0SC

C++ Programming for Scientists

Science & Technology Support
High Performance Computing

Ohio Supercomputer Center
1224 Kinnear Road
Columbus, OH 43212-1163

Features of C++ -- A Better C

1) A Better C

* Providing features that make common C errors unlikely
o C++isasuperset of C

 Extensionsto C

* Improvementsto C performance/ease-of-use.

2
Osc C++ Programming for Scientists

Features of C++ -- Object-Oriented Programming

2) Enabling Object-Oriented Programming (OOP)
« Entirely new approach to programming: next major programming style beyond
functional decomposition
— Model real world by making data typesthat replicate real objects
— Facilitates code reuse: reuse and enhance existing libraries

 Main program consists of creation and manipulation of objects
* Object = data + functions which allow you to interact with the data

* Ingeneral, data controlled only through these interface functions. Data
Encapsulation

o C operators can work with your objects: Operator Overloading

« “Advanced” objects can incorporate features of “Simpler” objects:
|nheritance

* With the same syntax, objects can act differently in different situations;
Polymor phism

3
Osc C++ Programming for Scientists

Features of C++ -- Templates

e Function templates allow the C++ programmer to write a single function that
will work for all types of data.

« Similarly, classtemplates alow the C++ programmer to represent a family of
classes.

 The Standard Template Library (STL) isacollection of extremely useful
class templates, function templates and algorithms, allowing the programmer a
wide variety of capabilities.

4
Osc C++ Programming for Scientists

Table of Contents

e A Better C
e Object-Oriented Programming (OOP)
» Templates and The Standard Template Library (STL)

)
OSC C++ Programming for Scientists

A Better C

Generdl:

End-of-line Comments

Boolean Data Type

Type-casting Syntax

| nput/Output Streams
Omnipresent Variable Declaration
const Keyword

Memory Allocation Syntax

0SC

Function-rel ated:

Improved Argument Type
Checking/Strict Function
Prototyping

| nterpretation of thevoi d

keyword
Type-safe Linkage

Default Arguments
Function Overloading
|nlined Functions
Reference Declarations
Operator Overloading!!

6

C++ Programming for Scientists

End-of-Line Comments

« Singlelineform of acomment begun with the // symbol
— Everything from the delimiter // to the end-of-the-line isignored
— Reminiscent for the Fortran 90 use of ! for one-line commenting
o Familiar, multi-line style of commenting still worksin C++

Warning: /* ... */ commenting may not nest with some compilers

7
OSC C++ Programming for Scientists

End-of-Line Comments Sample Program

#i ncl ude <stdi o. h>
mai n() {
float r, theta; // polar coordinates
float x,y,z; // Cartesian coordi nates
/1 only works for one |ine
/* code m ght need | ater
x=10; y=100;
z=x*3+2-y/ 4;
printf("z is % \n", z);
*/

8
OSC C++ Programming for Scientists

Boolean Data Type

o C++ now supports a Boolean data type identified by the keyword bool .
Variables of thistype will take on the values true and false. Asin both C and

C++ “false” isdefinedtobe 0. A “ " Boolean variable will take on the
value 1. Below isasmall program that demonstrates how Boolean variables
work:
#i ncl ude <i ostream h>
mai n() {

I nt | =4;

I nt j=78;

bool | ogicl;

bool | ogic2;

logicl = (i=5);

cout << "logicl=" << logicl << endl;
l ogic2 = (i<));

cout << "logic2=" << logic2 << endl;

}
|

ogi cl=
| ogi c2=1

9
OSC C++ Programming for Scientists

Type-casting Syntax

* In C, override type casting was possible with the following (awkward) syntax:

int i
(doubl e) i

* |In C++, asecond (less awkward) syntax can also be used:

doubl e(1)
char (3+' A")

o Additional usefulness of this new syntax will be seen later in the OOP Section.

10
Osc C++ Programming for Scientists

Input/Qutput Streams

» Probably the strangest thing you would notice when looking at a C++ for the
first time...

