved names to improve the overall
performance of the name server system. Each entry has a separate time-to-live so that after the
specified amount of time, the entry will be deleted and the name server must go back to the
authoritative source to update its cache entry.

Another protocol called the “Domain Protocol” is used for communicating between the domains.
Domain protocol messages can be sent using either TCP or UDP.

Chapter 1. Network Management 93

Figure 48. Ports and sockets

1.23 Ports and sockets

Each host has one or more “processes” (applications) that have a need to communicate with
processes on other hosts (an example of a process is an application such as TELNET). In order to use
the functions of TCP/IP, each process must identify itself to TCP by one or more ports.

A port or ports may be thought of as a logical connection point that TCP uses to distinguish among
multiple processes within a given host computer. Therefore ports can be thought of as process
addresses used by TCP. Sockets are a concatenation of a port number and an internet address.

So a process (application) utilizing TCP is associated with a particular TCP port . The port number is
selected when a process begins communications with TCP (OPEN primitive). This port provides access
to and from TCP and any process or application in the same host or a different host. A port is a 16-bit
number used by the host-to-host protocol (TCP) to identify to which higher-level protocol or application
program (process) it must deliver incoming messages.

• A TCP port corresponds to the Service Access Point (SAP)

• Some commonly used processes or applications (for example, TELNET, FTP, and so forth) will
always use the same port number. These ports used by these processes are termed “well-known”
ports.

The range of well-known port numbers is between 0 and 255. User applications should use port
numbers above this range. Different user-written applications can request an available port from
TCP/IP, avoiding any confusion that might occur if two applications request the same port number.

94 ABCs of OS/390 System Programming

Ports are used by both TCP and UDP.

Processes are known to the network by a concatenation of their port address and the IP address. This
total identifier is also called a “socket” or a “socket address.”

Chapter 1. Network Management 95

Figure 49. TCP/IP transport layer protocols

1.24 Transport layer protocols

The primary duty of the transport layer is to provide communication from one application program to
another. Such communication is often called end-to-end. The transport layer may regulate the flow of
information. It may also provide reliable transport, ensuring that data arrives without error and in
sequence. To do so, it arranges to have the receiving side send back acknowledgements, and it
retransmits lost packets. The transport software divides the stream of data being transmitted into
small pieces (called packets in the ISO terminology and segments by TCP/IP) and passes each packet,
along with a destination address, to the next layer (IP) for transmission.

A general purpose computer can have multiple application programs accessing an internet at one
time. The transport layer must accept data from several user programs (processes) and send it to the
next lower layer. To do so, it adds additional information to each packet, including codes (port
numbers) that identify which application program should receive it, as well as a checksum. The
receiving machine uses the checksum to verify that the packet arrived intact, and uses the destination
code (port number) to identify the application program to which it should be delivered.

The two protocols at the TCP/IP transport layer are TCP and UDP.

• TCP is a connection-oriented protocol. Before transferring data, a connection is established with
the destination node. When data transfer is ended, the connection is terminated. This process is
analogous to making a telephone call, where connections are established, with the partner before
there is an exchange of information. Hence, TCP is a connection-oriented protocol.

96 ABCs of OS/390 System Programming

• UDP is a connection-less protocol. No connection is established prior to the transfer of data. The
data is sent into the network and is assumed to reach the destination. This process is similar to
the mailing of a letter, where the letter reaches the destination, without a connection being
established between the origin and destination.

UDP provides a procedure for application programs to send data to other programs with a minimum of
protocol intervention. UDP data is sent in the form of packets or “datagrams.” UDP provides an
unreliable mode of communication between the source and destination hosts. UDP does not offer a
guarantee of datagram delivery or duplication protection.

Applications that require reliable delivery or streams of data should use TCP.

Chapter 1. Network Management 97

Figure 50. TCP

1.24.1 Transmission Control Protocol (TCP)

TCP is a transport layer protocol that provides connection type services, including reliability, flow
control, and error recovery between pairs of processes (applications). It does not assume reliability
from the lower-level protocols (such as IP), so TCP must guarantee this itself.

A connection represents a logical circuit between two sockets. This logical connection must be
established prior to data flow.

TCP takes care of segmentation of the data as required by the lower-level network functions. It can be
characterized by the following facilities it provides for the applications (processes) using it:

• Stream data transfer

From the application′s point of view, TCP transfers a contiguous stream of bytes through the
internet. The application does not have to bother with chopping the data into basic blocks or
datagrams. TCP does this by grouping the bytes into TCP segments which are passed to IP for
transmission to the destination. Also, TCP decides how to segment the data and it may forward
the data at its own convenience.

• Reliability

TCP assigns a sequence number to each byte transmitted, and expects a positive acknowledgment
(ACK) from the receiving TCP. If the ACK is not received within a timeout interval, the data is
retransmitted. As the data is transmitted in blocks (TCP segments), only the sequence number of
the first data byte in the segment is sent to the destination host.

98 ABCs of OS/390 System Programming

The receiving TCP uses the sequence numbers to rearrange the segments when they arrive out of
order, and to eliminate duplicate segments.

Chapter 1. Network Management 99

• Flow control

The receiving TCP, when sending an ACK back to the sender, also indicates to the sender the
number of bytes it can receive beyond the last received TCP segment, without causing overrun and
overflow in its internal buffers. This is sent in the ACK in the form of the highest sequence number
it can receive without problems. This mechanism is also referred to as a window-mechanism.

• Window size

Window size is set when the connection is established, but will change dynamically during data
transfer.

• Error recovery

Error recovery is done using byte sequencing; the receiver sends an acknowledgement indicating
the last byte number successfully received; the sender will then retransmit any bytes (in the form
of packets) not yet acknowledged.

Once an error-packet is received, the receiver will stop counting even if the following packets are
received error free.

• Time outs

TCP has the ability to adjust time-out values related to data transmission by examining the time it
takes for an acknowledgement to be returned for packets sent (round-trip delay).

How TCP reacts to time-out and error conditions will be determined by how each host (user)
implements error recovery.

• Multiplexing

Multiplexing is achieved through the use of ports.

• Logical connections

The reliability and flow-control mechanisms described above require that TCPs initialize and
maintain certain status information for each “data stream.” The combination of this status,
including sockets, sequence numbers, and window-sizes is called a logical connection (or virtual
circuit). Each connection is uniquely identified by the pair of sockets used by the sending and
receiving processes (applications).

100 ABCs of OS/390 System Programming

Figure 51. TCP segment

1.24.1.1 TCP segment

TCP takes the data from the higher level application and adds its header information. The resulting
protocol data unit (PDU) is called a TCP segment.

Remember that TCP will block bytes received from an application into segments and include the
sequence number of the first data byte included in the segment as part of the TCP header (sequence
number field).

• TCP segments contain a TCP header followed by unaltered application data that has been blocked
into segments as required by the network.

Some of the fields contained in the TCP header include:

− 16-bit source and destination port numbers.

− Byte sequence numbers - the sequence number of the first data byte in this segment.

− Acknowledgement number - if the ACK control bit is set (in the Flags field), this field contains
the value of the next sequence number that the receiver is expecting to receive.

− Window value - used in ACK segments, it specifies the number of data bytes (beginning with
the one indicated in the acknowledgment number field) which the receiver is willing to accept.

− Checksum for the TCP header.

− Flags - urgent pointer flag, acknowledgement flag, and so forth.

− User data - data received from the application.

Chapter 1. Network Management 101

Figure 52. User Datagram Protocol (UDP)

1.24.2 User Datagram Protocol (UDP)

UDP or User Datagram Protocol provides the interface between ports and IP for connectionless data
transfer (that is, using datagrams).

• UDP is an alternative protocol to TCP at the transport layer.

• UDP provides no error recovery, flow control, or reliability.

• UDP will receive the information from a port (process or application) and envelope it in a UDP
datagram.

• The UDP datagram contains the application data along with the source and target port addresses,
a length value and a header checksum value.

• There are some TCP/IP applications that use the UDP protocol (for example, Simple Network
Management Protocol (SNMP), Trivial File Transfer Protocol (TFTP), and so forth).

UDP uses the underlying Internet Protocol to transport a message from one machine to another, and
provides the same unreliable, connectionless datagram delivery semantics as IP. It does not use
acknowledgements to make sure messages arrive, it does not order incoming messages, and it does
not provide feedback to control the rate at which information flow between the machines. Thus, UDP
messages can be lost, duplicated, or arrive out of order. Furthermore, packets can arrive faster than
the recipient can process them. In summary:

102 ABCs of OS/390 System Programming

The User Datagram Protocol (UDP) provides unreliable connectionless delivery service using IP to
transport messages between machines. It adds the ability to distinguish among multiple destinations
(PORTS) within a given host computer.

The ability to distinguish among multiple applications uses the same port concept that was discussed
on previous visuals. Each UDP message contains two 16-bit port numbers (send and receive ports) in
the header. As described earlier, some of these ports may be “well known” and permanently reserved
for specific applications (for example, TFTP uses port 69).

An application program that uses UDP accepts full responsibility for handling the problem of reliability,
including message loss, duplication delay, out-of-order delivery, and loss of connectivity.

UDP is a small protocol in the sense that it does not add much to the semantics of IP. It merely
provides application programs with the ability to communicate using the unreliable, connectionless,
packet delivery service.

Chapter 1. Network Management 103

Figure 53. TCP/IP clients and servers

1.25 Clients and servers

TCP is a peer-to-peer, connection-oriented protocol. There is no master/slave relation between hosts.
Applications running on those hosts, however, usually use a client-server model for communications.

• A server is a process or application that provides a service to other users (applications) in the
network.

• A client is a “requestor” of a service.

A client-server type of application consists of both a server and a client part, which can run on the
same or on different systems.

• Like more and more of todays network implementations, TCP/IP uses a “client-server” model for
communications between applications.

• Users usually invoke the client part of the application to create a request. The request is then sent
by the client code to the server. TCP/IP is the transport vehicle. The server then performs the
requested function and sends replies to the client. A server can usually deal with multiple
requests (multiple clients) at the same time.

• Some servers (that is, the more popular TCP/IP applications such as FTP, TELNET, an so forth)
provide their services through “well-known” ports.

• Server functions require considerably more code than do client functions; TCP/IP products
providing support for the various applications may provide only the client function, only the server
function, or both.

104 ABCs of OS/390 System Programming

Figure 54. TCP/IP Application Layer Protocol

1.26 TCP/IP Application Layer Protocol

In addition to the Network and Transport layer protocols, the TCP/IP protocol suite includes a number
of higher level protocols, called “applications or processes.” Functionally, they provide services such
as file transfer, messaging, and virtual terminal support. These applications interface to TCP (or UDP)
and are all optional. Inclusion of support for specific applications varies widely from vendor to vendor.

Chapter 1. Network Management 105

Figure 55. TELNET

1.26.1 TELNET: an illustration

TELNET provides a standardized interface to allow a process (application) at one host (using the
TELNET client function) to access a process (application) at another host (using the TELNET server
function) as if the client was a local terminal directly connected to the remote host.

TELNET performs this function by offering three basic services:

• It defines a network virtual terminal to provide a standard interface to remote systems.

• It allows the client and server to negotiate options for terminal characteristics.

• TELNET treats both ends of the connection the same way—the client side is not required to be a
user ′s terminal, it could be a program instead. Either end can negotiate options.

TELNET does not provide graphics capabilities.

TELNET is a simple remote terminal protocol. It allows a user at one site to establish a TCP
connection to a login server at another site, and then it passes keystrokes from the user ′s terminal
directly to the remote machine as if they had been typed at a terminal on the remote machine.
TELNET also carries output from the remote machine back to the user′s terminal. The service is called
transparent because it gives the appearance that the user′s terminal attaches directly to the remote
machine.

Typically, the TELNET server function handles multiple, concurrent connections from TELNET clients
anywhere in the IP network.

106 ABCs of OS/390 System Programming

To make TELNET interoperate between as many systems as possible, it must accommodate the details
of many different kinds of computers and operating systems. For example, some systems require lines
of text to be terminated by the ASCII carriage control character. Others require the ASCII line-feed
character. In addition, most systems provide a way for a user logged in to an ordinary terminal to
interrupt a running program. However, the keystroke used to generate the interrupt varies from
system to system.

Therefore, TELNET defines how data and command sequences are sent across the internet. The
definition is know as the network virtual terminal (NVT). An NVT is an imaginary device, providing the
necessary basic structure of a standard terminal. Each host maps its own terminal characteristics to
this NVT, and assumes that every other host will do the same.

The TELNET protocol also supports the principle of negotiated options. This is because many hosts
may wish to provide additional services beyond those available with the NVT. Various options may be
negotiated between the client and server during the connection process. The server and client use a
set of conventions to establish the operational characteristics of their specific TELNET connection via
the “DO, DON′T, WILL, WON′T” mechanism:

• WILL - will you agree to let me use option X
• WON′T - I will not use option X
• DO - I do agree to let you use option X
• DON′T - I do not agree to let you use option X

Examples of some of these options are:

• Support for specific terminal types (for example, 3278-2 type)
• Window sizes
• Translate table selection
• Full-screen formatting
• Support for echoing

Chapter 1. Network Management 107

Figure 56. Simple Mail Transfer Protocol

1.26.2 Simple Mail Transfer Protocol (SMTP)

SMTP is an electronic mail protocol that provides support for message and note exchanges between
users on the same or different hosts.

Two main standards define SMTP:

 1. A standard on the format of the mail messages which deals with the layout and contents of the
mail envelope (RFC 822).

 2. A standard for the exchange of mail between two computers which specifies the protocol used to
send mail to another SMTP (RFC 821).

Simple Mail Transfer Protocol is probably the most widely used TCP/IP application. It provides
message and note exchange between TCP/IP hosts but has no support for document translation. Mail
delivery differs from other uses of internet networks that we have discussed (TELNET). In other
network protocols, they send packets directly to destinations, using timeout and retransmission for
individual segments if no acknowledgement returns. In the case of electronic mail, however, the
system must provide for instances when the remote machine or the network connections have failed.
A sender does not want to wait for the remote machine to become available before continuing work,
nor does the user want to have the transfer abort merely because communication with the remote
machine becomes temporarily unavailable.

To handle delayed delivery, SMTP uses a technique known as spooling. When a user “sends” a mail
message, the system places a copy in the spool area along with identification of the sender, recipient,

108 ABCs of OS/390 System Programming

destination machine, and time of deposit. The system then initiates the transfer to the remote machine
as a background activity, allowing the sender to proceed with other activities.

The background mail transfer process becomes a client. It maps the destination machine name to an
IP address and attempts to form a TCP connection to the mail server on the destination machine. If it
succeeds, the transfer process passes a copy of the message to the remote server, which stores the
copy in the remote system′s spool area. Once the client and server agree that the copy has been
accepted and stored, the client removes the local copy. If the transfer process cannot form a TCP
connection, or if the connection fails, the transfer process records the time it tried delivery and
terminates. The background transfer process sweeps through the spool area periodically, checking for
undelivered mail. If the software finds that a mail message cannot be delivered after an extended
time, it returns the mail message to the sender.

SMTP is not a store and forward mail system.

SMTP mail can be sent across other (local) mailing systems through an appropriately configured
gateway; however, SMTP will only guarantee mail integrity from the sender to the mail gateway.

• PROFs Extended Mail is a software package that can be used to process mail with SMTP.

• SMTP is fully compatible with RSCS and NJE networks.

SMTP will use the name server functions for address mapping:

• Name format is <name @ host.net1.net2> where net1 and net2 are hierarchical network names.

Interfaces are provided to allow mail to flow into, out of, and through different types of networks
without requiring any special action on the part of the user.

Chapter 1. Network Management 109

Figure 57. File Transfer Protocol

1.26.3 FTP: an illustration

File Transfer Protocol or FTP provides TCP/IP users with the ability to transfer files to and from remote
hosts along with access to directories on remote hosts. In addition, FTP offers facilities beyond the file
transfer function:

• Interactive Access - allows users to easily interact with remote FTP servers.

• Format Specification - allows the user to specify the type and format of stored data (text/binary,
ASCII/EBCDIC, and so forth).

• Authentication Control - FTP requires clients to authorize themselves by sending a login name and
password to the server before requesting file transfers.

Copying files from one machine to another is one of the most frequently used operations. Standard file
transfer protocols existed for the ARPANET before TCP/IP became operational. These early versions
of file transfer software evolved into the current standard known as the File Transfer Protocol.

TCP/IP file transfer is a disk-to-disk data transfer, as opposed to, for example, the VM SENDFILE
command which is considered in the TCP/IP world as a mailing function (you send the data to
someone ′s mailbox/VM reader).

To support this essential file transfer function, a reliable end-to-end protocol such as TCP is used. FTP
supports file transfer between client and server in either direction:

• The client may send a file to the server machine.

110 ABCs of OS/390 System Programming

• The client may request a file from the server machine.

The user who initiates the FTP connection assumes the client function while the server function is
performed by the remote host.

FTP includes functions that allow authorized users to display, define, and delete files and directories,
and to transfer files to and from remote TCP/IP hosts.

Most FTP server implementations allow concurrent access by multiple clients using TCP to connect to
the server. From an FTP user′s point of view, the link is connection-oriented. This means that it is
necessary to have both hosts up and running TCP/IP to establish a file transfer.

FTP uses two connections between the client and server system to perform the file transfer functions:

• The first one is for login from the client to the server and follows the TELNET protocol. This
connection is used for authentication of the client user, issuing commands to the FTP server, and
so forth.

• The second one is for managing the data transfer. The actual file transfer occurs over this
connection.

FTP can interface with RACF to provide access control.

Chapter 1. Network Management 111

Figure 58. X-Windows

1.26.4 X-Windows: an illustration

X-Windows is a windowing system that allows a user to simultaneously display bitmapped screens
from several local and/or remote applications (processes).

Basically, there are two parts communicating with each other:

• The application (called the X-Client) which gets input from the user, executes code, and sends
output back to the user.

• The user′s terminal (called the X-Server) which runs display-managing software that
receives/sends data from/to the application.

Note that in the previous application protocols we have discussed (TELNET, SMPT, and so forth) the
user is typically at the client end of the connection. With X-Windows, the user is at the server end of
the connection. Each application that is displaying data in one of the windows is considered a client.

The X-Windows Application Programming Interface (API) (developed at MIT as part of the Athena
Project) allows a TCP/IP user to run applications on several systems through a single workstation
image. The X-Window system is one of the most widely used Graphical User Interface (GUI), or
bitmapped-window display systems.

The user is able to control all sessions from one screen, with applications either running in a window,
or in separate virtual terminals but with an icon on the primary screen reminding the user of the
existence of that application (similar to the OS/2 Presentation Manager).

112 ABCs of OS/390 System Programming

The X-Window system provides the capability of managing both local and remote windows:

• Remote windows are established through TCP/IP.

• Local windows are established through the use of BSD sockets.

This function is most useful for applications that require computing resources that are not available at
the user′s workstation. The X-Windows API allows a client program to access a bit-mapped,
high-resolution display connected to a X-Windows system protocol server program.

Chapter 1. Network Management 113

Figure 59. REXEC support

1.26.5 REXEC support

The Remote Execution Command (REXEC) is used in conjunction with the Remote Execution Command
Daemon (REXECD). It allows a TCP/IP user to execute commands on a remote host and receive the
results on the local system.

• The client function is performed by the REXEC process.

• The server function is performed by the REXECD process.

REXECD is a server (also known as a daemon). It handles commands issued by remote hosts and
transfers orders to slave virtual machines for command execution. The daemon performs automatic
login and user authentication when user ID and password are entered.

The REXEC command is used to define the user ID, password, host address, and process to be started
on the remote host. Both server and client are linked over the TCP/IP network.

114 ABCs of OS/390 System Programming

Figure 60. Network File System

1.26.6 Network File System

NFS was developed by SUN Microsystems. It allows host machines to share file systems across a
network. NFS allows remote file systems to have the appearance of being local resources to users
(protocol is transparent to the user).

The Network File System (NFS) provides on-line shared file access that is transparent and integrated.
It allows TCP/IP sites to interconnect their computer file systems. From the user ′s perspective, NFS is
almost invisible. The user can execute an application program and use any file(s) (local and/or
remote) for input or output. The file names do not show whether the files are local or remote.

When an application program executes, it calls the operating system to open a file, or to store and
retrieve data in files. The file access mechanism accepts the request and automatically passes it to
either the local file system software or to the NFS client, depending on whether the file is on a local
disk or on a remote machine. When it receives a request, the NFS client software use the NFS
protocol to contact the appropriate server on a remote machine and perform the requested operation.
When the remote server replies, the client software returns the results to the application program.

NFS was developed to be machine, operating system, and transport protocol independent; this was
accomplished by using the RPC interface.

NFS implements two protocols: Mount protocol and NFS protocol:

• Mount protocol is used to establish the connection and access the appropriate set of files
(directory).

Chapter 1. Network Management 115

The options supported include password security, code conversion, remote disk addresses, and so
forth.

• NFS protocol is used for the actual disk functions.

Supported functions include searches, reading and writing, and directory maintenance.

Both Mount and NFS protocol are RPC applications (caller/server concept) and transported by UDP.

116 ABCs of OS/390 System Programming

Figure 61. TCP/IP data sets

1.27 TCP/IP data sets

Required for TCP/IP start-up and initialization are the procedure from SYS1.PROCLIB and the
parameter data sets:

• TCP/IP start procedure

Copy the TCP/IP cataloged procedure in hlq.SEZAINST(TCPIPROC) to your system or recognized
PROCLIB and modify it to suit your local conditions. Specify TCP/IP parameters and remove or
change the DD statements as required. The jobname associated with the started task of the
TCP/IP system address space must match the NAME parameter on the SUBFILESYSTYPE
statement in the BPXPRMxx member of ′SYS1.PARMLIB′ used to start OS/390 UNIX.

When TCP/IP is started via the S TCPIP command, it reads its configuration parameters from the
data set names specified on the PROFILE and SYSTCPD DD statements in the TCP/IP proc.

These data sets are generally referred to as: TCPDATA respectively.

• PROFILE parameter data set

• TCPDATA parameter data set

In the following example of a basic TCPIP procedure, note the PROFILE and SYSTCPD DD statements
which specify the locations of TCP/IP′s parameter data sets.

Chapter 1. Network Management 117

� �
//TCPIP PROC PARMS=′ CTRACE(CTIEZB00)′
//*
//* Communication Server/390
//* SMP/E Distribution Name: EZAEB01G
//*
//TCPIP EXEC PGM=EZBTCPIP,
// PARM=′&PARMS′ ,
// REGION=7500K,TIME=1440
//*
//* SYSPRINT contains run-time diagnostics from TCPIP. It may be
//* a data set or SYSOUT.
//* ALGPRINT contains run-time diagnostics from TCPIP′ s Autolog
//* task. It should be SYSOUT.
//* SYSERROR contains error messages from TCPIP that occurred
//* while processing the PROFILE.
//*
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=VB,LRECL=132,BLKSIZE=136)
//ALGPRINT DD SYSOUT=*,DCB=(RECFM=VB,LRECL=132,BLKSIZE=136)
//SYSOUT DD SYSOUT=*,DCB=(RECFM=VB,LRECL=132,BLKSIZE=136)
//SYSERROR DD SYSOUT=*
//*
//* TCPIP reads the parameters from a data set specified on
//* the following PROFILE dd.
//* See the chapter on ″Configuring the TCPIP Address Space″ in
//* the Configuration Guide for more information.
//* A sample of such a profile is included in member SAMOPROF in
//* the SEZAINST data set.
//*
//PROFILE DD DISP=SHR,
// DSN=SYS1.TCPIP.PARMS(PROFILE)
//*
//* SYSTCPD explicitly identifies which data set is to be
//* used to obtain the parameters defined by TCPIP.DATA.
//* The SYSTCPD DD statement should be placed in the TSO logon
//* procedure or in the JCL of any client or server executed
//* as a background task. The data set can be any sequential
//* data set or a member of a partitioned data set (PDS).
//*
//* For more information please see ″Understanding TCP/IP Data
//* Set Names″ in the Configuration Guide.
//*
//SYSTCPD DISP=SHR,
// DSN=SYS1.TCPIP.PARMS(TCPDATA)� �

The names of the data sets or members containing TCP/IP code and parameters are specified in the
TCP/IP start procedure, SYS1.PROCLIB(TCPIP).

These members can be located in any data set, but for the purposes of this overview we will assume
they are located in SYS1.TCPIP.PARMS.

118 ABCs of OS/390 System Programming

Figure 62. Configuring TCP/IP - Profi le data set

1.27.1 Configuring TCP/IP - Profile data set

A sample configuration data set is provided in hlq.SEZAINST(SAMPPROF). This member is used to
configure the TCP/IP address space.

A typical TCP/IP Profile includes many configuration options and parameter values too numerous to list
here. However, for basic configuration purposes use the defaults in the supplied samples but pay
particular attention to the following sections:

• IP address

The IP addresses of the host on each link. For example, your CPU may be communicating with
your TCP/IP network via two ports on an OSA card. Each port would have its own associated link
ID and IP address. This example is defining the IP address 9.12.14.187 on Link OSAL2160 (defined
by the DEVICE and LINK statements. The DEVICE and LINK parameters are used to define the type of
the physical link the CPU is using to communicate with the TCP/IP network.

There are a number of possible matching DEVICE and LINK parameter values depending on the
hardware in use. Refer to OS/390 V2R7.0 eNetwork CS IP Configuration, SC31-8513, for a complete
list of possible values and their meanings.

Chapter 1. Network Management 119

� �
; Hardware definitions:
;
;
 DEVICE OSA2160 LCS 2160
LINK OSAL2160 IBMTR 0 OSA2160
;
HOME
 9.12.14.187 OSAL2160� �

• Default router and subnet masks

It is best to either acquire a comprehensive understanding of IP addressing and subnet masking or
obtain the help of a competent network specialist before tailoring this section of the TCP/IP Profile
data set.

� �
;
GATEWAY
;
; Direct Routes - Routes that are directly connected to my interfaces.
;
; Network First Hop Link Name Packet Size Subnet Mask Subnet Value
9 = OSAL2160 4096 0.255.255.0 0.12.2.0

;
; Indirect Routes - Routes that are reachable through routers on my
; network.
;
; Network First Hop Link Name Packet Size Subnet Mask Subnet Value
; 193.12.2 130.50.10.1 TR1 2000 0
; 10.5.6.4 193.5.2.10 ETH1 1500 HOST
;
;
; Default Route - All packets to an unknown destination are routed
; through this route.
;
; Network First Hop Link Name Packet Size Subnet Mask Subnet Value
DEFAULTNET 9.12.2.75 OSAL2160 4096 0

;� �
• Start devices

Lastly, enter the names of the LINKs that TCP/IP will start automatically during initialization.

� �
; Start all defined DEVICEs
;
START OSA2160� �

*

120 ABCs of OS/390 System Programming

Figure 63. Configuring TCP/IP - TCPDATA

1.27.2 Configuring TCP/IP - TCPDATA

As with the TCP/IP Profile, TCPDATA contains many parameters that you should not change until you
have developed a good understanding of TCP/IP and are in a position to know what you are doing.

It is advisable to accept most of the values in the sample member, but pay particular attention to the
following sections:

• Host name

For YOURMVSNAME, WTSC47 in this example, specify your OS/390 system name. This should be the
same as your JES nodename. The colon after it is required. The word HOSTNAME should be entered
followed by what you want to call your TCP/IP host. It is recommended you have both names the
same, as in the example, to avoid confusion. Case translation is not performed on the host name.

� �
; HOSTNAME specifies the TCP host name of this system. If not
; specified, the default HOSTNAME will be the node name specified
; in the IEFSSNxx PARMLIB member.
;
; YOURMVSNAME: HOSTNAME YOURTCPNAME
WTSC47: HOSTNAME WTSC47� �

Chapter 1. Network Management 121

• Domain name

The TCP/IP domain suffix that will be appended to the hostname. In this example, our hostname is
WTSC47. The suffix ITSO.IBM.COM will be appended to WTSC47, giving a fully qualified domain name of
WTSC47.ITSO.IBM.COM.

� �
; DOMAINORIGIN specifies the domain origin that will be appended
; to host names passed to the resolver. If a host name contains
; any dots, then the DOMAINORIGIN will not be appended to the
; host name.
;
DOMAINORIGIN ITSO.IBM.COM� �

• Nameserver IP address

Specify the IP address of your name server. If you are unsure of the correct value, speak to your
network specialist. If you are not using a name server and this host will be resolving all domain
names for itself, the NSINTERADDR statement(s) can be commented out.

� �
; NSINTERADDR specifies the IP address of the name server.
; LOOPBACK (14.0.0.0) specifies your local name server. If a name
; server will not be used, then do not code an NSINTERADDR statement.
; (Comment out the NSINTERADDR line below). This will cause all names
; to be resolved via site table lookup.
;
NSINTERADDR 9.12.14.204
NSINTERADDR 9.12.14.7� �

122 ABCs of OS/390 System Programming

Figure 64. Customizing TCP/IP

1.27.3 Customizing TCP/IP

Steps for customizing TCP/IP are as follows:

• Choose a High-Level Qualifier (hlq).

TCP/IP uses dynamic allocation with this hlq to get parameters from several TCP/IP data sets. The
DATASETPREFIX statement in TCPIP.DATA can be used to override the default hlq. However, it is
used as the last step in the search order for most configuration files.

• Update the following PARMLIB members:

IEAAPFxx/PROGxx Authorizes the following libraries:

• hlq.SEZATCP
• hlq.SEZADSIL
• hlq.SEZALINK
• hlq.SEZALNK2
• hlq.SEZALPA
• hlq.SEZAMIG

LNKLSTxx hlq.SEZALINK

LPALSTxx hlq.SEZALPA and hlq.SEZATCP

IECIOSxx Use to disable the MIH processing for the communication device used by
TCP/IP

Set MIH TIME=00:00,DEV=(cuu-cuu)

Chapter 1. Network Management 123

IEFSSNxx Define subsystems to use restartable VMCF and TNF

• SUBSYS SUBNAME(TNF)
• SUBSYS SUBNAME(VMCF)

SCHEDxx Set PPT entries

• PPT PGMNAME(MVPTNF) KEY(0) NOCANCEL NOSWAP PRIV SYST
• PPT PGMNAME(MVPXVMCF) KEY(0) NOCANCEL NOSWAP PRIV SYST
• PPT PGMNAME(EZBTCPIP) KEY(6) NOCANCEL NOSWAP PRIV SYST

Note: The default program properties table (PPT) shipped with the OS/390 V2R7 base control program
(BCP) includes entries for Communication Server (CS) for OS/390. Therefore, the SCHEDxx entries
previously required are no longer required. If you have those entries in your own parmlib, remove
them. If you used the IBM copy of parmlib, they have been removed for you. For details, refer to the
OS/390 MVS Initialization and Tuning Reference, SC28-1752.

124 ABCs of OS/390 System Programming

Figure 65. Customizing TCP/IP

1.27.4 Customizing TCP/IP

Update the following PARMLIB members:

COMMNDxx Add the following command to start the SSI:

COM=′ S EZAZSSI,P=sys_name′

Where sys_name is the SYSNAME in IEASYSxx or specified in IEASYMxx using the
SYSDEF statement.

IFAPRDxx Enable TCP/IP base by adding this:

NAME(OS/390) ID(5647-A01)

BPXPRMxx Activate TCP/IP support for transport provider as follows:

FILESYTYPE TYPE(INET) ENTRYPOINT(EZBPFINI)
NETWORK DOMAINNAME(AF_INET)

DOMAINNUMBER(2)
MAXSOCKETSR(10000)
TYPE(INET)

Chapter 1. Network Management 125

Figure 66. Routing

1.27.5 Routing

To support IP dynamics, NCP′s Network Definition Facility (NDF) builds a routing information table (RIT)
for networks and subnetworks for use by TCP/IP at NCP generation time.

The RIT consists of routing tables that are generated from the NCP IPROUTE and IPLOCAL statements.
During NCP generation, the RIT is added as a member of the NCP load library partitioned data set
ncp.v7r1.ncpload. You identify the member name of ncp.v7r5.ncpload that NCPROUTE uses at
execution time with the NEWNAME parameter of the BUILD statement for each NCP client generation.

Each entry in the routing table is created, for static routing, from the definitions in the TCP/IP Profile
data set:

� �
;
; Network First Hop Link Name Packet Size Subnet Mask Subnet Value
193.12.2 130.50.10.1 TR1 2000 0
10.5.6.4 193.5.2.10 ETH1 1500 HOST

;� �

126 ABCs of OS/390 System Programming

Figure 67. Routing

1.27.6 Routing

The following types of routing are defined in the TCP/IP Profile data set:

Direct Direct routing can take place when two hosts are directly connected to the same physical
network. This can be a bridged token-ring network, a bridge Ethernet, or a bridged
token-ring network and Ethernet. The distinction between direct routing and indirect routing
is that with direct routing IP datagram can be delivered to the remote host without
subsequent interpretation of the IP address, by an intermediate host or router.

Indirect Indirect routing takes place when the destination is not on a directly-attached IP network,
forcing the sender to forward the datagram to a router for delivery.

Default A default route is typically used on a gateway or router to an internet, or on a gateway or
router that uses another routing protocol, whose routes are not reported to other local
gateways or routers.

To configure a route to a default destination, add a default route using the passive route
definition in the gateways file or data set. For example, if the default destination router has
a gateway address 9.12.112.1, then add the following entry to the data set:

 net 0.0.0.0 gateway 9.12.112.1 metric 1 passive

Only one default route to a destination gateway or router can be specified. OROUTED
currently does not support multiple default routes.

IPROUTE DESTADDR=0.0.0.0,NEXTADDR=9.12.112.1,INTFACE=TR88,
METRIC=1,DISP=PERM

Chapter 1. Network Management 127

Figure 68. TCP/IP applications

1.28 TCP/IP applications

TN3720 TELNET is most often used as the primary method of connection between client
workstations and the SNA mainframe environment. TELNET terminal emulation needs to
simulate actual SNA terminals as closely as possible to make this form of remote
connection as seamless as possible to end users. RFC1647, also known as TN3270E,
adds the ability to simulate specific terminal LU connection and support printer devices
and additional SNA functions.

FTP File Transfer Protocol (FTP) lets you transfer data sets between the local host and any
other host that supports TCP/IP. Using the FTP command and its subcommands, you can
sequentially access multiple hosts without leaving the FTP environment.

telnet The telnet support comes with the TCP/IP OS/390 UNIX feature. It also uses the inetd
daemon which must be active and set up to recognize and receive the incoming telnet
requests.

OS/390 UNIX telnet code is installed in the hierarchical file system (HFS) (path
/usr/lpp/tcpip/sbin/otelnetd with a symbolic link to /usr/sbin/otelnetd) and in the MVS data
set hlq.SEZALINK. The hlq.SEZALINK data set needs to be a PADS protected data set if
you are running with the BPX.DAEMON facility class defined. OS/390 UNIX checks
whether the sticky bit is set on in the HFS. If it finds the sticky bit on, it first checks for an
executable file in the MVS data set. If it does not find the executable file in a data set in
the MVS search order, OS/390 UNIX then uses the executable file in the HFS.

128 ABCs of OS/390 System Programming

rlogin When the inetd daemon is set up and active, you can rlogin to the shell from a
workstation that has rlogin client support and is connected via TCP/IP or Communications
Server to the MVS system. To login, use the rlogin (remote log in) command syntax
supported at your site.

The inetd daemon provides service management for a network. For example it starts the
rlogind program whenever there is a remote login request from a workstation.

The rlogind program is the server for the remote login command rlogin, commonly found
on UNIX systems. It validates the remote login request and verifies the password of the
target user. It starts an OS/390 shell for the user and handles translation between ASCII
and EBCDIC code pages as data flows between the workstation and the shell.

When inetd is running and receives a request for a connection, it processes that request
for the program associated for that socket. For example, if a user tries to log in from a
remote system into the OS/390 shell while inetd is running, inetd processes the request
for connection and then issues a fork() and execl() to the rlogin program to process the
rlogin request.

It then goes back to monitoring for further requests for those applications that can be
found as defined in the /etc/inetd.conf file.

Chapter 1. Network Management 129

Figure 69. TN3270 parms

1.28.1 TN3270 parms

The TELNET server gets some of its configuration parameters through the TELNETPARMS statements.
If you want to specify parameters for the TELNET server, update the TELNETPARMS section of the
TCP/IP Profile data set.

� �
;
; TELNET parms
TELNETPARMS
PORT 623
WLMCLUSTERNAME TN3270E ENDWLMCLUSTERNAME

ENDTELNETPARMS
;� �

The TELNETDEVICE statement lets you specify a logmode for a device type anywhere within the
BEGINVTAM/ENDVTAM block, instead of just at the beginning of the block (as with the BEGINVTAM
statement). This statement accepts two logmodes: one for 3270 connections and one for 3270E
connections.

130 ABCs of OS/390 System Programming

Figure 70. FTP

1.28.2 FTP
File Transfer Protocol (FTP) is the simplest way to transfer files between computers connected by a
TCP/IP network. The direction of the file transfer can be either PUSH (send a file to the remote host)
or PULL (get a file from the remote host). The local and remote hardware and software are largely
irrelevant, and you can select to transfer files in ASCII, BINARY, or EBCDIC format from any machine
to any other machine.

For example, a flat text file can be transferred in ASCII format from a PC workstation to VM/ESA, or
OS/390, or UNIX and its contents will still be readable as a flat text file when it arrives at its
destination. A compressed (zipped) PC file can be transferred in binary format to an OS/390 machine
for storage and then transferred from there to a different PC where it will arrive intact and can be
successfully decompressed (or unzipped).

FTP is a client-server protocol where the initiating side of the connection is the FTP client and the
client connects to an FTP server.

FTP provides various commands to connect to a remote host, change the active directory, define the
data transfer format, and obviously, send and receive files. A few of the more useful ones are:

AScii Set transfer mode to text

Binary Set transfer mode to binary

CD Change active Directory on remote side

CLose Close connection

Chapter 1. Network Management 131

DIR Get directory listing of remote files

Get Retrieve files from remote host

MGet Multiple Get for multiple files (for example, R*.DAT)

MPut Multiple Put for multiple files

Open Initiate connection to remote site

PASS Send password to remote host (if remote host requires a password)

Put Send file to remote host

PWD Query Preset Working Directory on remote host

QUIT Close connection to remote host, or EXIT ftp if no connection active

SYStem Query the remote operating system type

USer Initiate a logon to remote host once connection is established

For a complete list of available FTP commands and their usage and syntax refer to eNetwork
Communications Server: IP User′s Guide, GC31-8514.

132 ABCs of OS/390 System Programming

Figure 71. FTP setup

1.28.3 FTP setup

Following are the steps involved in setting up the FTP server on OS/390:

 1. Update the TCP/IP Profile data set with:

� �
;
PORT

20 TCP OMVS ; OE FTP Server
DELAYACKS ; Delay transmission acknowledgements

21 TCP OMVS ; OE FTPD control port� �
 2. Update etc.services

� �
ftp 21/tcp
otelnet 23/tcp� �

 3. Set-up the FTP server start procedure SYS1.PROCLIB(FTPD). An example is provided in
TCP.SEZAINST(FTPD) and is shown in A.4, “Sample FTP start procedure” on page 344.

The following two DD statements from the procedure are:

Chapter 1. Network Management 133

� �
//SYSFTPD DD DISP=SHR,DSN=SYS1.TCPIP.PARMS(FTPDATA) �1�
//SYSTCPD DD DISP=SHR,DSN=SYS1.TCPIP.PARMS(TCPDATA) �2�� �

Point the SYSTCPD DD (�2�) at the TCPDATA file (see 1.27, “TCP/IP data sets” on page 117).

 4. Customize FTPDATA (�1�).

A sample FTPDATA is provided in TCPIP.SEZAINST(FTPSDATA). Copy this member to
SYS1.TCPIP.PARMS(FTPDATA).

 5. Add FTPD to the AUTOLOG section in the TCP/IP Profile (see the AUTOLOG section under 1.27.1,
“Configuring TCP/IP - Profile data set” on page 119).

1.28.3.1 FTP usage

In the following FTP example, the file EXLOCAL VTAMLST is being retrieved from a remote VM/ESA system
and stored in the member DAVIETN.STUFF(EXLOCAL). The local OS/390 system in this example is the
client side of the connection and the remote VM/ESA system is the server.

134 ABCs of OS/390 System Programming

� �
ftp 9.12.14.1
 IBM FTP CS/390 V2R5 1998 279 14:00 UTC
 FTP: using TCPIPOE instead of INET
 Connecting to: 9.12.14.1 port: 21.
 220-FTPSERVE IBM VM Level at WTSCPOK.ITSO.IBM.COM 4/19/9
 220 Connection will close if idle for more than 5 minutes.
 NAME (9.12.14.1:DAVIETN):
davietn
 >>> USER davietn
 331 Send password please.
 PASSWORD:

 >>> PASS
 230-DAVIETN logged in; working directory = DAVIETN 191 (ReadOnly)
 230 write access currently unavailable due to other links
 Command:
dir *.vtamlst
 >>> PORT 9,12,2,13,4,22
 200 Port request OK.
 >>> LIST *.vtamlst
 125 List started OK
EXLOCAL VTAMLST F 80 50 1 4/14/99 17:58:23 DAV191
 250 List completed successfully.
 Command:
ascii
 >>> TYPE A
 200 Representation type is ASCII.
 Command:
get exlocal.vtamlst ′ davietn.stuff(exlocal)′
 >>> PORT 9,12,2,13,4,25
 200 Port request OK.
 >>> RETR exlocal.vtamlst
 150 Sending file ′ exlocal.vtamlst′ FIXrecfm 80
 250 Transfer completed successfully.
 4100 bytes transferred in 0.260 seconds. Transfer rate 15.77 Kbytes/sec.
 Command:
close
 >>> QUIT
 221 Quit command received. Goodbye.
 Command:
quit
 READY� �

As an alternative to the above interactive dialogue, the following simple batch job can be used to
achieve the same result.

Chapter 1. Network Management 135

� �
//USERIDX JOB USERID,MSGLEVEL=(1,1),NOTIFY=USERID,MSGCLASS=H
//FTP EXEC PGM=FTP,REGION=4096K
//INPUT DD *
9.12.14.1
davietn
password
type A
get exlocal.vtamlst ′ davietn.stuff(exlocal)′
quit
/*
//OUTPUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*� �

136 ABCs of OS/390 System Programming

Figure 72. FTP daemon

1.28.4 FTP daemon

File Transfer Protocol (FTP) is used to transfer files between TCP/IP hosts. The FTP client is the
TCP/IP host that initiates the FTP session, while the FTP server is the TCP/IP host to which the client
connects.

The FTP server uses two different ports and manages two TCP connections:

• Port 21 is used to control the connection (user ID and password).
• Port 20 is used for actual data transfer based on the FTP client′s requests.

The FTP server in OS/390 IP consists of the daemon (the listener) or ftpd and server address space (or
processes). The daemon performs initialization, listens for new connections, and starts a separate
server address space for each connection.

When a new client FTP connects to the FTPD daemon process, ftpd forks an FTP server process; thus,
a new jobname is generated by OS/390 UNIX System Services.

The OS/390 eNetwork Communication Server IP FTP server and client exploit OS/390 UNIX System
Services and provide access to both traditional MVS data sets and OS/390 UNIX hierarchical file
system files.

The FTP server does not use inetd as a listener process, but has its own listener program, which is the
FTP daemon address space.

Chapter 1. Network Management 137

When a client connects, the daemon forks a new address space to handle that client session.

To start the FTP daemon, you can use /etc/rc as shown on the next visual, or you can use the
PROFILE.TCPIP data set.

Additional Information can be found in the following publications:

OS/390 UNIX System Services Planning, SC28-1890

OS/390 eNetwork Communication Server IP Configuration, SC31-8513

OS/390 TCP/IP OpenEdition Implementation Guide, SG24-2141

OS/390 eNetwork Communication Server TCP/IP Implementation Guide Volume 2, SG24-5228

138 ABCs of OS/390 System Programming

Figure 73. Logging in to OS/390 UNIX shell

1.28.5 Logging in to OS/390 UNIX shell

Typically, a user does not want to log in through an intermediate TSO stage, but would rather use
standard UNIX techniques to log in directly to a shell ID in OS/390 UNIX.

The visual shows the many different ways available to start an OS/390 UNIX shell session. Let us
review the different mechanisms to start an OS/390 UNIX shell session.

• Started via the TSO OMVS command:

− A TSO user, logged in via SNA and VTAM, can issue the OMVS commands directly from the
TSO command line.

− A workstation user can use TCP/IP TN3270 protocol to logon to a TSO user ID via IP 3270(E)
TELNET server. From TSO, use OMVS to access the shell.

• Started via rlogin done directly from workstation:

− An UNIX/AIX user can use a standard “rlogin” client to do remote login to OS/390 UNIX. An
OS/390 UNIX rlogin daemon initiates the shell.

• Started via telnet done directly from workstation:

− Any platform can use a standard “telnet” client to do remote login to OS/390 UNIX. An OS/390
UNIX telnet daemon initiates the shell.

• Started via Communication Server (CS) LOGIN request:

Chapter 1. Network Management 139

− An ASCII terminal directly attached to an OCS RS/6000 host can use local login to OS/390 UNIX
to access the OS/390 UNIX shell.

− A networked user attached to an RS/6000 CS host can route “rlogin” or “telnet” requests for
OS/390 UNIX through a CS client on AIX. The CS login monitor (lm) server on OS/390 UNIX
establishes shell sessions on behalf of these clients.

• Both direct “rlogin/telnet” and CS assisted logins support “raw” mode.

140 ABCs of OS/390 System Programming

Figure 74. Using inetd - master of daemons

1.28.6 Using inetd - master of daemons

The inetd daemon, usually known as inetd or InetD, is a master of other daemons that execute in
OS/390 UNIX. The function of inetd is to listen on certain “well-known” network ports for a request to
run one of a number of daemons. When a request is received, inetd creates a new socket for remote
connection, and then fork()s a new address space and uses exec() to start the requested daemon
program.

The daemon started by inetd relates to the port where the request arrived. The correlation between
port number and daemon is stored in configuration file /etc/inetd.conf.

The daemons started by inetd include:

• The rlogin daemon starts a shell session for a user rlogin request.
• The TELNET daemon starts a shell session for a user TELNET request.
• The rexec daemon executes a single command on OS/390 UNIX requested by a remote user

entering an rexec command.
• The rsh daemon starts a shell session and runs a script generated by a remote user entering an

rsh command.

Customization is needed to enable inetd to run on your system. You must decide how to start it, and
what RACF ID it will execute under. If you have implemented enhanced daemon security with
BPX.DAEMON, you must define inetd to the BPX.DAEMON and implement program control. Finally,
you have to configure the relationship between the ports that inetd listens on and the daemons to be
started.

Chapter 1. Network Management 141

Figure 75. Customize inetd (part 1)

1.28.7 Customize inetd (part 1)

This visual and the next visual describe the steps necessary to customize the inetd daemon.

 1. The inetd daemon program can be found in two places. In the HFS, the program file is
/usr/sbin/inetd, but IBM has set the sticky bit on. A copy of this program is found in
′SYS1.LINKLIB(INETD)′, so this is the program that is used. You can use any of the methods to
start a daemon, but the approved production ways are:

• Start it from an OS/390 procedure like the one shown. The jobname comes from the label on
proc = INETD. Parms supply the two variable values:

− Program module name

− Parameter passed to INETD program = name of inetd configuration file

• Start from a line in the initialization script /etc/rc. In this case, use a command similar to the
line shown.

 2. The next step is to decide which user ID to associate with inetd. It needs to be a superuser
(UID=0), and have minimum access to MVS data sets. How you do this depends on the start
mode:

• If started from /etc/rc, inetd inherits user ID OMVSKERN, which is superuser.

• If started via STC, you need to associate the RACF UID with the STC name by updating the
RACF STARTED facility class. You could use the kernel ID OMVSKERN, or you can create a
new superuser ID and then use that one.

142 ABCs of OS/390 System Programming

 3. If you have activated the RACF BPX.DAEMON facility, then the INETD user ID must be authorized to
this facility.

Chapter 1. Network Management 143

Figure 76. Customize inetd (part 2)

1.28.8 Customize inetd (part 2)
 1. If you have set up the BPX.DAEMON, then you need to make sure that all programs are loaded into

the inetd address space. At a minimum, you should protect the following programs:

• SYS1.LINKLIB(INETD).
• CEE.SCEERUN - LE/MVS run time - whole library

 2. There are three configuration files that have to be updated for inetd support:

• The primary file is /etc/inetd.conf, which is the inetd configuration file. There is one entry (line)
in this file for each daemon controlled by inetd. The fields are interpreted as follows:

− Field (1) - Service name - match daemon entry in /etc/services file
− Field (2) - Daemon socket type - stream or dgram
− Field (3) - Daemon socket protocol - TCP or UDP
− Field (4) - Wait_flag - can be wait (single thread server - one request at a time) or nowait

(multiple requests queued)
− Field (5) - Login_name - RACF user ID under which daemon will run
− Field (6) - Server_program - name of daemon program in HFS
− Field (7) - Server-arguments - first string is jobname for daemon address space, and the

rest is the parm string to pass to daemon

• There is a corresponding entry in /etc/services for each daemon in inetd.conf. The entry lists
the port where inetd listens for daemon requests.

144 ABCs of OS/390 System Programming

• The TCP/IP Profile configuration must list the same ports in the PORT section. This entry
identifies the job name authorized to open the socket to this port and the type of socket
allowed.

• The two TCP/IP files usually exist already—you must make sure that inetd.conf corresponds
with the values listed. You may want to change the port number for a daemon.

 3. After all configuration is complete, start inted.

Chapter 1. Network Management 145

Figure 77. Start options for daemons

1.28.9 Start options for daemons

In an OS/390 system, there are several ways of starting and restarting daemons. The method used
depends on the level of control the installation has chosen for daemons. The daemon programs are
installed in /usr/sbin with the sticky bit on and in SYS1.LINKLIB. Daemons can be started using the
following methods:

• As a cataloged procedure (started task). Create a cataloged procedure. In order for the procedure
to get control with the correct authority, an entry must be added to the RACF started procedures
table (ICHRIN03) or a profile added to the STARTED class. The daemons need superuser authority.
Start the daemon by using the operator command S daemon_proc_name (for example, ′S INETD′).

• To be started automatically when the kernel is started, place the start options in the HFS file called
/etc/rc. The initialization of OS/390 UNIX includes running the commands in /etc/rc. The
_BPX_JOBNAME environment variable assigns a job name to the daemon.

• As a cataloged procedure using the BPXBATCH program to invoke the daemon program.

If daemons need to be stopped, the kill command is typically used. Some daemons may have their
own specific method of shutdown.

You should have appropriate procedures and directions in place to restart these daemons in case of
failure. Started procedures are one way to do this, which may be more attractive depending on your
automation strategy.

146 ABCs of OS/390 System Programming

In an OS/390 system, most started tasks which are continuously executing are started from a cataloged
procedure, for example located in SYS1.PROCLIB. The visual shows an example with a proc called
INETD in SYS1.PROCLIB. It will execute the program INETD from SYS1.LINKLIB. To associate the
INETD procedure with the correct user ID, an entry must be created in the RACF started procedures
table (ICHRIN03) or a profile added to the STARTED class. This is done in the same way as we did for
the OMVS procedure. The HFS file /etc/inetd.conf is a configuration file for the inetd daemon. It
contains start options for the daemons controlled by inetd.

Chapter 1. Network Management 147

Figure 78. Define daemon security

1.28.10 Define daemon security

In many cases a daemon program is started from the kernel and will inherit the kernel user ID,
OMVSKERN. This example shows that it can have a separate user ID as long as the user ID is defined
as a superuser. This superuser must be defined with a UID=0 in RACF, which means that this user
cannot become a superuser by using the su command.

Note: This user ID should not have a TSO/E segment defined; only the OMVS segment is needed.

The following steps describe how to define security for a daemon:

 1. Define a user ID for the daemon which is a superuser with UID=0, for example OMVSCRON:

ADDUSER OMVSCRON DFLTGRP(OMVSGRP) OMVS(UID(0) HOME(′ / ′) PROGRAM(′ / bin/sh

 2. Define the BPX.DAEMON FACILITY class in RACF:

RDEFINE FACILITY BPX.DAEMON UACC(NONE)

The name BPX.DAEMON must be used. No substitutions for this name are allowed. UACC(NONE)
is recommended.

If this is the first RACF FACILITY class defined in RACF, the SETROPTS command must be used to
activate the class.

SETROPTS CLASSACT(FACILITY) GENERIC(FACILITY) AUDIT(FACILITY)
SETROPTS RACLIST(FACILITY)

 3. Permit the daemon user ID to the BPX.DAEMON class:

148 ABCs of OS/390 System Programming

PERMIT BPX.DAEMON CLASS(FACILITY) ID(OMVSCRON) ACCESS(READ)

 4. Activate RACF program control:

SETROPTS WHEN(PROGRAM)

You can choose to protect a whole program library or individual load modules (members) in a
library. The daemon program must reside in a program-controlled MVS partitioned data set, or in
an HFS file with the extended attribute turned on via the extattr +p command. Both the program
library for the daemons (for example, SYS1.LINKLIB) and the C runtime library must be protected.

 5. Protect the program libraries that need to be protected from unauthorized updates:

ADDSD ′ SYS1.LINKLIB′ UACC(READ)
ADDSD ′ SYS1.SCEERUN′ UACC(READ)
ADDSD ′ SYS1.SEZALINK′ UACC(READ)
ADDSD ′ SYS1.SEZATCP′ UACC(READ)
ADDSD ′ SYS1.SIMWMOD1′ UACC(READ)

The ADDSD command creates data set profiles for the data sets. You should protect against
unauthorized updates so that nobody can replace a daemon program with a fake daemon program.
If these profiles are already defined, this step can be skipped.

The installation has a choice of either protecting all programs in a program library or individual
programs. To protect all members in a data set, specify PROGRAM *.

Note: Libraries in the LNKLIST concatenation are opened during IPL, and the programs in them
are available to anyone unless the program name is defined as a controlled program. Mark the
data sets as controlled libraries:

RDEFINE PROGRAM * ADDMEM(′ SYS1.LINKLIB′ / / NOPADCHK +
′ SYS1.SCEERUN′ / / NOPADCHK +
′ SYS1.SEZALINK′ / / NOPADCHK +
′ SYS1.SEZATCP′ / / NOPADCHK +
′ SYS1.SIMWMOD1′ / / NOPADCHK) UACC(READ)

Or, mark the daemon program as controlled instead of the whole library:

RDEFINE PROGRAM CRON ADDMEM(′ SYS1.LINKLIB′ / / NOPADCHK)
UACC(READ) AUDIT(ALL)

Place the PROGRAM profile in storage:

SETROPTS WHEN(PROGRAM) REFRESH

Chapter 1. Network Management 149

1.29 OSA/SF
Open Systems Adapter/Support Facility (OSA/SF) is comprised of a suite of programs and utilities that
are used to re-configure an Open Systems Adapter (OSA). The modes of OSA operation include:

• TCP/IP Passthrough

Providing communications between the server TCP/IP applications and TCP/IP clients on the LAN

• SNA

Systems Network Architecture

• HPDT ATM Native

High Performance Data Transfer Asynchronous Transfer Mode

• ATM IP Forwarding

• HPDT MPC

High Performance Data Transfer Multi-Path Channel

• LANRES/MVS

LAN Resource Extension and Services/MVS

The OSA-2 can be configured to allow sharing among logical partitions (LPAR support) using OSA/SF.
When the S/390 server is running in LPAR mode, TCP/IP and SNA/APPN applications can share access
to an OSA-2 and can access the same LAN port. This is accomplished by configuring the OSA Address
Table (OAT), and loading it onto the OSA. The OAT is used to define the possible modes of data
transfer through the OSA. Each OSA has its own OAT, and the OAT is stored in the OSA in
non-volatile storage, meaning that it can survive power outages and system reloads.

The OSA/SF utilities are shipped with OS/390 both as a downloadable GUI and as TSO REXX EXECs.

OSA/SF and OSA configuration is described in detail in OS/390 V2R7.0 OSA/SF User′s Guide,
SC28-1855.

150 ABCs of OS/390 System Programming

Figure 79. OSA/SF configuration

1.30 OSA/SF configuration

The most widely used type of OSA card is the ENTR that supports both TCP/IP and SNA traffic and can
connect to both token-ring and Ethernet LANs.

The default mode of operation for an ENTR is TCP/IP Passthrough. The OSA card is capable of
sensing whether it is connected to an Ethernet or a token-ring LAN and will therefore be ready to
communicate using TCP/IP in a limited fashion without further modification.

The OSA is configured by using the supplied OSA/SF utilities. Re-configuration is performed by
downloading a copy of the currently active OAT, modifying it, and reloading it to the OSA.

An example of a complete OAT is included in Appendix A.5, “Sample OAT” on page 345.
Customization and setup of an OAT is described in 1.30.5, “OSA Address Table” on page 161.

Chapter 1. Network Management 151

Figure 80. OSA/SF definitions

1.30.1 OSA/SF definitions

The OSA card must be defined to the CPU via IOCP definition statements.

CHPID The CHPID statement defines the OSA Channel Path ID (CHPID) as type OSA. Type OSA
is a special kind of internal channel type used only for OSAs:

� �
CHPID PATH=(5C),TYPE=OSA� �

This example defines the OSA on channel 5C.

CNTLUNIT The CNTLUNIT statement defines a control unit for the OSA:

� �
CNTLUNIT CUNUMBR=0D00,PATH=(1C),UNIT=OSA� �

IODEVICE The IODEVICE statements are as follows:

� �
�1�IODEVICE CUNUMBR=D00,UNIT=OSA,ADDRESS=(D00,14), x

STADET=Y,UNITADD=00
�2�IODEVICE CUNUMBR=D00,UNIT=OSAD,ADDRESS=(D0F), x

STADET=Y,UNITADD=FE� �
Note: There are two separate IODEVICE statements.

152 ABCs of OS/390 System Programming

The first (�1�) defines the device addresses available for use by VTAM and TCP/IP as
communications devices. In this example they are D00 through D0D inclusive.

Which of these device addresses are available to VTAM as SNA devices and which are
available to TCP/IP as LCS devices will be determined by the OSA Address Table (OAT)
described later in 1.30.5, “OSA Address Table” on page 161.

The second (�2�) defines the device address used internally by OSA/SF to communicate
with the OSA itself. This is always the device address FE, and is defined as unit type
OSAD.

*

1.30.1.1 Disabling the Missing Interrupt Handler

To avoid channel and device-end error conditions when running TCP/IP Passthrough, you should
disable the Missing Interrupt Handler (MIH). In the previous examples we have defined an OSA device
address range of 0D00 through 0D0D. Assume that two of these devices, 0D04 and 0D05, are to be
used for TCP/IP communication, the OS/390 Missing Interrupt Handler needs to be disabled for these
devices.

Edit the appropriate IECIOSxx member in SYS1.PARMLIB and add the following:

� �
MIH TIME=00:00,DEV=(0D04-0D05)� �

Activate this definition using the following operator command:

� �
 SET IOS=xx� �

Where xx is the suffix of the IECIOSxx member you just edited.

Chapter 1. Network Management 153

Figure 81. Setting up OSA/SF

1.30.2 Setting up OSA/SF

Detailed instructions on setting up OSA/SF can be found in OS/390 Open Systems Adapter Support
Facility User′s Guide, SC28-1855.

The following steps are a brief summary of the necessary actions required to set up OSA/SF.

1.30.2.1 Set up OSA/SF start procedure

The following is an example of a SYS1.PROCLIB(OSASF) startup procedure.

� �
//*
//* START OSA SUPPORT FACILITY
//*
//OSASF EXEC PGM=IOAMAIN,TIME=1440,REGION=4M,DYNAMNBR=5
//IOALIB DD DSN=SYS1.SIOALMOD,DISP=SHR
//IOAPROF DD DSN=SYS1.OSASF.PROFILE,DISP=SHR
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=FBA,LRECL=121,BLKSIZE=121)
//SYSUDUMP DD SYSOUT=*� �

Note the IOALIB DD which points to the OSA/SF load library and the IOAPROF DD which points to the
OSA/SF profile.

154 ABCs of OS/390 System Programming

1.30.2.2 OSA/SF profile data set

The startup profile defines the data set names of the OSA/SF configuration and master index data set
as well as the high level qualifier (HLQ) of the OSA/SF working data sets.

� �
SET ALIAS SYSNAME SC50
SET ALIAS CECNAME SCZP401
*
SET NAME IOACFG

Data set ′ OSASF.&CECNAME.OSAS.CONFIG′
UNIT SYSALLDA

*
SET NAME IOAINX

Data set ′ OSASF.&CECNAME.MASTER.INDEX′
UNIT SYSALLDA

*
SET NAME IOAMSG

Data set ′ OSASF.SC68MESSAGE.LOG′
UNIT SYSALLDA

*
SET NAME IOADSN

Data set ′ OSASF.&CECNAME.OSASF′
UNIT SYSALLDA� �

A sample member is included in IOA.SIOASAMP(IOASPROF) and can be tailored as shown in the
above example.

IOACFG The OSA configuration file. It defines what code should be installed for each OSA.

IOAINX The OSA master index file. It defines all the available OSA mode code.

IOAMSG Used by OSA/SF to store system information and status.

IOADSN The HLQ of all data sets that are created for use by OSA/SF.

1.30.2.3 OSA/SF configuration data set

Allocate the configuration data set with the following attributes:

TRACKS(2,2)
RECFM=FB
LRECL=80
BLKSIZE=5120

Copy the contents of the sample member IOA.SIOASAMP(IOACFG).

1.30.2.4 OSA/SF master index data set

Allocate the master index data set with the following attributes:

TRACKS(2,2)
RECFM=FB
LRECL=80
BLKSIZE=5120

Copy the contents of the sample member IOA.SIOASAMP(IOAINX), and edit it to change the HLQ of the
host destination names that start in column 1 to match yours.

Chapter 1. Network Management 155

1.30.2.5 Create OSA/SF EXECs

IOACMD is the TSO command used to enter OSA/SF commands.

Allocate a data set named IOACMD.EXEC with the following attributes:

TRACKS(14,35)
RECFM=FB
LRECL=80
BLKSIZE=5120

Copy the contents of IOA.SIOASAMP(IOACMD) to this data set.

IOAINSNA is the TSO command used to load the SNA microcode onto the OSA.

Allocate a data set named IOAINSNA.EXEC with the following attributes:

TRACKS(14,35)
RECFM=FB
LRECL=80
BLKSIZE=5120

Copy the contents of IOA.SIOASAMP(IOAINSNA) to this data set.

156 ABCs of OS/390 System Programming

Figure 82. OSA/SF and APPC definitions

1.30.3 OSA/SF and APPC definitions

If you have not already set up APPC, refer to OS/390 V2R6.0 MVS Planning: APPC/MVS Management,
GC28-1807, and complete the setup of APPC prior to continuing as follows:

 1. Modify your current SYS1.VTAMLST(APPCPMxx) member and add the following:

� �
IOASERV APPL ACBNAME=IOASERV,

APPC=YES,
AUTOSES=0,
DDRAINL=NALLOW,
DMINWNL=5,
DMINWNR=5,
DRESPL=NALLOW,
DSESLIM=10,
LMDENT=19,
MODETAB=MTAPPC,
DLOGMOD=APPCHOST,
PARSESS=YES,
SECACPT=CONV,
SRBEXIT=YES,
VPACING=1� �

 2. Modify your existing SYS1.PROCLIB(APPCPMxx) member and add the following:

Chapter 1. Network Management 157

� �
LUADD ACBNAME(IOASERV)

NOSCHED
TPDATA(SYS2.APPCTP)
TPLEVEL(SYSTEM)� �

 3. APPC must be stopped and restarted to activate the above changes.

Stop APPC by entering the following operator command:

� �
C APPC� �

 4. Restart APPC by entering the following operator command:

� �
S APPC,SUB=MSTR,APPC=xx� �

 5. Verify that APPC is running:

� �
D A,L or D A,APPC� �

 6. Verify that OSA/SF APPC LU is active:

� �
D APPC,LU,ALL� �

1.30.3.1 Set up OSA/SF VTAM definitions

 1. Copy IOA.SIOASAMP(IOAAPPL) into SYS1.VTAMLST, rename it to APPCOSA, and add an entry for
it into VTAM′s auto-start list ATCCONxx.

 2. Activate APPCOSA:

� �
V NET,ACT,ID=APPCOSA� �

 3. Build a logmode table and place it into the SYS1.VTAMLIB data set.

You can use the supplied sample job SYS1.SAMPLIB(ATBLJOB) to build a logmode table and place
it into SYS1.VTAMLIB.

158 ABCs of OS/390 System Programming

Figure 83. OSA/SF TSO/E commands

1.30.4 OSA/SF TSO/E commands

After you have completed the OSA/SF setup steps in 1.30.2, “Setting up OSA/SF” on page 154 you will
be able to use the OSA/SF commands IOACMD and IOAINSNA to configure the OSA for the mode of
operation you require.

1.30.4.1 IOACMD

IOACMD has many options and parameters, but until you are completely familiar with their use and
syntax you can just enter the TSO command IOACMD and OSA/SF will prompt you for any additional
parameters required.

Chapter 1. Network Management 159

� �
 IOACMD: Enter the command to be issued

 IOACMD: 0 - End IOACMD
 IOACMD: 1 - Clear Debug
 IOACMD: 2 - Delete File
 IOACMD: 3 - Get Console
 IOACMD: 4 - Get Debug
 IOACMD: 5 - Get File
 IOACMD: 6 - Get OSA Address Table
 IOACMD: 7 - Install
 IOACMD: 8 - List File
 IOACMD: 9 - Put File
 IOACMD: 10 - Put OSA Address Table
 IOACMD: 11 - Query
 IOACMD: 12 - Remove Directory
 IOACMD: 13 - Send Command
 IOACMD: 14 - Set parameter
 IOACMD: 15 - Start managing
 IOACMD: 16 - Stop managing
 IOACMD: 17 - Synchronize
 IOACMD: 18 - Get Configuration File
 IOACMD: 19 - Configure OSA CHPID� �

 Important

The PTF for APAR OW33393 merged the IOAINSNA EXEC into the IOACMD EXEC.

This appears above as the option titled IOACMD: 19 - Configure OSA CHPID.

If this option is not displayed by IOACMD use the IOAINSNA command.

1.30.4.2 IOAINSNA

IOAINSNA IOAINSNA is the OSA/SF TSO command used to load the SNA microcode onto the OSA if you
intend to run SNA traffic over the OSA.

Again, if you just enter the TSO command IOAINSNA you will be prompted for any required parameters.

160 ABCs of OS/390 System Programming

Figure 84. OSA Address Table

1.30.5 OSA Address Table

The OSA Address Table (OAT) is a parameter file that determines how traffic with pass through the
OSA. It contains many individual definitions known as OAT entries that define the usage of the ports
on the OSA. On a default OAT, there are 64 entries: two per port multiplied by 16 possible LPARs.
Various examples of sample OATs are included in the IOS.SIOASAMP data set and there is also one in
Appendix A.5, “Sample OAT” on page 345.

The format of an OAT is:

• The OAT Header followed by

• OAT Entries and

• OAT Extended Entries

1.30.5.1 OAT header

An OAT only contains one OAT header, and it is the first entry at the top of the OAT. The following is
an example of an OAT header:

� �
oathdr.1 = IOA_OAT_HDR /* Eyecatcher-Do not change */
oathdr.2 = 5C /* Chpid */
oathdr.3 = 8 /* s-Number of entries */� �

Chapter 1. Network Management 161

The fields on the left of the entry define the OAT parameters. The fields on the right between the /*
and */ pair are simply comments describing the parameter.

oathdr.1 OAT header line 1 is simply defining this entry as an OAT header.

oathdr.2 The OSAs chpid

oathdr.3 The number of port entries contained in this OAT. The default value is 64, specifying two
entries per port repeated for the 16 possible LPARs. More than one entry can reference the
same OSA device address, making definitions for access to the OSA from multiple LPARs.

1.30.5.2 OAT entry

An OAT entry is a collection of fields grouped together to identify parameters that define one data path
through an OSA. There are usually more entries in the OAT than you will use because the OSA ships
with default entries for all possible logical partitions when the S/390 is in LPAR mode. These can be
modified so that you do not have to create new entries. Each entry in the OAT consists of 13 fields
and, where necessary, an additional extended entry of one, two, or three fields. The 13 OAT entry
fields are labeled in the format OAT.x.y, where x is the OAT entry number and y simply increments
from 1 to 13 for each of the 13 fields.

For example, in A.5, “Sample OAT” on page 345, the OAT fields are as follows:

• The 13 fields for the first OAT entry are labeled oat.1.1 through oat.1.13.

• The 13 fields for the tenth entry will be oat.10.1 to oat.10.13

The OAT entries and their corresponding extended entries are explained in 1.30.5.3, “OAT extended
entries.” Entries 1 and 2 define a TCP/IP transmit and receive pair of devices. The third entry defines
an SNA device.

1.30.5.3 OAT extended entries

OAT extended entries are labeled using the same numerical suffix format as the OAT entry, but the
prefix will be different depending on the type of port the corresponding OAT entry is defining. The
possible extended entry types for the ENTR OSA are:

PASSTHRU In the previous example 1.30.5.2, “OAT entry,” OAT entries 1 and 2 define the TCP/IP
Passthrough transmit and receive pair as device addresses D04 and D05. The
corresponding extended entry for entry 1 is:

� �
/***/
/* Start of Extended OAT entry */
/***/
passthru.1.1 = 1 /* s-Port number */
passthru.1.2 = no /* s-Default LP (yes/no) */
passthru.1.3 = 195.183.66.11 /* s-home IP address */
/***/� �

SNA Again, referring to the example shown in 1.30.5.2, “OAT entry,” entry 3 defines an SNA
device. The corresponding extended entry is:

� �
/***/
/* Start of Extended OAT entry */
/***/
sna.3.1 = 00 /* s-Port number */
/***/� �

162 ABCs of OS/390 System Programming

Figure 85. Configuring OSA/SF

1.30.6 Configuring OSA/SF
Complete instructions for OSA configuration and reconfiguration are documented in OS/390 Open
Systems Adapter Support Facility User′s Guide, SC28-1855.

The following is intended only as a brief outline of the necessary tasks:

 1. Retrieve a copy of the current OAT.

a. Issue the TSO command IOACMD
b. Select the option Get OSA Address Table

 c. Respond to the prompts, specifying:
• OSA chpid address
• Data set name to save the retrieved OAT into

 2. Edit the retrieved OAT, making the required changes.

 3. Reload the OAT to the OSA.

a. Issue the TSO command IOACMD
b. Select the option Put OSA Address Table

 c. Respond to the prompts, specifying:
• OSA chpid address
• Data set name of the OAT to be loaded (as in 1c).

 4. If the OAT includes a definition for one or more SNA devices you need to run the IOAINSNA step to
download the SNA support code onto the OSA.

 5. Vary the entire device range for this OSA OFFLINE then back ONLINE to activate the changes.

Chapter 1. Network Management 163

Figure 86. TCP/IP Passthrough

1.30.7 TCP/IP Passthrough
As the description implies, an OSA works as a passthrough agent for TCP/IP. TCP/IP views the OSA
as a LAN Channel Station (LCS) device. The default mode of operation for an OSA is TCP/IP
Passthrough.

The following examples show the OAT entries and the extended entries that define the transmit and
receive device pair D04 and D05.

164 ABCs of OS/390 System Programming

� �
/***/
/* Start of OAT entry 1 ----- D04 */
/***/
oat.1.1 = IOA_OATENTRY /* Eyecatcher- Do not delete*/
oat.1.2 = All data is valid /* Valid data indicator */
oat.1.3 = /* Partition name */
oat.1.4 = 0 /* s-Partition number */
oat.1.5 = 04 /* s-Unit address */
oat.1.6 = 0D04 /* Device number */
oat.1.7 = 5C /* Chpid */
oat.1.8 = 0D00 /* Control unit number */
oat.1.9 = configured /* Channel state */
oat.1.10 = yes /* Device accessible */
oat.1.11 = 02 /* Group size */
oat.1.12 = passthru /* s-Entry type. One of: */

/* Passthru */
/* SNA */
/* Unassigned */

oat.1.13 = started and in use /* Entry descriptor */
/***/
/* Start of Extended OAT entry */
/***/
passthru.1.1 = 1 /* s-Port number */
passthru.1.2 = no /* s-Default LP (yes/no) */
passthru.1.3 = 195.183.66.11 /* s-home IP address */� �

� �
/***/
/* Start of OAT entry 2 --- D05 */
/***/
oat.2.1 = IOA_OATENTRY /* Eyecatcher- Do not delete*/
oat.2.2 = All data is valid /* Valid data indicator */
oat.2.3 = /* Partition name */
oat.2.4 = 0 /* s-Partition number */
oat.2.5 = 05 /* s-Unit address */
oat.2.6 = 0D05 /* Device number */
oat.2.7 = 5C /* Chpid */
oat.2.8 = 0D00 /* Control unit number */
oat.2.9 = configured /* Channel state */
oat.2.10 = yes /* Device accessible */
oat.2.11 = 02 /* Group size */
oat.2.12 = passthru /* s-Entry type. One of: */

/* Passthru */
/* SNA */
/* Unassigned */

oat.2.13 = started and in use /* Entry descriptor */
/***/
/* Start of Extended OAT entry */
/***/
passthru.2.1 = 1 /* s-Port number */
passthru.2.2 = no /* s-Default LP (yes/no) */
passthru.2.3 = 195.183.66.11 /* s-home IP address */
/***/� �

The following table identifies the relationship between the above OAT parameters and the
corresponding TCP/IP setup parameters (see 1.27.1, “Configuring TCP/IP - Profile data set” on
page 119):

Table 5. Correspondence between OAT parameters and TCP/IP parameters

OAT parameter TCP/IP parameter

oat.1.6 = cuu DEVICE devname LCS cuu

LINK l inkname IBMTR 1 devicename

passthru.1.3 = ip address HOME ip address

Chapter 1. Network Management 165

Figure 87. SNA

1.30.7.1 SNA

In order to enable SNA traffic through the OSA you must include an OAT entry and an SNA extended
entry for the SNA device, as shown in the following example:

� �
/***/
/* Start of OAT entry 3 */
/***/
oat.3.1 = IOA_OATENTRY /* Eyecatcher- Do not delete*/
oat.3.2 = All data is valid /* Valid data indicator */
oat.3.3 = /* Partition name */
oat.3.4 = 0 /* s-Partition number */
oat.3.5 = 02 /* s-Unit address */
oat.3.6 = 0D02 /* Device number */
oat.3.7 = 5C /* Chpid */
oat.3.8 = 0D00 /* Control unit number */
oat.3.9 = configured /* Channel state */
oat.3.10 = yes /* Device accessible */
oat.3.11 = 01 /* Group size */
oat.3.12 = SNA /* s-Entry type. One of: */

/* Passthru */
/* SNA */
/* Unassigned */

oat.3.13 = started and in use /* Entry descriptor */
/***/
/* Start of Extended OAT entry */
/***/
sna.3.1 = 00 /* s-Port number */
/***/� �

166 ABCs of OS/390 System Programming

The following table identifies the relationship between the above OAT parameters and the
corresponding VTAM XCA parameters (see A.2, “XCA Major Node” on page 342):

Table 6. Correspondence between OAT parameters and VTAM parameters

OAT parameter VTAM parameter

oat.3.6 = cuu C U A D D R = cuu in XCA

Chapter 1. Network Management 167

Figure 88. TCP/IP Passthrough and SNA port sharing

1.30.7.2 TCP/IP Passthrough and SNA port sharing

It is possible to configure the OSA for both SNA traffic and TCP/IP traffic through the same physical
OSA port.

This is accomplished by setting the s_Port Number value in the extended entries for both the SNA and
Passthrough devices that you want to use the same port.

168 ABCs of OS/390 System Programming

Chapter 2. Security and RACF

If you require security for part or all of your installation′s database, you can use RACF to define and
protect these parts. If you want to limit the users who can access certain data, and make RACF
“invisible” to some users, you can define these restrictions with user attributes, group structures, and
access authorities within group structures. RACF provides a very flexible approach for defining which
users can use which data. The key factor is to understand what RACF functions you want to use in
order to achieve your security goals.

As the number of users and the ease of use of data systems increase, the need for data security takes
on new importance. An installation can no longer ignore security simply because few people know
how to access the data. Installations must actively pursue and demonstrate security and use a
security mechanism to control any form of access to critical data. RACF helps meet the needs for
security by providing the ability to:

• Identify and verify users

• Authorize users to access the protected resources

• Control the means of access to resources

• Log and report attempts to access protected resources

• Administer security to meet an installation ′s security goals

RACF provides these functions when the installation defines the users and the resources to be
protected.

A specific RACF user, called the security administrator, has the responsibility to define users and
resources to RACF. The security administrator sets down the guidelines that RACF uses to decide the
user-resource interaction within the installation.

The responsibility to implement the guidelines falls to the system programmer, who provides technical
support for RACF. The system programmer installs RACF on the system and maintains the RACF
database. This person oversees the programming aspects of system protection and provides technical
input on the feasibility of the implementation plan. In addition, the technical support person writes,
installs, and tests RACF installation exit routines.

RACF retains information about the users, resources, and access authorities in profiles on the RACF
database and refers to the profiles when deciding which users should be permitted access to protected
system resources.