* Replacement of the st di o library of C withthei ost r eamlibrary of C++.
For example the C++ version of the classic “Hello World” program looks as
follows:

#i ncl ude <i ostream h>

mai n() {
cout << "Hello World\n";

}
Notice the 3 changes:
1 Include instead of st di 0. h
2 The keyword indicates that the output should go to standard out. There

are corresponding keywords ci n and cer r which represent standard in and
standard error, respectively

3 Useof theinsertion operator as opposed to the printf function. The
corresponding extraction operator for input is >>

11
OSC C++ Programming for Scientists

Advantages of i ost r eamApproach

« Can extend the insertion/extraction operators to work exactly the way you
want for your own data types (structures variabl es/objects)

o Canjust use default format for quick output display (analogous to Fortran
print *)

« Stream approach more type-safe. Avoid run-time mismatch of format
gpecifiers and their “matching” argumentsin pri nt f and scanf

» Better performance: avoids run-time interpretation of format specifiersin
st di o library functions

12
OSC C++ Programming for Scientists

/O Streams: Default Formats

#1 ncl ude <i ostream h>
mai n() {
I nt | =44;
fl oat f=10. 40:;
doubl e d=2. 718281828459045;

char c='FE ;

char *s="Logan";

cout << ¢ << endl;

cout << s << endl;

cout << f << endl;

cout << d << endl;

cout << | << endl;

cout << s << ¢c << f << | << endl;

cout << & << endl; }

=

Logan
10. 4

2. 71828

44
LoganE1l0. 444
Oxae4l

13
OSC C++ Programming for Scientists

Formatting I/O Streams

« Formatted output is performed by including for mat manipulators (such as the
just seen endl) into the stream.

* Includethei omani p. h filein your code header.

« Some popular manipulators and their functions:

Format Manipulator Function

o String of desired spaces

“\t” Horizontal tab
set (W) Set field width to w
setfill(c) Set fill character to ¢ (blank is default)

setprecision(p) Setfloat precisiontop
dec, oct, hex Use the indicated base

14
Osc C++ Programming for Scientists

Formatting I/O Streams Example

#i ncl ude <i ostream h>
#i ncl ude <i omani p. h>

mai n() {
cout
cout
cout
cout
cout

}

[* k% 192]
[/\/\/\/\CO]

<<
<<
<<
<<
<<

"[" << setw(6) << setfill ('*") << 192;
"1" << endl;

hex << "[" << setwW(6);

setfill("") << 192 << "]" << endl;
setprecision(4) << 3.14159 << endl;

3.142

0SC

15

C++ Programming for Scientists

The Input Stream

* Analogous to output stream in syntax and use of format manipulators.

Il nt c, d;
cin > c >> d;

 Advantage: Avoid the common error of forgetting that the arguments to
scanf are addresses.

Compare

cout << "Nunber of tine steps:",;
cin > T;

to

printf("Nunber of tinme steps:");
scanf (" %", &T) ;

o Thel/O stream approach also exists for files<f st r eam h> and strings
<strstream h>

16
GSC C++ Programming for Scientists

Using the cerr Stream

#i ncl ude <i ostream h>
mai n() {
I nt nunber =34;
fl oat divisor;
cout << nunber << " divided by 2.3 equals "
<< nunber/ 2.3 << endl ;
cout < "Please enter your own divisor: ";
cin >> divisor;
I f (divisor==0.0)
cerr << "Cannot divide by zero" << endl;
el se
cout << " Result is " << nunber/divisor << endl;

(981) conan% a. out
34 divided by 2.3 equals 14. 7826
Pl ease enter your own divisor: 0.0

Cannot divide by zero

(982) conan% a. out

34 divided by 2.3 equals 14. 7826

Pl ease enter your own divisor: 78.2
Result is 0.434783

17
OSC C++ Programming for Scientists

Movable Variable Declarations

 Variables can be declared anywhere in C++ code. Local variables need not all
be declared at the beginning of afunction (or block).

— Similar to implicit-typing and variable creation/use in Fortran.

 Variables come into existence when declared and cease existence when the
present code block is exited.

— Don’t tie-up memory until you really need it and free it up when you don’t
need it anymore.

— Improve code readability (“intuitively right” places for declaration)

0SC *

C++ Programming for Scientists

Movable Variable Declarations Example

Popular use of this feature is with loop counter.

float sum(float *a, Iint N {
fl oat res=0.0;
for (int 1=0;1<N; ++i)
res += al[i];
return(res);

}

Warning (compiler-dependent): scope of int extends to end of entire sum
function. So if included another “i nt 1 ” statement anywhere elseinthesum

function, would get compiler error for redeclaration of the same variable.

Possible performance improvement: make loop counter r egi st er classas
well
for (register int iI=0;..