 Copyright IBM Corp. 2000 169

Figure 89. Components of OS/390 security

2.1 Components of OS/390 security

The OS/390 security server consists of these components:

• OS/390 Distributed Computing Environment (DCE) security server

DCE Security Server provides user and server authentication for applications using the
client-server communications technology contained in the Distributed Computing Environment for
OS/390. Beginning with OS/390 Security Server Version 2 Release 5, the DCE Security Server can
also interoperate with users and servers that make use of the Kerberos V5 technology developed
at the Massachusetts Institute of Technology and can provide authentication based on Kerberos
tickets. Through integration with RACF, OS/390 DCE support allows RACF-authenticated OS/390
users to access DCE-based resources and application servers without having to further
authenticate themselves to DCE. In addition, DCE application servers can, if needed, convert a
DCE-authenticated user identity into an RACF identity and then access OS/390 resources on behalf
of that user, with full RACF access control.

• OS/390 Firewall Technologies

Implemented partly in the Security Server and partly in the SecureWay Communications Server for
OS/390, OS/390 Firewall Technologies provide basic firewall capabilities on the OS/390 platform to
reduce or eliminate the need for non-OS/390 platform firewalls in many customer installations. The
Communications Server provides the firewall functions of IP packet filtering, IP security (VPN or
tunnels), and Network Address Translation (NAT). The Security Server provides the firewall
functions of FTP proxy support SOCKS daemon support, logging, configuration, and administration.

170 ABCs of OS/390 System Programming

• OS/390 Lightweight Directory Access Protocol (LDAP) server

LDAP Server provides secure access from applications and systems on the network to directory
information held on OS/390 using the Lightweight Directory Access Protocol.

• Resource Access Control Facility (RACF)

The primary component of the SecureWay Security Server for OS/390 is the Resource Access
Control Facility, which works closely with OS/390 to protect its vital resources. Building from a
strong security base provided by the RACF component, the Security Server is able to incorporate
additional components that aid in securing your system as you make your business data and
applications accessible by your intranet, extranets, or the Internet.

Chapter 2. Security and RACF 171

Figure 90. Firewall

2.2 OS/390 Firewall Technologies

The OS/390 Firewall Technologies functions are provided to a customer in both the eNetwork
Communication Server for OS/390 and the OS/390 Security Server. The OS/390 Firewall Technologies
provides a “firewall” program that does just that.

It isolates your internal network from other networks in the Internet, while at the same time letting
typical TCP/IP applications (such as FTP) access hosts outside in the Internet without allowing
intruders access to the secure network.

The OS/390 Firewall Technologies acts as a barrier between your network and the rest of the Internet.

Functions that are included with the eNetwork Communication Server for OS/390 are:

• IP Packet Filtering
• IP Security (tunnels)
• Network Address Translation (NAT)

These functions are included as part of the IP Security feature of OS/390 and are always available.

Functions that are included as part of the OS/390 Security Server are:

• FTP proxy support
• Socks server (daemon) support
• Enhanced Logging

172 ABCs of OS/390 System Programming

• Command Line Configuration/Administration
• GUI Configuration/Administration

Chapter 2. Security and RACF 173

Figure 91. What is RACF?

2.3 What is RACF

RACF is a add-on software product that provides the basic security to an OS/390 system. There are
other security software packages available such as Computer Associates, ACF2 or Top Secret.
However, RACF is included as part of the base OS/390 system but requires a separate licence and fee.

RACF allows you to implement/reflect on your system the security policies you choose. That means
that your system will not be secure by simply installing RACF; the quality of the system protection
depends on the way you use the RACF functions.

With RACF each defined user belongs to at least one group, known as the default group. A group is a
collection of RACF users who share common access requirements to protected resources or who have
similar attributes within the system.

RACF records information about the groups in the group profile, which reside in the RACF database.

RACF allows users to be members of more than one group. A RACF user who is associated with a
group is, in RACF terminology, “connected” to that group.

A group owner, usually the user who defined the group to RACF, can define control of the other users
connected to the group. The group owner can also delegate various group administrative
responsibilities and authorities to various users connected to the group.

174 ABCs of OS/390 System Programming

Each RACF-defined resource has a profile, though an installation can optionally use a single profile to
protect multiple resources.

As you can see, the fundamental structure of RACF consists of users, groups, and resources. RACF not
only authorizes the users who can access the system, but also controls whether the user can access
resources which depend on the user′s purpose, (for example, reading or updating).

The “active” users of RACF are security administrators and auditors. End users of a system are
“passive” users of RACF.

Chapter 2. Security and RACF 175

Figure 92. System Authorization Facility (SAF)

2.4 System Authorization Facility (SAF)

System Authorization Facility (SAF) is part of the operating sytem. SAF is present on all OS/390
systems and is active even when RACF is not.

SAF establishes default security functions when RACF is not active. To enable this, SAF is initialized
early in the NIP process.

Resource managers are responsible for calling SAF to determine whether a user is allowed access to
the system or resource. The resource manager is responsible for enforcing the decision made by SAF
or RACF.

The figure illustrates the SAF function. Based on the original user′s request, the resource manager
formulates a request to SAF. Depending on the request, SAF may respond directly or pass the request
to RACF. In either case the user receives the response from the resource manager.

Access to the RACF database may not be required if the response can be formulated from profiles that
are held in storage.

176 ABCs of OS/390 System Programming

2.4.1 Resource managers

Examples of resource managers are:

• OpenEdition

• DFSMS

• IMS

• CICS

• TSO

• DB2

• JES

• Console Services

• VTAM

2.4.2 Token support

SAF also creates and maintains security tokens.

A security token is an 80-(decimal) byte packet of security information that is associated to a unit of
work. These tokens provide a means by which all work, including input and output, can be identified
as it flows around the system.

Information contained in the token includes :

• Port of entry

• Submitting node

• User ID

• Group ID

Chapter 2. Security and RACF 177

Figure 93. Resource managers

2.4.3 Resource validation overview

RACF identifies and authenticates users accessing the system when the various system resource
managers (such as job initiation) request it. RACF determines:

• If the user is defined to RACF

• If the user has supplied a valid password, PassTicket, or operator identification card (OIDCARD),
and a valid group name

• If the user′s UID and GID are valid on OS/390 UNIX

• If the user ID is in REVOKE status, which prevents a RACF-defined user from entering the system
at all or entering the system with certain groups

• If the user can use the system on this day and at this time of the day (an installation can impose
restrictions)

• If the user is authorized to access the terminal (which can also include day and time restrictions
for accessing that terminal)

• If the user is authorized to access the application

After it has authenticated the user′s identity, RACF specifies the scope of the user′s authorization for
the current terminal session or batch job.

After identifying and authenticating the user, RACF controls interaction between the user and the
system resources. RACF must authorize:

178 ABCs of OS/390 System Programming

• Which users may access resources

• How the user may access them, such as for reading or for updating

RACF can also authorize when a user can access resources, by either time or day as follows:

• A user is identified and verified to the RACF-protected system.

• A user wants to modify an existing RACF-protected resource.

• The user issues a command to the system to access the resource.

• The system resource manager (such as data management) processes the request.

• The resource manager “asks” RACF whether the user can access the resource.

• RACF checks one profile to verify that the user can access the resource and to determine whether
the user has the required authorization to modify the contents.

• RACF returns the results of its check to the resource manager.

• The resource manager, based on what RACF indicates, either grants or denies the request.

Chapter 2. Security and RACF 179

Figure 94. RACF functions

2.5 RACF functions

RACF protects resources by granting access only to authorized users of the protected resources. To
accomplish this, RACF gives you the ability to:

• Identify and authenticate users

User authentication is validation of the user requesting access. The standard approach to RACF
user identification is achieved by the use of user ID and password. Other options are available,
such as digital certificate and smart card.

• Security administration

RACF can be administered either in a centralized or decentralized approach. In a centralized
approach, the RACF administrator (a user who has the SPECIAL attribute) would control the access
to all users.

In a decentralized approach, RACF administration is delegated to an administrator at a group level.
This administrator would have the group-SPECIAL attribute, which enables them to control access
to their group only.

• Resource authorization

Having identified and verified the user, RACF then controls interaction to the system resources.
RACF must authorize not only the users who may access resources, but also the way the user may
access them, which depends on the user′s purpose (for example, reading or updating). RACF can
also authorize when a user can access resources, by either time or day.

180 ABCs of OS/390 System Programming

• Log and report various attempts of unauthorized access to protected resources

RACF provides two types of reporting functions. It gives immediate or “real time” notification of
security events, as well as providing a data logging function.

• Control the means of access to resources

RACF retains information about the users, resources, and access authorities in profiles on the
RACF database and refers to the profiles when deciding which users should be permitted access to
protected system resources. RACF allows applications to use RACF macros.

• RACF database

The RACF database holds all RACF access control information. RACF processing uses the
information from the database each time a RACF-defined user enters a system and each time a
user wants to access a RACF-protected resource

You maintain your RACF database through commands, macros, and utilities.

The RACF database is a non-VSAM single extent data set that is made up of 4 KB blocks and must
be cataloged.

RACF allows you to provide a backup database to which you can switch without a re-IPL should
your primary RACF database fail. A backup RACF database reflects the contents of the primary
database. Once the installation has created the backup database, RACF can maintain it
automatically.

Chapter 2. Security and RACF 181

Figure 95. Using RACF

2.6 Using RACF

RACF gives the user defined with the SPECIAL attribute (the security administrator) many
responsibilities both at the system level and at the group level. As the security administrator, you are
the focal point for planning security at your installation. You need to:

• Determine which RACF functions to use
• Identify the level of RACF protection
• Identify which data RACF is to protect
• Identify administrative structures

A RACF system administrator should be assigned to:

• Identify users and assign attributes

Identifying and defining user and group relationships make it simpler and more efficient to protect
resources that those users and groups create, share, or use. In instances where some groups
require exceptional access controls, you might subdivide your organization to minimize occasions
when data needs to be passed between these groups and the rest of the organization. If the users
in a group share common access requirements, as is often the case, the administrative task of
authorizing users is greatly simplified.

• Define RACF system options

The key factor is to understand what RACF functions you want to use in order to achieve your
security goals. The following list shows some RACF functions that you might use and relates these

182 ABCs of OS/390 System Programming

functions to the security they provide; Data Set Protection, Resource Protection, Naming
Conventions, Organization, Group Names, Transparency, RACF Tailoring, Recovery, Violation
Detection, Subsystems, Networks, and Data Sharing.

• Define RACF resource profiles

RACF maintains information entries called profiles in the RACF database. It uses them to protect
DASD and tape data sets and general resources, such as tape volumes and terminals.

− Data set profiles contain security information about DASD and tape data sets.
− General resource profiles contain security information about general resources.

Each RACF-defined resource has a profile, though you can optionally use a single profile to protect
multiple resources.

• Understand RACF commands

The RACF operator commands allow you to perform functions in the RACF subsystem and can be
entered from an operator console. These commands allow an MVS operator to perform certain
RACF operations in the RACF subsystem. The RACF subsystem prefix in front of the command
identifies the RACF subsystem as the processing environment. Many RACF commands can be
entered via TSO/E.

Chapter 2. Security and RACF 183

Figure 96. System options

2.6.1 System options

The SETROPTS command is used to set or change system-wide settings within RACF. This command
allows settings to be updated dynamically by use of the refresh option.

If your installation has activated SETROPTS GENLIST processing for a particular resource class, you
must refresh in-storage profiles for this processing when you make changes to one of these profiles in
the database. Refreshing profiles for SETROPTS GENLIST processing ensures that the most current
copy of a profile resides in common storage and is available for RACF authorization checking. To
refresh profiles for this processing, issue the SETROPTS command with the GENERIC and REFRESH
operands and specify the appropriate resource classes.

Some examples of system-wide settings are:

• Establishing Password Syntax Rules (PASSWORD Option)

• Setting the Maximum Password Change Interval (PASSWORD Option)

• Extending Password and User ID Processing (PASSWORD Option)

• Revoking Unused User IDs (INACTIVE Option)

• Activating List-of-Groups Checking (GRPLIST Option)

• Setting the RVARY Passwords (RVARYPW Option)

• Restricting the Creation of General Resource Profiles (GENERICOWNER Option)

• Activating General Resource Classes (CLASSACT Option)

184 ABCs of OS/390 System Programming

• Activating Generic Profile Checking and Generic Command Processing

• Activating Statistics Collection (STATISTICS Option)

• Activating Global Access Checking (GLOBAL Option)

• RACF-Protecting All Data Sets (PROTECTALL Option)

• Activating JES2 or JES3 RACF Support

• Preventing Access to Uncataloged Data Sets (CATDSNS Option)

• Activating Enhanced Generic Naming for the DATASET Class (EGN Option)

• Controlling Data Set Modeling (MODEL Option)

• Bypassing Automatic Data Set Protection (NOADSP Option)

• Displaying and Logging Real Data Set Names (REALDSN Option)

• Protecting Data Sets with Single-Qualifier Names (PREFIX Option)

• Activating Tape Data Set Protection (TAPEDSN Option)

• Activating Tape Volume Protection (CLASSACT(TAPEVOL) Option)

• Establishing a Security Retention Period for Tape Data Sets (RETPD Option)

• Erasing Scratched or Released DASD Data (ERASE Option)

• Establishing National Language Defaults (LANGUAGE Option)

Chapter 2. Security and RACF 185

Figure 97. Display RACF system options

2.6.2 SETROPTS LIST command

This command specifies that the current RACF options are to be displayed. If you specify operands in
addition to LIST on the SETROPTS command, RACF processes the other operands before it displays
the current set of options.

If RACF is enabled for sysplex communication and the system is in read-only mode, users on that
system can issue the SETROPTS LIST command. All other operands will be ignored.

You must have the SPECIAL, AUDITOR, group-SPECIAL, or group-AUDITOR attribute to enter the LIST
operand.

If you have the SPECIAL or group-SPECIAL attribute, RACF displays all operands except these auditing
operands:

The visual shows sample output from the following SETROPTS command:

SETROPTS LIST

Another example on how to use the SETROPTS command is:

SETROPTS PASSWORD(INTERVAL(60))

The INTERVAL suboperand specifies the system default for the number of days that the user′s
password is to remain valid. The example specifies that each user′s password remain valid for 60
days.

186 ABCs of OS/390 System Programming

Figure 98. Define users

2.6.3 Define users

As a general objective, all users should be defined to RACF. Users who are not defined to RACF can
use the system virtually without verification, unless, of course, they attempt to access data to which
they are unauthorized.

You should consider defining the following users to RACF:

• Interactive users of CICS, IMS, TSO/E, NetView, or other products that support logging on at a
terminal.

• Users who submit batch jobs

• MVS or JES system operators

• Started procedures

• Node names in an NJE network

• RJP or RJE remote workstations or nodes

In a client-server network environment, entities identify themselves using digital certificates. The
combination of a serial number and the name of the certificate authority (or issuer′s distinguished
name) uniquely identifies a client′s digital certificate.

RACF uses a user ID and a system-encrypted password to perform its user identification and
verification. When you define a user to RACF, you assign a user ID and temporary password. The
user ID identifies the person to the system as a RACF user. The password verifies the user′s identity.

Chapter 2. Security and RACF 187

Verification can be done with the use of a card with a magnetic stripe encoded with unique characters
and used to verify the identity of a user to RACF on an OS/390 system.

You define users to RACF by issuing RACF commands that include various user attributes, as well as
other control information that RACF uses. Following are some of the commands you might use in your
user-definition tasks:

ADDUSER Add a user profile to RACF.

ALTUSER Change a user′s RACF profile.

CONNECT Connect a user to a group.

DELUSER Delete a user profile from RACF and remove connection to a group.

REMOVE Remove a user from a group and assign a new owner for group data sets owned by the
removed user.

LISTUSER Display the contents of a user′s profile.

PERMIT Permit a user to access a resource (or deny access to a resource).

PASSWORD Change a user′s password.

In addition to defining individual users, you can define groups of users. Group members can share
common access authorities to a protected resource.

188 ABCs of OS/390 System Programming

Figure 99. RACF user privi leged attributes

2.6.4 User attributes

User attributes are extraordinary capabilities, restrictions, or environments that can be assigned to a
user, either all of the time or when the user is connected to a specific group or groups. When an
attribute is to apply all of the time, it is specified at the system level and is called a user attribute.
When an attribute is to apply only to a specific group or groups, it is specified at the group level and is
called a group-related user attribute. For example, user attributes that you specify in an ADDUSER or
ALTUSER command are stored in the user′s profile and are in effect regardless of the group to which
the user is connected.

The user attributes are as follows:

SPECIAL A user who has the SPECIAL attribute at the system level can issue all RACF
commands. The SPECIAL attribute gives the user full control over all of the RACF
profiles in the RACF database.

You can assign the SPECIAL attribute at the group level. When you do, the
group-SPECIAL user has full control over all of the profiles within the scope of the
group.

AUDITOR AUDITOR attribute is given only to users who are responsible for auditing RACF
security controls and functions. To provide a check and balance on RACF security
measures, you should give the AUDITOR attribute to security or group administrators
other than those who have the SPECIAL attribute.

Chapter 2. Security and RACF 189

OPERATIONS A user who has the system-OPERATIONS attribute has full access authorization to all
RACF-protected resources in the DATASET, DASDVOL, GDASDVOL, PSFMPL,
TAPEVOL, VMBATCH, VMCMD, VMMDISK, VMNODE, and VMRDR classes.

CLAUTH Users receive the CLAUTH attribute on a class-by-class basis. You cannot assign the
CLAUTH attribute at the user or group level.

If a user has the CLAUTH attribute in a class, RACF allows the user to define profiles in
that class.

REVOKE You can prevent a RACF user from entering the system by assigning the REVOKE
attribute. This attribute is useful when you want to prevent a user from entering the
system, but you cannot use the DELUSER command because the user still owns RACF
resource profiles.

GRPACC If a user has the GRPACC (Group Access) attribute, any group data set profiles that
the user defines to RACF (through either the ADSP attribute, the PROTECT parameter
on the DD statement, or the ADDSD command) are automatically made accessible to
other users in the group if the user defining the profile is a member of that group.

ADSP When a user has the Automatic Data Set Protection (ADSP) Attribute, RACF always
automatically creates a discrete profile every time the user defines a permanent DASD
or tape data set.

190 ABCs of OS/390 System Programming

Figure 100. RACF user segments

2.6.5 RACF user segments

When you define a user to RACF, you create a user profile in the RACF database. A user profile
consists of a RACF segment and, optionally, any of the following segments: CICS, DCE, DFP,
LANGUAGE, LNOTES, NDS, NETVIEW, OMVS, OPERPARM, OVM, TSO, and WORKATTR.

The RACF segment is the portion of a RACF profile that contains the fundamental information about a
user, group, or resource and is common to several applications. It is also called the base segment.

The other segments allow resource managers to store related information (not always/only
security-related information).

The number of resource managers using RACF for their protection is continuously growing.

You can specify the following information in the RACF segment of the user profile:

USERID User′s identification

NAME User′s name

OWNER Owner of the user′s profile

DFLTGRP User′s default group

AUTHORITY User′s authority in the default group

PASSWORD User′s password

Chapter 2. Security and RACF 191

REVOKE Date on which RACF prevents the user from having access to the system

RESUME Date on which RACF lets the user have access to the system again

UACC Default universal access authority for resources that the user defines

WHEN Days of the week and hours of the day during which the user has access to the
system

ADDCATEGORY User′s installation-defined security category

SECLEVEL User′s installation-defined security level

CLAUTH Classes in which the user can define profiles

SPECIAL Gives the user the system-wide SPECIAL attribute

AUDITOR Gives the user the system-wide AUDITOR attribute

OPERATIONS Gives the user the system-wide OPERATIONS attribute

DATA Installation-defined data

ADSP Indicates that all permanent data sets the user creates are to be RACF-protected with
discrete profiles

GRPACC Indicates that other group members can have access to any group data set the user
protects with a data set profile

MODEL Name of the data set model profile to be used when creating new data set profiles,
either generic or discrete

OIDCARD Indicates that the user must supply an operation ID card when logging on to the
system

SECLABEL User′s default security label

CERTNAME The names of the profiles in the DIGTCERT class that are related this RACF user ID

CERTLABL The certificate labels associated with the profiles in the DIGTCERT class that are
related to this RACF user ID

192 ABCs of OS/390 System Programming

Figure 101. User RACF user ID passwords

2.6.6 RACF user ID passwords

User identification is achieved via the user ID. This is a string of characters that uniquely identify a
user to a system.

In RACF the user selects his own password and only the user knows their own password. If a
password needs to be reset, the security administrator will reset the password. This new password
will be in an expired state, thus forcing the user to enter a new password on the first logon.

You can set a variety of rules for forming valid passwords, and this is done via the SETROPS command
(for system-wide setings) or with the password command (to affect only one user). You can change
such things as the number of days a password is valid for; how long to maintain password history to
prevent the user from reusing the same password again; and so on.

When a user changes a password, RACF treats the new, user-supplied password as an encryption key
to transform the RACF user ID into an encoded form using the DES algorithm that it stores on the
database. The password is not stored.

Chapter 2. Security and RACF 193

2.6.6.1 Alternatives to password verification

 1. RACF allows workstations and client machines in a client-server environment to use a PassTicket
in place of a password. A PassTicket can be generated by RACF or by another authorized
function, and can be used only once on a given computer system, within ten minutes of generation.

 2. RACF allows the use of an operator identification card (OIDCARD) in place of, or in addition to, the
password during terminal processing. By requiring that a person not only know a password but
also furnish an OIDCARD, an installation has increased assurance that the user ID has been
entered by the proper user.

 3. OS/390 UNIX users are also identified with numeric user identifiers (UIDs), and OS/390 UNIX groups
are identified with numeric group identifiers (GIDs). Unlike user names or group names, these
numeric IDs can be shared by more than than one user but is not recommended.

 4. In a client/server environment, RACF can identify a RACF user ID by extracting information from
the digital certificate. A digital certificate or digital ID, issued by a certifying authority, contains
information that uniquely identifies the client.

 5. The Lotus Domino Go Webserver authenticates a client using the client ′s certificate and the Secure
Sockets Layer (SSL) protocol. Domino Go Webserver passes the client ′s digital certificate to
OS/390 UNIX for validation. OS/390 UNIX passes the certificate to RACF. This means that the RACF
user ID and password of each client do not need to be supplied when accessing secure Web
pages.

194 ABCs of OS/390 System Programming

Figure 102. How to use RACF ISPF panels

2.7 How to use RACF ISPF panels

If your installation has installed the RACF panels, you can use them to perform security tasks.

To get to the RACF panels, enter the command: ISPF

The Interactive System Productivity Facility (ISPF) primary menu appears; choose option R for RACF.

Note: Although this is the usual way to access RACF panels, your installation may have this
implemented via a different path.

The RACF panel interface is similar in use to all other ISPF panel options, therefore we do not go into
detail here on to how to use it.

You can access help information for the RACF panels. Help panels exist for each individual panel. If
you have a question about the information you should provide on the panel,either press the PF1 key or
type HELP on the command line. The help panels give more information about the terms on the panel
and the information you should enter.

Chapter 2. Security and RACF 195

Figure 103. RACF resource profi les

2.7.1 RACF resource profiles

RACF-protected resources can be divided into two categories: data sets and general resources.
General resources are all of the resources that are defined in the class descriptor table. For example,
general resources include DASD and tape volumes, load modules (programs), terminals, and others.

RACF maintains information entries called profiles in the RACF database. It uses them to protect
DASD and tape data sets and general resources, such as tape volumes and terminals.

• Data set profiles contain security information about DASD and tape data sets.

• General resource profiles contain security information about general resources.

Each RACF-defined resource has a profile, though you can optionally use single profile to protect
multiple resources.

RACF commands or the RACF ISPF panels can be used to create and modify general resource profiles.

RACF provides discrete, generic, and grouped resource profiles for both data sets and general
resources, as follows:

Discrete Discrete profiles have a one-for-one relationship with a resource; one profile for each
resource. Discrete profiles provide very specific levels of control and should be used for
sensitive resources. They protect only the one identified data set that is on the specified
volume or that spans specific volumes. For example, a single data set can be defined
with a discrete profile to allow access by one user.

196 ABCs of OS/390 System Programming

Generic Generic profiles have a one-for-many relationship. One profile controls access to one or
more resources whose names contain patterns or character strings that RACF uses to
associate them with each other. They contain a list of the authorized users and the
access authority of each user. A single generic profile can protect many data sets that
have a similar naming structure. For example, all data sets that have a high-level
qualifier of SMITH and the characters DATA as a second-level qualifier can be controlled
with one generic profile.

Grouped Another type of RACF profile is the grouped profile. There may be no way to associate
the resources with a common access list based on patterns in the resource names. In
this case, the many resource names can be associated with a single RACF profile through
the use of a grouping profile that contains the names of the associated resources.

Some subsystems with high performance requirements, such as IMS/ESA, have the
profiles resident in the subsystem address space. These subsystems can save main
storage by using grouped profiles.

Chapter 2. Security and RACF 197

Figure 104. RACF commands

2.8 RACF commands

For each resource type, a set of commands is available to define, modify, list, and delete resources.

There are several ways to enter RACF commands:

• RACF TSO commands

This is easy and appropriate for ad hoc displays and update of user profiles and data set profiles,
for example:

RDEFINE FACILITY BPX.SUPERUSER UACC(NONE)

PERMIT BPX.SUPERUSER CLASS(FACILITY) ID(JANE) ACCESS(READ)

• RACF TSO commands in batch

This is most appropriate for a set of displays that is run, unchanged, at regular intervals.

• RACF ISPF panels

These may be most appropriate for display of some of the more complex RACF general resource
profiles. They are also very useful if you do not know the syntax for a particular command.

In general, you must have authority for a RACF entry in order to display it. A normal TSO user can
display only the RACF data relevant to himself. A user with SPECIAL authority can display almost
anything.

198 ABCs of OS/390 System Programming

Note: We say almost because RACF has another authority named AUDITOR who can uniquely display
certain statistical data. A SPECIAL user can create AUDITOR authority, so the SPECIAL user remains
the ultimate controller of RACF.

2.8.1.1 Using RACF commands with TSO/E

You can enter RACF TSO commands from the ready prompt or from Option 6 Command from the ISPF
menu.

You can get online help for RACF commands. To get online help for a command, type:

HELP command-name

For example, to see on-line help for the PERMIT command, enter:

HELP PERMIT

To limit the information displayed, use the SYNTAX operand on the HELP command:

HELP command-name SYNTAX

For example, to see only the syntax of the PERMIT command, enter:

HELP PERMIT SYNTAX

Here is a list of general use RACF commands:

PASSWORD Change password/interval

CONNECT Associate user with group

REMOVE Disassociate user from group

PERMIT Modify resource profile access list

SEARCH Locate RACF information

SETROPTS Set/modify RACF system options

RVARY Switch RACF databases

Abbreviations can be used for commands and parameters :

• AU for ADDUSER
• LG for LISTGROUP
• CO for CONNECT
• ID for USERID
• AC for ACCESS
• INT for INTERVAL

Any TSO commands can be used in a batch job, using the JCL for executing the TSO monitor in batch;
for example:

//P390S JOB 1,P390,MSGCLASS=X
//TSOBAT01 EXEC PGM=IKJEFT01
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUADS DD DSN=SYS1.UADS,DISP=SHR
//SYSLBC DD DSN=SYS1.BRODCAST,DISP=SHR
//SYSTSIN DD *
LD DA(′ MARTIN.*′) AUTHUSER
LU MARTIN
/*

Chapter 2. Security and RACF 199

Where:

LD DA(′ MARTIN.*′) AUTHUSER - would list generic profile MARTIN and
its access list

LU MARTIN - would display the basic RACF data for userid MARTIN

200 ABCs of OS/390 System Programming

Figure 105. How to add a user

2.8.2 How to add a user

When you define a user′s profile (using the ADDUSER command) or change a user′s profile (using the
ALTUSER command), you can specify the information contained in each field of each segment of the
profile.

The command adds a profile for the new user to the RACF database and creates a connect profile that
connects the user to whichever default group you specify.

The user profile consists of a RACF segment and, optionally, other segments such as a TSO segment,
a DFP segment, or an OMVS segment. You can use this command to define information in any
segment of the user′s profile.

The visual shows sample output from the following ADDUSER command when the LISTUSER is issued:

ADDUSER JAMES NAME(′ BROWN JAMES′) DFLTGRP(MFG)
OWNER(ADMUSERS) PASSWORD(NEW2DAY)

This command adds a new user ID JAMES into default group MFG.

Chapter 2. Security and RACF 201

Figure 106. How to reset a password

2.8.3 How to reset a password
A system administrator is often asked to reset a user′s password. There are two common reasons for
this:

 1. The user forgot his password (or made too many errors when attempting change it), or
 2. The user ID has been REVOKED for some reason.

You can use the RACF ISPF panels to reset passwords, but it is easier to use direct RACF TSO
commands. There are two relevant commands:

PASSWORD When used to reset another user′s password, the only option is to set the password equal
to the user′s default group name. The default group name is often SYS1; if the
PASSWORD command is used to reset a user′s password, the password will probably be
SYS1. This has obvious security consequences.

ALTUSER You can select the password to assign when you use this command. Furthermore, you
can determine whether the password you set will be expired or not.

In both cases, the password is automatically marked as expired, by default. This means that the user
will be forced to select a new password the next time he logs onto the system. With the ALU
command, you can also set an unexpired password, one that the user can use until he changes it for
some reason.

Before resetting a password, we suggest you always use the LISTUSER command to verify that the
user definition exists, and determine if the user is REVOKED. For example, in this case we would
probably use this command:

202 ABCs of OS/390 System Programming

ALU martin RESUME PASS(newpwd) <== if REVOKED
ALU martin PASS(newpwd) <== if not REVOKED
ALU martin PASS(newpwd) NOEXPIRED <== if not REVOKED

PASSWORD NOINTERVAL USER(martin) <== if you want this

You would need to tell Martin the new password you assigned. He will need it to log on, but will be
forced to change it immediately to a password of his own selection unless you used the NOEXPIRED
option. The PASSWORD NOINTERVAL command will prevent this user′s password from ever expiring.1

You need SPECIAL authority to issue these commands.

2.8.3.1 How to reset a password with ISPF panels

You can also use the RACF ISPF panels to change or reset passwords. The end result is the same as
if you used the direct commands shown above.

� �
RACF - CHANGE USER JAMES

 COMMAND ===>

 ENTER THE DESIRED CHANGES:

OWNER ===> Userid or group name

USER NAME ===>

DEFAULT GROUP ===> Group name

PASSWORD ===> User′ s password OR use default ===>
===> Re-enter password to verify

EXPIRED ===> Mark new password as expired ?

PASSWORD INTERVAL ===> 1 - 254 days, NO, or blank

REVOKE ===> YES, mm/dd/yy (date) or blank

RESUME ===> YES, mm/dd/yy (date) or blank

� �
Figure 107. RACF Change User menu

The path to the appropriate RACF ISPF panels is:

ISPF Primary Option Menu
RACF (select RACF from the primary ISPF menu)
RACF - Services Option Menu
User Profiles and Your Own Password
RACF - User Profile Services
CHANGE (and enter target userid in the USER field)

This should produce the panel shown in the previous figure, and you would carry on from this point.
Remember that whatever password you assign must be changed by the user when he logs onto the

1 Using this is very poor security, but may be appropriate in smaller, closed systems.

Chapter 2. Security and RACF 203

system the next time. This same panel, and follow-on panels shown after you press ENTER, can be
used to change the same elements as the ALTUSER command.

204 ABCs of OS/390 System Programming

Figure 108. How to alter a user ID segment

2.8.4 How to alter a user ID segment

Use the ALTUSER command to change the information in a user′s profile, including the user′s
system-wide attributes and authorities. The user profile consists of a RACF segment and, optionally,
other segments such a TSO segment or a DFP segment. You can use this command to change
information in any segment of the user′s profile.

When you change a user′s level of authority in a group (using the AUTHORITY operand), RACF updates
the appropriate group profile. When you change a user′s default universal access authority for a group
(using the UACC operand), RACF changes the appropriate connect profile. For all other changes,
RACF changes the user′s profile.

The visual shows sample output from the ALTUSER command:

ALTUSER JAMES AUDITOR

This command adds the attribute of AUDITOR to the user ID JAMES.

Chapter 2. Security and RACF 205

Figure 109. How to connect a user to a group

2.8.5 How to connect a user to a group

Use the CONNECT command to connect a user to a group, modify a user′s connection to a group, or
assign the group-related user attributes. If you are creating a connection, defaults are available as
stated for each operand. If you are modifying an existing connection, no defaults apply.

To use the CONNECT command, you must have at least one of the following:

• The SPECIAL attribute

• The group-SPECIAL attribute in the group

• The ownership of the group

• JOIN or CONNECT authority in the group

The visual shows sample output from the CONNECT command:

CONNECT JAMES GROUP(TEST)

This command connects user JAMES to group TEST.

206 ABCs of OS/390 System Programming

Figure 110. How to remove a user from a group

2.8.6 How to remove a user from a group

You can use the REMOVE command to remove a user from a group, and to assign a new owner to any
group data set profiles the user owns on behalf of that group.

To use the REMOVE command, one of the following conditions must be true:

• You have the SPECIAL attribute.

• The group profile is within the scope of a group in which you have the group-SPECIAL attribute.

• You are the owner of the group.

• You have JOIN or CONNECT authority in the group.

The visual shows sample output from the REMOVE command:

REMOVE JAMES GROUP(TEST)

Chapter 2. Security and RACF 207

Figure 111. How to a change a user

2.8.7 How to a change a user ′s password interval

The interval indicates the number of days during which a password remains valid; the range is from 1
through 254 days.

The value you specify here cannot exceed the value, if any, that your installation has specified using
the INTERVAL operand on the SETROPTS command. The initial system default after RACF initialization
is 30 days.

If you specify INTERVAL on the PASSWORD command without a change-interval value, RACF uses the
installation-specified maximum.

The visual shows sample output from the PASSWORD command:

PASSWORD USER(JAMES) INTERVAL(60)

This command would set user ID James ′ password expiry date to 60 days. Overriding any system
default password expiring setting is set by the SETROPTS command.

208 ABCs of OS/390 System Programming

Figure 112. How to a delete a user

2.8.8 How to a delete a user

Use the DELUSER command to delete a user from RACF. This command removes the user′s profile
and all user-to-group connections for the user. (The connect profiles define the user′s connections to
various RACF groups.)

There are, however, other places in the RACF database where the user ′s user ID might appear, and
the DELUSER command does not delete the user ID from all these places. Specifically, the user could
be the owner of a group, the owner of a user′s profile, the owner of a group data set, or in an access
list for any resource. Before issuing DELUSER, you must first issue the REMOVE command to assign
new owners for any group data sets the user owns in groups other than his default group. You can
use the RACF Remove ID utility (IRRRID00) to remove all of the occurrences of a user ID. For
information on using the RACF Remove ID utility, see OS/390 Security Server (RACF) Security
Administrator ′s Guide, SC28-1915.

To use the DELUSER command, at least one of the following must be true:

• You must have the SPECIAL attribute.
• The user profile to be deleted must be within the scope of a group in which you have the

group-SPECIAL attribute.
• You must be the owner of the user′s profile.

The visual shows sample output from the DELUSER command:

DELUSER JAMES

Chapter 2. Security and RACF 209

This command deleted user ID James.

210 ABCs of OS/390 System Programming

Figure 113. RACF groups

2.9 RACF groups

With RACF, all defined users belong to at least one group. You can think of the groups forming a
hierarchical or “tree” structure, where each group is owned by a superior group. Groups can also
own resources as well as users in another group.

RACF has the following types of groups:

Administrative You can create a group simply as an administrative convenience. For example, you
might create a group to represent an organizational entity, such as a region or a
division.

With RACF delegation, you can create this kind of group for each group administrator.
Operating from such groups, the group administrators can then define other groups
needed by their local users.

Holding This is a technique that retains user definition centrally, yet allows the effective use of
group administrators to establish a holding group. You define all users centrally and
initially connect them to a group named HOLD with the minimum of authorities. HOLD
does not appear in any access lists, and therefore has no real significance to the user.

Group administrators, to whom you give CONNECT (but not JOIN) authority, can
connect the appropriate users to the groups under their control and change the users ′
default group name as appropriate. This technique allows the installation to assign
correct account numbers and control other installation considerations while allowing
flexibility in the grouping of the user population.

Chapter 2. Security and RACF 211

Data Control You can create a group to act as a control point for the protection of data. For
example, by using the group SYS1, you can determine which users are permitted to
protect the SYS1 data sets. Only users with CREATE authority or higher in this group
can protect system data sets. At your location, you might consider defining one such
group for every high level qualifier representing data that is to be protected.

Functional A group can represent a functional area of the installation for the purpose of data
sharing. For example, a financial analyst might need to access a variety of resources
across many groups, such as accounting, payroll, marketing, and others. Of course,
the owners of each resource could permit the financial analyst to access their
resources by placing the analyst ′s user ID on an access list. But if a new financial
analyst takes over the job, it is then necessary to add the new user ID to each RACF
profile. Likewise, the RACF profiles must be updated when the analyst no longer has
a need to access the data. This arrangement involves a great deal of unnecessary
activity by the resource owners.

Instead, you can create a group that represents the financial analyst function and
permits access to the data defined to the group. Access to the entire range of data
can then be managed by controlling the user population in the defined group. For
cases involving one-time access, owners of the needed data would simply PERMIT
access by the defined group. Where appropriate, the group name could be included in
profile access lists to ensure automatic availability of needed data to the financial
analyst group. New financial analysts could be connected to the group, as required, to
gain access to the entire range of data. Likewise, analysts could be removed from the
group whenever necessary. By controlling the user population of such a functional
group, resource profile changes on a day-to-day basis becomes unnecessary.

User You can define a group to serve as an anchor point for users who otherwise have no
common access requirements. For example, engineers and scientists, as well as
other problem-solving users, might have no need to access application-related data in
the system. Their only interest may be in their own personal data. You can place this
set of users in a single group that has no access to other data.

You can also define groups based on access level. For example, if PAY.DATA is a
RACF-defined data set, two groups could be defined, PAYREAD and PAYUPDTE, both
of which would appear in the PAY.DATA access list, but with READ and UPDATE
access, respectively. Any users requiring access would be connected as appropriate,
by the group administrator.

212 ABCs of OS/390 System Programming

Figure 114. RACF group structure

2.9.1 RACF group structure

The group structure of RACF can be mapped to the organizational structure that exists at your
installation. That is, RACF conforms naturally to a tree structure of groups, where each group (except
SYS1, which is predefined as the highest group) has a superior, or owning, group. Groups can
correspond directly to business entities such as divisions, departments, and projects. Users can be
connected to one or more groups.

When you define a group, you should consider the basic purpose of the group. Is it an administrative
group, a holding group, a data control group, a functional group, or a user group? When setting up
RACF groups, keep in mind that the maximum number of users that you can connect to any one group
is approximately 5900.

You should map your groups to your organization′s structure and arrange them hierarchically, with the
IBM-supplied SYS1 group as the highest group, so that each group is a subgroup of another group.

A user may be connected in more than one group (in the example, SALLY is connected to MFG and
TEST groups).

In this visual: GROUP, DESIGN, TEST, and MFG are all owned by group POU. Tom is connected to
group POU as special. This gives Tom (who is the RACF administrator) control over all POU resources
DESIGN, TEST, and MFG.

Chapter 2. Security and RACF 213

Figure 115. How to add a group

2.9.2 How to add a group

Use the ADDGROUP command to define a new group to RACF. The command adds a profile for the
new group to the RACF database. It also establishes the relationship of the new group to the superior
group you specify.

Group profiles consist of a RACF segment and, optionally, other segments such as DFP and OMVS.
You can use this command to specify information in any segment of the profile.

To use the ADDGROUP command, you must meet at least one of the following conditions:

• Have the SPECIAL attribute
• Have the group-SPECIAL attribute and the superior group is within your group-SPECIAL scope
• Be the owner of the superior group
• Have JOIN authority in the superior group

The visual shows sample output from the ADDGROUP command:

ADDGROUP EXPED OWNER(ADMGRPS) SUPGROUP(POU)

This command added a new group named EXPED and it is a subgroup to group POU.

214 ABCs of OS/390 System Programming

Figure 116. How to alter a group

2.9.3 How to alter a group

Use the ALTGROUP command to change:

• The superior group of a group
• The owner of a group
• The terminal indicator for a group
• A model profile name for a group
• The installation-defined data associated with a group
• The default segment information for a group (for example, DFP or OMVS).

To change the superior group of a group, you must meet at least one of the following conditions:

• You must have the SPECIAL attribute
• All the following group profiles must be within the scope of a group in which you have the

group-SPECIAL attribute:
− The group whose superior group you are changing
− The current superior group
− The new superior group

• You must be the owner of, or have JOIN authority in, both the current and the new superior groups.

Note: You can have JOIN authority in one group and be the owner of, or have the group-SPECIAL
attribute in, the other group.

The visual shows sample output from the ALTGROUP command:

ALDGROUP EXPED SUPGROUP(KGN)

Chapter 2. Security and RACF 215

This command moved the group named EXPED from being a subgroup of group PGN to a subgroup to
group KGN.

216 ABCs of OS/390 System Programming

Figure 117. How to connect a user to a group

2.9.4 How to connect a user to a group

Use the CONNECT command to connect a user to a group, modify a user′s connection to a group, or
assign the group-related user attributes. If you are creating a connection, defaults are available as
stated for each operand. If you are modifying an existing connection, no defaults apply.

To use the CONNECT command, you must have at least one of the following:

• The SPECIAL attribute
• The group-SPECIAL attribute in the group
• The ownership of the group
• JOIN or CONNECT authority in the group

You cannot give a user a higher level of authority in the group than you have.

The visual shows sample output from the CONNECT command:

CONNECT JAMES GROUP(EXPED)

This command connects user James to the EXPED group.

Chapter 2. Security and RACF 217

Figure 118. How to remove a user from a group

2.9.5 How to remove a user from a group

You can use the REMOVE command to remove a user from a group, and to assign a new owner to any
group data set profiles the user owns on behalf that group.

The visual shows sample output from the REMOVE command:

REMOVE JAMES GROUP(EXPED)

This command removes user James from the EXPED group.

218 ABCs of OS/390 System Programming

Figure 119. How to delete a group

2.9.6 How to delete a group

Use the DELGROUP command to delete a group and its relationship to its superior group from RACF.

There are, however, other places in the RACF database where the group name might appear, and
DELGROUP processing does not delete these other occurrences of the group name. For example, the
group name could be in the access list for any resource. You can use the RACF Remove ID utility
(IRRRID00) to remove all occurrences of a group name. For information on using the RACF Remove ID
utility, see OS/390 Security Server (RACF) Security Administrator′s Guide, SC28-1915.

The visual shows sample output from the DELGROUP command:

DELGROUP EXPED

This command deletes the EXPED group.

Chapter 2. Security and RACF 219

Figure 120. Controlling access to resources

2.9.7 Controlling access to resources

To protect a general resource, create a general resource profile using the RDEFINE command. When
you create a general resource profile, you must specify a general resource class for the profile. IBM
supplies a list of the general resource classes in the class descriptor table (CDT). The classes for
OS/390 systems are relevant to the system on which you are running the OS/390 Security Server
(RACF).

RACF-protected resources can be divided into two categories: data sets and general resources.
General resources are all of the resources that are defined in the class descriptor table. For example,
general resources include DASD and tape volumes, load modules (programs), terminals, and others.

RACF allows the installation to set its own rules for controlling the access to its resources by defining
what is controlled at what level. The installation can tailor RACF to interact with its present operating
environment and assign security responsibilities either on a system-wide or a group-wide basis.

The three types of profiles are described in 2.7.1, “RACF resource profiles” on page 196. RACF has its
own algorithm to match resources to profiles. The basic steps are:

The installation establishes the controls; RACF enforces them.

Resource profiles contain:

• The owner of the profile
• The auditing parameters

220 ABCs of OS/390 System Programming

• The Universal Access authority
• An access list with users and groups
• A “Warning” indicator
• A security classification
• A real-time notification information
• An erase-on-scratch indication for data sets
• A volume and a unit (if data set)
• A security retention period (if tape data set)
• Access statistics

Your installation can add new class descriptor table (CDT) entries or modify or delete existing entries
that you have added in the installation-defined class descriptor table (ICHRRCDE). When you define a
new resource class, you can optionally designate that class as either a resource group class or a
resource member class. For a resource group class, each user or group of users that is permitted
access to that resource group is permitted access to all members of the resource group. Note that for
each resource group class you create, you must also create a second class that represents the
members of the group.

Chapter 2. Security and RACF 221

Figure 121. RACF data sets and general resources

2.9.8 RACF data sets and general resources

RACF does the following to locate a resource profile:

• RACF will look for a discrete profile, if no discrete profile is found

• RACF will look for a generic profile and will then use the most qualified generic profile available.

See OS/390 Security Server (RACF) Security Administrator′s Guide, SC28-1915, for more detail on how
this works.

Some of the generic profile naming for general resources has been enhanced with some of the same
concepts as generics for data set profiles as valid generic characters as follows:

* You may have an asterisk (*) within a profile name, representing one qualifier of a resource name,
or specify * in the profile name to match more than one character in the same position of the
resource name.

** You may also use a double asterisk (**) to represent zero or more qualifiers within a general
resource generic profile or at the end of such a profile, or specify ** in the profile name to match
more than one character in the same position of the resource name. Use of the double asterisk
(**) in general resource generic profiles is not controlled by the SETROPTS EGN option, which
applies only to the data set profiles.

% Specify % any single non-blank character (except a period) in the same position of the resource
name

222 ABCs of OS/390 System Programming

For example, the following profile names all match in the first three character positions (A.B), and are
shown in the order RACF examines them:

A.B
A.B.B
A.BA
A.BZ
A.B0
A.B9
A.B&X
A.B%
A.B*

In the visual example, SALES.YEARLY.QUOTA

2.9.8.1 Choosing between discrete and generic data set profiles

Decide which type of profile to create as follows:

Generic Choose a generic profile for the following reasons:

• If you want to protect more than one data set with the same security requirements.

• If you have a single data set that might be deleted, then re-created, and you want the
protection to remain the same, you can create a fully qualified generic profile. The
name of a fully qualified generic profile matches the name of the data set it protects.
Unlike a discrete profile, a fully qualified generic profile is not deleted when the data set
itself is deleted.

Discrete Choose a discrete profile for the following reasons:

• To protect one data set that has unique security requirements. The name of a discrete
profile matches the name of the data set it protects.

• To allow changes to a data set profile to take effect immediately, without needing to
refresh in-storage copies of the profile.

In the example on the visual, a resource manager issues a security check for the data set
SALES.YEARLY.QUOTA. The visual shows the three different types of profiles that could be
defined in the RACF database:

 1. A discrete profile
 2. A fully qualified generic profile
 3. Find the most specific generic profile

The example shows that RACF looks for a profile in the order shown. If no discrete profile
is found, check for a fully qualified profile. If not found, then find the most specific generic
profile, which is the second one in the example, SALES.YEARLY.%%%%%.

Note: By using generic profiles, your installation can reduce both the number of profiles
required to protect data sets and the size of the RACF database, thus making RACF
protection easier to administer. In addition, generic profiles are loaded into storage when
first needed, are not deleted when the data set they protect is deleted, and are not
volume-specific (that is, data sets protected by a generic profile can reside on any volume).

You can create a profile with a generic name when the following is true for the class of the
profile:

SETROPTS GENERIC(DATASET) option is in effect.

Not only does this option allow the creation of generic profiles, it also causes RACF to use
generic profiles during authorization checking.

Chapter 2. Security and RACF 223

Figure 122. Defining data set profi les

2.9.9 Defining data set profiles

Use the ADDSD command to add RACF protection to data sets with either discrete or generic profiles.

Use the RDEFINE command to define to RACF all resources belonging to classes specified in the class
descriptor table. You can also use the RDEFINE command to create entries in the global access
checking table and in the lists of security categories and security levels, and to define classes (as
profiles in the RACGLIST class) for which RACF saves RACLISTed results on the RACF database.

The RDEFINE command adds a profile for the resource to the RACF database in order to control
access to the resource. It also places your user ID on the access list and gives you ALTER authority to
the resource unless SETROPTS NOADDCREATOR is in effect.

Note: You cannot use the RDEFINE command to define users, groups, or data sets.

2.9.9.1 Data set profiles

By default, RACF expects a data set name (and the data set profile name) to consist of at least two
qualifiers. RACF also expects the high-level qualifier of the data set profile name to be either a
RACF-defined user or a RACF-defined group name.

Each data set profile defined to RACF requires a RACF-defined user or group as the owner of the
profile. The owner (if a user) has full control over the profile, including the access list.

224 ABCs of OS/390 System Programming

If the owner of the data set profile is a group, users with group-SPECIAL in that group have full control
over the profile.

Ownership of data set profiles is assigned when the profiles are defined to RACF. Note that ownership
of a data set profile does not mean that the owner can automatically access that data set. To access a
data set, the owner must still be authorized in the profile′s access list, unless the high-level qualifier of
the profile name is the owner′s user ID.

2.9.9.2 Data set profile examples

The RDEFINE in the data set class, DATASET, specifies that no users have access to the data set
except the creator of the profile since the universal access, UACC, is none.

To allow users to have access to the data set, the PERMIT command shown specifies that user ID
JANE has only READ access to the data set, ACC(READ). User ID JANE exists in the access list for the
data set profile via the PERMIT command.

Chapter 2. Security and RACF 225

Figure 123. Data set profi le access list

2.9.10 Data set profile access list

When a user requests access to a RACF-protected resource (such as a data set), the resource
manager issues a RACF authorization request. RACF then performs two checks.

Using the PERMIT command maintains a list of users and groups authorized to access a particular
resource. RACF provides two types of access lists: standard and conditional.

Standard The standard access list includes the user IDs and group names authorized to access
the resource and the level of access granted to each.

Conditional The conditional access list includes the user and group names authorized to access the
resource and the level of access granted to each when a certain condition is met.

2.9.10.1 Types of access levels

ALTER ALTER allows users to read, update, delete, rename, move, or scratch the data set.

When specified in a discrete profile, ALTER allows users to read, alter, and delete the
profile itself including the access list.

ALTER does not allow users to change the owner of the profile using the ALTDSD
command. However, if a user with ALTER access authority to a discrete data set profile
renames the data set, changing the high-level qualifier to his or her own user ID, both the
data set and the profile are renamed, and the OWNER of the profile is changed to the new
user ID.

226 ABCs of OS/390 System Programming

When specified in a generic profile, ALTER gives users no authority over the profile itself.

NONE The specified user or group is not permitted to access the resource or list the profile.

EXECUTE For a private load library, EXECUTE allows users to load and execute, but not to read or
copy programs (load modules) in the library.

READ Allows users to access the data set for reading only. (Note that users who can read the
data set can copy or print it.)

UPDATE Allows users to read from, copy from, or write to the data set. UPDATE does not,
however, authorize a user to delete, rename, move, or scratch the data set.

CONTROL For VSAM data sets, CONTROL is equivalent to the VSAM CONTROL password; that is, it
allows users to perform improved control interval processing. This is control-interval
access (access to individual VSAM data blocks), and the ability to retrieve, update, insert,
or delete records in the specified data set.

For non-VSAM data sets, CONTROL is equivalent to UPDATE.

Chapter 2. Security and RACF 227

Figure 124. How to add a data set profi le

2.9.11 How to add a data set profile

When you define data set profiles to RACF, you can use either standard or nonstandard naming
conventions. If you use nonstandard naming conventions, the data set naming convention table and
the single-level data set names option are ways to help “fit” RACF standard naming conventions.

The descriptions of naming conventions are followed by rules for protecting and allocating user and
group data sets.

By default, RACF expects a data set name (and the data set profile name) to consist of at least two
qualifiers. RACF also expects the high-level qualifier of the data set profile name to be either a
RACF-defined user or a RACF-defined group name.

This command added a generic profile for data sets with a high level qualifer of james.* (the *
character is a valid generic character for more than one character in this position).

ADDSD ′ JAMES.*′

The visual shows sample output from the LISTDSD command:

228 ABCs of OS/390 System Programming

Figure 125. How to alter a data set profi le

2.9.12 How to alter a data set profile

Use the ALTDSD command to:

• Modify an existing discrete or generic data set profile.
• Protect a single volume of either a multivolume tape data set or a multivolume, non-VSAM DASD

data set. At least one volume must already be RACF-protected.
• Remove RACF-protection from either a single volume of a multivolume tape data set or a single

volume of a multivolume, non-VSAM DASD data set. You cannot delete the last volume from the
profile.

This visual shows a command to alter the auditing options for the previously data set, JAMES.*

ALTDSD′ JAMES.*′ AUDIT(S(U),F(R))

The command also specifies which new access attempts you want to log to the SMP data set.

SUCCESS S(U) Indicates that you want to log authorized accesses to UPDATE

FAILURES F(R) Indicates that you want to log detected unauthorized access attempts to read

The visual shows a sample output from the ALTDSD command, which shows the auditing options as:

SUCCESS(UPDATE),FAILURE(READ)

Chapter 2. Security and RACF 229

Figure 126. List a data set profi le matching a mask

2.9.13 List a data set profile matching a mask

The SEARCH command obtains a list of RACF profiles, users, and groups from the RACF DATABASE
using search criteria specified.

MASK specifies the strings of alphanumeric characters used to search the RACF database. This data
defines the range of profile names selected. The two-character strings together must not exceed 44
characters for a tape or DASD data set name, or, for general resource classes, the length specified in
the class descriptor table.

The visual shows a SEARCH command with the search criteria, MASK.

SEARCH MASK(JAMES) CLASS(DATASET)

This command allows RACF to list profiles starting with the MASK, in this case JAMES.

A second example allows RACF to list all profiles containing the filter string.

SEARCH FILTER(JAMES) CLASS(DATASET)

230 ABCs of OS/390 System Programming

protected by a profile′.

Figure 127. List a catalogued data set

2.9.14 List a catalogued data set

The visual shows sample output from the LISTDSD command:

LISTDSD′ JAMES.*′ DSNS

This command allows RACF to list data sets protected by a profile (in this case, the JAMES.* data set
profile).

DSNS specifies that you want to list the cataloged data sets protected by the profile specified in the
DATASET, ID, or PREFIX operand.

Chapter 2. Security and RACF 231

Figure 128. List who has access to a data set profi le

2.9.15 List who has access to a data set profile

The visual shows sample output from the PERMIT command:

PERMIT ′ JAMES.*′ ID(BILL,DESIGN) ACCESS(UPDATE)DSNS

This command allows Bill and the DESIGN group update access to the files protected by the James.*
data set profile. Mark, Laurie, and Walt part of the DESIGN group will have UPDATE access, unless the
access list contains their userid with another level of access.

PERMIT ′ JAMES.*′ ID(PAT) ACCESS(READ)DSNS

Pat will have read access to the files protected by the JAMES.* profile.

232 ABCs of OS/390 System Programming

Figure 129. How to add a general resource profi le

2.9.16 How to add a general resource profile

The visual shows sample output from the RDEFINE command:

RDEF PROGRAM MYMUSIC ADDMEM(′ JAMES.PGMLIB′ / VOL123/NOPADCHK)

This command defines a new resource profile called MYMUSIC that will run in PROGRAM class. The
program MYMUSIC is located in JAMES.PGMLIB member on DASD volume VOL123.

Setting NOPADCHK means that RACF will not check for program-accessed data sets when a user is
executing the control programs.

Chapter 2. Security and RACF 233

Figure 130. How to change universal access authority

2.9.17 How to change universal access authority
The visual shows sample output from the RALTER command:

RALT PROGRAM MYMUSIC UACC(READ)

This command sets the Universal Access Authority (UACC) to read. The UACC is the default access to
a resource if the user or group is not specifically permitted access to the resource. The Alter
command has set the default access of MYMUSIC at READ.

234 ABCs of OS/390 System Programming

Figure 131. How to permit access to a resource profi le

2.9.18 How to permit access to a resource profile

The visual shows sample output from the PERMIT command:

PERMIT MYMUSIC CLASS(PROGRAM) ID(MARVIN) ACCESS(NONE)

Despite the UACC(READ) on the resource profile, MARVIN will not be able to access the resource as
NONE as specified in the access list.

Chapter 2. Security and RACF 235

Figure 132. RACF monitor ing

2.10 RACF monitoring

For more immediate action, the user can request notification to the master terminal at the time of
violation. A non-zero value for the SECCNT keyword of the SECURITY macro causes the master
terminal to be notified.

Because the number of violations for a large network may be high due to misspelled passwords,
transaction codes, and commands, you can specify a threshold for notification. The master terminal is
not notified until the specified number of violations occur without a valid input from a given terminal.
You specify 1 to 3 invalid entries as the violation limit. This eliminates or reduces the number of
notifications caused merely by operator error, while still providing evidence of real attempts to avoid
security safeguards.

236 ABCs of OS/390 System Programming

Figure 133. RACF immediate notif ication - example 1

2.10.1 Example of RACF immediate notification - example 1

The explanation of the RACF message ICH408I is as follows:

ICH408I USER(userid) GROUP(group-name) NAME(user-name)

This message is issued when RACF detects an unauthorized request (a violation) made by a user or
job. The user and group indicated in the first line of the ICH408I message are the execution user ID
and group ID under which the job was to run.

Chapter 2. Security and RACF 237

Figure 134. RACF immediate notif ication - example 2

2.10.2 Example of RACF immediate notification - example 2

The RACF message ICH70004I is as follows:

ICH70004I USER(accessor) GROUP(group-name)
NAME(user-name) ATTEMPTED ′ access-type′ ACCESS
OF ENTITY ′ resource-name′ IN CLASS ′ class-name′ AT
hh:mm:ss ON month day, year.

This message alerts a RACF user that an access violation has occurred against the indicated resource.
This message is routed to the user specified in the NOTIFY field of the resource profile that denied the
access.

238 ABCs of OS/390 System Programming

Figure 135. RACF auditing tools

2.11 RACF auditing tools

RACF auditing is basically verifying that the principals set forth by the installations security policy are
not compromised. The problem with auditing is being able to reduce the amount of information to
something that can be easily analyzed.

Two types of auditing data exist:

 1. Security data content from the RACF database, this is a static image or a snapshot of the system
parameters at any one time.

 2. Security events data statistical information, such as the date, time, and the number of t imes a
specific resource was accessed by any one user.

RACF writes security log records when it detects:

• Unauthorized attempts to enter the system
• Authorized or unauthorized attempts to enter RACF commands
• RACF status changes
• Warning mode resource access attempts
• Failsoft operator access decisions
• Optional authorized or unauthorized attempts to access RACF-protected resources

You can list the contents of these records to help you to detect possible security exposures or threats
and verify the security of the system.

Chapter 2. Security and RACF 239

Each of the following programs can help you accomplish your goals, depending on your specific needs:

• SMF data unload utility
• RACF data unload utility
• RACF report writer
• Data security monitor (DSMON)

240 ABCs of OS/390 System Programming

Figure 136. SMF Data Unload Util ity

2.11.1 SMF Data Unload Utility (IRRADU00 program)

The SMF data unload utility processes SMF records and permits more complex auditing than the RACF
report writer.

Output from the SMF data unload utility can be:

• Viewed directly
• Used as input for installation-written programs
• Manipulated by sort/merge util it ies
• Uploaded to a database manager, such as DB2

You can process complex inquiries and generate custom-tailored reports from the output of the SMF
data unload utility. These reports can be useful in identifying suspicious patterns of access by
authorized users that another program might miss. Because data is more often misused by authorized
users than stolen by unauthorized users, reports like this are essential to security.

Chapter 2. Security and RACF 241

Figure 137. How to run the SMF Data Unload Util ity

2.11.2 How to run the SMF Data Unload Utility (IRRADU00)

Following is RACF SMF Data Unload Utility sample JCL:

//KHEWITT1 JOB (ITSO),′ SMF FLAT′ , MSGCLASS=X
//SMFDUMP EXEC PGM=IFASMFDP
//SYSPRINT DD SYSOUT=*
//ADUPRINT DD SYSOUT=*
//OUTDD DD DISP=(NEW,CATLG),DSN=KHEWITT.RACF.IRRADU00,
// UNIT=SYSDA,SPACE=(CYL,(10,5),RLSE),
// LRECL=5096,RECFM=VB
//SMFDATA DD DISP=SHR,DSN=SYS1.SC42.MAN2
//SMFOUT DD DUMMY
//SYSIN DD *

INDD(SMFDATA,OPTIONS(DUMP))
OUTDD(SMFOUT,TYPE(000:255))
ABEND(NORETRY)
USER2(IRRADU00)
USER3(IRRADU86)

//SYSIN DD DUMMY

To display the active SMF data set, use the D SMF command from the system console.

242 ABCs of OS/390 System Programming

IEE974I 10.12.27 SMF DATA SETS 796
NAME VOLSER SIZE(BLKS) %FULL STATUS

P-SYS1.SC42.MAN1 MVS004 1200 0 ALTERNATE
S-SYS1.SC42.MAN2 MVS004 1200 86 ACTIVE
S-SYS1.SC42.MAN3 MVS004 1200 0 ALTERNATE

MAN2 is the active SMF data set.

The output file in this example is KEWITT.RACF.IRRADU00.

Chapter 2. Security and RACF 243

Figure 138. RACF report wri ter

2.12 RACF report writer

The RACF report writer lists the contents of system management facility (SMF) records in a format that
is easy to read. It also uses the same SMF data to generate the following specialized reports:

• Reports that describe attempts to access a particular RACF-protected resource in terms of user
identity, number and type of successful accesses, and number and type of attempted security
violations.

• Reports that describe user and group activity.

• Reports that summarize system use and resource use.

The RACF report writer is stabilized at the RACF 1.9.2 level, and is not able to report on many of the
later RACF functions.

244 ABCs of OS/390 System Programming

Figure 139. How to run RACF report wri ter

2.12.1 How to run RACF report writer

Following is RACF Report Writer sample JCL:

//KHEWITT1 JOB (ITSO),′ RACF FLAT′ , MSGCLASS=X
//HEWITT EXEC PGM=IKJEFT01
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSTSIN DD *
RACFRW DSNAME(′ KHEWITT.RACF.IRRADU00′)
LIST
SUMMARY USER
END
/*

The RACF report writer can also be run from the TSO command line.

Chapter 2. Security and RACF 245

Figure 140. The RACF Data Security Monitor

2.13 RACF Data Security Monitor

The RACF data security monitor (DSMON) enables you to verify the basic system integrity and data
security controls.

RACF auditors can use the DSMON reports to evaluate the level of security at the installation and to
compare the actual level of security at an installation with the planned level of security.

2.13.1.1 DSMON reports

DSMON produces the following reports:

• System report

• Group tree report

• Program properties table report

• RACF authorized caller table report

• RACF class descriptor table report

• RACF EXIT report

• RACF global access checking table report

• RACF user attribute report

• RACF user attribute report summary report

246 ABCs of OS/390 System Programming

• RACF Selected data set report

2.13.1.2 The System Report

The system report contains information such as the identification and model of the processor complex,
and the name, version, and release of the operating system. This report also specifies the RACF
version and release number and whether RACF is active. If RACF is inactive, DSMON prints a
message that tells you whether RACF was not activated at IPL or was deactivated by the RVARY
command.

2.13.1.3 The Group Tree Report

This report lists, for each requested group, all of its subgroups, all of the subgroups′ subgroups, and so
on, as well as the owner of each group listed in the report, if the owner is not the superior group. You
can use the group tree report to examine the overall RACF group structure for your system. You can
also determine the scope of the group for group related user attributes (group SPECIAL, group
OPERATIONS, and group AUDITOR).

2.13.1.4 The Program Properties Table Report

This report lists all of the programs in the MVS program properties table (PPT). The report also
indicates, for each program, whether the program is authorized to bypass password protection and
whether it runs in a system key.

You can use the program properties table report to verify that only those programs that the installation
has authorized to bypass password protection are, in fact able to do so. Such programs are normally
communication and database control programs and other system control programs.

You can also verify that only those programs that the installation has authorized are able to run in a
system key.

2.13.1.5 The RACF Authorized Caller Table Report

This report lists the names of all of the programs in the RACF authorized-caller table. The programs in
this table are authorized to issue REQUEST=VERIFY (which performs user verification) or
REQUEST=LIST (which loads profiles into main storage).

You can use this report to verify that only those programs that are supposed to be authorized to modify
an ACEE (accessor environment element) are able to issue a REQUEST=VERIFY. This verification is a
particularly important security requirement because the ACEE contains a description of the current
user. This description includes the user ID, the current connect group, the user attributes, and the
group authorities. A program that is authorized to issue REQUEST=VERIFY could alter the ACEE to
simulate any user.

You can also use this report to verify that only those programs that are supposed to be authorized to
access profiles are able to issue REQUEST=LIST. Because profiles contain complete descriptions of
the characteristics that are associated with RACF-defined entities, you must carefully control access to
them.

Chapter 2. Security and RACF 247

2.13.1.6 The RACF Class Descriptor Table Report

This report lists, for each general resource class the class name, the default UACC, whether the class
is active, whether auditing is being done, whether statistics are being kept, and whether OPERATIONS
attribute users have access.

You can use the class descriptor table report to determine which classes (besides DATASET) are
defined to RACF and active, and therefore can contain resources that RACF protects.

2.13.1.7 The RACF Exits Report

This report lists the names of all of the installation-defined RACF exit routines and specifies the size of
each exit routine module.

You can use the RACF exits report to verify that the only active exit routines are those that your
installation has defined. The existence of any other exit routines might indicate a system security
exposure, because RACF exit routines can be used to bypass RACF security checking. Similarly, if the
length of an exit routine module differs from the length of the module when it was defined by your
installation, the module might have unauthorized modifications.

2.13.1.8 The RACF Global Access Checking Table Report
This report lists, for each resource class in the global access table, all of the entry names and their
associated resource access authorities.

Because global access checking allows anyone to access the resource at the associated access
authority, you should verify that each entry has an appropriate level of access authority.

The RACF Started Procedures Table Reports RACF generates two started procedures table reports.

If the STARTED class is active, the report uses the STARTED class profiles and contains the TRACE
attribute. The trace uses module ICHDSM00.

If the STARTED class is not active, the trace uses the installation replaceable load module, ICHRIN03.

The reports list the procedure name, the user ID and group name to be associated with the procedure,
and whether the procedure is privileged or trusted.

You can use the report to determine which started procedures are defined to RACF, and which have
the privileged attribute. If a started procedure is privileged or trusted, it bypasses all
REQUEST=AUTH processing (unless the CSA or PRIVATE operand was specified on
REQUEST=AUTH), including checks for security classification of users and data.

2.13.1.9 Selected User Attribute Report

The selected user attribute report:

Lists all RACF users with the SPECIAL, OPERATIONS, AUDITOR, or REVOKE attributes

Specifies whether they possess these attributes on a system-wide (user) or group level

Indicates whether they have any user ID associations

You can use this report to verify that only those users who need to be authorized to perform certain
functions have been assigned the corresponding attribute.

248 ABCs of OS/390 System Programming

2.13.1.10 Selected User Attribute Summary Report

The selected user attribute summary report shows the number of installation-defined users and totals
for users with the SPECIAL, OPERATIONS, AUDITOR, and REVOKE attributes, at both the system and
group level. You can use this report to verify that the number of users with each of these attributes, on
either a system or group level, is the number that your installation wants. In particular, you should
make sure that you have assigned the SPECIAL attribute (on a system level) to at least one user and
the AUDITOR attribute (on a system level) to at least one user.

2.13.1.11 Selected Data Sets Report

This report lists the names of selected system data sets and, for each data set, specifies the criterion
for selection, the serial number of the volume on which it resides, whether the data set is
RACF-indicated or RACF-protected, and the universal access authority (UACC). If a data set meets
more than one selection criterion, there is a separate entry in the report for each criterion. The
selected data sets include system data sets, the MVS master catalog, user catalogs, the RACF primary
and backup data sets, and user-specified data sets.

You can use the selected data sets report to determine which of these data sets are protected by
RACF and which are not. You can also check whether the UACC associated with each of the data sets
is compatible with your installation ′s resource access control requirements.

Chapter 2. Security and RACF 249

Figure 141. How to run DSMON

2.13.2 How to run the DSMON program

DSMON runs as an authorized program facility (APF) authorized batch program. DSMON can also be
run on TSO if SYS1.PARMLIB(IKJTSO00) is configured correctly.

Following is sample DSMON JCL:

//P390S JOB 1,P390,MSGCLASS=X
//TSOBAT01 EXEC PGM=ICHDSM00
//SYSPRINT DD SYSOUT=*
//SYSUT2 DD SYSOUT=*
//SYSIN DD *
LINECOUNT 55
FUNCTION all
USEROPT USRDSN sivle.memo.text

/*

250 ABCs of OS/390 System Programming

Figure 142. RACF Database Unload Util ity

2.14 RACF Database Unload Utility

The RACF Database Unload Utility (IRRDBU00 program) is used to unload data from the RACF
database (except password fields) into a flat file.

The output file from the database unload utility can be:

• Viewed directly

• Used as input to your own programs

• Manipulated with sort/merge util it ies

• Used as input to a database management system

Installations can produce reports that are tailored to their requirements.

Using the Database Unload Utility Output with DB2 you can use the DB2 Load Utility or its equivalent to
process the records produced by the database unload utility. The definition and control statements for
a DB2 to use this output, are shipped with OS/390 in the SYS1.SAMPLIB.

Chapter 2. Security and RACF 251

Figure 143. How to run the RACF Data Unload Util ity

2.14.1 How to run IRRDBU00

Following is RACF Data Unload Utility sample JCL:

//KHEWITT1 JOB (ITSO),′ RACF FLAT′ , MSGCLASS=X
//UNLOAD EXEC PGM=IRRDBU00,PARM=NOLOCKINPUT
//SYSPRINT DD SYSOUT=*
//INDD1 DD DISP=SHR,DSN=SYS1.RACFESA
//OUTDD DD DISP=(NEW,CATLG),DSN=KHEWITT.RACFDB.FLATFILE,
// UNIT=SYSDA,SPACE=(CYL,(70,10),RLSE),
// LRECL=4096,RECFM=VB
//SYSIN DD DUMMY

The output file name in this example is KEWITT.RACF.IRRADU00. To display the active SMF data set,
use the command D SMF.

252 ABCs of OS/390 System Programming

Chapter 3. OS/390 UNIX System Services

The OS/390 support for OS/390 UNIX System Services (OS/390 UNIX) enables two open systems
interfaces on the OS/390 operating system:

• An application program interface (API)

The application interface is composed of C interfaces. Some of the C interfaces are managed
within the C Run-Time Library (RTL), and others access kernel interfaces to perform authorized
system functions on behalf of the unauthorized caller.

With the API, programs can run in any environment, which includes batch jobs, jobs submitted by
TSO/E users, most other started tasks, and in any other MVS application task environment. A
program can request:

− Only MVS services
− Only OS/390 UNIX
− Both MVS and OS/390 UNIX

• An interactive OS/390 shell interface

The OS/390 shell is modeled after the UNIX System V shell with some of the features found in the
Korn Shell. As implemented for OS/390 UNIX services this shell conforms to POSIX standard
1003.2, which has been adopted as ISO/IEC International Standard 9945-2: 1992.

The shell is a command processor that you use to:

− Invoke shell commands or utilities that request services from the system.

− Write shell scripts using the shell programming language.

− Run shell scripts and C-language programs interactively (in the foreground), in the background,
or in batch.

− The OS/390 shell provides commands and utilities that give the user an efficient way to request
a range of services.

 Copyright IBM Corp. 2000 253

Figure 144. Component support for UNIX services

3.1 Products and components with OS/390 UNIX

This visual shows the products, (RACF, TCP/IP, DFSMS, ADSM, RMF, TSO/E, and SMP/E) and
components (VLF, SMF, and WLM) used with OS/390 UNIX System Services.

OS/390 components

WLM The Work Load Manager (WLM) transaction initiators provide address spaces when programs
issue the fork() or spawn() C function or OS/390 callable service.

VLF RACF allows caching of UID and GID information in the Virtual Lookaside Facility (VLF). Add
the following VLF options to the COFVLFxx member of SYS1.PARMLIB to enable the caching:

CLASS NAME(IRRUMAP)
EMAJ(UMAP)

CLASS NAME(IRRGMAP)
EMAJ(GMAP)

This will improve the performance of OS/390 UNIX.

SMF System Management Facility (SMF) collects data for accounting. SMF job and job-step
accounting records identify processes by user, process, group, and session identifiers. Fields
in these records also provide information on resources used by the process. SMF File System
records describe file system events such as file open, file close, and file system mount,
unmount, quiesce, and unquiesce.

254 ABCs of OS/390 System Programming

Figure 145. UNIX System Services

3.2 UNIX System Services

The name OpenEdition was changed to OS/390 UNIX System Services beginning with OS/390 Release
5. UNIX System Services can be abbreviated OS/390 UNIX. OS/390 and OS/390 UNIX are Year 2000
ready and require no migration action.

For more information about Year 2000 support, see The Year 2000 and 2-Digit Dates: A Guide for
Planning and Implementation, GC28-1251, and the Web site http://www.ibm.com/year2000/.

Chapter 3. OS/390 UNIX 255

Figure 146. POSIX standards overview

3.3 POSIX standards overview

The work on Portability Operating Systems Interface (POSIX) started as an effort to standardize UNIX
and was performed by a workgroup under the Institute of Electrical and Electronical Engineers (IEEE).
What they defined was an application programming interface which could be applied not only to UNIX
systems but to other operating systems like MVS.

POSIX is not a product. It is an evolving family of standards describing a wide spectrum of operating
system components ranging from C language and shell interfaces to system administration.

The POSIX standard is sponsored by the International Organization for Standardization (ISO) and is
incorporated into X/Open Portability Guides (XPG). Each element of the standard is defined by a 1003.*
number.

POSIX defines the interfaces and not the solution or implementation. In this way POSIX can be
supported by any operating system. Implementation of POSIX can be different in areas such as
performance, availability, recoverability, and so on. All POSIX compliant systems are not the same
although they all support basically the same interface.

Many people think open means UNIX. Although POSIX evolved from UNIX, it ′s not the same as UNIX.

The support for open systems in OS/390 is based on the POSIX standard. POSIX is a part or a subset
of the XPG standard defined by X/Open.

256 ABCs of OS/390 System Programming

Figure 147. X/Open Portability Guide Issue 4/4.2

3.4 X/Open Portability Guide

OS/390 UNIX was originally implemented in MVS/ESA 4.3 as OpenEdition and supported the POSIX
standards (1003.1, 1003.1a, 1003.1c, and 1003.2) with approximately 300 functions. In MVS/ESA 5.2.2
many additional functions were added to meet the XPG4 requirements.

In MVS/ESA 5.2.2 the number of functions included in the OpenEdition implementation was more than
1100. This incorporated the full X/Open Portability Guide issue 4 (XPG4) and over 90 percent of the
single UNIX specification as defined in XPG4.2. The remaining functions were added afterwards and so
OpenEdition became branded as a UNIX system.

The XPG4.2 support includes all commands and utilities, most of the additional C services defined in
the standard and curses, which was included in specification 1170 but not in the XPG4.2 itself. Curses
is the UNIX multicolor, multi-language screen control package which comes from the Novell SVID
Edition 3 package.

Since OS/390 R2 the following items were added: STREAMS, X/Open Transport Interface (XTI), XPG4.2
regular expressions, XPG4.2 context switching, and XPG4.2 behavior specific to sockets.

Since 1992, multiple standards organizations have been involved in tasks to standardize UNIX and
provide a set of open systems interface specifications. Many of these organizations cooperated and
many vendors fully supported their efforts to create a UNIX-based set of application programming
interfaces.

Chapter 3. OS/390 UNIX 257

MVS started out to be a POSIX compliant system. This support has been extended to support the
X/Open definitions of the X/Open Portability Guide issue 4 and 4.2.

The advantage of this goal was the portability of programs developed to these standards and the
sharing of development across heterogeneous platforms. Also included in XPG4.2 were the protocols
and methods for communicating between programs on different platforms. This then addressed both,
the issues of portability and the interoperability which was defined earlier in this topic as the
requirement of open systems.

Since 1996, OS/390 R2 has been UNIX branded.

258 ABCs of OS/390 System Programming

Figure 148. OS/390 operating system with OS/390 UNIX

3.5 OS/390 operating system with OS/390 UNIX

The OS/390 support for OS/390 UNIX System Services (OS/390 UNIX) enables two open systems
interfaces on the OS/390 operating system:

• An application program interface (API)
• An interactive OS/390 shell interface

With the APIs, programs can run in any environment—including in batch jobs, in jobs submitted by
TSO/E users, and in most other started tasks—or in any other MVS application task environment. The
programs can request:

• Only MVS services
• Only OS/390 UNIX
• Both MVS and OS/390 UNIX

The shell interface is an execution environment analogous to TSO/E, with a programming language of
shell commands analogous to the Restructured eXtended eXecutor (REXX) language. The shell work
consists of:

• Programs run by shell users

• Shell commands and scripts run by shell users

• Shell commands and scripts run as batch jobs

Chapter 3. OS/390 UNIX 259

To run a shell command or util ity, or any user-provided application program written in C or C++, you
need the C/C++ run-time library provided with the Language Environment (LE).

260 ABCs of OS/390 System Programming

With the OS/390 UNIX System Services Application Services, users can:

• Request services from the system through shell commands. Shell commands are like TSO/E
commands.

• Write shell scripts to run tasks. Shell scripts are analogous to REXX EXECs.

• Run programs interactively (in the foreground) or in the background.

Many users use similar interfaces on other systems, such as AIX for the RISC System/6000 or UNIX,
and use terminology different from OS/390 terminology. For example, they refer to virtual storage as
memory. The work done by their system administrators is handled by system programmers in an
OS/390 system. To help you understand these users, this book and its glossary indicate equivalent
terms and phrases.

Application programmers are likely to do the following tasks when creating UNIX-compliant application
programs:

• Design, code, and test the programs on their workstations using XPG4 UNIX-conforming systems.