19

GSC C++ Programming for Scientists

Symbolic Constants in C++

* InC, there exists the standard macro method for declaring symbolic constants:
#define LIMT 2300

« Two problems with this approach are that macros lack type and the macro
nameistypically not available to a debugger.

 InC++ (and ANSI C), theconst keyword can be used at declaration to
indicate that the identifier cannot be subsequently changed:
const int LIM T=2300;

LI M T now has scope and type and is tracked in the name space used by the

compiler and most debuggers. Making symbolic constants ALL CAPITAL
LETTERS has long been a C/C++ convention.

« Theconst keyword can also be used in function argument list to insure that
the argument cannot be changed in the body of the function:

voi d bobba(const int i) {
1=5; // illegal!

20
Osc C++ Programming for Scientists

C++ Memory Allocation Functions

 InC++,themal | oc library of dynamic memory allocation functions are
replaced with the newand del et e operators built into the language.

« Thejudtification for this change is that the “new” operators are easier to use:
avoiding

— the ancillary use of the C si zeof function and
— extraneous type-casting
— operator versus function call overhead

« Aboveisespecialy true with user-defined types.

Warning: Do not mix & matchC'smal | oc() andfree() with C++'snew
and del et e.

21
OSC C++ Programming for Scientists

Dynamic Allocation Examples: Single Variable and Arrays

« Sample code for C++ dynamic allocation of a single variable type
float *fp;
f p=new f | oat ;
*f p=9. 87;
cout << *fp << endl;
delete fp;

» Asthis program demonstrates, the new operator returns the address of a block
of memory large enough to hold a variable of the argument type. The
del et e operator then frees up the memory when it is no longer needed.

* A similar procedure with slightly different syntax is used for dynamic memory
allocation for entire arrays.

float *a;
a=new fl oat[50];
al 44] =34. 5;
delete [] a;

Rule of Thumb: Whenever newisfollowed by [| , del et e should be too.

22
GSC C++ Programming for Scientists

Dynamic Allocation Example: User-defined Data Types

» Perhaps, the most convincing proof of how easily new & delete allow dynamic
memory control, is when working with user-defined data types. Consider this
classic linked list example:

#1 ncl ude <i ostream h>

struct node {
I nt id;
doubl e val ue;
node *next

mai n() {
node *current;
current =new node;
current->i d=78:;
current->val ue=45. 67;
cout << current->id << endl ;
cout << current->val ue << endl;
del ete current:

23
OSC C++ Programming for Scientists

Type Checking

* Ingeneral, C++ usesvery strict type checking.

* With respect to functions, C++ (aswell as ANSI C) requiresthat functions
be prototyped before their use. Thisisto insure that the compiler can check

that
— the proper number of arguments are passed

— where possible and if needed, cast the actual arguments to the proper type

— thereturn typeis properly used in the calling function

24
OSC C++ Programming for Scientists

Type Checking Illlustration

Coo~NoOUITR~WN P

To illustrate the power of function prototyping and argument checking, the
following code

#i ncl ude <i ostream h>
int firstchar(char *s);

mai n() {
fl oat nane=3. 0;
I nt ascii;
asci i =firstchar(nane);
cout << "Ascii code of first char is " << ascii << endl;

Int firstchar(char *s) {

}
produces these compiler error messages

return(int(s[0]));

type.C. In function “int main()’:
type. C. 7. argunent passing to ‘char ** from‘float’

25
OSC C++ Programming for Scientists

Functions with no arguments in C and C++

* In C, afunction prototype with an empty argument list

extern int freak)();:

indicates that the argument list of the declared function is not prototyped and
could have any number of arguments (it is aso defined in a separate file).

* InC, afunction prototype withavoi d argument list
extern int freak(void);
indicates that the function has no arguments.
e Because C++ maintains such strict argument checking, an empty argument list

means there are literally no arguments. So in C++, the two above declar ations
are equivalent.

26
Osc C++ Programming for Scientists

Strict Argument Checking Example

For example, consider the freak function declared initsown filef r eak. C.

int freak(int a) {
return(atb);
}

and amain program in afilecalledt st f r k. Cthat usesthe freak function,

#i ncl ude <stdi o. h>
extern int freak();
mai n() {
I nt x=23;
printf("%l\n", freak(x));

ODUITRWNE e

« when compiled with the gcc command (for example), the following compile-

time error messages are produced

gcc tstfrk. C freak. C
tstfrk.C. In function ‘int main()’:

tstfrk.C. 2: too many argunents to function ‘int freak()’
tstfrk.C:5: at this point in file

* InC, the codein these two files would have run successfully.