• Send the source modules from the workstation to OS/390.

• Copy the source modules from the OS/390 data sets to HFS files.

• Compile the source modules and link-edit them into executable programs.

• Test the application programs.

• Use the application programs.

An OS/390 UNIX program can be run interactively from a shell in the foreground or background, run as
an OS/390 batch job, or called from another program. The following types of applications exist in an
OS/390 system with OS/390 UNIX:

• Strictly conforming XPG4 UNIX-conforming applications
• Applications using only kernel services
• Applications using both kernel and OS/390 services
• Applications using only OS/390 services

An OS/390 program submitted through the job stream or as a job from a TSO/E session can request
kernel services through the following:

• C/C++ func t i ons
• Shell commands, after invoking the shell
• Callable services

At the first request, the system dubs the program as an OS/390 UNIX process, unless it is a
POSIX(OFF) program (which is not dubbed).

With the OS/390 UNIX System Services application services, users can:

• Request services from the system through shell commands. Shell commands are like TSO/E
commands.

• Write shell scripts to run tasks. Shell scripts are analogous to REXX EXECs.

• Run programs interactively (in the foreground) or in the background.

Chapter 3. OS/390 UNIX 261

Figure 149. OS/390 UNIX programs (processes)

3.5.1 OS/390 UNIX programs (processes)

A process is a program using kernel services. The program can be created by the fork() function, fork
callable service, or spawn() function; or the program can be dubbed because it requested kernel
services. The three types of processes are:

• User processes, which are associated with a program or a shell user

• Daemon processes, which perform continuous or periodic system-wide functions, such as printer
spooling

• Kernel processes, which perform system-wide functions for the kernel such as cleaning up zombie
processes (init process)

When you enter a shell command, you start a process that runs in an MVS address space. When you
enter that command, the OS/390 shell runs it in its own process group. As such, it is considered a
separate job and the shell assigns it a job identifier—a small number known only to the shell. (A shell
job identifier identifies a shell job, not an MVS job.) When the process completes, the system displays
the shell prompt.

UNIX programs running in MVS address spaces use or access the following:

A S M / C + + These programming languages can be used to create the programs.

SAF A security product is required when running UNIX System Services. SAF is the
interface to RACF, Top Secret, or ACF2.

262 ABCs of OS/390 System Programming

BPXPRMxx This parmlib member determines the number of processes that may be started in
the OS/390 system.

MVS data sets UNIX programs may access MVS data sets.

HFS files UNIX programs may access HFS files.

TCP/IP Workstation users may enter the shell environment by using rlogin or telnet in a
TCP/IP network. User-written applications may use TCP/IP as a communication
vehicle.

VTAM Workstation users may access TSO/E through VTAM. OS/390 UNIX is then
accessed from TSO/E.

The system also assigns a process group identifier (PGID) and a process identifier (PID). When only
one command is entered, the PGID is the same as the PID. The PGID can be thought of as a
system-wide identifier. If you enter more than one command at a time using a pipe, several processes,
each with its own PID, will be started. However, these processes all have the same PGID and shell job
identifier. The PGID is the same as the PID for the first process in the pipe.

Process identifiers associated with a process are as follows:

PID A process ID (PID) is a unique identifier assigned to a process while it runs. When the
process ends, its PID is returned to the system. Each time you run a process, it has a
different PID (it takes a long time for a PID to be reused by the system). You can use the PID
to track the status of a process with the ps command or the jobs command, or to end a
process with the kill command.

PGID Each process in a process group shares a process group ID (PGID), which is the same as the
PID of the first process in the process group. This ID is used for signaling related processes.

If a command starts just one process, its PID and PGID are the same.

PPID A process that creates a new process is called a parent process; the new process is called a
child process. The parent process ID (PPID) becomes associated with the new child process
when it is created. The PPID is not used for job control.

Chapter 3. OS/390 UNIX 263

Figure 150. Create a process

3.5.2 Create a process

Fork() is a POSIX/XPG4 function which creates a duplicate process referred to as a child process. The
process that issues the fork() is referred to as the parent process.

With OS/390 UNIX a program that issues a fork() function creates a new address space which is a copy
of the address space where the program is running. The fork() function does a program call to the
kernel which uses WLM/MVS facilities to create the child process. The contents of the parent address
space are then copied to the child address space.

After the fork() function, the program in the child AS will start at the same instruction as the program in
the parent AS. Control is returned to both programs at the same point. The only difference that the
program sees is the return code from the fork() function. A return code of zero is returned to the child
after a successful fork(). All other return codes are valid only for the parent.

A process will be created by using any of the following methods:

• C fork() function: Will create a child process which is identical to the parent process in a new
address space scheduled by the Workload Manager (WLM).

• C spawn() function: Will create a child process which will be executing a different program than the
parent, either in a new address space scheduled by WLM, or in the same address space as the
parent process (local spawn).

264 ABCs of OS/390 System Programming

• OS/390 UNIX callable services: When a program uses an OS/390 UNIX assembler callable service,
the OS/390 address space will be dubbed an OS/390 UNIX process. The address space will get a
PID. The dub will not result in a new address space.

The kernel interfaces to WLM to create the new address space for a fork or spawn. WLM uses an IBM
supplied procedure BPXAS to start up a new address space. This new address space will then
initialize the UNIX child process to run in the address space. After the child process completes, this
address space can be reused for another fork or spawn. If none is waiting, BPXAS will time out after
being idle for 30 minutes.

To be able to decide useful values for the BPXPRMxx keywords which affect process resources, it is
necessary to understand how OS/390 UNIX processes are created and which functions can create a
process.

When the program “prog1” in the parent address space (AS) issues the fork() function, the kernel is
called to perform the action. The kernel calls the Workload Manager (WLM) to provide a new address
space.

Once the child address space has been created, the child gets the required storage from a STORAGE
request. The kernel then copies the contents of the parent AS to the child AS using the MVCL
instruction. Once the copy has been completed, a short conversation between the kernel and the child
process takes place. At this point, both the parent and child process are activated. The program in
the child AS gets control at the same point as the program in the parent AS. The only difference is the
return code from the fork() function.

The child address space is almost an identical copy of the parent address space. User data, for
example private subpools, and system data, like RTM (Recovery Termination Management) control
blocks, are identical.

Any linkage stack in the parent is not carried over to the child. Also, dataspaces and hiperspaces are
not carried over since access list and access register contents are not copied. Internal timers together
with SMF and SRM accounting data are set to zero in the child address space.

HFS files are allocated to the kernel and I/O is done by calling the kernel. On a fork(), all open files
are inherited by the child address space. The child does not inherit any file locks for the HFS files.

MVS data sets are allocated to an individual address space, and after a fork() the child address space
does not have access to the MVS data sets allocated by the parent.

The visual shows two of the methods of creating processes. The reason for reviewing how processes
are created is that WLM is used for scheduling an AS for the functions that create a child process in a
separate AS.

The OS/390 UNIX kernel will receive the requests for creating a new process, and depending on
whether the process will be located in a new AS, the kernel will ask WLM to schedule an address
space. If a new address space is not required the kernel will create a child process in the same AS as
the parent.

The BPXAS address space is very similar to a JES2 initiator—have a look at the procedure in the next
few pages. It actually enters the system as a started task. When it starts to run, a child process
created by the kernel, it becomes a UNIX unit of work. When the child process completes, if there is no
further work, the BPXAS reverts to an STC and waits on further fork/spawn work from WLM. If nothing
appears for 30 minutes, the address space goes away. However, if you want to bring OS/390 down
quickly, you need a way of quickly stopping all outstanding BPXAS address spaces.

Chapter 3. OS/390 UNIX 265

3.5.2.1 fork() function

The fork() function comes from UNIX and the implementation in OS/390 is a very resource consuming
function. The fork() function creates a new child process which is an identical copy of the parent
process, and the child process will be executing the same program as the parent. Storage areas are
copied from the parent to the child using MVCL. However, OS/390 UNIX provides the capability of
using shared pages instead of copying the storage. In most cases where a fork() is used, the function
exec() follows immediately to start a new program in the child process. Because of this, it seems quite
unreasonable to copy all the storage and get rid of it without using it. Using shared pages is one
solution and how to activate that will be covered in the customization unit.

266 ABCs of OS/390 System Programming

Figure 151. OS/390 UNIX processes

3.5.3 OS/390 UNIX processes

OS/390 UNIX uses processes to run programs, and to associate resources to the programs. An OS/390
address space can contain one or multiple processes.

A process is created by another process, or by a request for an OS/390 UNIX service. The process that
creates a new process is called a parent process and the new process is called a child process. There
will be a hierarchy of processes in the system.

Every process is identified by a process ID (PID) and is associated with its parent process by a parent
process ID (PPID).

OS/390 UNIX supports processes that run in unique address spaces. These would be created by fork()
and exec() services. It also supports local processes. These will share an address space and are
created by the spawn() service.

The use of processes comes from UNIX where a process is used for executing some work. In the first
OS/390 UNIX release, a process was the same as an address space. Since later releases of OS/390
UNIX provide the capability of having multiple processes within an address space, it is more suitable to
compare a process to a task in OS/390. OS/390 UNIX was changed to allow multiple processes within
an address space to save resources and improve performance.

The OS/390 UNIX shell is a large consumer of processes. The shell will create a new process for
almost each shell command a user executes. The process will only exist as long as it takes for the
command to execute. This concept comes from UNIX. With later releases of OS/390 UNIX more

Chapter 3. OS/390 UNIX 267

commands are inline commands, which means they will not be executed in a separate process. The
shell will also use the capability of having multiple processes within the user shell process so that the
shell commands which will execute in a different process will still be in the same AS.

A process can create one or more child processes, and the child processes can be parent processes
of new child processes, thus creating a hierarchy of related processes. The PPID maintains the
relationship between processes. Usually, a process creates a child process to perform a separate task,
for example a shell command. The child process ends when the task is completed while the parent
process continues to execute. If for some reason a parent process should terminate before a child
process, the child process will become an orphan process. Orphan processes are inherited by the first
process created in the system called the “init” process.

268 ABCs of OS/390 System Programming

Figure 152. OS/390 UNIX components

3.5.4 OS/390 UNIX components

OS/390 UNIX offers open interfaces for applications and interactive users on an OS/390 system. The
OS/390 UNIX components and their functions are:

• The OS/390 UNIX kernel

At system IPL time, kernel services are started automatically. The kernel provides OS/390 UNIX
System Services in answer to requests from programs and the shell. The kernel manages the file
system, the communications, and the program processes.

In an OS/390 UNIX system the file system is part of the kernel. In an OS/390 UNIX environment the
file system is also considered part of the kernel because it is allocated to the kernel. The support
for the file system is provided by the DFSMS/MVS product. The visual showing the file system as
part of the kernel shows a logical view of the solution.

OS/390 UNIX requires MVS/ESA SP 4.3 or higher. The hierarchical file system is shipped as part of
DFSMS/MVS.

The POSIX standard introduces a completely new terminology in the MVS environment. A typical
UNIX operating system consists of a kernel which interfaces directly with the hardware. Built on
the kernel is the shell and utilities layer that defines a command interface. Then there are
application programs built on the shell and utilities.

The OS/390 UNIX API conforms to the POSIX and XPG4 standard. OS/390 was branded as a UNIX
system by the Open Group in 1996. To support the APIs, the OS/390 system must provide some

Chapter 3. OS/390 UNIX 269

system services which are included in the kernel, such as the file system and communication
services.

Daemons are programs that are typically started when the operating system is initialized and
remain active to perform standard services. Some programs are considered daemons that
initialize processes for users even though these daemons are not long-running processes. OS/390
UNIX supplies daemons that start applications and start a user shell session when requested.

• The OS/390 UNIX shell and utilities

An interactive interface to OS/390 UNIX services which interprets commands from interactive users
and programs.

The shell and utilities component can be compared to the TSO function in OS/390.

• The OS/390 UNIX debugger (dbx)

The dbx debugger is not part of the POSIX standard. It is based on the dbx debugger that is well
known in many UNIX environments.

The OS/390 UNIX debugger is a tool which application programmers can use to interactively debug
a C program. The debugger is based on the dbx debugger which is common in many UNIX
environments.

• The C/C++ compiler and C run-t ime l ibraries

The C/C++ compiler and C run-time libraries are needed to make executables that the kernel
understands and can manage.

• DFSMS/MVS

DFSMS/MVS manages the hierarchical file system (HFS) data sets that contain the file systems. To
use kernel services in full-function mode, SMS must be active.

Network File System (NFS) enables users to mount file systems from other systems so that the files
appear to be locally mounted. You end up with a mixture of file systems that come from systems
where the UIDs and GIDs may be independently managed.

• Language Environment (LE)

To run a shell command or util ity, or any user-provided application program written in C or C++,
you need the C/C++ run-time library provided with Language Environment.

The C compiler and LE feature (Language Environment) library are changed and extended to
include support for the POSIX and XPG4 C function calls. The LE product provides a common
run-time environment and language-specific run-time services for compiled programs.

• DCE services

DCE services are part of the OS/390 base and are exploiters of the POSIX and XPG services
provided by OS/390 UNIX.

270 ABCs of OS/390 System Programming

Figure 153. Hierarchical f i le system (HFS)

3.6 Hierarchical file system (HFS)

The OS/390 UNIX file system is hierarchical and byte-oriented. Finding a file in the file system is done
by searching a directory or a series of directories. There is no concept of an OS/390 catalog that
points directly to a file.

A path name identifies a file and consists of directory names and a file name. A fully qualified file
name which consists of the name of each directory in the path to a file plus the file name itself, can be
up to 1023 bytes long.

The hierarchical file system allows for file names in mixed case.

The hierarchical file system (HFS) data set which contains the hierarchical file system is an OS/390
(MVS) data set type.

The file system is very similar to hierarchical file systems on UNIX, DOS, and OS/2. The visual shows
an example of a hierarchical file system structure.

The files in the hierarchical file system are sequential files, and they are accessed as byte streams. A
record concept does not exist with these files other than the structure defined by an application.

The path name is constructed of individual directory names and a file name separated by the
forward-slash character, for example, “/dir1/dir2/dir3/myfile.”

Chapter 3. OS/390 UNIX 271

Like UNIX, OS/390 UNIX is case sensitive to file and directory names. For example, in the same
directory the file “MYFILE” is a different file than “myfile.”

HFS data sets and OS/390 data sets can reside on the same SMS-managed DASD volume.

The integration of the HFS file system with existing MVS file system management services provides
automated file system management capabilities which may not be available on other POSIX platforms.
This allows file owners to spend less time on tasks such as back up and restore of entire file systems.

272 ABCs of OS/390 System Programming

Figure 154. HFS data set

3.6.1 HFS data sets

An OS/390 UNIX hierarchical file system is contained in a data set type called HFS. An HFS data set
must reside on an SMS-managed volume, and it is a single volume data set. HFS data sets can reside
with other OS/390 data sets on SMS-managed volumes. Multiple systems can share an HFS data set if
it is mounted in read-only mode.

An HFS data set can have up to 123 extents, and the maximum size of the data set is one physical
volume. For a 3390-Model 3 the maximum size is 2.838 GB. HFS data sets can only be accessed by
OS/390 UNIX.

An HFS data set is allocated by specifying HFS in the DSNTYPE parameter. You can also define a data
class for HFS data sets. All HFS data sets must be system-managed, and an individual HFS data set
can reside on only one DASD volume.

RACF or an equivalent security product must be installed and active on your system to use OS/390
UNIX or HFS data sets.

An HFS data set is an OS/390 data set, but it cannot be accessed by traditional OS/390 services like
OPEN. Only OS/390 UNIX knows about the internal structures in the HFS data set which makes up a
hierarchy of directory and files similar to the file system in OS/2, DOS, or UNIX. An HFS data set must
be an SMS-managed data set.

The OS/390 UNIX file system is composed of multiple HFS data sets connected to each other in a
hierarchy. On top of the hierarchy is the root file system. The root file system contains system

Chapter 3. OS/390 UNIX 273

directories and files. Most installations will have user data in separate HFS data sets which are
connected to the root. Connecting a file system to another is called “mounting.”

274 ABCs of OS/390 System Programming

Figure 155. DFSMSdss enhancement

3.6.2 DFSMSdss enhancement for HFS data sets

Before OS/390 R7, the maximum size of the HFS was one physical volume. For the 3390-Model 3
DASD the maximum size was 2.8 GB.

OS/390 R7 now supports multivolume access up to 59 physical volumes. To make this clearer:

59 * 2.8 GB = 165.2 GB !!

This is only for one HFS data set. Imagine the possibilities if you are mounting HFS data in addition to
the root HFS!

Chapter 3. OS/390 UNIX 275

Figure 156. Naming convention for HFS

3.6.3 HFS naming convention

On this visual, you see a recommended naming convention for HFS data sets. This convention is
based on practical experience, and takes into consideration a sysplex naming convention.

The first OMVS is used to assign a storage class through the SMS ACS routines. The <SYSNAME> is
the name of the system where this HFS will be mounted for use. The <SYSR1> is the system
residence volume used to identify the root HFS in a system, where you can have different releases of
OS/390. If you want to switch the system without renaming the HFS data set, then use this qualifier.
The prod_name describes the product name like root, Java, DCE, and so on. The last qualifier tells
you that this file is an HFS, and not, for example, a source file for HFS.

Some examples:

• OMVS.TC1.TRNRS1.ROOT.HFS

• OMVS.TC1.TIVOLI.HFS

• OMVS.PROD.ETC.HFS

• OMVS.TEST.TMP.HFS

Note: The <SYSR1> name is dropped for HFS data sets that are not tied to the SYSRES volume.

You need to have the SYSRES volser as part of the HFS root data set because you need to keep track
of the SMP/E configuration or environment. This HFS root data set is part of most MVS installation

276 ABCs of OS/390 System Programming

builds for SMP/E target zones based on SYSRES name. Therefore, adding the SYSRES name to the
HFS data set name will help you keep your SMP/E environment workable.

Chapter 3. OS/390 UNIX 277

Figure 157. Comparison of fi le systems

3.6.4 Comparison of file systems

The OS/390 master catalog is analogous to the root directory in a hierarchical file system.

The user prefix assigned to OS/390 data sets points to a user catalog. The user catalog is organized
analogous to a user directory (/u/ibmuser) in the file system. Typically, one user owns all the data
sets whose names begin with his user prefix. For example, the data sets belonging to the TSO/E user
ID ibmuser all begin with the prefix ibmuser. There could be data sets named IBMUSER.C, and
IBMUSER.C(PGMA).

In the file system, ibmuser would have a user directory named /u/ibmuser. Under that directory there
could be subdirectories named /u/ibmuser and /u/ibmuser/c/pgma.

Of the various types of OS/390 data sets, a partitioned data set (PDS) is most akin to a user directory
in the file system. In a partitioned data set such as IBMUSER.C, you could have members PGMA,
PGMB, and so on. For example, you could have IBMUSER.C(PGMA) and IBMUSER.C(PGMB). A
subdirectory such as /u/ibmuser/c can hold many files, such as pgma, pgmb, and so on.

278 ABCs of OS/390 System Programming

Figure 158. OS/390 UNIX interactive interfaces

3.7 OS/390 UNIX interactive interfaces

The visual shows an overview of the two interactive interfaces, OS/390 UNIX shell and ISHELL. In
addition, there are some TSO/E commands to support OS/390 UNIX, but they are limited to certain
functions such as copying files, and creating directories

3.7.1.1 OS/390 UNIX shell

The OS/390 UNIX shell is based on the UNIX System V shell and has some of the features from the
UNIX Korn shell. The POSIX standard distinguishes between a command which is a directive to the
shell to perform a specific task, and a utility which is the name of a program callable by name from the
shell. To the user, there is no difference between a command and a utility.

Interactive users of OS/390 UNIX have a choice between using a UNIX-like interface (the shell), a TSO
interface (TSO commands), and an ISPF interface (ISPF CUA dialog). With these choices, users can
choose the interface which they are most familiar with and get a quicker start on OS/390 UNIX.

The OS/390 UNIX shell provides the environment that has the most functions and capabilities. Shell
commands can easily be combined in pipes or shell scripts and thereby become powerful new
functions. A sequence of shell commands can be stored in a text file which can be executed. This is
called a shell script. The shell supports many of the features of a regular programming language.

Chapter 3. OS/390 UNIX 279

3.7.1.2 The ISHELL

There are some TSO commands which provide support for UNIX System Services. An important
command is the OMVS command which is the command to invoke the OS/390 UNIX shell. The ISHELL
command will invoke the ISPF shell. The ISHELL is a good starting point for users familiar with TSO
and ISPF that want/need to use OS/390 UNIX. The ISHELL provides CUA panels where users can work
with the hierarchical file system. There are also panels for mounting/unmounting file systems and for
doing some OS/390 UNIX administration.

The ISHELL is an ISPF dialog for users and system administrators which can be used instead of shell
commands to perform many tasks related to file systems, files, and OS/390 UNIX user administration.

3.7.1.3 TSO REXX

The REXX support for OS/390 UNIX is not really an interactive interface, but I chose to introduce it here
since it is most often used in TSO or in the shell. The SYSCALL environment is not built into TSO/E,
but an external function call called SYSCALLS will initialize the environment. Note that the shell is the
initial host environment, which means that the SYSCALL environment is automatically initialized. A
difference between the REXX support and shell scripts is that a REXX EXEC can be invoked from a C
program, while a shell script can only be interpreted from the shell. A REXX EXEC can be called from
a shell script.

An interactive user who uses the OMVS command to access the shell can switch back and forth
between the shell and TSO/E, the interactive interface to MVS.

Programmers whose primary interactive computing environment is a UNIX or AIX workstation find the
OS/390 shell programming environment familiar.

Programmers whose primary interactive computing environment is TSO/E and ISPF can do much of
their work in that environment.

280 ABCs of OS/390 System Programming

Figure 159. UNIX System Services from TSO/E

3.7.2 UNIX System Services from TSO/E

Interactive users of OS/390 UNIX have a choice between using a UNIX-like interface (the shell), a TSO
interface (TSO commands), or an ISPF interface (ISPF CUA dialog). With these choices, users can
choose the interface which they are most familiar with and get a quicker start on OS/390 UNIX.

There are some TSO commands which provide support for UNIX System Services, as follows:

ISHELL The ISHELL command will invoke the ISPF shell. The ISHELL is a good starting point for
users familiar with TSO and ISPF that want/need to use OS/390 UNIX. The ISHELL provides
CUA panels where users can work with the hierarchical file system. There are also panels
for mounting/unmounting file systems and for doing some OS/390 UNIX administration.

OMVS An important command is the OMVS command which is the command to invoke the OS/390
UNIX shell.

The OS/390 UNIX shell provides the environment that has the most functions and capabilities. Shell
commands can easily be combined in pipes or shell scripts and thereby become powerful new
functions. A sequence of shell commands can be stored in a text file which can be executed. This is
called a shell script. The shell supports many of the features of a regular programming language.

Chapter 3. OS/390 UNIX 281

Figure 160. ISPF Option 6

3.7.3 ISPF Option 6

After a log on to TSO/E, enter Option 6 under ISPF to use the OMVS command and the ISHELL command.

If you are a user with an MVS background, you may prefer to use the ISPF shellpanel interface instead
of shell commands or TSO/E commands to work with the file system. The ISPF shell also provides the
administrator with a panel interface for setting up users for OS/390 UNIX access, for setting up the root
file system, and for mounting and unmounting a file system.

You can also run shell commands, REXX programs, and C programs from the ISPF shell. The ISPF
shell can direct stdout and stderr only to an HFS file, not to your terminal. If it has any contents, the
file is displayed when the command or program completes.

282 ABCs of OS/390 System Programming

Figure 161. ISHELL command panel

3.7.4 ISHELL command panel

This is the ISHELL or ISPF Shell panel as a result of the ISHELL command being entered from ISPF
Option 6.

So to search a user′s files and directories, type the following and press Enter:

/u/userID

At the top of the panel is the action bar, with seven choices:

File
Directory
Special file
Tools
File systems
Options
Setup
Help

When you select one of these choices, a pull-down panel with a list of actions is displayed.

Chapter 3. OS/390 UNIX 283

Figure 162. Files and directories

3.7.5 Files and directories

This visual shows the files and directories of user PAUL. The user can then use action codes to do the
following:

b Browse a file or directory

e Edit a file or directory

d Delete a file or directory

r Rename a file or directory

a Show the attributes of a file or directory

c Copy a file or directory

284 ABCs of OS/390 System Programming

Figure 163. OMVS command

3.7.6 OMVS command

Use the OMVS command to invoke the OS/390 shell. After you are working in a shell session, you can
switch to subcommand mode, return temporarily to TSO/E command mode, or end the session by
exiting the shell.

The shell is a command processor that you use to:

• Invoke shell commands or utilities that request services from the system.

• Write shell scripts using the shell programming language.

• Run shell scripts and C-language programs interactively (in the foreground), in the background, or
in batch.

The OS/390 shell provides commands and utilities that give the user an efficient way to request a
range of services. A shell command is used to include both a command (a directive to a shell to
perform a specific task) and a utility (the name of a program callable by name from a shell).

Shell commands often have options (also known as flags) that you can specify, and they usually take
an argument—such as the name of a file or directory. The format for specifying the command begins
with the command name, then the option or options, and finally the argument, if any. For example:

ls -a myfiles

Where:

Chapter 3. OS/390 UNIX 285

ls is the command name, -a is the option, and myfiles is the argument.

This visual shows the screen when the OMVS command is issued from ISPF Option 6.

The command line is at the bottom of the screen and the following command is shown:

ls -al

This command lists the files and directories of the user. If the pathname is a file, ls displays
information on the file according to the requested options. If it is a directory, ls displays information
on the files and subdirectories therein. You can get information on a directory itself using the -d
option.

If you do not specify any options, ls displays only the filenames. When ls sends output to a pipe or a
file, it writes one name per line; when it sends output to the terminal, it uses the -C (multicolumn)
format.

286 ABCs of OS/390 System Programming

Figure 164. Files in a user ′s root directory

3.7.7 OMVS command results

This visual shows the result of the ls -al command. It displays the files and directories and shows the
file access allowed for the user, the user ′s group, and other users.

Chapter 3. OS/390 UNIX 287

Figure 165. RACF definitions

3.8 RACF definitions

OS/390 UNIX provides security mechanisms that work with the security offered by the OS/390 system.
A security product is required.

Before you can install and debug UNIX System Services you need to have access to UNIX System
Services data sets and members which are named in directories and files.

RACF and also other security related products allow access to our MVS UNIX environment. This
access can be allowed without being a TSO/E user.

If your user ID should have access to MVS UNIX your security administrator has to specify the home
directory, the shell program, and a UID in the OMVS segment. In addition the security administrator
has to provide a group ID (GID) for any RACF group that the security administrator is connected to. If
this is done you should be able to access the UNIX shell or work with the ISPF driven ISHELL. The
decision whether you will be able to access directories or files will be made by UNIX security.

In addition, your RACF administrator has to provide a user ID that is assigned to the OMVS and
BPXOINIT address spaces (started procedure). This user ID needs only to have an OMVS segment and
should be connected to a RACF group with a GID.

288 ABCs of OS/390 System Programming

Figure 166. RACF OMVS segments

3.8.1 RACF OMVS segments

All users and programs that need access to OS/390 UNIX System Services must have a RACF user
profile defined with an OMVS segment which has as a minimum a UID specified. A user without a UID
cannot access OS/390 UNIX. Note that it is possible for multiple users to have the same UID number
specified. However, this is not recommended.

The RACF user profile has a segment called OMVS for OS/390 UNIX support. A user ID must have an
OMVS segment defined in order to use OS/390 UNIX System Services, for example access the ISHELL
or the shell. This segment has three fields:

UID A number from 0 to 2147483647 that identifies an OS/390 UNIX user. An OS/390 UNIX
user must have a UID defined.

HOME The name of a directory in the file system. This directory is called the home directory
and becomes the current directory when the user accesses OS/390 UNIX. This field is
optional.

PROGRAM The name of a program. This is the program that will be started for the user when the
user begins an OS/390 UNIX session. Usually this is the program name for the OS/390
UNIX shell. This field is optional.

The RACF group also has a segment called OMVS to define OS/390 UNIX groups. It contains only one
field:

GID A number from 0 to 2147483647 which identifies an OS/390 UNIX group.

Chapter 3. OS/390 UNIX 289

The home directory is the current directory when a user invokes OS/390 UNIX. During OS/390 UNIX
processing this can be changed temporarily by using the cd (change directory) shell command. The
command will not change the value in the RACF profile. The directory specified as home directory in
the RACF profile must exist (be pre-allocated) before a user can invoke OS/390 UNIX. If a home
directory is not specified in RACF, the root (/) directory will be used as default.

The example on the visual shows a user profile for TSO/E user ID SMITH which is connected to two
groups, PROG1 and PROG2. SMITH is defined as an OS/390 UNIX user because the user ID has a UID
specified. The home directory is /u/smith and user SMITH will get into the shell after issuing the OMVS
command because the name of the shell, /bin/sh is specified as program name.

The program name in the OMVS segment specifies the name of the first program to start when OS/390
UNIX is invoked. Usually this is the name of the OS/390 UNIX shell.

290 ABCs of OS/390 System Programming

Figure 167. IEASYSxx parmlib member

3.9 IEASYSxx parmlib member

The initial parmlib settings for the OS/390 UNIX kernel are pointed to by the OMVS parameter in the
IEASYSxx parmlib member.

The OMVS parameter in the IEASYSxx parmlib member lets you specify one or more BPXPRMxx
parmlib members to be used to specify the initial parmlib settings for the kernel. If you do not specify
the OMVS parameter, or if you specify OMVS=DEFAULT, the kernel is started in a minimum
configuration mode with all BPXPRMxx parmlib statements taking their default values.

OMVS may also be left out or coded as DEFAULT. This allows the OS/390 UNIX kernel to start in a
minimum configuration. All BPXPRMxx values will take their default values and a temporary root file
system will be set up in memory.

Note: The start and stop commands for the OS/390 UNIX kernel are no longer supported.

Activation of kernel services is available in two modes:

• Minimum mode
• Full-function mode

Chapter 3. OS/390 UNIX 291

Figure 168. OS/390 UNIX min imum mode

3.9.1 OS/390 UNIX minimum mode

Minimum mode is intended for installations that do not intend to use OS/390 UNIX System Services, but
which allows the IPL process to complete. In this mode many services are available to programs.
Some that require further customization such as a fork() will fail.

If you do not specify OMVS= in the IEASYSxx parmlib member or if you specify OMVS=DEFAULT,
then kernel services start up in minimum mode when the system is IPLed. This mode is intended for
installations that do not plan to use the kernel services. In minimum mode:

• Many services are available, but some functions such as TCP/IP sockets that require other system
customization, may not work.

• TCP/IP sockets (AF_INET) are not available.

• A Temporary File System (TFS) is used. A TFS is an in-storage file system, hence no physical
DASD data set needs to exist or be mounted.

A temporary file system (kept in memory) is created for the root. The required directories (/bin, /etc,
/tmp, /dev, and /dev/null) are built. There are no executables in this file system.

292 ABCs of OS/390 System Programming

Figure 169. Minimum mode TFS

3.9.2 Minimum mode TFS

A temporary file system (TFS) is an in-memory file system which delivers high-speed I/O. If the kernel
is started in minimum setup mode, the TFS is automatically mounted.

The system is in minimum mode when:

• OMVS=Defaul t

• No OMVS Statement in IEASYSxx (no BPXPRMxx member in the parmlib)

A temporary file system is used as the root file system. The temporary file system is initialized and
primed with a minimum set of files and directories.

Note: Any data written to this file system is not written to DASD.

The temporary file system is initialized with these directories and files:

/ (root directory)
/bin directory
/etc directory
/tmp directory
/dev directory
/dev/null file

Chapter 3. OS/390 UNIX 293

There are no executables in the temporary file system (that is, you will not find the shell and utilities).
Do not attempt to install OS/390 UNIX System Services application services in the TFS, since no data
will be written to DASD.

Because the TFS is a temporary file system, unmounting it causes all data stored in the file system to
be discarded. If, after an unmount, you mount another TFS, that file system has only a dot (.) and a
dot-dot (..) and nothing else.

294 ABCs of OS/390 System Programming

Figure 170. OS/390 UNIX full-function mode

3.9.3 OS/390 UNIX full-function mode

Full-function mode is started at IPL time when the OMVS parameter in the IEASYSxx parmlib member
points to one or more BPXPRMxx parmlib members.

There must be a root HFS built and defined in BPXPRMxx for OMVS to initialize correctly and SMS,
WLM, and RACF customization should be completed.

3.9.3.1 BPXPRMnn

BPXPRMnn is a 1-to-8 character name of a started procedure JCL that initializes the OS/390 UNIX
kernel. The default is OMVS.

The ROOT statement defines and mounts the root file system. In this example:

• HFS is the TYPE of the file system.
• ′OMVS.ROOT′ is the file system which is the name of an already defined PDSE/X data set.
• The root file system has a default of read/write mode.

If an active BPXPRMxx parmlib member specifies “FILESYSTEM TYPE(HFS),” then the kernel services
start up in full-function mode when the system is IPLed. To use the full function, you need to:

• Set up BPXPRMxx parmlib definitions
• Set up DFSMS/MVS
• Set up the hierarchical file system/s (HFS)

Chapter 3. OS/390 UNIX 295

• Install UNIX System Services application services
• Set up the security product definitions for OS/390 UNIX
• Set up the users′ access and their individual file systems

It is also possible to create a sockets-only level of OS/390 UNIX. This requires a BPXPRMxx parmlib
member with only the socket file system defined. A minimal mode configuration with a temporary file
system will be set up.

DFSMS/MVS manages the hierarchical file system (HFS) data sets that contain the file systems. To
use kernel services in full-function mode, SMS must be active.

3.9.3.2 BPXOINIT

As of OS/390 Release 3, BPXOINIT is the started procedure that runs the initialization process.
BPXOINIT is also the jobname of the initialization process. (Prior to OS/390 Release 3, the initialization
process was created via an APPC allocate and the jobname was OMVSINIT.) BPXOINIT is shipped in
SYS1.PROCLIB.

At system IPL time, kernel services are started automatically. If the OMVS parameter in the IEASYSxx
parmlib parameter is not specified, the kernel services are started in minimum mode. If the OMVS
parameter specifies one or more BPXPRMxx parmlib members, they are all used to configure the
kernel services when the system is IPLed.

The BPXOINIT address space has two categories of functions:

 1. It behaves as PID(1) of a typical UNIX system. This is the parent of /etc/rc, and it inherits orphaned
children so that their processes get cleaned up using normal code in the kernel. This task is also
the parent of any MVS address space that is dubbed and not created by fork or spawn. Therefore,
TSO/E commands, batch jobs, and so on have a parent PID of 1.

 2. Certain functions that the kernel performs need to be able to make normal kernel calls. This
address space is used for these activities; for example, mmap() and user ID alias processing.

296 ABCs of OS/390 System Programming

Figure 171. OS/390 UNIX installation

3.10 OS/390 UNIX installation

For a full configuration you need to build a complete root file system.

Beginning with OS/390 Version 2 Release 6, ServerPac supplies the jobs, ALLOCDS and RESTORE, to
download the PDS from tape to DASD. The other two jobs, ESTABFS and RESTFS, will copy the two
members of the “hlq.HFSFILE” to the HFS directory “/RESTORE” and decompress them.

After running these jobs you have a complete root file system containing all the root-level directories,
files, and programs.

ServerPac builds the root for you with all the features that you ordered already installed in it. They
use the UNIX pax utility to compress the hierarchical format into an HFS file. It is distributed to you as
a member of ′hlq.HFSFILE′. Another member of this data set is the pax utility used to build the
previous member.

pax pax reads and writes archive files. An archive file concatenates the contents of files and
directories, and can also record file modification information such as dates, owner names, and
so on. You can therefore use a single archive file to transfer a directory structure from one
machine to another, or to back up or restore groups of files and directories.

 hlq.HFSFILE(BACKUP) Backup of Root File System
 hlq.HFSFILE(PAX) Decompress Utility

In OS/390 V2 R6 the ServerPac job ESTABFS performs the following tasks for you:

Chapter 3. OS/390 UNIX 297

• Unmounts the IPLed ROOT temporary file system

• Creates ROOT HFS

• Mounts the created ROOT HFS to ′ / ′

• Creates ETC HFS

• Creates directory ′ /etc′

• Mounts the created ETC HFS to ′ /etc′

• Creates transient HFS

• Creates directory ′ /RESTORE′

• Mounts the created transient HFS to ′ /RESTORE′

• Updates the BPXPRMFS with the MOUNT FILESYSTYPE section

• Updates the BPXPRMFS with the FILESYSTYPE TYPE(....) and the corresponding entry points

After this job ends successfully, the next job to run is RESTFS. In OS/390 V2 R6 this job will do the
following tasks for you:

• Re-mount the transient HFS (ends with RC=12 if already mounted)

• OPUT hlq.HFSFILE(BACKUP) to ′ /RESTORE/backup′ in binary mode

• OPUT hlq.HFSFILE(PAX) to ′ /RESTORE/pax′ in binary mode

• Allocates STDIN, STDOUT, and STDERR files (UNIX standard outputs). Receives an RC=4 if the
directory is empty

• Unpack the ′ /RESTORE/backup′ file with the ′ /RESTORE/pax′ utility
 corresponding entry points

• Unlink the allocated file in the directory ′ /RESTORE′

• Unmount transient HFS allocated to the directory ′ /RESTORE′

• Remove the directory ′ /RESTORE′

• Deletes the transient HFS DS

298 ABCs of OS/390 System Programming

Chapter 4. Language Environment

Language Environment provides a common run-time environment for IBM versions of certain high-level
languages (HLLs), namely, C, C++, COBOL, Fortran, and PL/I, in which you can run existing
applications written in previous versions of these languages as well as in the current Language
Environment-conforming versions. Prior to Language Environment, each of the HLLs had to provide a
separate run-time environment.

Language Environment combines essential and commonly used run-time services, such as routines for
run-time message handling, condition handling, storage management, date and time services, and
math functions, and makes them available through a set of interfaces that are consistent across
programming languages. With Language Environment, you can use one run-time environment for your
applications, regardless of the application′s programming language or system resource needs because
most system dependencies have been removed.

Language Environment provides compatible support for existing HLL applications; most existing
single-language applications can run under Language Environment without being recompiled or
relink-edited. POSIX-conforming C applications can use all Language Environment services.

 Copyright IBM Corp. 2000 299

Figure 172. Language Environment (LE)

4.1 Language Environment (LE)

Today, enterprises need efficient, consistent, and less complex ways to develop quality applications
and to maintain their existing inventory of applications. The trend in application development is to
modularize and share code. Language Environment gives you a common environment for all
Language Environment-conforming high-level language (HLL) products. An HLL is a programming
language above the level of assembler language and below that of program generators and query
languages.