27
OSC C++ Programming for Scientists

Type-safe Linkage Example

~NoO oIk, WN -

C++ takes type checking to afurther level beyond ANSI C, by comparing a
function prototyped in the “main” file and actually defined in a separate file.

Consider the function col umdefined in afilecalled col um ¢

doubl e col un(doubl e a, double b) {
return(a/ 2. 0*(b+42.0));
}

and further consider the main sourcefile, t st col . ¢, which usesthe col um

function;

#i ncl ude <stdi o. h>
extern double colun(int a, double b);

mai n()
doubl e a=5. 5, b=6. 7, c;
c=col um a, b);
printf("%\n",c);

}

28
OSC C++ Programming for Scientists

Type-safe Linkage Example Discussion

 Intstcol. c,thefunction prototypeincorrectly declaresthe first dummy
argument to beani nt instead of adoubl e. A C compiler will not find this
error and an incorrect value for ¢ will be produced.

NOTE: C programmers who get in the habit of putting function prototypesin
their own include file can generally avoid the error.

» |f thissame codeis compiled using a C++ compiler, it will find the error and
prevent the creation of an incorrect executable. Thisis accomplished at link
time through a process known as name-mangling. The function names
actually used by the linker are encoded with argument-typing information.

29
Osc C++ Programming for Scientists

Type-safe Linkage Example Output

» For example, using the preceding code example and the following compilation
command, the following error messages would be produced.

CC tstcol.C columC
tstcol.C. In function ‘int main()’:

tstcol.C 5. warning: ‘double’ used for argunent 1 of
“col um(i nt, doubl e)’

Undef i ned first referenced
synbol in file

columFid /var/tnp/cca00lcgl. o

| d: fatal: Synbol referencing errors. No output witten to
a. out

0SC v

C++ Programming for Scientists

Default Arguments

o |n C++, the programmer can set default values for dummy argumentsin
function definitions.

e |If no actual valueis passed to that dummy argument, the default value is used.

o Useful when acertain argument almost always has the same value when the
function is used.

* Inaddition, this approach can reduce the number of actual argumentsin the
function reference.

e On the other hand, should comment on why/how the default value is used.

31
Osc C++ Programming for Scientists

Default Arguments Example

* Asillustration, consider the following program and its output:

#1 ncl ude <i ostream h>

void symm(float x, int k=13) {
cout << "Argunent 1 is " << x << endl;
cout << "Argunent 2 is " << k << endl;

mai n() {
symm(3. 2, 167) ;
symm(5. 4);

Argunent 1 is 3.2
Argunent 2 is 167

Argunent 1 is 5.4

0SC o

C++ Programming for Scientists

Function Overloading

« Often, afunction needsto perform the same operation, but using arguments of
different types.

 |InC++, multiple versions of a function with the same name but different
type ar guments can be defined.

* Inthe main program, the “correct” version of the function is actually used by

the compiler by examining the argument types. (Internally, thisis done
through name-mangling again...).

* Function overloading avoids having multiple functions with slightly different
barogque names which essentially perform the same work.

* Inthefollowing program, aswap function is overloaded to work with both
Integers and doubles.

33
Osc C++ Programming for Scientists

Function Overloading Example

#i ncl ude <i ostream h>
void swap(int* i, int* j) {
I nt tenp;
cout << "int swap called" << endl;
t emp=*i;
*i :*j ’
*] =t enp;
voi d swap(doubl e* x, double* y) {
doubl e t enp;
cout << "double swap called" << endl;
t enp=*Xx,
*X:*y;
_ “y=tenp; }
mai n() {
I nt a=5, b=23;
doubl e r=34.5, s=1245. 78;
swap (&a, &b);
swap (&, &s);
cout << "ais " << a<<"b
cout << "r is " <«<r << " s

" << b << endl;
<< s << endl; }

ais 23 bis 5
r is 1245.78 s is 34.5

0SC

34

C++ Programming for Scientists

Inlined Functions

e |n C++, functions can be declared as inlined. Inlining is a general optimization
technique which causes any reference to afunction to be replaced by the
actual code that makes up the function. The function body isinput in theline
where the function reference occurs. The user programsin their own style and
the compiler does the inlining automatically. (Especially useful for small
functions referenced often).

 Theadvantagesto inlining are:
— Don’t pay the overhead time-cost of the function call itself

— Unlike macros (the alternative approach), inlined functions can be
prototyped and thereby type-checked

— Less proneto errors than macros
« Thedisadvantage of inlining (and macros) is the assembly language “text

bloat” which will occur. In addition, the actual code must be known to the
compiler, thus functionsin arun-time library cannot be inlined.

35
OSC C++ Programming for Scientists

Macros -- C Example

» Thefollowing C code shows that macros can produce incorrect results due
to their literal substitution of arguments:

#i ncl ude <stdi o. h>
#define MJL(a, b) a*b

mai n() {
Int X,vy, z;
x=10; y=100;

z=MUL(Xx*3+2,y/ 4);
printf("z is % \n", z);
}

* Thecorrect result we expected (10* 3+2) *(100/ 4) =800 was not
calculated because the macro substitution resulted in the expression

X*3+2*yl 4
which due to operator precedence gives the value 80.

0SC °

C++ Programming for Scientists

Inlined Functions -- C++ Example

e The problem is solved in the following C++ program using inlining:

#i ncl ude <i ostream h>
inline int mul (int a, int b) {
return a*b;

mai n() {
int X,Vy, z;
x=10; y=100;

z=mul (x*3+2,y/4);
cout << z << endl;

800

0SC o

C++ Programming for Scientists

Call-by-Reference

* InC, theonly way actual arguments are passed to dummy arguments when
referencing afunction is call-by-value.

— Thevalue of the actual argument is passed into the dummy argument. Any
changes the function makes to the dummy arguments will not affect the
actual arguments.

* Cdoes provide an indirect method for changing the value of the actual
arguments, namely call-by-addr ess.

— Addresses are passed from the actual to the dummy argument and the
indirection operator * is used to change the contents of the actual

argument.

38
OSC C++ Programming for Scientists

Call-by-Address -- C Example

« Thefollowing C code demonstrates the use of call-by-address

#i ncl ude <stdi o. h>

struct item{
char* nane;
float price;
I nt quantity;

}s

voi d i ncrease(struct itentr p) {
(*p).price=1.10*(*p). pri ce;
p- >quant i ty=p->quantity+10;

mai n() {

struct itemchicken={"Holly Farns",5. 00, 20};
I ncrease(&chi cken);

printf("New price is %.2f\n", chi cken. price);

New price is 5.50

0SC o

C++ Programming for Scientists

Call-by-Reference -- C Example Discussion

» Thedrawbacksto the C call-by-address approach is that the function body is
difficult to interpret because of the necessary * and - > operators. In addition,

one must remember to use the address operator & for the actual argument in
the function reference itself.

» For these reasons, C++ has developed atrue call-by-reference. If adummy
argument is declared as areference to the actual argument -- by using the
reference operator & (again!) -- it picks up the address of the actual argument
(automatically) and can change the contents of that address.

o Conceptually, the referenced actual argument just gets a new namein the

function: whatever is done to the dummy argument is also done to the actual
argument.

40
OSC C++ Programming for Scientists

Call-by-Reference -- C++ Example

 The C++ version of the previous code using call-by-referenceis:

#1 ncl ude <i ostream h>
struct item{
char* nane; read as “reference to an item structure”
float price;
I nt quantity;

3
void increase(item& thing) {
t hi ng. price=1.10*t hi ng. pri ce;
t hi ng. quanti ty=thing. quantity+10;

mai n() {
I tem chi cken={"Hol |y Farns", 5. 00, 20};
I ncrease(chi cken);
cout << "New price is " << chicken.price << endl;

}
New price is 5.5

0SC B

C++ Programming for Scientists

Operator Overloading

e On of the more powerful features of C++ isthat programmers can define the
basic C++ built-in operators--suchas+,*,[|, !, for example -- to work

with user-defined types. Of course, the operators continue to work as
originally designed for basic types:. thus the term overloading.

— This capability makes for sensible and more readable main programs and
Issimilar, in spirit, to function overloading.

— Keegp in mind also that although you can use operator overloading to
define an operator to do anything you want, it isbest to make the new
operator definition in some way analogous to the normal use of the
oper ator .

* Thesyntax for operator overloading looks exactly like the syntax for a
function definition except that the function name is replaced by the name

oper at or <oper at or synbol >

42
OSC C++ Programming for Scientists

Operator Overloading Usage

» A sample operator overload prototype might look as follows:

cl ock operator+(const clock& a, const cl ock& b);

 wherecl ock issome user-defined structure and the body of this prototype
will define what “+” will do to two clock structures (perhaps, add the hours
members to correct for different time zones).