In the past, programming languages also have had limited ability to call each other and behave
consistently across different operating systems. This has constrained those who wanted to use several
languages in an application. Programming languages have had different rules for implementing data
structures and condition handling, and for interfacing with system services and library routines.

The visual describes the topics to be discussed in this chapter.

300 ABCs of OS/390 System Programming

Figure 173. HLL concepts and LE

4.1.1 HLL concepts and LE

An HLL is implemented through a compiler code that translates the HLL statements in object code.
This object code is the fabric of the executable program, also called the “load module” or “program
object.” It has instructions recognized by the processor of the specific platform where it is supposed
to be executed. The object code is included (in the load module) at three different times in OS/390:

• At compile time

• At linkage editor time, through the INCLUDE statement or resolving external references from the
SYSLIB library

• At execution time, through MVS dynamic link macros such as LINK and LOAD, which fetch to
memory, code from the load modules library. This approach is also called “late binding.”

The libraries containing the code invoked dynamically are called the run-time environment.

Language Environment establishes a common run-time environment plus a common set of the SYSLIB
libraries for all participating HLLs. However, due to many language-specific functions, there is still a
need of some language specific libraries as C/C++, COBOL, FORTRAN, PL/I. Language Environment
combines essential run-time services, such as routines for run-time message handling, condition
handling, and storage management. All of these services are available through a set of interfaces that
are consistent across programming languages. You may either call these interfaces yourself, or use
language-specific services that call the interfaces. With Language Environment, you can use one
run-time environment for your applications, regardless of the application programming language or
system resource needs.

Chapter 4. Languge Environment 301

Figure 174. LE components

4.1.2 LE components
The visual shows the separate components that make up Language Environment.

Language Environment consists of:

• Basic routines that support starting and stopping programs, allocating storage, communicating with
programs written in different languages, and indicating and handling conditions

• Common library services, such as math services and date and time services, that are commonly
needed by programs running on the system. These functions are supported through a library of
callable services.

• Language-specific portions of the run-time library, because many language-specific routines call
Language Environment services. However, behavior is consistent across languages.

POSIX support is provided in the Language Environment base and in the C language-specific library.

302 ABCs of OS/390 System Programming

Figure 175. LE

4.1.3 LE′s common run-time environment

The graphic illustrates the common environment that Language Environment creates. It also shows
that each HLL has its specific run-time and SYSLIB libraries, and shares with others HLLs a Common
Execution Library (CEL). The graphic further shows that the load modules produced in such way can
be executed in different operating environments under OS/390 or VM/ESA.

4.1.3.1 Using Language Environment

Language Environment helps you create mixed-language applications and gives you a consistent
method of accessing common, frequently used services. Building mixed-language applications is
easier with Language Environment-conforming routines because Language Environment establishes a
consistent environment for all languages in the application.

Language Environment provides the base for future IBM language library enhancements in the OS/390
and VM environments. Many system dependencies have been removed from Language
Environment-conforming language products.

Because Language Environment provides a common library, with services that you can call through a
common callable interface, the behavior of your applications will be easier to predict. Language
Environment′s common library includes common services such as messages, date and time functions,
math functions, application utilities, system services, and subsystem support.

The following example illustrates how to invoke a Language Environment service in COBOL for OS/390:

Chapter 4. Languge Environment 303

ALL ″CEESSSQT″ using argument, feedback-code, result

You should use a CALL statement with the correct parameters for that particular service.

The language-specific portions of Language Environment provide language interfaces and specific
services that are supported for each individual language. Language Environment is accessed through
defined common calling conventions.

304 ABCs of OS/390 System Programming

Figure 176. HLLs demanding LE

4.1.4 HLLs demanding LE

OS/390 Language Environment for OS/390 & VM is the prerequisite run-time environment for
applications generated with the following IBM compiler products:

• OS/390 C /C++

• IBM C for VM/ESA

• C/C++ Compi ler for MVS/ESA

• AD/Cycle C/370 Compiler

• VisualAge for Java, Enterprise Edition for OS/390

• COBOL for OS/390 & VM

• COBOL for MVS & VM

• PL/I for MVS & VM (formerly AD/Cycle PL/I for MVS & VM)

• VS FORTRAN and FORTRAN IV (in compatibility mode)

Language Environment supports, but is not required for, VS FORTRAN Version 2 compiled code
(OS/390 only).

In many cases, you can run compiled code generated from the previous versions of the above
compilers. A set of assembler macros is also provided to allow assembler routines to run with
Language Environment.

Chapter 4. Languge Environment 305

For more information on IBM VisualAge for Java, Enterprise Edition for OS/390, refer to the product
documentation.

306 ABCs of OS/390 System Programming

Figure 177. LE standards

4.1.5 LE standards

UNIX is not a real Open System due to having many different implementations that are incompatible
with one another (more than 70 UNIX variants populated the market). Also, the source code was
delivered together with the product, which makes each copy potentially unique in itself.

The UNIX market is very competitive, so each software house adds other functions to the kernel. This
creates a “UNIX Proprietary.”

To address the problem, standards like Portable Operating System Interface (POSIX) were introduced
to define interfaces based on UNIX.

The IEEE Portable Operating System Interface (POSIX) standard is a series of industry standards for
code and user interface portability. POSIX support allows applications written for a UNIX-like operating
system to be run on OS/390. C language programmers can access operating system services through
a set of standard language bindings. C language programmers who install OS/390 UNIX System
Services (OS/390 UNIX) and Language Environment for OS/390 & VM can call C language functions
defined in the POSIX standard from their C applications and can run applications that conform to
ISO/IEC 9945-1:1990, which is also ANSI-IEEE 1003.1-1990, is based on the POSIX.1 standard. C
language programmers with OS/390 UNIX installed can also call a subset of the proposed
programming interface for thread management (a subset of draft 6 of POSIX .4a). Through C
interfaces, Language Environment functions conform to XPG4.2 specifications and are branded by
X/Open. In addition, C POSIX-conforming applications may use all Language Environment services.

Chapter 4. Languge Environment 307

Figure 178. LE terms and HLL equivalents

4.1.6 LE terms and HLL equivalents
The Language Environment program management model provides a framework within which an
application runs. It is the foundation of all of the component models--condition handling, run-time
message handling, and storage management--that comprise the Language Environment architecture.
The program management model defines the effects of programming language semantics in
mixed-language applications and integrates transaction processing and multithreading.

Some terms used to describe the program management model are common programming terms; other
terms are described differently in other languages. It is important that you understand the meaning of
the terminology in a Language Environment context as compared to other contexts.

4.1.6.1 General programming terms

• Application program

A collection of one or more programs cooperating to achieve particular objectives such as
inventory control or payroll.

• Environment

In Language Environment, normally a reference to the run-time environment of HLL the enclave
level.

308 ABCs of OS/390 System Programming

4.1.6.2 LE terms and HLL equivalents:

• Routine

In Language Environment, refers to a procedure, or a function, or a subroutine.

Equivalent HLL terms: COBOL--program; C/C++--function; PL/I--procedure, BEGIN block.

• Enclave

The enclave defines the scope of HLL semantics. In Language Environment, it means a collection
of routines, one of which is named as the main routine. The enclave contains at least one thread.

Equivalent HLL terms: COBOL--run unit, C/C++--program, consisting of a main C function and its
sub-functions, PL/I--main procedure and its subroutines, and FORTRAN--program and its
subroutines.

• Process

The highest level of the Language Environment program management model. A process is a
collection of resources, both program code and data, and consists of at least one enclave.

• Thread

An execution construct that consists of synchronous invocations and terminations of routines. The
thread is the basic run-time path within the Language Environment program management model,
and is dispatched by the system with its own run-time stack, instruction counter, and registers.
Threads may exist concurrently with other threads.

Terminology for Data:

• Automatic data

Data that does not persist across calls. It is allocated with the same value on entry and reentry
into a routine.

• External data

Data that can be referenced by multiple routines and data areas. External data is known
throughout an enclave.

• Local data

Data that is known only to the routine in which it is declared.

Equivalent HLL terms: C/C++--local data, COBOL--WORKING-STORAGE data items and
LOCAL-STORAGE data items, PL/I--data declared with the PL/I INTERNAL attribute.

Chapter 4. Languge Environment 309

Figure 179. LE program management

4.1.7 LE program management

Three entities-- process, enclave, and thread--are at the core of the Language Environment program
management model.

The visual shows the relationship between processes, enclaves, and threads. It illustrates the simplest
form of the Language Environment program management model and how resources such as storage
are managed.

4.1.7.1 Process
The highest level component of the Language Environment program model is the process. A process
consists of at least one enclave and is logically separate from other processes. Processes do not
share storage and are independent of and equal to each other; they are not hierarchically related.

Language Environment generally does not allow language file sharing across enclaves nor does it
provide the ability to access collections of externally stored data. However, the PL/I standard
SYSPRINT file may be shared across enclaves. The Language Environment message file also may be
shared across enclaves, since it is managed at the process level. The Language Environment
message file contains messages from all routines running within a process, making it a useful central
location for messages generated during run time.

Processes can create new processes and communicate to each other by using Language
Environment-defined communication, for such things as indicating when a created process has been
terminated.

310 ABCs of OS/390 System Programming

4.1.7.2 Enclaves

A key feature of the program management model is the enclave, a collection of the routines that make
up an application. As mentioned in the terminology previously defined, the enclave is the equivalent of
any of the following:

• A run unit, in COBOL

• A program, consisting of a main C function and its sub-functions, in C

• A main procedure and all of its subroutines, in PL/I

• A program and its subroutines, in FORTRAN

The enclave consists of one main routine and zero or more subroutines. The main routine is the first
to execute in an enclave; all subsequent routines are named as subroutines.

4.1.7.3 Threads

Each enclave consists of at least one thread, the basic instance of a particular routine. A thread is
created during enclave initialization with its own run-time stack, which keeps track of the thread′s
execution, as well as a unique instruction counter, registers, and condition-handling mechanisms.
Each thread represents an independent instance of a routine running under an enclave′s resources.

Threads share all of the resources of an enclave. A thread can address all storage within an enclave.
All threads are equal and independent of one another and are not related hierarchically. A thread can
create a new enclave. Because threads operate with unique run-time stacks, they can run
concurrently within an enclave and allocate and free their own storage. Because they may execute
concurrently, threads can be used to implement parallel processing applications and event-driven
applications.

The figure illustrates the full Language Environment program model, with its multiple processes,
enclaves, and threads.

It shows each process is within its own address space. An enclave consists of one main routine, with
any number of subroutines. A main routine might not be active at all times in a POSIX application, if
the thread in which the main routine executes terminates before the other threads that it created.

External data is available only within the enclave where it resides; notice that even though the external
data may have identical names in different enclaves, the external data is unique to the enclave. The
scope of external data, as described earlier, is the enclave. The threads can create enclaves, which
can create more threads, and so on.

Chapter 4. Languge Environment 311

Figure 180. Assembler language and programs

4.1.8 Assembler language and programs
A computer can understand and interpret only machine language. Machine language is in binary form
and, thus, is very difficult to write. The assembler language is a symbolic programming language that
you can use to code instructions instead of coding in machine language.

Because the assembler language lets you use meaningful symbols made up of alphabetic and numeric
characters, instead of just the binary digits 0 and 1 used in machine language, you can make your
coding easier to read, understand, and change. Assembler is also enriched by a huge set of macros
that make it a very powerful language; however, its major quality is the performance of its object code
at running time.

One of the most key aspects of a language is its readability and and capacity to document itself.
However, certain modern languages like C do not follow this rule. Then, we may say that if you write
an assembler program using all the documenting capability of its features, chances are that you may
have a more readable code than a HLL.

The Assembler must translate the symbolic assembler language into machine language before the
computer can run your program. The specific procedures followed to do this may vary according to
the system you are using. However, the method is basically the same for all systems and consists of
the following:

Your program, written in the assembler language, becomes the source module that is input to the
Assembler. The Assembler processes your source module and produces an object module in machine
language (called object code). The object module can be used as input to be processed by the linkage

312 ABCs of OS/390 System Programming

editor or the binder. The linkage editor or binder produces a load module that can be loaded later into
the main storage of the computer. When your program is loaded, it can then be run. Your source
module and the object code produced are printed, along with other information, on a program listing.

4.1.8.1 Assembler language
The assembler language is the symbolic programming language that lies closest to the machine
language in form and content. You will, therefore, find the assembler language useful when:

• You need to control your program closely, down to the byte level and even to the bit level.

• You must write subroutines for functions that are not provided by other symbolic programming
languages, such as COBOL, FORTRAN, or PL/I.

• You need good performance at execution time.

The assembler language is made up of statements that represent either instructions or comments.
The instruction statements are the working part of the language and are divided into the following
three groups:

• Machine instructions

A machine instruction is the symbolic representation of a machine language instruction. It is
called a machine instruction because the Assembler translates it into the machine language code
that the computer can run.

• Assembler instructions

An assembler instruction is a request to the Assembler to do certain operations during the
assembly of a source module; for example, defining data constants, reserving storage areas, and
defining the end of the source module. Except for the instructions that define constants, and the
instruction used to generate no-operation instructions for alignment, the Assembler does not
translate assembler instructions into object code.

• Macro instructions

A macro instruction is a request to the Assembler program to process a predefined sequence of
instructions called a macro definition. From this definition, the Assembler generates machine and
assembler instructions, which it then processes as if they were part of the original input in the
source module.

IBM supplies macro definitions for input/output, data management, and supervisor operations that
you can call for processing by coding the required macro instruction.

You can also prepare your own macro definitions, and call them by coding the corresponding
macro instructions. Rather than code all of this sequence each time it is needed, you can create a
macro instruction to represent the sequence and then, each time the sequence is needed, simply
code the macro instruction statement. During assembly, the sequence of instructions represented
by the macro instruction is inserted into the source program.

4.1.8.2 Assembler program relationship to OS/390
The Assembler program, also referred to as the Assembler, processes: the machine, assembler
instructions, and macro instructions you have coded (source statements) in the assembler language,
and produces an object module in machine language.

The High Level Assembler operates under the OS/390 operating system. This operating system
provides the Assembler with services for:

• Assembling a source module

• Running the assembled object module as a program

In writing a source module, you must include instructions that request any required service functions
from the operating system. OS/390 provides the following services:

Chapter 4. Languge Environment 313

• For assembling the source module:

− A control program
− Sequential data sets to contain source code
− Libraries to contain source code and macro definitions
− Utilities

• For preparing for the execution of the Assembler program as represented by the object module:

− A control program
− Storage allocation
− Input and output facilities

It can be very difficult to write an assembler language program using only machine instructions. The
Assembler provides additional functions, not discussed here, that make this task easier.

314 ABCs of OS/390 System Programming

Figure 181. Sample assembler routine

4.1.9 Sample assembler routine

This visual shows a simple main assembler routine (source code) that brings up the environment,
returns with a return code of 0, modifier of 0, and prints a message in the main routine.

Chapter 4. Languge Environment 315

316 ABCs of OS/390 System Programming

Chapter 5. Infoprint Server

Infoprint Server is an optional feature of OS/390 Version 2 Release 8 that uses OS/390 UNIX System
Services. This feature is the basis for a total print serving solution for the OS/390 environment. It lets
you consolidate your print workload from many servers onto a central OS/390 print server

Note: Beginning with OS/390 Version 2 Release 5, this product was called OS/390 Print Server.

Infoprint Server delivers improved efficiency and lower overall printing cost with the flexibility for
high-volume, high-speed printing from anywhere in the network. With Infoprint Server, you can reduce
the overall cost of printing while improving manageability, data retrievability, and usability.

The IP PrintWay/NetSpool feature available in OS/390 Version 1 Release 3 and Version 2 Release 4 is
now a part of Infoprint Server. IP PrintWay allows you fast and reliable access to Transmission Control
Protocol/Internet Protocol (TCP/IP)-connected printers. NetSpool automatically directs Virtual
Telecommunications Access Method (VTAM) application data to the job entry subsystem (JES) spool
without requiring application changes.

 Copyright IBM Corp. 2000 317

Figure 182. OS/390 Print Server components

5.1 OS/390 Print Server

With the introduction of the OS/390 Print Server, a new optional feature of OS/390 Release 5, users
have the opportunity to consolidate their print workload on OS/390. This new function allows access to
fast and reliable AFP printers, or TCP/IP-connected printers from OS/390, including UNIX services and
LAN clients. Users can define their printers in a central repository, allowing clients in the network to
use any printer in the enterprise that is registered to the OS/390 Print Server.

The OS/390 Print Server is the framework for a total print serving solution for the OS/390 system
environment. It extends the functions provided by the optional IP PrintWay and NetSpool features in
OS/390 Version 1 Release 3 and OS/390 Version 2 Release 4. IP PrintWay and NetSpool are now part
of the OS/390 Print Server.

With the addition of a new Print Interface component, the OS/390 Print Server provides an end-to-end
integrated solution from print submission to the printer. The IBM OS/390 Print Server consists of three
components, as shown in the visual.

• OS/390 Print Interface

The OS/390 Print Interface is the central server element of the IBM OS/390 Print Server. It consists
of an LPD that allocates data sets on the JES spool using information from the printer definitions in
the printer inventory.

The OS/390 Print Interface address space, shown in the visual, runs as an LPD on the OS/390
system. It provides the following functions:

318 ABCs of OS/390 System Programming

− It receives print requests and dynamically allocates a data set on the JES spool for each data
set to be printed.

− It responds to query requests and returns the status of the data set on the JES spool or a list of
printer names, locations, and descriptions.

− It removes data sets from the JES spool that have not been selected for printing.

The OS/390 Print Interface receives print requests that are submitted using TCP/IP protocol from:

− Remote systems in the TCP/IP LAN network
− OS/390 UNIX System Services (OpenEdition)
− A Windows 95 or Windows NT system
− A local OS/390 system

• IP PrintWay

IP PrintWay can use standard LPR/LPD or direct socket printing protocol to route JES2 or JES3
print data from OS/390 to another system′s spool or to a printer in the TCP/IP network. Depending
upon selected options, the print data is sent as is (binary format), or translated from EBCDIC into
ASCII for the target system or printer. IP PrintWay is better than the TCP/IP Network Print Facility
(NPF) for MVS in usability, performance, capacity and function, and is the strategic replacement for
NPF.

• NetSpool

NetSpool allows the user to automatically reroute VTAM application output (such as from CICS or
IMS) to the JES spool without requiring application program changes. Application output can then
be printed to any server or printer that is connected to the TCP/IP network using IP PrintWay, or to
an AFP printer using Print Services Facility (PSF)/MVS.

Note: This component of the IBM OS/390 Print Server is optional.

The following operating systems, shown in the visual, can use the LPR command to send print
requests to the Print Interface:

• AIX 4.1.4 or 4.2.X
• OS/2
• VM/CMS
• HPUX
• Win 3.1

Chapter 5. Infoprint Server 319

Figure 183. TCP/IP Print Protocol

5.1.1 TCP/IP Print Protocol

TCP/IP provides client and server support for remote printing by supporting the following commands:

LPR Line print requestor (LPR) is the command that requests printing. The standard LPR command
has attributes such as file name, IP address, and queue name. The LPR command sends print
data to an LPD.

LPD Line print daemon (LPD) is like a destination. An LPD daemon waits for the LPR command to
be invoked. The LPD daemon receives the print data and sends it to a print queue. It can
reside in the software or in the printer hardware, as shown in the visual.

The LPR command and the LPD function are part of IBM TCP/IP of the OS/390 base feature.

You can print from the following environments by using the TCP/IP LPR command:

• AIX 4.1.4 or 4.2.x
• OS/2
• VM/CMS
• A remote OS/390 system using TSO/E
• A local OS/390 system using TSO/E

320 ABCs of OS/390 System Programming

Figure 184. Components of OS/390 Print Server

5.1.2 Components of OS/390 Print Server

The OS/390 Print Server consists of three major components in OS/390 Releases 5, 6, and 7. They are
as follows:

• Print Interface

The Print Interface component of Infoprint Server runs on the OS/390 system. It provides an LPD
that receives print requests from remote workstations that have TCP/IP access and from the
OS/390 UNIX System Services shell printing commands on the local OS/390 system.

• NetSpool

NetSpool intercepts print data from VTAM applications, such as CICS and IMS. NetSpool converts
the data into S/390 line data and creates output data sets on the JES2 or JES3 spool. JES or PSF
for OS/390 can print the output data sets or transmit them to another location for printing.
Alternatively, IP PrintWay can transmit the data sets to a remote printer in your TCP/IP network.

• IP PrintWay

IP PrintWay transmits output data sets from JES2 or JES3 to remote printers or to host systems in
your TCP/IP network. A print server can be running on the host system. The remote printer or
host system must support either the LPR/LPD protocol, the IPP protocol, or direct socket printing

Chapter 5. Infoprint Server 321

Figure 185. Infoprint Server overview

5.2 Infoprint Server overview

Infoprint Server for OS/390, an optional element of OS/390 Version 2 Release 8, provides support for
LAN and host printing on OS/390. Infoprint Server consists of several components that work together
to provide printing services. The visual shows some of the components and how they fit into your
system. The components and features of Infoprint Server are shaded in the figure and are as follows:

• Printer Inventory and Printer Inventory Manager

The Printer Inventory Manager controls the Printer Inventory, a set of files in the hierarchical file
system (HFS) that contain information about each printer to which NetSpool, Print Interface, and IP
PrintWay can print. The Printer Inventory also contains system configuration information for IP
PrintWay and, optionally, for PSF for OS/390.

• Infoprint Server Windows client

The Windows client provides (1) an AFP printer driver, (2) an AFP viewer plug-in, and (3) an OS/390
printer port monitor that sends print requests to the Print Interface component.

• Print Interface

Print Interface processes print requests from remote clients that use any of the following TCP/IP
printing protocols:

− Line printer requester (LPR) to line printer daemon (LPD)
− Internet Printing Protocol (IPP)

322 ABCs of OS/390 System Programming

Print Interface also provides OS/390 UNIX shell commands (lp, lpstat, and cancel) and the
AOPPRINT JCL procedure to let local users submit print requests to Print Interface.

Print Interface accepts any data format the target printer can print, converts data to EBCDIC or
ASCII as required by the target printer, and allocates output data sets on the JES spool. Print
Interface can also transform PCL, PDF, PostScript, and SAP data to AFP format prior to writing data
to the JES spool, for printing on IBM AFP printers.

• Infoprint Server Transforms for OS/390 and the Transform Manager

Infoprint Server Transforms for OS/390 is a Licensed Program Product (5697-F51) that provides
PCL, PostScript, PDF, and SAP to AFP transforms for the OS/390 system. The Transform Manager
component of Infoprint Server manages the PCL, PostScript, and PDF transforms.

Infoprint Server Transforms also provides OS/390 UNIX shell commands (pcl2afp, ps2afp and its
alias pdf2afp, and sap2afp) to let local users transform data without printing it.

• NetSpool NetSpool processes print requests from VTAM applications, such as CICS and IMS.
NetSpool accepts SCS, 3270, and binary data and allocates output data sets on the JES spool.

• IP PrintWay IP PrintWay transmits data sets from the JES spool to printers or print servers using
any of the following TCP/IP protocols:

− Line printer requester (LPR) to line printer daemon (LPD)
− Internet Printing Protocol (IPP)
− Direct socket printing

• Simple Network Management Protocol (SNMP) subagent

The SNMP subagent lets you use an SNMP manager to view printer characteristics and printer
status for printers controlled by PSF for OS/390 that do not have internal SNMP agents or are not
TCP/IP-attached to PSF.

Chapter 5. Infoprint Server 323

Figure 186. OS/390 Infoprint Server benefits

5.2.1 OS/390 Infoprint Server benefits

In today′s network environments, printers are often attached to a single workstation or are only
available to users of a LAN. Infoprint Server lets you define all of your printers in a centralized
repository. Any user in the network can send print jobs from OS/390 and LAN clients to any print that
is defined to Infoprint Server. Because all components of Infoprint Server and PSF share the printer
definitions, you only have to configure each printer in one place.

Because print jobs are managed by the OS/390 JES spool, they are secure and recoverable. OS/390
accounting information for print jobs is logged automatically.

The Print Interface automatically detects the data stream for jobs that LAN and OS/390 UNIX System
Services clients submit. It can then ensure that the selected printer can print the data stream, thus
saving paper and time.

Infoprint Server provides support for the most commonly used printer languages in the industry,
including Postscript, PCL, and AFP or Mixed Object Document Content Architecture-Presentation
(MO:DCA-P). With the optional Infoprint Server Transforms, Infoprint Server also supports PDF SAP
OTF, and SAP ABAP. Infoprint Server protects your investment in printer hardware, while providing
you with printing enhancements.

Users of network printing solutions today spend unnecessary time going to the printer to see if their
jobs have printed. If they do not find them immediately, they may resubmit the jobs several times
without knowing why they haven′ t printed. With Infoprint Server, users in the LAN and UNIX System

324 ABCs of OS/390 System Programming

Services environments can query the status of their print jobs to find out if a job is processing or is
complete. Local system users can simply wait for the server to notify them that the job is complete.
The users save time, and the business saves paper.

Because of its capabilities for automatic resource management, error recovery, integrated accounting,
and printing from 10 to over 1000 pages per minute without application changes, AFP offers an
outstanding solution for high-speed printing. Infoprint Server provides an AFP Printer Driver for
Windows 95 and Windows 98 and an AFP Printer Driver for Windows NT and Windows 2000. Therefore,
you can print output from any Windows application, such as Lotus WordPro or Freelance, on any of
IBM ′s AFP printers.

Many OS/390 applications generate documents that are formatted for AFP/Intelligent Printer Data
Stream IPDS printers. You may need to view those documents in an archival system or on a Web
server from your desktop. Infoprint Server includes an AFP Viewer plug-in for the Netscape Navigator
and Microsoft Internet Explorer Web browsers so you can view AFP documents from your Web
browser. You can also use Infoprint Server to print documents that you are viewing from a Web
browser to any defined printer.

Chapter 5. Infoprint Server 325

Figure 187. Print Interface

5.2.2 Print Interface

Print Interface runs as a UNIX application that uses the services of OS/390 UNIX System Services.
Users can submit print requests from remote clients that use one of the following TCP/IP protocols:

• LPR to LPD. The OS/390 Printer Port Monitor for Windows and commands, such as lpr and lpq,
use this protocol.

• Internet Printing Protocol (IPP) beginning with OS/390 Release 8.

Users can submit print requests from the local system with one of the following methods:

• OS/390 UNIX shell printing commands (lp, lpstat, and cancel). These commands, which adhere to
the XPG4.2 standard, let users print HFS files and traditional data sets, query the status of a print
job, and cancel a print job.

• The AOPPRINT JCL procedure, which lets users print HFS files and traditional data sets beginning
with OS/390 Release 8.

The Print Interface performs these functions:

• It creates an output data set on the JES spool for each document to be printed. The Print Interface
maps the printing options specified on lp commands and some of the printing options specified on
lpr commands to JES output parameters. These parameters are the same parameters that you can
specify on JCL statements when you submit batch jobs.

• It responds to query requests with the status of the output data set on the JES spool or a list of the
printers known to the Print Interface.

326 ABCs of OS/390 System Programming

• It removes data sets from the JES spool. The data sets must not yet have been selected for
printing.

The Print Interface performs these functions:

• Printing of any data format that the printer supports

The Print Interface allows users to submit print requests with any data format that the printer
supports. These formats include, but are not limited to, PCL, PostScript, MO:DCA-P, S/390 line data,
and text.

• The Print Interface detects the data format.

• Validation of print requests

Before accepting print requests, the Print Interface validates, with some exceptions, that a
document can print as requested on the selected printer. For example, the Print Interface rejects a
document with a data format that the printer does not support.

• Notification of completion

The Print Interface notifies users on the local OS/390 system when processing of a document is
complete.

• Identification of printed output

The Print Interface maintains the user ID of the job submitter for printing on separator pages. Both
PSF for OS/390 and IP PrintWay allow installations to write an exit to print separator pages.

• Double-byte character set (DBCS) support

The Print Interface converts DBCS data from one code page to another before writing the data to
the JES spool.

Chapter 5. Infoprint Server 327

Figure 188. NetSpool

5.2.3 NetSpool

The visual shows the steps that occur from the time VTAM applications send print requests to NetSpool
printer logical units (LUs) until NetSpool allocates output data sets on the JES spool. Each step is as
follows:

 1. VTAM applications, such as CICS or IMS, establish communication sessions with NetSpool printer
logical units (LUs) instead of with SNA-network printers. Each NetSpool printer LU must be defined
to VTAM as an application logical-unit (LU). NetSpool can process the following types of VTAM
data streams:

• SNA character string (SCS) data over an LU type 1 session
• 3270 data over an LU type 3 or LU type 0 session
• A binary data stream over an LU type 0, type 1, or type 3 session

 2. NetSpool runs as a VTAM application on the same or different OS/390 system. Multiple instances
of NetSpool can run simultaneously in separate address spaces; each instance of NetSpool can
process VTAM print requests sent to different NetSpool printer LUs.

 3. Each NetSpool printer LU must be defined in a printer definition in the Printer Inventory. NetSpool
converts the data stream into S/390 line-data format and groups the data into output data sets
using information in the printer definition.

 4. NetSpool dynamically allocates output data sets on the JES2 or JES3 spool using JES allocation
parameters specified in the printer definition, including:

328 ABCs of OS/390 System Programming

• JES work-selection parameters, such as class, forms name, and destination. These
parameters cause JES to direct the output data sets to the correct JES output writer or
functional subsystem application (FSA), such as PSF for OS/390 or IP PrintWay.

• Advanced Function Presentation (AFP) parameters, such as the name of a form definition and
page definition. PSF for OS/390 uses these parameters when printing data on IBM AFP
printers.

• Distribution information, such as name and address, which can be printed on output header
pages

Chapter 5. Infoprint Server 329

Figure 189. IP PrintWay

5.2.4 IP PrintWay

IP PrintWay transmits output data sets from the JES spool to printers or print servers in a TCP/IP
network using one of the following TCP/IP protocols: LPR to LPD, IPP, or direct-socket printing.

The visual shows the steps that occur from the time IP PrintWay selects output data sets from the JES
spool until IP PrintWay transmits the data sets to the target printer or print server and deletes the data
sets fro the JES spool. An explanation of each step follows:

 1. IP PrintWay selects output data sets from the JES spool according to the JES work-selection
parameters defined for the IP PrintWay FSA. For example, IP PrintWay might select all data sets in
JES output class J.

IP PrintWay can select data sets that were allocated on the JES spool by NetSpool or Print
Interface, or submitted from TSO or batch applications. The data sets can contain S/390 line data.
ASCII text data, or formatted data, such as PCL, PostScript, SAP, or MO:DCA-P (AFP) data.

 2. IP PrintWay runs as a functional subsystem application (FSA) of JES2 or JES3. Several IP PrintWay
FSAs can run in one functional subsystem address space (FSS) to handle a high volume of data;
however, one PrintWay FSA can transmit data sets to multiple printers or print servers.

 3. IP PrintWay uses information in the printer definition in the Printer Inventory to process data sets,
select the TCP/IP transmission protocol (LPR, IPP, or direct sockets), and obtain the address of the
target printer. IP PrintWay can also use the IP address of a target printer specified directly on the
OUTPUT JCL statement.

330 ABCs of OS/390 System Programming

IP PrintWay recognizes data sets allocated on the JES spool by Print Interface and does not
convert data from ASCII to EBCDIC or format the data; this is because Print Interface has already
converted data to ASCII if necessary. For other data sets, IP PrintWay can convert data from
EBCDIC to ASCII, can add a header to each page, and can format data using the carriage-control
characters in S/390 line data, an FCB, or pagination attributes specified in the printer definition.

 4. IP PrintWay maintains a transmission queue to keep track of data sets being processed. This
transmission queue contains the status of each transmission, routing information, and so on.
Using Infoprint Server ISPF panels, the system operator can monitor the status of transmissions,
reroute data sets to another print queue or port, and change the transmission options.

 5. IP PrintWay can use the LPR to LPD, IPP, or direct-socket TCP/IP protocol to transmit data sets to
remote printers or print servers. IP PrintWay also transmits LPD options and IPP job attributes to
the target LPDs and IPP servers. For example, IP PrintWay can transmit information for the LPD to
print on a separator page.

Chapter 5. Infoprint Server 331

Figure 190. Windows 95 and Windows NT support

5.2.5 Windows 95 and Windows NT support

A job submitter can print documents from any Windows application using:

• Standard methods of print submission available with Windows applications

• A Windows (NT or 95) client provided with an IBM OS/390 Print Server

The job submitter′s destination printer can be defined in the OS/390 Printer Inventory.

The Windows client passes job and document attributes to the OS/390 Print Interface. The job name,
owner, and the requested printer name are passed to the server.

Note: The OS/390 Print Interface does not return error messages or other job process notifications to
these clients. In addition, Windows clients cannot query the status of print requests or cancel a print
request.

Note: The OS/390 Print Server Port Monitor must be installed.

332 ABCs of OS/390 System Programming

5.2.5.1 Windows clients

The Infoprint Server Windows clients are as follows:

• AFP Printer Driver for Windows

The AFP Printer Driver creates output files in AFP format, so that users can print documents to IBM
AFP printers. The AFP Printer Driver can create output files containing documents, overlays, or
page segments. It can also create inline form definitions for printing documents with special
options, such as printing on both sides of the paper.

• AFP Viewer Plug-in for Windows

The AFP Viewer plug-in lets users view documents in AFP format, for example documents
downloaded from the OS/390 system or documents on the Web. The AFP Viewer plug-in also lets
users print AFP documents to AFP as well as non-AFP printers.

• OS/390 Printer Port Monitor for Windows

The OS/390 Printer Port Monitor lets users print documents using standard print-submission
methods from any Windows application that supports printing. After the OS/390 Printer Port
Monitor is installed and configured on the Windows system, the Port Monitor automatically sends
documents to the Print Interface component of Infoprint Server.

5.2.5.2 Requirements for using the IBM-supplied clients

The IBM-supplied AFP clients require Windows 95 or Windows NT (Version 3.51 or later).

The OS/390 Print Server Port Monitor requires that Microsoft TCP/IP protocol be configured and
operational.

The IBM AFP Plug-In Viewer requires Netscape Navigator (Version 3.01 or later) or Microsoft Internet
Explorer (Version 3.01, Level 4.70.1215 or later).

The OS/390 Print Server Clients for Windows 95 and Windows NT can be downloaded from the OS/390
host. They are located and stored on OS/390 as self-extracting files in directory:

/usr/lpp/Printsrv/win/en_US/

Alternatively, you can download the latest software from the Web using the following site:

http://www.ibm.com/printers

Chapter 5. Infoprint Server 333

Figure 191. OS/390 UNIX System Services

5.2.6 OS/390 UNIX System Services

The Print Interface provides printing support for users and application programs in the OS/390 UNIX
System Services environment. Users and applications can print to OS/390-controlled printers,
including these printers:

• JES-controlled printers
• JES- controlled Advanced Function Presentation (AFP) printers that are attached to OS/390 and that

use PSF
• LAN-attached ASCII printers that use IP PrintWay

When printing from UNIX System Services, you can print the following types of data:

• Hierarchical File System (HFS) files
• Partitioned data sets
• Sequential data sets

A job submitter can use the following commands:

lp Print documents

lpstat Query the status of print requests

cancel Cancel print requests

Using these commands, you can print jobs on any printer that your system administrator has defined to
Infoprint Server. These printing commands provide enhanced function over the commands of the same

334 ABCs of OS/390 System Programming

name that are described in OS/390 UNIX System Services Command Reference. For example, when
printing on AFP printers, you can specify options such as duplexing or a special overlay. You can also
display the status of your print request, and you can cancel a print request. These printing commands
adhere to the UNIX standards in XPG4.2. You do not need to change your UNIX applications when you
port them to OS/390.

Chapter 5. Infoprint Server 335

Figure 192. Printer Inventory Manager

5.3 Printer Inventory Manager

The Printer Inventory Manager controls the Printer Inventory, HFS files that contain information about
the OS/390 printing environment. The administrator must create and manage information in the Printer
Inventory.

Note: The Printer Inventory Manager is new with OS/390 Release 8. OS/390 Releases 5, 6, and 7 with
the Print Server have separate ISPF applications to define the printing environment.

The administrator can create the following objects:

• Printer definitions, which contain information about printers to which Print Interface, NetSpool, or IP
PrintWay can print

• Printer pool definitions, which contain information about groups of printers to which NetSpool can
broadcast data

• FSA definitions, which contain configuration information for IP PrintWay and PSF for OS/390
functional subsystem applications (FSAs)

• FSS definitions, which contain configuration information for IP PrintWay and PSF for OS/390
functional subsystems (FSSs)

The visual shows how the administrator can create definitions in the Printer Inventory and which
components of Infoprint Server use the Printer Inventory, as follows:

336 ABCs of OS/390 System Programming

 1. The administrator can use Infoprint Server ISPF panels and the Printer Inventory Definition Utility
(PIDU) to create and maintain the Printer Inventory. The PIDU is useful for creating many printer
definitions at the same time and for backing up the Printer Inventory.

 2. The following Infoprint Server components use information in the Printer Inventory:

• NetSpool uses information in printer definitions and in printer pool definitions.

• Print Interface uses information in printer definitions.

• IP PrintWay uses information in printer definitions. IP PrintWay also can use IP PrintWay
configuration information in FSS and FSA definitions.

• The SNMP subagent uses printer information that PSF for OS/390 stores in the Printer Inventory
about PSF printers.

 3. PSF for OS/390, although not a component of Infoprint Server, can use configuration information
that the administrator specifies in FSS and FSA definitions. PSF for OS/390 can also store printer
information in the Printer Inventory for use by the Infoprint Server SNMP subagent. For information
about how to customize PSF for OS/390 to use the Printer Inventory, refer to Print Services Facility
for OS/390: Customization, S544-5622.

5.3.1 Migration program

The Infoprint Server migration program helps the administrator migrate from previous releases of IP
PrintWay, NetSpool, and the OS/390 Print Server. The migration program merges printer information
currently specified in NetSpool print characteristics data sets, NetSpool tables, NetSpool startup
procedures, IP PrintWay routing and options data sets, and the Print Interface printer inventory to
create entries (such as printer definitions and printer pool definitions) in the new Infoprint Server
Printer Inventory.

The migration program can also move printer information in PSF startup procedures to FSS and FSA
definitions in the Printer Inventory.

Chapter 5. Infoprint Server 337

Figure 193. Infoprint Server installation

5.4 Infoprint Server installation

OS/390 UNIX Services must be installed to use the OS/390 Print Server.

Following your system install, a configuration file called aopd.conf contains configuration information to
be used by the OS/390 Print Interface The aopd.conf configuration file lets you customize the Printer
Inventory Manager and other components of Infoprint Server. This file is optional; if the configuration
file does not exist or if a statement in the configuration file is omitted, default values are used. The
configuration file is stored in an HFS.

The administrator can use Infoprint Server ISPF panels to add, browse, copy, edit, and delete printer
definitions and other objects in the Printer Inventory.

During the install of the Infoprint Server, the executables, samples, messages, and Windows clients are
installed into the HFS in the directory, /usr/lpp/Printsrv.