NOTE: the use of theconst keyword in operator overload prototype. Thisis
to insure that the operator cannot change the value of its operands, only
produce aresult. NOTE: also the use of call-by-reference arguments. Both
noted procedures are suggested, not required.

* |t should be pointed out that operator overloading only defineswhat the
operator doesfor user-defined types. It does not change the operator’s
precedence, direction of associativity, or number of operands. In addition, you
cannot make up your own new operator symbols.

43
Osc C++ Programming for Scientists

Operator Overloading Example

#i ncl ude <i ostream h>
struct conplex { double real;

conpl ex operat or+(const conpl ex& a,

conpl ex operator*(const conpl ex& a,

doubl e 1 ny; };

conpl ex res;

res.real =a.real + b.real
res.ing=a.ing + b.ing;
return(res); }

conpl ex res;
res.real = a.real *b. real

- a.inmg*b.iny;

res.ing = a.real*b.ing + a.ing*b.real;

return(res); }

conpl ex operator! (const conpl ex& a){

0SC

conpl ex res;
res.real = a.real;
res.ing = -a.iny;
return(res); }

in() {

static complex x={1.0, 2.
Z=XtY;

cout << z.real
z=x*Yy;

cout << z.real << " +H"
z=x*(!x);

cout << z.real << " +H"

<< n +i n

0},y={3.0, 4.0}, z;
<< z.imy << endl;
<< z.imy << endl;

<< z.ing << endl;

const conpl ex& b) {

const conpl ex& b) {

}

44

C++ Programming for Scientists

Object-Oriented Programming

e Classes and Objects

o Constructors and Destructors

e Object assgnment & Type Casting

e Operators with Objects

e Friend Functions

e Using Objects with the I/O stream

o Static Class Members

e |nheritance

* Virtual Functions and Polymorphism

45
Osc C++ Programming for Scientists

C++ Classes

A classisauser-defined data type. You can think of it as an extended and
Improved structure datatype. An object isa variable of a certain classtype.
It is often said that an object is an instantiation of the class.

* Intrinsic data-types, f | oat for example have values they can contain (real
numbers) and a set of operations (+,/ ,* ,etc) that can be applied to variables of
typef | oat .

» These same concepts are carried over to class types. The values a class can
contain are called its data members. The set of operations that can be applied
to a certain class object are called its member functions.

 After aclass has been declared, we will see in the rest of the course how its
objects can be treated in the same manner and syntax as “normal” data-type
variables.

46
Osc C++ Programming for Scientists

C++ Class Example

* Inthefollowing code fragment, aclass Tr | angl e isdeclared:

cl ass Triangle { data members

doubl e base; 4//”’///

doubl e hei ght;
publ i c:
voi d set(double a, double b) {

base=a; hei ght =b; member functions

} ‘4—————"——__—__—___—_—__
voi d display() { /

cout << "base=" << base <<
hei ght =" << hei ght << endl;

}
doubl e area() {return(0.5*base*height);}

} \
Common Error: forget this semicolon!

a7
Osc C++ Programming for Scientists

Tri angl e Class Example

e Inthisdeclaration of the class (it is customary to capitalize the
first letter of aclasstype), there are two data members-- base and hei ght -
- and three member functions -- set , di spl ay, and ar ea. The member
functions represent three typical tasks one might want to perform with a
Triangle object. In many ways the declaration of a class |ooks like the
declaration of a structure but with functions now being allowed as members.

 Hereisan example of some mai n code that would use the Triangle Class data

type:
mai n() {

t; «——1 isan object of class
t.set(2.0,3.0);
t.display();

cout << "area is " << t.area() << endl; }
base=2 hei ght =3

area is 3

» |t should be noted in this code that the same “dot” operator to access a member
of astructure is also used to access the member of aclass. Specifically,
member functions areinvoked with the traditional “dot” operator.

48
OSC C++ Programming for Scientists

Access to Class Members

» Theuser has complete control over which parts of a program can alter and/or

use the members (data and functions) of a class. There are three types of
member access allowed:

Access Description

Specifier

publ i c Accessible to all functionsin the program (everyone)
private Accessible only to member functions of the same class

protected Accessibleonly to functions of same or derived classes

» Thedefault access classification for classesispri vat e. Asin the class
Tri angl e previously declared, once an access-specifier -- likepubl i ¢ --
appears, all members following the publ i ¢ keyword are declared public,

until a different access-specifier istyped in. Thus, all three member functions
of Tri angl e are public.

0SC By

C++ Programming for Scientists

Controlling Access to Class Members

» Controlling the access to class members facilitates the safe reuse of classesin
different programs, and avoids improper addressing and name collisions of
data. The practice of using public member functions to indirectly set, change,
and use private data membersis called Data Hiding.

o Consider thefollowing class Access:

cl ass Access {
I Nt X;
publ i c:

float vy,

Int z;

void set(int a, float b, Iint c) {
Xx=a; y=b; z=c; }

voi d display() {
cout <<x<<" "<<y<<" "<<z << endl; }

50
GSC C++ Programming for Scientists

Controlling Access Example

» Which contains a mixture of public and private data members. The proper an
Improper accessing of these membersisillustrated in the following mai n

code.

main() {
Access w,
Access *p;
p=&w,
w. set (1, 2. 45, 3);
w. di spl ay();
w. y=4. 343434
w. di spl ay() ;
/1 w.x=6; |LLEGAL! Private nenber
p->z=32
w. di spl ay() ;
}

1 2.45 3
1 4.34343 3

1 4.34343 32

51
OSC C++ Programming for Scientists

Member Functions

 Aswe have already seen, an interesting feature of C++ classes (unlike C
structures) is that they can contain functions as members. In the class examples
we have shown so far the member functions have been defined within the
declaration of the class itself. The actual requirement is less severe: member
functions must be declared within the class declaration, that is, their
prototype must appear there. They can actually be defined outside the class
declar ation. One advantage of defining the member function inside the class
Isthat it will automatically beinlined.

* Interms of access, member functions -- wherever they are defined -- have
accessto all private, protected, and public class members (data & function).
When the member function is defined outside the class definition the scope
resolution operator --: : -- must be used with the class name to indicate that

the function belongs to that class.

52
Osc C++ Programming for Scientists

Member Function Definitions/Declarations

* Inthefollowing code fragment, the member function set x isdefined in the
declaration of class Pl ay, while the member functionsshowx andi ncx are
only declared there:

class Pl ay {
I Nt X;
publ i c:
void setx(int a) {
X=a;
}
voi d showx();
void i ncx(int del);

i

« Thefollowing program usesthe Pl ay class and shows the syntax for defining
“outside” member functions.

53
GSC C++ Programming for Scientists

Member Functions Example

#i ncl ude <i ostream h>
class Play {
I nt X;
publi c:
void setx(int a){
x=a; }
voi d showx() ;
void incx(int del); };
void Pl ay::showx() {
cout << "X is " << X << endl; }
inline void Play::incx(int del) {
x += del; }
mai n() {
Play fun;
fun. setx(5);
fun. showx() ;
fun.incx(4);
fun. showx();

}
X 1s 5
X 1S 9

54
OSC C++ Programming for Scientists

The Constructor Function

Consider what happens when the following code is executed:

» Thebasic-type variable x isbrought into scope, enough memory for a double-
typeis alocated to x and that memory isinitialized with a value.

e Given that an underlying philosophy of C++ isthat derived-types can and
should be treated the same (conceptually and syntactically) as intrinsic types,
one would expect a similar initialization sequence for class variables.

o This*construction” of aclass variable is accomplished through a constructor
function.

55
OSC C++ Programming for Scientists

Constructor Properties

Here are the basic properties of a constructor

Osc C++ Programming for Scientists

Special member function
Has the same name as the class

|sinvoked automatically each time a new variable of itsclassis created
(declared, dynamically-allocated, type conversion to the class)

Cannot be invoked explicitly
Has no return type (not even voi d)

Typically usesits arguments (if any) to initialize the new object’s data
members
Can have default arguments and be overloaded

Default (no-op) constructor is provided by the compiler if you do not provide
one.

Advice: Always define your own default constructor (and destructor) -- even if
they are empty -- you may need to fill them later...