338 ABCs of OS/390 System Programming

Appendix A. Network Management

This appendix includes references from Chapter 1, “Network Management.”

A.1 Major node definitions

This is an example of a local non-SNA major node to define co-ax-attached 3270 terminals connected
to a channel-attached 3174-type controller.

 Copyright IBM Corp. 2000 339

� �
/ LIB: SYS1.VTAMLST(EXLOCAL)
/
/ DOC: THIS MEMBER CONTAINS ACF/VTAM DEFINITION STATEMENTS
/ FOR 3270-TYPE SCREENS ON A NON-SNA CONTROL UNIT
/
EXLOCAL LBUILD
*
EXL001 LOCAL CUADDR=6020, X

DLOGMOD=D4B32782, X
TERM=3277, X
FEATUR2=MODEL2, X
ISTATUS=ACTIVE, X
USSTAB=USSPAC

*
EXL002 LOCAL CUADDR=6021, X

DLOGMOD=D4B32782, X
TERM=3277, X
FEATUR2=MODEL2, X
ISTATUS=ACTIVE, X
USSTAB=USSPAC

*
EXL003 LOCAL CUADDR=6022, X

DLOGMOD=D4B32782, X
TERM=3277, X
FEATUR2=MODEL2, X
ISTATUS=ACTIVE, X
USSTAB=USSPAC

*
EXL004 LOCAL CUADDR=6023, X

DLOGMOD=D4B32782, X
TERM=3277, X
FEATUR2=MODEL2, X
ISTATUS=ACTIVE, X
USSTAB=USSPAC

*
EXL005 LOCAL CUADDR=6024, X

DLOGMOD=D4B32782, X
TERM=3277, X
FEATUR2=MODEL2, X
ISTATUS=ACTIVE, X
USSTAB=USSPAC

*
EXL006 LOCAL CUADDR=6025, X

DLOGMOD=D4B32782, X
TERM=3277, X
FEATUR2=MODEL2, X
ISTATUS=ACTIVE, X
USSTAB=USSPAC

*� �

This example will define six terminals, EXL001-EXL006, on the device address range 6020-6025.

For a complete description of the parameters and their values refer to OS/390 eNetwork
Communications Server: SNA Resource Definition Reference SC31-8565.

EXLOCAL EXLOCAL is the name of this major node. The name coded here should be the
same as the member name, in this example, SYS1.VTAMLST(EXLOCAL). This is the
name by which this major node will be known to VTAM.

340 ABCs of OS/390 System Programming

LBUILD LBUILD specifies that this major node is for LOCAL NON-SNA devices.

EXL001 The LUNAME (Logical Unit NAME) associated with this terminal.

LOCAL Defines this LU as type LOCAL.

CUADDR Specifies the physical device address of this terminal.

DLOGMOD Specifies the Default Logmode associated with this terminal. The logmode is
used by VTAM to tailor the 3270 datastream to match the terminal′s capabilities.
The D4B32782 logmode used in this example will incorporate parameters that
give VTAM such information as the number of rows and columns that this
terminal can support and whether or not it can handle extended highlighting
(colors, reverse video, etc.).

TERM Specifies a specific of terminal device type.

FEATUR2 Specifies some additional features that this non-SNA local device can support.

ISTATUS Specifies whether this terminal is to be activated when the major node is
activated.

USSTAB Specifies the table to use when this terminal is not connected to an application.
It can include a “Welcome to the VTAM Network” USSMSG10 as well as shortcut
commands for connecting to other applications. For example, a USS table can
have an entry PROD so that instead of entering the command LOGON
APPLID(CICSPROD) to connect to the CICSPROD application, you can simply type
PROD.

This member can be activated by the following VTAM Operator command:

� �
V NET,ACT,ID=EXLOCAL� �

Appendix A. Network Management 341

A.2 XCA Major Node

The XCA major node is used to define an External Communication Adapter to VTAM. The following
example is for an OSA device attached to a token ring network.

� �
OSA1 VBUILD TYPE=XCA
*
OSAPORT PORT ADAPNO=0, OSA ADAPTER 0 X

CUADDR=D02, OSA DEVICE ADDRESS X
MEDIUM=RING, TOKEN RING X
SAPADDR=4, SERVICE ACCESS POINT X
TIMER=30

*
OSAGRP GROUP ANSWER=ON, PU DIAL TO VTAM CAPABILITY X

CALL=INOUT, BOTH WAYS SESSION SETUP ALLOWED X
DIAL=YES, SWITCHED CONNECTION X
AUTOGEN=(255,L,P), AUTOGEN 8 LINE/PU PAIRS X
DYNPU=YES, PU′ s DYNAMICALLY ALLOCED X
ISTATUS=ACTIVE INITIAL STATUS ACTIVE� �

This example will define a token ring SNA port on device address D02.

For a complete description of the parameters and their values refer to OS/390 eNetwork
Communications Server: SNA Resource Definition Reference SC31-8565.

OSA1 OSA1 is the name of this major node.

VBUILD TYPE=XCA Defines this as an XCA type major node.

OSAPORT The name VTAM will use to refer to the port being defined.

CUADDR The device address of the port.

MEDIUM The type of connection. Ring for token ring.

SAPADDR Service Access Point address for this connection to the LAN. It must be a
multiple of 4.

OSAGRP The group name by which VTAM will refer to this set of logical Line and Physical
Unit pairs. When subsequent Switched major nodes are defined for token
ring-attached devices they will establish a connection via a logical Line and PU
pair.

AUTOGEN Instead of coding 255 Line and PU pairs, the autogen parameters specifies that
255 pairs are to be defined, Line names starting with L and PU names starting
with P. This will be sufficient for the simultaneous connection of up to 255
downstream LAN-attached PUs.

ISTATUS Specifies that these devices are to be activated on startup.

This member can be activated by the VTAM Operator command:

� �
V NET,ACT,ID=OSA1� �

342 ABCs of OS/390 System Programming

A.3 Switched major node

The Switched major node is used to define switched communication links to VTAM.

� �
SWITCH1 VBUILD TYPE=SWNET, X

MAXGRP=1, ** NO. OF UNIQUE GROUP NAMES ** X
MAXNO=1 ** NO. OF UNIQUE TELEPHONE NOS. **

*
SWPUA PU ADDR=C1, ** PHYSICAL UNIT ADDRESS ** X

IDBLK=017, ** CONTROLLER ** X
IDNUM=00001, ** USER 3174 SERIAL NUMBER HERE ** X
DISCNT=NO, ** VTAM DOES NOT HANG UP ** X
IRETRY=YES, ** RE-POLL AFTER TIMEOUT ** X
PUTYPE=2, ** PU TYPE 2 ** X
MAXOUT=7, ** MAXIMUM PIUS = RESPONSE ** X
MAXDATA=2042, ** DATA PLUS HEADER ** X
MODETAB=AMODE, ** LOGON MODE TABLE NAME ** X
USSTAB=AUSSTAB, ** USS TABLE NAME ** X
DLOGMOD=SNX32702, ** LOGON MODE ENTRY 3270 EABs ** X
PACING=0, ** SECONDARY RECEIVES ** X
VPACING=0 ** PRIMARY SENDS **

SWLUA2 LU LOCADDR=2
SWLUA3 LU LOCADDR=3
SWLUA4 LU LOCADDR=4
SWLUA5 LU LOCADDR=5
SWLUA6 LU LOCADDR=6
SWLUA7 LU LOCADDR=7� �

This example will define a Switched Physical Unit and 6 Logical Units.

For a complete description of the parameters and their values refer to OS/390 eNetwork
Communications Server: SNA Resource Definition Reference SC31-8565.

SWITCH1 The name by which VTAM will identify this major node.

VBUILD TYPE=SWNET Defines this as a Switched Major Node.

SWPUA PU The name by which VTAM will identify this PU

IDBLK A 3-digit hexadecimal number that identifies the device type. This value will be
provided in the documentation for the actual device. All devices of the same
type, such as a 3274, will have the same IDBLK value.

IDNUM A 5-digit hexadecimal value that uniquely identifies this device connection. This
value will be provided in the documentation for the actual device. All devices of
the same type, such as a 3274, will have the same IDBLK value. When this
device attempts to establish a connection with VTAM, the information provided
on the setup request will include this IDNUM value. VTAM will then make a
one-to-one match between the physical device and this PU definition.

SWLUA2 LU Logical Unit definition

LOCADDR The physical device will be configured to support a number of logical units at
given addresses. These addresses will correspond to the LOCADDR addresses
in the VTAM definition.

Appendix A. Network Management 343

A.4 Sample FTP start procedure

� �
//FTPD PROC PARMS=′ ′
//***
//* *
//* FTP for MVS TCP/IP Version 3 Release 1 Level 0 *
//* *
//***
//FTPD EXEC PGM=FTPD,PARM=′ POSIX(ON) ALL31(ON)/&PARMS′
//STEPLIB DD DSN=TCPIP.SEZALINK,DISP=SHR
// DD DSN=CEE.SCEERUN,DISP=SHR
//CEEDUMP DD SYSOUT=*
//*
//* SYSFTPD is used to specify the FTP.DATA file for the FTP
//* server. The file can be any sequential data set, member
//* of a partitioned data set (PDS), or HFS file.
//*
//* The SYSFTPD DD statement is optional. The search order for
//* FTP.DATA is:
//* /etc/ftp.data
//* SYSFTPD DD statement
//* jobname.FTP.DATA
//* SYS1.TCPPARMS(FTPDATA)
//* tcpip.FTP.DATA
//*
//* If no FTP.DATA file is found, FTP default values are used.
//* For information on FTP defaults, see the Customization
//* and Administration Guide and TCP/IP OE MVS Applications
//* Feature Guide.
//SYSFTPD DD DISP=SHR,DSN=SYS1.TCPIP.PARMS(FTPDATA) �1�
//*
//* SYSTCPD explicitly identifies which file is to be
//* used to obtain the parameters defined by TCPIP.DATA.
//* The SYSTCPD DD statement should be placed in the JCL of
//* the server. The file can be any sequential data set,
//* member of a partitioned data set (PDS), or HFS file.
//SYSTCPD DD DISP=SHR,DSN=SYS1.TCPIP.PARMS(TCPDATA) �2�� �

344 ABCs of OS/390 System Programming

A.5 Sample OAT
/**/
/* File created 15:16:33 on 04/26/1999 */
/**/

/***/
/* Start of OSA Address Table for CHPID 5C */
/***/
/* All entries below that are preceeded by ′ s-′ indicate that the */
/* field is settable during Put_OAT processing */
/***/
oathdr.1 = IOA_OAT_HDR /* Eyecatcher-Do not change */
oathdr.2 = 5C /* CHPID */
oathdr.3 = 8 /* s-Number of entries */
/***/
/* Start of OAT entry 1 */
/***/
oat.1.1 = IOA_OATENTRY /* Eyecatcher- Do not delete*/
oat.1.2 = All data is valid /* Valid data indicator */
oat.1.3 = /* Partition name */
oat.1.4 = 0 /* s-Partition number */
oat.1.5 = 04 /* s-Unit address */
oat.1.6 = 0D04 /* Device number */
oat.1.7 = 5C /* Chpid */
oat.1.8 = 0D00 /* Control unit number */
oat.1.9 = configured /* Channel state */
oat.1.10 = yes /* Device accessible */
oat.1.11 = 02 /* Group size */
oat.1.12 = passthru /* s-Entry type. One of: */

/* Passthru */
/* SNA */
/* Unassigned */

oat.1.13 = started and in use /* Entry descriptor */
/***/
/* Start of Extended OAT entry */
/***/
passthru.1.1 = 1 /* s-Port number */
passthru.1.2 = no /* s-Default LP (yes/no) */
passthru.1.3 = 195.183.66.11 /* s-home IP address */
/***/
/* Start of OAT entry 2 */
/***/
oat.2.1 = IOA_OATENTRY /* Eyecatcher- Do not delete*/
oat.2.2 = All data is valid /* Valid data indicator */
oat.2.3 = /* Partition name */
oat.2.4 = 0 /* s-Partition number */
oat.2.5 = 05 /* s-Unit address */
oat.2.6 = 0D05 /* Device number */
oat.2.7 = 5C /* Chpid */
oat.2.8 = 0D00 /* Control unit number */
oat.2.9 = configured /* Channel state */
oat.2.10 = yes /* Device accessible */
oat.2.11 = 02 /* Group size */
oat.2.12 = passthru /* s-Entry type. One of: */

/* Passthru */
/* SNA */
/* Unassigned */

oat.2.13 = started and in use /* Entry descriptor */

Appendix A. Network Management 345

/***/
/* Start of Extended OAT entry */
/***/
passthru.2.1 = 1 /* s-Port number */
passthru.2.2 = no /* s-Default LP (yes/no) */
passthru.2.3 = 195.183.66.11 /* s-home IP address */
/***/
/* Start of OAT entry 3 */
/***/
oat.3.1 = IOA_OATENTRY /* Eyecatcher- Do not delete*/
oat.3.2 = All data is valid /* Valid data indicator */
oat.3.3 = /* Partition name */
oat.3.4 = 0 /* s-Partition number */
oat.3.5 = 02 /* s-Unit address */
oat.3.6 = 0D02 /* Device number */
oat.3.7 = 5C /* Chpid */
oat.3.8 = 0D00 /* Control unit number */
oat.3.9 = configured /* Channel state */
oat.3.10 = yes /* Device accessible */
oat.3.11 = 01 /* Group size */
oat.3.12 = SNA /* s-Entry type. One of: */

/* Passthru */
/* SNA */
/* Unassigned */

oat.3.13 = started and in use /* Entry descriptor */
/***/
/* Start of Extended OAT entry */
/***/
sna.3.1 = 00 /* s-Port number */
/***/
/* Start of OAT entry 4 */
/***/
oat.4.1 = IOA_OATENTRY /* Eyecatcher- Do not delete*/
oat.4.2 = Channel subsystem valid /* Valid data indicator */
oat.4.3 = /* Partition name */
oat.4.4 = 0 /* s-Partition number */
oat.4.5 = 00 /* s-Unit address */
oat.4.6 = 0D00 /* Device number */
oat.4.7 = 5C /* Chpid */
oat.4.8 = 0D00 /* Control unit number */
oat.4.9 = configured /* Channel state */
oat.4.10 = yes /* Device accessible */
oat.4.11 = N/A /* Group size */
oat.4.12 = N/A /* s-Entry type. One of: */

/* Passthru */
/* SNA */
/* Unassigned */

oat.4.13 = N/A /* Entry descriptor */
/***/
/* Start of OAT entry 5 */
/***/
oat.5.1 = IOA_OATENTRY /* Eyecatcher- Do not delete*/
oat.5.2 = Channel subsystem valid /* Valid data indicator */
oat.5.3 = /* Partition name */
oat.5.4 = 0 /* s-Partition number */
oat.5.5 = 01 /* s-Unit address */
oat.5.6 = 0D01 /* Device number */
oat.5.7 = 5C /* Chpid */
oat.5.8 = 0D00 /* Control unit number */

346 ABCs of OS/390 System Programming

oat.5.9 = configured /* Channel state */
oat.5.10 = yes /* Device accessible */
oat.5.11 = N/A /* Group size */
oat.5.12 = N/A /* s-Entry type. One of: */

/* Passthru */
/* SNA */
/* Unassigned */

oat.5.13 = N/A /* Entry descriptor */
/***/
/* Start of OAT entry 6 */
/***/
oat.6.1 = IOA_OATENTRY /* Eyecatcher- Do not delete*/
oat.6.2 = Channel subsystem valid /* Valid data indicator */
oat.6.3 = /* Partition name */
oat.6.4 = 0 /* s-Partition number */
oat.6.5 = 03 /* s-Unit address */
oat.6.6 = 0D03 /* Device number */
oat.6.7 = 5C /* Chpid */
oat.6.8 = 0D00 /* Control unit number */
oat.6.9 = configured /* Channel state */
oat.6.10 = yes /* Device accessible */
oat.6.11 = N/A /* Group size */
oat.6.12 = N/A /* s-Entry type. One of: */

/* Passthru */
/* SNA */
/* Unassigned */

oat.6.13 = N/A /* Entry descriptor */
/***/
/* Start of OAT entry 7 */
/***/
oat.7.1 = IOA_OATENTRY /* Eyecatcher- Do not delete*/
oat.7.2 = Channel subsystem valid /* Valid data indicator */
oat.7.3 = /* Partition name */
oat.7.4 = 0 /* s-Partition number */
oat.7.5 = 06 /* s-Unit address */
oat.7.6 = 0D06 /* Device number */
oat.7.7 = 5C /* Chpid */
oat.7.8 = 0D00 /* Control unit number */
oat.7.9 = configured /* Channel state */
oat.7.10 = yes /* Device accessible */
oat.7.11 = N/A /* Group size */
oat.7.12 = N/A /* s-Entry type. One of: */

/* Passthru */
/* SNA */
/* Unassigned */

oat.7.13 = N/A /* Entry descriptor */
/***/
/* Start of OAT entry 8 */
/***/
oat.8.1 = IOA_OATENTRY /* Eyecatcher- Do not delete*/
oat.8.2 = Channel subsystem valid /* Valid data indicator */
oat.8.3 = /* Partition name */
oat.8.4 = 0 /* s-Partition number */
oat.8.5 = 07 /* s-Unit address */
oat.8.6 = 0D07 /* Device number */
oat.8.7 = 5C /* Chpid */
oat.8.8 = 0D00 /* Control unit number */
oat.8.9 = configured /* Channel state */
oat.8.10 = yes /* Device accessible */

Appendix A. Network Management 347

oat.8.11 = N/A /* Group size */
oat.8.12 = N/A /* s-Entry type. One of: */

/* Passthru */
/* SNA */
/* Unassigned */

oat.8.13 = N/A /* Entry descriptor */
/**
/******************* End of OAT entries *************************
/**

/*---*/
/* Examples of Extended OAT entries start here */
/***/
/* Passthru extended entry example */
/* --change IP address to match TCPIP profile */
/***/
/* passthru.n.1 = PORT_NUMBER /* s-Port number (1 hex digit)*/
/* passthru.n.2 = yes or no /* s-Default LP (yes/no) */
/* passthru.n.3 = IP address /* s-home IP address (w.x.y.z)*/
/***/
/* SNA extended entry WITHOUT Network managment example */
/***/
/* sna.n.1 = PORT_NUMBER /* s-Port number (1 hex digit)*/
/***/
/* SNA extended entry WITH Network managment example */
/* --change VTAM IDNUM to match value on XCA node definition */
/***/
/* sna.n.1 = FF /* s-Port number (must be FF) */
/* sna.n.2 = VTAM IDNUM /* s-VTAM IDNUM (5 hex chars) */
/**
/************* END of Extended OAT entry examples ***************
/**

348 ABCs of OS/390 System Programming

Appendix B. Special Notices

This publication is intended to help new system programmers who need to understand S/390 and the
OS/390 operating system. The information in this publication is not intended as the specification of any
programming interfaces that are provided by OS/390 Versions. See the PUBLICATIONS section of the
IBM Programming Announcement for OS/390 Version 2 Release 8, Program Number 5647-A01 for more
information about what publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM product,
program, or service is not intended to state or imply that only IBM′s product, program, or service may
be used. Any functionally equivalent program that does not infringe any of IBM ′s intellectual property
rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment specified, and is
limited in application to those specific hardware and software products and levels.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to the IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504-1785.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions, including in some
cases, payment of a fee.

The information contained in this document has not been submitted to any formal IBM test and is
distributed AS IS. The use of this information or the implementation of any of these techniques is a
customer responsibility and depends on the customer ′s ability to evaluate and integrate them into the
customer ′s operational environment. While each item may have been reviewed by IBM for accuracy in
a specific situation, there is no guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for convenience only and do not in
any manner serve as an endorsement of these Web sites.

Reference to PTF numbers that have not been released through the normal distribution process does
not imply general availability. The purpose of including these reference numbers is to alert IBM
customers to specific information relative to the implementation of the PTF when it becomes available
to each customer according to the normal IBM PTF distribution process.

You can reproduce a page in this document as a transparency, if that page has the copyright notice on
it. The copyright notice must appear on each page being reproduced.

The following terms are trademarks of the International Business Machines Corporation in the United
States and/or other countries:

ACF/VTAM Advanced Function Printing
AFP AnyNet
CICS CICS/ESA
CICS/MVS DB2

 Copyright IBM Corp. 2000 349

The following terms are trademarks of other companies:

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere., The Power To Manage.,
Anything. Anywhere., TME, NetView, Cross-Site, Tivoli Ready,
Tivoli Certified, Planet Tivoli, and Tivoli Enterprise are
trademarks or registered trademarks of Tivoli Systems Inc., an
IBM company, in the United States, other countries, or both.
In Denmark, Tivoli is a trademark licensed from Kjobenhavns Sommer -
Tivoli A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or
other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United States
and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

SET, SET Secure Electronic Transaction, and the SET logo are trademarks
owned by Secure Electronic Transaction LLC.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through the Open Group.

Other company, product, and service names may be trademarks or
service marks of others.

DFSMS DFSMS/MVS
DFSMSdfp DFSMSdss
DFSMShsm DFSMSrmm
DFSORT ESCON
FICON IBM
IMS InfoPrint
Intelligent Printer Data Stream IPDS
IP PrintWay Language Environment
MVS (block letters) MVS/DFP
NetSpool NetView
OpenEdition OS/390
Parallel Sysplex PrintWay
RACF RAMAC
RMF S/390
S/390 Parallel Enterprise Server Sysplex Timer
VTAM

350 ABCs of OS/390 System Programming

Appendix C. Related Publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this redbook.

C.1 IBM Redbooks

For information on ordering these ITSO publications see “How to get IBM Redbooks” on page 355.

• OS/390 Release 5 Implementation, SG24-5151

• OS/390 Release 4 Implementation, SG24-2089

• OS/390 Release 3 Implementation, SG24-2067

• OS/390 Release 2 Implementation, SG24-4834

• cit.OS/390 Security Server 1999 Updates Technical Presentation Guide, SG24-5627

• Security in OS/390-based TCP/IP Networks, SG24-5383

• Hierarchical File System Usage Guide, SG24-5482

• Enhanced Catalog Sharing and Management, SG245594

• Integrated Catalog Facility Backup and Recovery, SG24-5644

• OS/390 Version 2 Release 6 UNIX System Services Implementation and Customiztion, SG24-5178

• IBM S/390 FICON Implementation Guide, SG24-5169

• Exploiting S/390 Hardware Cryptography with Trusted Key Entry, SG24-5455

• TCP/IP Tutorial and Technical Overview, GG24-3376

• Introduction to Storage Area Network SAN, SG2-45470

• TCP/IP in a Sysplex, SG24-5235

• SecureWay Communications Server for OS/390 V2R8 TCP/IP: Guide to Enhancements, SG24-5631

• OS/390 eNetwork Communications Server V2R7 TCP/IP Implementation Guide Volume 1:
Configuration and Routing, SG24-5227

• OS/390 eNetwork Communications Server V2R7 TCP/IP Implementation Guide Volume 3: MVS
Applications, SG24-5229

• OS/390 Workload Manager Implementation and Exploitation, SG24-5326

• ADSM Server-to-Server Implementation and Operation, SG24-5244

• Stay Cool on OS/390: Installing Firewall Technology, SG24-2046

• Implementing DFSMSdss SnapShot and Virtual Concurrent Copy, SG24-5268

• TCP/IP OpenEdition Implementation Guide, SG24-2141

• IMS/ESA Version 5 Performance Guide, SG24-4637

• Parallel Sysplex Configuration: Overview, SG24-2075

• Parallel Sysplex Configuation: Cookbook, SG24-2076

• Parallel Sysplex Config.: Connectivity, SG24-2077

• DFSMS Optimizer Presentation Guide Update, SG24-4477

• MVS Parallel Sysplex Capacity Planning, SG24-4680

 Copyright IBM Corp. 2000 351

• Getting the Most Out of a Parallel Sysplex, SG24-2073

• OS/390 eNetwork Communication Server TCP/IP Implementation Guide Volume 2, SG24-5228

C.2 IBM Redbooks collections

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs button at
http://www.redbooks.ibm.com/ for information about all the CD-ROMs offered, updates and formats.

C.3 Other resources

These publications are also relevant as further information sources:

• OS/390 Initialization and Tuning Guide, SC28-1751

• OS/390 Initialization and Tuning Reference, SC28-1752

• OS/390 Introduction and Release Guide, GC28-1725

• OS/390 MVS JCL User′s Guide, SC28-1758

• OS/390 MVS JCL Reference, GC28-1757

• OS/390 MVS System Diagnosis: Tools and Service Aids, LY28-1085, (available to IBM licensed
customers only)

• Interactive System Productivity Facility Getting Started, SC34-4440

• OS/390 Security Server (RACF) System Programmer ′s Guide, SC28-1913

• OS/390 TSO/E Customization, SC28-1965

• OS/390 TSO/E Primer, GC28-1967

• OS/390 TSO/E User′s Guide, SC28-1968

• OS/390 SMP/E Reference, SC28-1806

• OS/390 SMP/E User′s Guide, SC28-1740

• OS/390 SMP/E Commands, SC28-1805

• Standard Packaging Rules for MVS-Based Products, SC23-3695

• OS/390 MVS System Commands, GC28-1781

• OS/390 MVS IPCS Commands, GC28-1754

• OS/390 MVS IPCS User′s Guide, GC28-1756

• DFSMS/MVS Using Data Sets, SC26-4922

• OS/390 Planning for Installation, GC28-1726

• OS/390 MVS System Data Sets Definition, GC28-1782

CD-ROM Title Collection Kit Number
System/390 Redbooks Collection SK2T-2177
Networking and Systems Management Redbooks Collection SK2T-6022
Transaction Processing and Data Management Redbooks Collection SK2T-8038
Lotus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044
AS/400 Redbooks Collection SK2T-2849
Netfinity Hardware and Software Redbooks Collection SK2T-8046
RS/6000 Redbooks Collection (BkMgr Format) SK2T-8040
RS/6000 Redbooks Collection (PDF Format) SK2T-8043
Application Development Redbooks Collection SK2T-8037
IBM Enterprise Storage and Systems Management Solutions SK3T-3694

352 ABCs of OS/390 System Programming

• ICKDSF R16 Refresh, User′s Guide, GC35-0033

• OS/390 MVS System Management Facilities (SMF), GC28-1783

• EREP V3R5 Reference, GC35-0152

• OS/390 JES2 Commands, GC28-1790

• OS/390 Hardware Configuration Definition User′s Guide, SC28-1848

• DFSMS/MVS DFSMSdss Storage Administration Reference, SC26-4929

• IBM ServerPac for OS/390 Using the Installation Dialog, SC28-1244

• OS/390 Hardware Configuration Definition Planning, GC28-1750

• OS/390 MVS Using the Subsystem Interface, SC28-1502

• DFSMS/MVS Version 1 Release 4: Managing Catalogs, SC26-4914

• DFSMS/MVS Version 1 Release4: Access Method Services for Integrated Catalog Facility, SC26-4906

• DFSMS/MVS: DFSMShsm Implementation and Customization Guide, SH21-1078

• DFSMS/MVS Access Method Services for ICF Catalogs, SC26-4500

• DFSMS/MVS DFSMSdfp Storage Administration Reference, SC26-4920

• OS/390 eNetwork Communications Server: SNA Resource Definition Reference, SC31-8565

• OS/390 eNetwork Communications Server SNA Resource Definition Samples, SC31-8566

• OS/390 eNetwork Communications Server: SNA Operation, SC31-8567

• OS/390 V2R7.0 eNetwork CS IP Configuration, SC31-8513

• eNetwork Communications Server: IP User′s Guide GC31-8514

• OS/390 UNIX System Services Planning, SC28-1890

• OS/390 TCP/IP OpenEdition: Configuration Guide SC31-8304

• OS/390 Open Systems Adapter Support Facility User′s Guide, SC28-1855.

• OS/390 V2R6.0 MVS Planning: APPC/MVS Management, GC28-1807

• Print Services Facility for OS/390: Customization, S544-5622

• DFSMS/MVS Planning for Installation, SC26-4919

• DFSMS/MVS Implementing System-Managed Storage, SC26-3123

• DFSMS/MVS Remote Copy Administrator′s Guide and Reference, SC35-0169

• DFSMS/MVS Macro Instructions for Data Sets, SC26-4913

• DFSMS/MVS DFSMSdfp Diagnosis Guide, SY27-9605

• DFSMS/MVS DFSMSdfp Advanced Services, SC26-4921

• DFSMS/MVS Using Magnetic Tapes, SC26-4923

• DFSMS/MVS Utilities, SC26-4926

• Service Level Reporter User′s Guide: Reporting, SH19-6530

• DFSMS/MVS Object Access Method Application Programmer ′s Reference, SC26-4917

• DFSMS/MVS Object Access Method Planning, Installation, and Storage Administration Guide for
Object Support, SC26-4918

• DFSORT Installation and Customization, SC26-7041

• DFSORT Getting Started with DFSORT R14, SC26-4109

• DFSMS/MVS Network File System Customization and Operation, SC26-7029

Appendix C. Related Publications 353

• DFSMS Optimizer User′s Guide and Reference, SC26-7047

• DFSMS/MVS DFSMSdss Storage Administration Guide, SC26-4930

• DFSMShsm Storage Administration Guide, SH21-1076

• DFSMShsm Storage Administration Reference, SH21-1075

• DFSMS/MVS Network File System User′s Guide, SC26-7028

• DFSMS/MVS DFSMSrmm Guide and Reference, SC26-4931

• DFSMS/MVS DFSMSrmm Implementation and Customization Guide, SC26-4932

• MVS/ESA Storage Management Library Managing Data, SC26-3124

• MVS/ESA Storage Management Library Managing Storage Groups, SC26-3125

• MVS/ESA Storage Management Library Leading a Storage Administration Group, SC26-3126.

• DFSMS/MVS Using the Interactive Storage Management Facility, SC26-4911

• ADSTAR Distributed Storage Manager for MVS Administrator′s Guide, GC35-0277

• OS/390 MVS Programming: Assembler Services Guide, GC28-1762

• OS/390 MVS Programming: Resource Recovery, GC28-1739

• OS/390 MVS Setting Up a Sysplex, GC28-1779

• OS/390 MVS Sysplex Services Guide, GC28-1771

• OS/390 Parallel Sysplex Systems Management, GC28-1861

• OS/390 MVS Systems Codes, GC28-1780

• OS/390 MVS System Messages Volume 1, GC28-1784

• OS/390 MVS System Messages Volume 2, GC28-1785

• OS/390 MVS System Messages Volume 3, GC28-1786

• OS/390 MVS System Messages Volume 4, GC28-1787

• OS/390 MVS System Messages Volume 5, GC28-1788

• OS/390 MVS Installation Exits, SC28-1753

• OS/390 MVS Diagnosis Reference, SY28-1084

• CICS User′s Handbook, SX33-1188

• CICS Diagnosis Guide, LX33-6093

• MQSeries for MVS/ESA Messages and Codes, GC33-0819

354 ABCs of OS/390 System Programming

How to get IBM Redbooks

This section explains how both customers and IBM employees can find out about IBM Redbooks, redpieces, and
CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download, or order hardcopy/CD-ROM Redbooks from the Redbooks Web site. Also read
redpieces and download additional materials (code samples or diskette/CD-ROM images) from this Redbooks
site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and sometimes just a few chapters
will be published this way. The intent is to get the information out much quicker than the formal publishing
process allows.

• E-mail Orders

Send orders by e-mail including information from the redbook fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest information
may be found at the Redbooks Web site.

IBM Intranet for Employees

IBM employees may register for information on workshops, residencies, and Redbooks by accessing the IBM
Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button. Look in the Materials
repository for workshops, presentations, papers, and Web pages developed and written by the ITSO technical
professionals; click the Additional Materials button. Employees may access MyNews at http://w3.ibm.com/ for
redbook, residency, and workshop announcements.

In United States: e-mail address: usib6fpl@ibmmail.com
Outside North America: Contact information is in the ″How to Order″ section at this site:

http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free) 1-800-879-2755
Canada (toll free) 1-800-IBM-4YOU
Outside North America Country coordinator phone number is in the ″How to Order″ section at this site:

http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free) 1-800-445-9269
Canada 1-403-267-4455
Outside North America Fax phone number is in the ″How to Order″ section at this site:

http://www.elink.ibmlink.ibm.com/pbl/pbl/

 Copyright IBM Corp. 2000 355

IBM Redbooks fax order form

Please send me the following:

Title Order Number Quantity

First name Last name

Company

Address

City Postal code Country

Telephone number Telefax number VAT number

• Invoice to customer number

• Credit card number

Credit card expiration date Card issued to Signature

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

356 ABCs of OS/390 System Programming

abend

Glossary

A
abend . Termination of a task before its completion
because of an error condition that cannot be resolved
by recovery facilities while the task executing.

ACB . Access method control block.

access . A specific type of interaction between a
subject and an object that results in the flow of
information from one to the other.

access authority . An authority that relates to a
request for a type of access to protected resources.
In RACF, the access authorities are NONE, READ,
UPDATE, ALTER, and EXECUTE.

access list . A list within a profile of all authorized
users and their access authorities.

access method control block (ACB). . A control block
that links an application program to VTAM.

ACDS . Active control data set.

ACF/VTAM . An IBM licensed program that controls
communication and the flow of data in an SNA
network. It provides single-domain, multiple-domain,
and interconnected network capability. VTAM runs
under MVS (OS/VS1 and OS/VS2), VSE, and VM/SP
and supports direct control application programs and
subsystems such as VSE/POWER.

ACIF . (1) AFP conversion and indexing facility. (2) A
PSF utility program that converts a print file into AFP,
MO:DCA-P, creates an index file for input data, and
collects resources used by an AFP document into
separate file.

action message retention facility (AMRF) . A facility
that, when active, retains all action messages except
those specified by the installation in the MPFLSTxx
member in effect.

action message sequence number . A decimal
number assigned to action messages.

Advanced Function Presentation (AFP) . A set of
licensed programs, together with user applications,
that use the all-points-addressable concept to print on
presentation devices. AFP includes creating,
formatting, archiving, retrieving, viewing, distributing,
and printing information.

Advanced Program-to-Program Communications
(APPC) . A set of inter-program communication
services that support cooperative transaction
processing in a SNA network.

AFP . Advanced Function Presentation.

AFP Printer Driver for Windows . A component of
Infoprint Server for OS/390 that runs on a Windows 95
or Windows NT workstation and creates output in AFP
format, for printing on AFP printers.

AFP Viewer plug-in for Windows . A component of
Infoprint Server for OS/390 that runs on a Windows 95
or Windows NT workstation and allows you to view
files in AFP format.

AIX operating system . IBM′s implementation of the
UNIX operating system. The RS/6000 system, among
others, runs the AIX operating system.

allocate . To assign a resource for use in performing
a specific task.

alphanumeric character . A letter or a number.

amode . Addressing mode. A program attribute that
can be specified (or defaulted) for each CSECT, load
module, and load module alias. AMODE states the
addressing mode that is expected to be in effect when
the program is entered.

AMRF . action message retention facility

AOR . Application-owning region

APPC . Advanced Program-to-Program
Communications

APPN . Advanced Peer-to-Peer Networking.

ASCII (American Standard Code for Information
Interchange) . The standard code, using a coded
character set consisting of 7-bit coded characters
(8-bit including parity check), that is used for
information interchange among data processing
systems, data communication systems, and
associated equipment. The ASCII set consists of
control characters and graphic characters.

audit . To review and examine the activities of a data
processing system mainly to test the adequacy and
effectiveness of procedures for data security and data
accuracy.

authority . The right to access objects, resources, or
functions.

authorization checking . The action of determining
whether a user is permitted access to a
RACF-protected resource.

Authorized Program Analysis Report (APAR) . A
request for correction of problem caused by a defect
in a current unaltered release of a program.

 Copyright IBM Corp. 2000 357

authorized program facility (APF)

authorized program facility (APF) . A facility that
permits identification of programs authorized to use
restricted functions.

automated operations . Automated procedures to
replace or simplify actions of operators in both
systems and network operations.

AVR . Automatic volume recognition.

B
banner page . A page printed before the data set is
printed.

basic mode . A central processor mode that does not
use logical partitioning. Contrast with logically
partitioned (LPAR) mode.

batch message processing (BMP) program . An IMS
batch processing program that has access to online
databases and message queues. BMPs run online,
but like programs in a batch environment, they are
started with job control language (JCL).

batch-oriented BMP program . A BMP program that
has access to online databases and message queues
while performing batch-type processing. A
batch-oriented BMP does not access the IMS message
queues for input or output. It can access online
databases, GSAM databases, and MVS files for both
input and output.

BMP . Batch message processing (BMP) program.

broadcast . (1) Transmission of the same data to all
destinations. (2) Simultaneous transmission of data
to more than one destination.

binary data . (1) Any data not intended for direct
human reading. Binary data may contain unprintable
characters, outside the range of text characters. (2) A
type of data consisting of numeric values stored in bit
patterns of 0s and 1s. Binary data can cause a large
number to be placed in a smaller space of storage.

BIND . In SNA, a request to activate a session
between two logical units (LUs).

buffer . A portion of storage used to hold input or
output data temporarily.

buffered device . A device where the data is written
to a hardware buffer in the device before it is placed
on the paper (for example, IBM 3820).

burst . To separate continuous-forms paper into
single sheets.

C
cache structure . A coupling facility structure that
enables high-performance sharing of cached data by
multisystem applications in a sysplex. Applications
can use a cache structure to implement several
different types of caching systems, including a
store-through or a store-in cache.

carriage control character . An optional character in
an input data record that specifies a write, space, or
skip operation.

carriage return (CR) . (1) A keystroke generally
indicating the end of a command line. (2) In text data,
the action that indicates to continue printing at the
left margin of the next line. (3) A character that will
cause printing to start at the beginning of the same
physical line in which the carriage return occurred.

CART . Command and response token.

case-sensitive . Pertaining to the ability to distinguish
between uppercase and lowercase letters.

catalog . (1) A directory of files and libraries, with
reference to their locations. (2) To enter information
about a file or a library into a (3) The collection of all
data set indexes that are used by the control program
to locate a volume containing a specific data set.

CBPDO . Custom Built Product Delivery Offering.

CEC. Synonym for central processor complex (CPC).

central processor (CP) . The part of the computer that
contains the sequencing and processing facilities for
instruction execution, initial program load, and other
machine operations.

central processor complex (CPC) . A physical
collection of hardware that includes main storage, one
or more central processors, timers, and channels.

CFRM . Coupling facility resource management.

channel-to-channel (CTC) . Refers to the
communication (transfer of data between programs on
opposite sides of a channel-to-channel adapter (CTCA

channel-to-channel adapter (CTCA) . An input/output
device that is used a program in one system to
communicate with a program in another system.

checkpoint . (1) A place in a routine where a check,
or a recording of data for restart purposes, is
performed. (2) A point at which information about the
status of a job and the system can be recorded so
that the job step can be restarted later.

checkpoint write . Any write to the checkpoint data
set. A general term for the primary, intermediate, and
final writes that update any checkpoint data set.

358 ABCs of OS/390 System Programming

CICS

CICS. Customer Information Control System.

CICSplex . A group of connected CICS regions.

CICSPlex SM . CICSPlex System Manager

client . A functional unit that receives shared services
from a server. See also client-server.

client-server . In TCP/IP, the model of interaction in
distributed data processing in which a program at one
site sends a request to a program at another site and
awaits a response. The requesting program is called
a client; the answering program is called a server.

CMOS . Complementary metal-oxide semiconductor.

CNGRPxx . The SYS1.PARMLIB member that defines
console groups for the system or sysplex.

code page . (1) A table showing codes assigned to
character sets. (2) An assignment of graphic
characters and control function meanings to all code
points. (3) Arrays of code points representing
characters that establish ordinal sequence (numeric
order) of characters. (4) A particular assignment of
hexadecimal identifiers to graphic elements.

code point . A 1-byte code representing one of 256
potential characters.

coexistence . Two or more systems at different levels
(for example, software, service or operational levels)
that share resources. Coexistence includes the ability
of a system to respond in the following ways to a new
function that was introduced on another system with
which it shares resources: ignore a new function,
terminate gracefully, support a new function.

command and response token (CART) . A parameter
on WTO, WTOR, MGCRE, and certain TSO/E
commands and REXX execs that allows you to link
commands and their associated message responses.

command prefix facility (CPF) . An MVS facility that
allows you to define and control subsystem and other
command prefixes for use in a sysplex.

COMMDS . Communications data set.

complementary metal-oxide semiconductor (CMOS) .
A technology that combines the electrical properties
of positive and negative voltage requirements to use
considerably less power than other types of
semiconductors.

connection . In TCP/IP, the path between two protocol
applications that provides reliable data stream
delivery service. In Internet communications, a
connection extends from a TCP application on one
syste system to a TCP application on another system.

console . That part of a computer used for
communication between the operator or user and the
computer.

console group . In MVS, a group of consoles defined
in CNGRPxx, each of whose members can serve as an
alternate console in console or hardcopy recovery or
as a console to display synchronous messages.

CONSOLxx . The SYS1.PARMLIB member used to
define message handling, command processing, and
MCS consoles.

control unit . Synonymous with device control unit.

conversation . A logical connection between two
programs over an LU type 6.2 session that allows
them to communicate with each other while
processing a transaction.

conversational . Pertaining to a program or a system
that carries on a dialog with a terminal user,
alternately accepting input and then responding to the
input quickly enough for the user to maintain a train
of thought.

copy group . One or more copies of a page of paper.
Each copy can have modifications, such as text
suppression, page position, forms flash, and overlays.

couple data set . A data set that is created through
the XCF couple data set format utility and, depending
on its designated type, is shared by some or all of the
MVS systems in a sysplex. See also sysplex couple
data set.

coupling facility . A special logical partition that
provides high-speed caching, list processing, and
locking functions in a sysplex.

coupling facility channel. . A high bandwidth fiber
optic channel that provides the high-speed
connectivity required for data sharing between a
coupling facility and the central processor complexes
directly attached to it.

coupling services . In a sysplex, the functions of XCF
that transfer data and status between members of a
group residing on one or more MVS systems in the
sysplex.

CP. Central processor.

CPC. Central processor complex.

CPF. Command prefix facility.

cross-system coupling facility (XCF) . XCF is a
component of MVS that provides functions to support
cooperation between authorized programs running
within a sysplex.

cryptography . The transformation of data to conceal
its meaning.

Glossary 359

cryptographic key

cryptographic key . A parameter that determines
cryptographic transformations between plaintext and
ciphertext.

CTC. Channel-to-channel.

Customer Information Control System (CICS) . An
IBM licensed program tha that enables transactions
entered at remote terminals to be processed
concurrently by user-written application programs. It
includes facilities for building, using, and maintaining
databases.

D
DAE . Dump analysis and elimination.

daemon . A program that runs unattended to perform
a standard service.

DASD . Direct access storage device.

data definition name . The name of a data definition
(DD) statement, which corresponds to a data control
block that contains the same name. Abbreviated as
ddname.

data definition (DD) statement . A job control
statement that describes a data set associated with a
particular job step.

data integrity . The condition that exists as long as
accidental or intentional destruction, alteration, or
loss of data does not occur.

data set . The major unit of data storage and
retrieval, consisting of a collection of data in one of
several prescribed arrangements and described by
control information to which the system has access.

data set label . (1) A collection of information that
describes the attributes of a data set and is normally
stored on the same volume as the data set. (2) A
general term for data set control blocks and tape data
set labels.

data set separator pages . Those pages of printed
output that delimit data sets.

data sharing . The ability of concurrent subsystems
(such as DB2 or IMS DB) or application programs to
directly access and change the same data while
maintaining data integrity.

data stream . (1) All information (data and control
commands) sent over a data link usually in a single
read or write operation. (2) A continuous stream of
data elements being transmitted, or intended for
transmission, in character or binary-digit form, using
a defined format.

DBCS . Double-byte character set.

DBCTL . IMS Database Control.

DBRC . Database Recovery Control.

DB2 . DATABASE 2 for MVS/ESA.

DB2 data sharing group . A collection of one or more
concurrent DB2 subsystems that directly access and
change the same data while maintaining data
integrity.

DB2 PM . DB2 Performance Monitor.

deallocate . To release a resource that is assigned to
a specific task.

default . A value, attribute, or option that is assumed
when no alternative is specified by the user.

destination node . The node that provides application
services to an authorized external user.

device control unit . A hardware device that controls
the reading, writing, or displaying of data at one or
more input/output devices or terminals.

device number . The unique number assigned to an
external device.

device type . The general name for a kind of device;
for example, 3330.

DFSMS. Data Facility Storage Management
Subsystem.

direct access storage device (DASD) . A device in
which the access time effectively independent of the
location of the data.

directory . (1) A type of file containing the names and
controll ing information for other fi les or other
directories. Directories can also contain
subdirectories, which can contain subdirectories of
their own. (2) A file that contains directory entries.
No two directory entries in the same directory can
have the same name. (POSIX.1). (3) A file that points
to files and to other directories. (4) An index used by
a control program to locate blocks of data that are
stored in separate areas of a data set in direct access
storage.

display console . In MVS, an MCS console whose
input/output function you can control.

DLL filter . A filter that provides one or more of these
functions in a dynamic load library - init(), prolog(),
process(), epilog(), and term(). See cfilter.h and
cfilter.c in the /usr/lpp/Printsrv/samples/ directory for
more information. See also filter. Contrast with DLL
filter.

DOM . An MVS macro that removes outstanding
WTORs or action messages that have been queued to
a console end-of-tape-marker. A marker on a

360 ABCs of OS/390 System Programming

dotted decimal notation

magnetic tape used to indicate the end of the
permissible recording area, for example, a
photo-reflective strip a transparent section of tape, or
a particular bit pattern.

dotted decimal notation . The syntactical
representation for a 32-bit integer that consists of four
8-bit numbers written in base 10 with periods (dots)
separating them. It is used to represent IP addresses.

double-byte character set (DBCS) . A set of
characters in which each character is represented by
a two-bytes code. Languages such as Japanese,
Chinese, and Korean, which contain more symbols
than can be represented by 256 code points, require
double-byte character sets. Because each character
requires two bytes, the typing, display, and printing of
DBCS characters requires hardware and programs
that support DBCS. Contrast with single-byte
character set.

drain . Allowing a printer to complete its current work
before stopping the device.

E
entry area . In MVS, the part of a console screen
where operators can enter commands or command
responses.

EMIF. ESCON Multiple Image Facility.

Enterprise Systems Connection (ESCON) . A set of
products and services that provides a dynamically
connected environment using optical cables as a
transmission medium.

EPDM. IBM SystemView Enterprise Performance
Data Manager/MVS.

ESCD. ESCON Director.

ESCM. ESCON Manager. The licensed program
System Automation for OS/390 includes all of the
function previosuly provided by ESCM.

ESCON. Enterprise Systems Connection.

ETR. External Time Reference. See also Sysplex
Timer.

extended MCS console . In MVS, a console other than
an MCS console from which operators or programs
can issue MVS commands and receive messages. An
extended MCS console is defined through an
OPERPARM segment.

F
FMID . Function modification identifier. The IBM
release-specific product identifier such as HJE6610 for
OS/390 Release 1 JES2.

FOR. File-owning region.

frame . For a System/390 microprocessor cluster, a
frame contains one or two central processor
complexes (CPCs), support elements, and AC power
distribution.

FSS. functional subsystem. An address space
uniquely identified as performing a specific function
related to the JES. An example of an FSS is the
program Print Services Facility that operates the 3800
Model 3 an 38xx printers.

functional subsystem (FSS) . An address space
uniquely identified as performing a specific function
related to the JES.

functional subsystem application (FSA) . The
functional application program managed by the
functional subsystem.

functional subsystem interface (FSI) . The interface
through which JES2 JES3 communicate with the
functional subsystem.

G
gateway node . A node that is an interface between
networks.

generalized trace facility (GTF) . Like system trace,
gathers information used to determine and diagnose
problems that occur during system operation. Unlike
system trace, however, GTF can be tailored to record
very specific system and user program events.

global access checking . The ability to allow an
installation to establish an in-storage table of default
values for authorization levels for selected resources.

global resource serialization . A function that
provides an MVS serialization mechanism for
resources (typically data sets) across multiple MVS
images.

global resource serialization complex . One or more
MVS systems that use global resource serialization to
serialize access to shared resources (such as data
sets on shared DASD volumes).

group . A collection of RACF users who can share
access authorities for protected resources.

GTF. Generalized trace facility.

Glossary 361

hardcopy log

H
hardcopy log . In systems with multiple console
support or a graphic console, a permanent record of
system activity.

hardware . Physical equipment, as opposed to the
computer program or method of use; for example,
mechanical, magnetic, electrical, or electronic
devices. Contrast with software.

hardware configuration dialog . In MVS, a panel
program that is part of the hardware configuration
definition. The program allows an installation to
define devices for MVS system configurations.

Hardware Management Console . A console used to
monitor and control hardware such as the System/390
microprocessors.

HCD. Hardware Configuration Definition.

highly parallel . Refers to multiple systems operating
in parallel, each of which can have multiple
processors. See also n-way.

I
ICMF . Integrated Coupling Migration Facility.

IMS . Information Management System.

IMS DB . Information Management System Database
Manager.

IMS DB data sharing group . A collection of one or
more concurrent IMS DB subsystems that directly
access and change the same data while maintaining
data integrity.

IMS TM. Information Management System
Transaction Manager.

initial program load (IPL) . The initialization procedure
that causes an operating system to begin operation.

instruction line . In MVS, the part of the console
screen that contains messages about console control
and input errors.

internal reader . A facility that transfers jobs to the
job entry subsystem (JES2 or JES3).

IOCDS. Input/output configuration data set.

IOCP. Input/output configuration program.

IODF. Input/output definition file.

IPL . Initial program load.

IRLM . Internal resource lock manager.

ISPF. Interactive System Productivity Facility.

J
JES common coupling services . A set of
macro-driven services that provide the
communication interface between JES members of a
sysplex. Synonymous with JES XCF.

JESXCF . JES cross-system coupling services. The
MVS component, common to both JES2 and JES3, that
provides the cross-system coupling services to either
JES2 multi-access spool members or JES3 complex
members, respectively.

JES2 . An MVS subsystem that receives jobs into the
system, converts them to internal format, selects
them for execution, processes their output, and
purges them from the system. In an installation with
more than one processor, each JES2 processor
independently controls its job input, scheduling, and
output processing.

JES2 multi-access spool configuration . A multiple
MVS system environment that consists of two or more
JES2 processors sharing the same job queue and
spool

JES3 . An MVS subsystem that receives jobs into the
system, converts them to internal format, selects
them for execution, processes their output, and
purges them from the system. In complexes that
have several loosely-coupled processing units, the
JES3 program manages processors so that the global
processor exercises centralized control over the local
processors and distributes jobs to them via a common
job queue.

JES3 complex . A multiple MVS system environment
that allows JES3 subsystem consoles and MCS
consoles with a logical association to JES3 to receive
messages and send commands across systems.

job entry subsystem (JES) . A system facility for
spooling, job queuing, and managing the scheduler
work area.

job separator page data area (JSPA) . A data area
that contains job-level information for a data set. This
information is used to generate job header, job trailer
or data set header pages. The JSPA can be used by
an installation-defined JES2 exit routine to duplicate
the information currently in the JES2 separator page
exit routine.

job separator pages . Those pages of printed output
that delimit jobs.

362 ABCs of OS/390 System Programming

keyword

K
keyword . A part of a command operand or
SYS1.PARMLIB statement that consists of a specific
character string (such as NAME= on the CONSOLE
statement of CONSOLxx).

L
LIC . Licensed Internal Code.

list structure . A coupling facility structure that
enables multisystem applications in a sysplex to
share information organized as a set of lists or
queues. A list structure consists of a set of lists and
an optional lock table, which can be used for
serializing resources in the list structure. Each list
consists of a queue of list entries.

lock structure . A coupling facility structure that
enables applications in a sysplex to implement
customized locking protocols for serialization of
application-defined resources. The lock structure
supports shared, exclusive, and application-defined
lock states, as well as generalized contention
management and recovery protocols.

logical partition (LP) . A subset of the processor
hardware that is defined to support an operating
system. See also logically partitioned (LPAR) mode.

logically partitioned (LPAR) mode . A central
processor complex (CPC) power-on reset mode that
enables use of the PR/SM feature and allows an
operator to allocate CPC hardware resources
(including central processors, central storage,
expanded storage, and channel paths) among logical
partitions. Contrast with basic mode.

logical unit (LU) . In SNA, a port through which an
end user accesses th SNA network in order to
communicate with another end user and through
which the end user accesses the functions provided
by system services control points (SSCPs).

logical unit type 6.2 . The SNA logical unit type that
supports general communication between programs in
a cooperative processing environment.

loosely coupled . A multisystem structure that
requires a low degree of interaction and cooperation
between multiple MVS images to process a workload.
See also tightly coupled.

LP . Logical partition.

LPAR . Logically partitioned (mode).

M
MAS . Multi-access spool.

master console . In an MVS system or sysplex, the
main console used for communication between the
operator and the system from which all MVS
commands can be entered. The first active console
with AUTH(MASTER) defined becomes the master
console in a system or sysplex.

master console authority . In a system or sysplex, a
console defined with AUTH(MASTER) other than the
master console from which all MVS commands can be
entered.

master trace . A centralized data tracing facility of
the master scheduler, used in servicing the message
processing portions of MVS.

MCS . Multiple console support.

MCS console . A non-SNA device defined to MVS that
is locally attached to an MVS system and is used to
enter commands and receive messages.

member . A specific function (one or more
modules/routines) of a multisystem application that is
defined to XCF and assigned to a group by the
multisystem application. A member resides on one
system in the sysplex and can use XCF services to
communicate (send and receive data) with other
members of the same group.

message processing facility (MPF) . A facility used to
control message retention, suppression, and
presentation.

message queue . A queue of messages that are
waiting to be processed or waiting to be sent to a
terminal.

message text . The part of a message consisting of
the actual information that is routed to a user at a
terminal or to a program.

microprocessor . A processor implemented on one or
a small number of chips.

mixed complex . A global resource serialization
complex in which one or more of the systems in the
global resource serialization complex are not part of a
multisystem sysplex.

MP . Multiprocessor.

MPF. Message processing facility.

MPFLSTxx . The SYS1.PARMLIB member that
controls the message processing facility for the
system.

MRO . Multiregion operation.

Glossary 363

multiple console support (MCS)

multiple console support (MCS) . The operator
interface in an MVS system.

multi-access spool (MAS) . A complex of multiple
processors running MVS/JES2 that share a common
JES2 spool and JES2 checkpoint data set.

multiprocessing . The simultaneous execution of two
or more computer programs or sequences of
instructions. See also parallel processing.

multiprocessor (MP) . A CPC that can be physically
partit ioned to form two operating processor
complexes.

multisystem application . An application program that
has various functions distributed across MVS images
in a multisystem environment.

multisystem console support . Multiple console
support for more than one system in a sysplex.
Multisystem console support allows consoles on
different systems in the sysplex to communicate with
each other (send messages and receive commands)

multisystem environment . An environment in which
two or more MVS images reside in one or more
processors, and programs on one image can
communicate with programs on the other images.

multisystem sysplex . A sysplex in which two or more
MVS images are allowed to be initialized as part of
the sysplex.

MVS image . A single occurrence of the MVS/ESA
operating system that has the ability to process work.

MVS router . The MVS router is a system service that
provides an installation with centralized control over
system security processing.

MVS system . An MVS image together with its
associated hardware, which collectively are often
referred to simply as a system, or MVS system.

MVS/ESA . Multiple Virtual Storage/ESA.

MVSCP. MVS configuration program.

N
n-way . The number (n) of CPs in a CPC. For
example, a 6-way CPC contains six CPs.

NIP. Nucleus initialization program.

NJE . Network job entry.

no-consoles condition . A condition in which the
system is unable to access any full-capability console
device.

nonstandard labels . Labels that do not conform to
American National Standard or IBM System/370
standard label conventions.

nucleus initialization program (NIP) . The stage of
MVS that initializes the control program; it allows the
operator to request last minute changes to certain
options specified during initialization.

O
offline . Pertaining to equipment or devices not under
control of the processor.

OLTP . Online transaction processing.

online . Pertaining to equipment or devices under
control of the processor.

OPC/ESA . Operations Planning and Control.

operating system (OS) . Software that controls the
execution of programs and that may provide services
such as resource allocation, scheduling, input/output
control, and data management. Although operating
systems are predominantly software, partial hardware
implementations are possible.

operations log . In MVS, the operations log is a
central record of communications and system
problems for each system in a sysplex.

OPERLOG . The operations log.

OPERPARM . In MVS, a segment that contains
information about console attributes for extended
MCS consoles running on TSO/E.

OS/390. OS/390 is a network computing-ready,
integrated operating system consisting of more than
50 base elements and integrated optional features
delivered as a configured, tested system.

OS/390 Network File System . A base element of
OS/390, that allows remote access to MVS host
processor data from workstations, personal
computers, or any other system on a TCP/IP network
that is using client software for the Network File
System protocol.

OS/390 UNIX System Services (OS/390 UNIX) . The
set of functions provided by the SHELL and UTILITIES,
kernel, debugger, f i le system, C/C++ Run-Time
Library, Language Environment, and other elements
of the OS/390 operating system that allow users to
write and run application programs that conform to
UNIX standards.

364 ABCs of OS/390 System Programming

parallel processing

P
parallel processing . The simultaneous processing of
units of work by many servers. The units of work can
be either transactions or subdivisions of large units of
work (batch). See also highly parallel.

Parallel Sysplex . A sysplex that uses one or more
coupling facilities.

partitionable CPC . A CPC that can be divided into 2
independent CPCs. See also physical partition,
single-image mode, MP, side.

partitioned data set (PDS) . A data set on direct
access storage that is divided into partitions, called
members, each of which can contain a program, part
of a program, or data.

partitioned data set extended (PDSE) . A
system-managed data set that contains an indexed
directory and members that are similar to the
directory and members of partitioned data sets. A
PDSE can be used instead of a partitioned data set.

password . A unique string of characters known to a
computer system and to a user, who must specify the
character string to gain access to a system and to the
information stored within it.

permanent data set . A user-named data set that is
normally retained for longer than the duration of a job
or interactive session. Contrast with temporary data
set.

PFK . Program function key.

PFK capability . On a display console, indicates that
program function keys are supported and were
specified at system generation.

PFKTABxx . The SYS1.PARMLIB member that
controls the PFK table settings for MCS consoles in a
system.

physical partition . Part of a CPC that operates as a
CPC in its own right, with its own copy of the
operating system.

physically partitioned (PP) configuration . A system
configuration that allows the processor controller to
use both central processor complex (CPC) sides as
individual CPCs. The A-side of the processor
controller controls side 0; the B-side of the processor
controller controls side 1. Contrast with single-image
(SI) configuration.

PR/SM. Processor Resource/Systems Manager.

Print Services Facility (PSF) . The access method that
supports the 3800 Printing Subsystem Models 3 and 8.
PSF can interface either directly to a user′s

application program or indirectly through the Job
Entry Subsystem (JES) of MVS.

printer . (1) A device that writes output data from a
system on paper or other media.

processor controller . Hardware that provides support
and diagnostic functions for the central processors.

Processor Resource/Systems Manager (PR/SM) . The
feature that allows the processor to use several MVS
images simultaneously and provides logical
partit ioning capability. See also LPAR.

profile . Data that describes the significant
characteristics of a user, a group of users, or one or
more computer resources.

program function key (PFK) . A key on the keyboard
of a display device that passes a signal to a program
to call for a particular program operation.

program status word (PSW) . A doubleword in main
storage used to control the order in which instructions
are executed, and to hold and indicate the status of
the computing system in relation to a particular
program.

pseudo-master console . A subsystem-allocatable
console that has system command authority like that
of an MCS master console.

PSW. Program status word.

R
RACF . See Resource Access Control Facility.

RAID . See redundant array of independent disk.

RAMAC Virtual Array (RVA) system . An online,
random access disk array storage system composed
of disk storage and control unit combined into a single
frame.

read access . Permission to read information.

recording format . For a tape volume, the format of
the data on the tape, for example, 18, 36, 128, or 256
tracks.

recovery . The process of rebuilding data after it has
been damaged or destroyed, often by using a backup
copy of the data or by reapplying transactions
recorded in a log.

redundant array of independent disk (RAID) . A disk
subsystem architecture that combines two or more
physical disk storage devices into a single logical
device to achieve data redundancy.

remote operations . Operation of remote sites from a
host system.

Glossary 365

Resource Access Control Facility (RACF)

Resource Access Control Facility (RACF) . An
IBM-licensed program or a base element of OS/390,
that provides for access control by identifying and
verifying the users to the system, authorizing access
to protected resources, logging the detected
unauthorized attempts to enter the system and
logging the detected accesses to protected resources.

restructured extended executor (REXX) . A
general-purpose, procedural language for end-user
personal programming, designed for ease by both
casual general users and computer professionals. It
is also useful for application macros. REXX includes
the capability of issuing commands to the underlying
operating system from these macros and procedures.
Features include powerful character-string
manipulation, automatic data typing, manipulation of
objects familiar to people, such as words, numbers,
and names, and built-in interactive debugging.

REXX. See restructured extended executor.

RMF . Resource Measurement Facility.

rmode . Residency mode. A program attribute that
can be specified (or defaulted) for each CSECT, load
module, and load module alias. RMODE states the
virtual storage location (either above 16 megabytes
or anywhere in virtual storage) where the program
should reside.

roll mode . The MCS console display mode that
allows messages to roll of off the screen when a
specified time interval elapses.

roll-deletable mode . The console display mode that
allows messages to roll off the screen when a
specified time interval elapses. Action messages
remain at the top of the screen where operators can
delete them.

routing . The assignment of the communications path
by which a message will reach its destination.

routing code . A code assigned to an operator
message and used to route the message to the
proper console.

RVA . See RAMAC Virtual Array system.

S
SCDS. Source control data set.

SDSF. System Display and Search Facility.

shared DASD option . An option that enables
independently operating computing systems to jointly
use common data residing on shared direct access
storage devices.

side . A part of a partitionable CPC that can run as a
physical partition and is typically referred to as the
A-side or the B-side.

single point of control . The characteristic a sysplex
displays when you can accomplish a given set of
tasks from a single workstation, even if you need
multiple IBM and vendor products to accomplish that
particular set of tasks.

single system image . The characteristic a product
displays when multiple images of the product can be
viewed and managed as one image.

single-image (SI) mode . A mode of operation for a
multiprocessor (MP) system that allows it to function
as one CPC. By definition, a uniprocessor (UP)
operates in single-image mode. Contrast with
physically partitioned (PP) configuration.

single-system sysplex . A sysplex in which only one
MVS system is allowed to be initialized as part of the
sysplex. In a single-system sysplex, XCF provides
XCF services on the system but does not provide
signalling services between MVS systems. See also
multisystem sysplex, XCF-local mode.

SLR . Service Level Reporter.

small computer system interface (SCSI) . A standard
hardware interface that enables a variety of
peripheral devices to communicate with one another.

SMF. System management facilit ies.

SMP/E. System Modification Program Extended.

SMS . Storage Management Subsystem.

SMS communication data set . The primary means of
communication among systems governed by a single
SMS configuration. The SMS communication data set
(COMMDS) is a VSAM linear data set that contains
the current util ization statistics for each
system-managed volume, which SMS uses to help
balance space usage among systems.

SMS configuration . The SMS definitions and routines
that the Storage Management Subsystem uses to
manage storage.

SMS system group . All systems in a sysplex that
share the same SMS configuration and
communications data sets, minus any systems in the
sysplex that are defined individually in the SMS
configuration.

software . (1) All or part of the programs, procedures,
rules, and associated documentation of a data
processing system. (2) Contrast with hardware. A set
of programs, procedures, and, possibly, associated
documentation concerned with the operation of a data
processing system. For example, compilers, l ibrary

366 ABCs of OS/390 System Programming

spanned record

routines, manuals, circuit diagrams. Contrast with
hardware.

spanned record . A logical record contained in more
than one block.

status-display console . An MCS console that can
receive displays of system status but from which an
operator cannot enter commands.

storage administrator . A person in the data
processing center who is responsible for defining,
implementing, and maintaining storage manageme
policies.

storage class . A collection of storage attributes that
identify performance goals and availabil ity
requirements, defined by the storage administrator,
used to select a device that can meet those goals and
requirements.

storage group . A collection of storage volumes and
attributes, defined the storage administrator. The
collections can be a group of DASD volume or tape
volumes, or a group of DASD, optical, or tape
volumes treated as single object storage hierarchy.
See tape storage group.

storage management . The activities of data set
allocation, placement, monitoring, migration, backup,
recall, recovery, and deletion. These can be done
either manually or by using automated processes.
cThe Storage Management Subsystem automates
these processes for you, while optimizing storage
resources. See also Storage Management
Subsystem.

Storage Management Subsystem (SMS) . A
DFSMS/MVS facility used to automate and centralize
the management of storage. Using SMS, a storage
administrator describes data allocation
characteristics, performance and availability goals,
backup and retention requirements, and storage
requirements to the system through data class,
storage class, management class, storage group, and
ACS routine definitions.

storage subsystem . A storage control and its
attached storage devices. See also tape subsystem.

structure . A construct used by MVS to map and
manage storage on a coupling facility. See cache
structure, list structure, and lock structure.

subsystem-allocatable console . A console managed
by a subsystem like JES3 or NetView used to
communicate with an MVS system.

subsystem interface (SSI) . An MVS component that
provides communication between MVS and JES.

supervisor call instruction (SVC) . An instruction that
interrupts a program being executed and passes

control to the supervisor so that it can perform a
specific service indicated by the instruction.

support element . A hardware unit that provides
communications, monitoring, and diagnostic functions
to a central processor complex (CPC).

SVC routine . A control program routine that
performs or begins a contro program service
specified by a supervisor call instruction.

symmetry . The characteristic of a sysplex where all
systems, or certain subsets of the systems, have the
same hardware and software configurations and
share the same resources.

synchronous messages . WTO or WTOR messages
issued by an MVS system during certain recovery
situations.

SYSLOG . The system log data set.

sysplex . A set of MVS systems communicating and
cooperating with each other through certain
multisystem hardware components and software
services to process customer workloads. See also
MVS system, Parallel Sysplex.

sysplex couple data set . A couple data set that
contains sysplex-wide data about systems, groups,
and members that use XCF services. All MVS
systems in a sysplex must have connectivity to the
sysplex couple data set. See also couple data set.

Sysplex Timer . An IBM unit that synchronizes the
time-of-day (TOD) clocks in multiple processors or
processor sides. External Time Reference (ETR) is
the MVS generic name for the IBM Sysplex Timer
(9037).

system control element (SCE) . Hardware that
handles the transfer of data and control information
associated with storage requests between the
elements of the processor.

system console . In MVS, a console attached to the
processor controller used to initialize an MVS system.

system log (SYSLOG) . In MVS, the system log data
set that includes all entries made by the WTL
(write-to-log) macro as well as the hardcopy log.
SYSLOG is maintained by JES in JES SPOOL space.

system management facilities (SMF) . An optional
control program feature of OS/390 and MVS that
provides the means for gathering and recording
information that can be used to evaluate system
usage.

System Modification Program Extended (SMP/E) . In
addition to providing the services of SMP, SMP/E
consolidates installation data, allows more flexibility
in selecting changes to be installed, provides a dialog

Glossary 367

Systems Network Architecture (SNA)

interface, and supports dynamic allocation of data
sets.

Systems Network Architecture (SNA) . A description
of the logical structure, formats, protocols, and
operational sequences for transmitting information
units through, and controlling the configuration and
operation of networks.

system trace . A chronological record of specific
operating system events. The record is usually
produced for debugging purposes.

T
temporary data set . A data set that is created and
deleted in the same job.

terminal . A device, usually equipped with a keyboard
and some kind of display, capable of sending and
receiving information over a link.

terminal user . In systems with time-sharing, anyone
who is eligible to log on.

tightly coupled . Multiple CPs that share storage and
are controlled by a single copy of MVS. See also
loosely coupled, tightly coupled multiprocessor.

tightly coupled multiprocessor . Any CPU with
multiple CPs.

Time Sharing Option (TSO) . An option on the
operating system; for OS/390 the option provides
interactive time sharing from remote terminals.

TOR. Terminal-owning region.

transaction . In APPC/MVS, a unit of work performed
by one or more transaction programs, involving a
specific set of input data and initiating a specific
process or job.

transaction program (TP) . For APPC/MVS, any
program on MVS that issues APPC/MVS or CPI
Communication calls, or is scheduled by the
APPC/MVS transaction scheduler.

U
undelivered message . An action message or WTOR
that cannot be queued for delivery to the expected
console. MVS delivers these messages to any
console with the UD console attribute in a system or
sysplex.

uniprocessor (UP) . A CPC that contains one CP and
is not partitionable.

UP. Uniprocessor.

V
VM . Virtual Machine.

virtual telecommunications access method (VTAM) . A
set of programs that maintain control of the
communication between terminals and application
programs running under DOS/VS, OS/VS1, and
OS/VS2 operating systems.

volume . (1) That portion of a single unit of storage
which is accessible to a single read/write mechanism,
for example, a drum, a disk pack, or part of a disk
storage module. (2) A recording medium that is
mounted and demounted as a unit, for example, a reel
of magnetic tape, a disk pack, a data cell.

volume serial number . A number in a volume label
that is assigned when a volume is prepared for use in
the system.

volume table of contents (VTOC) . A table on a direct
access volume that describes each data set on the
volume.

VSAM . Virtual Storage Access Method.

VTAM . Virtual Telecommunications Access Method.

VTOC. Volume table of contents.

W
wait state . Synonymous with waiting time.

waiting time . (1) The condition of a task that depends
on one or more events in order to enter the ready
condition. (2) The condition of a processing unit when
all operations are suspended.

WLM . MVS workload management.

wrap mode . The console display mode that allows a
separator line between old and new messages to
move down a full screen as new messages are added.
When the screen is filled and a new message is
added, the separator line overlays the oldest
message and the newest message appears
immediately before the line.

write-to-log (WTL) message . A message sent to
SYSLOG or the hardcopy log.

write-to-operator (WTO) message . A message sent to
an operator console informing the operator of errors
and system conditions that may need correcting.

write-to-operator-with-reply (WTOR) message . A
message sent to an operator console informing the
operator of errors and system conditions that may
need correcting. The operator must enter a response.

368 ABCs of OS/390 System Programming

WTL message

WTL message . Write-to-log message

WTO message . Write-to-operator message

WTOR message . Write-to-operator-with-reply
message.

X
XCF. Cross-system coupling facility.

XCF PR/SM policy . In a multisystem sysplex on
PR/SM, the actions that XCF takes when one MVS
system in the sysplex fails. This policy provides high

availabil ity for multisystem applications in the
sysplex.

XCF-local mode . The state of a system in which XCF
provides limited services on one system and does not
provide signalling services between MVS systems.
See also single-system sysplex.

XRF. Extended recovery facility.

Glossary 369

370 ABCs of OS/390 System Programming

IBM Redbooks evaluation

ABCs of OS/390 System Programming Volume 4
SG24-5654-00

Your feedback is very important to help us maintain the quality of IBM Redbooks. Please complete this
questionnaire and return it using one of the following methods:

• Use the online evaluation form found at http://www.redbooks.ibm.com/
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
__Customer __Business Partner __Solution Developer __IBM employee
__None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction ____________

Please answer the following questions:

Was this redbook published in time for your needs? Yes____ No____

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

 Copyright IBM Corp. 2000 371

SG24-5654-00
Printed in the U.S.A.

A
B

C
s of O

S
/390 S

ystem
 P

rogram
m

ing V
olum

e 4
S

G
24-5654-00IBML 

	ABCs of OS/390 System Programming
	Volume 4
	Contents
	Figures
	Tables
	Preface
	The team that wrote this redbook
	Comments welcome

	Chapter 1. Network Management
	Mainframe connectivity overview
	eNetwork Communications Server
	Network Computing Services
	OS/ 390 Distributed Computing
	Networking Products
	VTAM
	SNA
	SNA Layered Architecture
	Hardware and software components
	The Network Blueprint
	A subarea network
	An APPN network
	Subareas
	Domains in a subarea network
	Network node domains in APPN
	Starting VTAM
	VTAM procedure
	VTAM data sets
	VTAM commands
	VTAM major nodes
	TCP/ IP
	TCP/ IP layered structure
	TCP/ IP terminology
	Sockets
	Internet technology
	Internet components
	Internet concepts
	The Internet versus an internet
	Internet guiding entities
	Internet addressing
	IP address classes
	Subnetwork addressing
	Network definitions
	Internet gateways
	Basic gateways
	Full-function gateways
	Gateway protocols
	Routing information protocol
	TCP/ IP protocol suite
	Protocol layers
	Internet Protocol (IP)
	IP datagrams
	Internet Control Message Protocol (ICMP)
	Address nuances
	Address Resolution Protocol (ARP)
	Reverse Address Resolution Protocol (RARP)
	Proxy ARP
	Domain Name System
	Name servers
	Ports and sockets
	Transport layer protocols
	Transmission Control Protocol (TCP)
	User Datagram Protocol (UDP)
	Clients and servers
	TCP/ IP Application Layer Protocol
	TELNET: an illustration
	Simple Mail Transfer Protocol (SMTP)
	FTP: an illustration
	X- Windows: an illustration
	REXEC support
	Network File System
	TCP/ IP data sets
	Configuring TCP/ IP - Profile data set
	Configuring TCP/ IP - TCPDATA
	Customizing TCP/ IP
	Routing
	TCP/ IP applications
	TN3270 parms
	FTP
	FTP setup
	FTP daemon
	Logging in to OS/ 390 UNIX shell
	Using inetd - master of daemons
	Customize inetd (part 1)
	Customize inetd (part 2)
	Start options for daemons
	Define daemon security
	OSA/ SF
	OSA/ SF configuration
	OSA/ SF definitions
	Setting up OSA/ SF
	OSA/ SF and APPC definitions
	OSA/ SF TSO/ E commands
	OSA Address Table
	Configuring OSA/ SF
	TCP/ IP Passthrough

	Chapter 2. Security and RACF
	Components of OS/390 security
	OS/ 390 Firewall Technologies
	What is RACF
	System Authorization Facility (SAF)
	Resource managers
	Token support
	Resource validation overview
	RACF functions
	Using RACF
	System options
	SETROPTS LIST command
	Define users
	User attributes
	RACF user segments
	RACF user ID passwords
	How to use RACF ISPF panels
	RACF resource profiles
	RACF commands
	How to add a user
	How to reset a password
	How to alter a user ID segment
	How to connect a user to a group
	How to remove a user from a group
	How to a change a user¢ s password interval
	How to a delete a user
	RACF groups
	RACF group structure
	How to add a group
	How to alter a group
	How to connect a user to a group
	How to remove a user from a group
	How to delete a group
	Controlling access to resources
	RACF data sets and general resources
	Defining data set profiles
	Data set profile access list
	How to add a data set profile
	How to alter a data set profile
	List a data set profile matching a mask
	List a catalogued data set
	List who has access to a data set profile
	How to add a general resource profile
	How to change universal access authority
	How to permit access to a resource profile
	RACF monitoring
	Example of RACF immediate notification - example 1
	Example of RACF immediate notification - example 2
	RACF auditing tools
	SMF Data Unload Utility (IRRADU00 program)
	How to run the SMF Data Unload Utility (IRRADU00)
	RACF report writer
	How to run RACF report writer
	RACF Data Security Monitor
	How to run the DSMON program
	RACF Database Unload Utility
	How to run IRRDBU00

	Chapter 3. OS/390 UNIX System Services
	Products and components with OS/ 390 UNIX
	UNIX System Services
	POSIX standards overview
	X/ Open Portability Guide
	OS/ 390 operating system with OS/ 390 UNIX
	OS/ 390 UNIX programs (processes)
	Create a process
	OS/ 390 UNIX processes
	OS/ 390 UNIX components
	Hierarchical file system (HFS)
	HFS data sets
	DFSMSdss enhancement for HFS data sets
	HFS naming convention
	Comparison of file systems
	OS/ 390 UNIX interactive interfaces
	UNIX System Services from TSO/ E
	ISPF Option 6
	ISHELL command panel
	Files and directories
	OMVS command
	OMVS command results
	RACF definitions
	RACF OMVS segments
	IEASYSxx parmlib member
	OS/ 390 UNIX minimum mode
	Minimum mode TFS
	OS/ 390 UNIX full- function mode
	OS/ 390 UNIX installation

	Chapter 4. Language Environment
	Language Environment (LE)
	HLL concepts and LE
	LE components
	LE¢ s common run- time environment
	HLLs demanding LE
	LE standards
	LE terms and HLL equivalents
	LE program management
	Assembler language and programs
	Sample assembler routine

	Chapter 5. Infoprint Server
	OS/ 390 Print Server
	TCP/ IP Print Protocol
	Components of OS/ 390 Print Server
	Infoprint Server overview
	OS/ 390 Infoprint Server benefits
	Print Interface
	NetSpool
	IP PrintWay
	Windows 95 and Windows NT support
	OS/ 390 UNIX System Services
	Printer Inventory Manager
	Migration program
	Infoprint Server installation

	Appendix A. Network Management
	A.1 Major node definitions
	A.2 XCA Major Node
	A.3 Switched major node
	A.4 Sample FTP start procedure
	A.5 Sample OAT

	Appendix B. Special Notices
	Appendix C. Related Publications
	C. 1 IBM Redbooks
	C. 2 IBM Redbooks collections
	C. 3 Other resources

	How to get IBM Redbooks
	IBM Redbooks fax order form

	Glossary
	IBM Redbooks evaluation