56

Constructor Example

1 #include <iostream h>

2 cl ass Bookshel f {

3 float wdth; float height; int nunshel ves;

4 publ i c:

5 Bookshel f (float 1=4.0,float j=6.0, int k=5) {

6 wi dt h=i ; hei ght =j ; nunshel ves=Kk;

7 cout << "Anot her Bookshelf made: " << width << "x"
8 << height << " with " << nunshelves << " shel ves"
9 << endl ;} };

10 mai n()

11 Bookshel f normal; Bookshelf w de(8.0);

12 Bookshel f tall(4.0,9.0); Bookshelf* custom

13 cust om=new Bookshel f (6.0, 3.0, 3);

14 for (int i=10; i<=15; i +=h)

15 Bookshel f paperback(4.0,6.0,i); }

Anot her Bookshel f : ' shel ves
Anot her Bookshel f : ' shel ves

Anot her Bookshel f : ' shel ves
Anot her Bookshel f : ' shel ves
Anot her Bookshel f : ' 10 shel ves
Anot her Bookshel f : ' 15 shel ves

S7
OSC C++ Programming for Scientists

The Destructor Function

* The complementary function to the constructor. The destructor allows the user
to perform any necessary “clean-up” after aclass variable is destroyed.

0SC

Destructors have the following properties:

Another special member function
Has the same name as its class, preceded by atilde (~)

Implicitly invoked each time a class object is destroyed (goes out of scope
[local variable], dynamically de-allocated, temporary object made during a
type conversion no longer needed)

Has no return type (not even voi d)

Has no arguments and cannot be overloaded

Default (no-op) destructor is provided by compiler (if you don’t)
Typically used for classes whose member functions perform dynamic
memory allocation: destructor releasesthe memory

58

C++ Programming for Scientists

Invoking Constructors & Destructors Example

1 #include <iostream h> Created Nunber 1
2 class Nunber { Created Nunber 2
3 int i; Creat ed Nunber 3
4 publ i c: Destr oyed Nunber
5 Nunmber (int a) { Created Nunber 4
6 | =a; Destroyed Nunber
7 cout << "Created Nunber " Created Nunber 5
8 << | << endl;} Destr oyed Nunber
9 ~Nurber () { Created Nunber 6
10 cout << "Destroyed Nunber " Destroyed Nunber
11 << | << endl;} Destr oyed Nunber
12 }; Dest royed Nunber
13 Nunber x(1);

14 main()

15 Number y(2);

16 Number * np;

17 np=new Nunber (3) ;

18 del et e np;

19 for (int 1=4; i<7;, ++i) {

20 Number z(i); }

21 }

59
OSC C++ Programming for Scientists

Deallocating Destructors Example

OCoOoO~NOUITR~WN PR

#i ncl ude <i ostream h>
cl ass Rel ease {

i

I nt* p;

publi c:

Rel ease(int a) {
p=new i nt; *p=a;
cout << "Allocated int:
<< *p << endl;}
~Rel ease()
cout << "Deallocated int:
<< *p << endl;
del ete p; }

mai n() {

Rel ease x(1);

Rel ease* rp;
rp=new Rel ease(2);
del ete rp;

(int 1=3; i<5; ++i) {
Rel ease z(i); }

Allocated Iint: 1
Al located int: 2
Deal | ocated int: 2
Allocated Iint: 3
Deal | ocated int: 3
Al located int: 4
Deal | ocated int: 4
Deal |l ocated int: 1

60

C++ Programming for Scientists

Copying Objects

* |sit possible to copy one object of aclassinto another object of aclass? The
answer isyes and the assignment operator "=" has been designed so that the

copying is done with “natural” syntax.

« |f you use an assignment statement to copy one object to another adata
member by data member copy is performed. That is, each member of the
object is copied in turn.

» The program on the following page copies objects.

61
Osc C++ Programming for Scientists

Copying Objects Example

#i ncl ude <i ostream h>
cl ass Bookshel f
float wdth; float height; int nunshel ves;
public:
Bookshel f (float 1=4.0,float j=6.0, int k=5) {
wi dt h=i ; hei ght =} ; nunshel ves=k; }
di splay() {
cout << "Bookshelf is " << wdth << "x"
<< height << " with " << nunshel ves
<< " shelves" << endl;} };
mai n()
Bookshel f library(6. 25, 3. 50, 4);
Bookshel f bedr oom
bedr oom di spl ay()
bedr oon=l i brary;
bedr oom di spl ay()

Bookshelf is 4x6 with 5 shel ves
Bookshelf is 6.5x3.5 with 4 shel ves

62
OSC C++ Programming for Scientists

Copying Objects with Pointer Members

« Potential problems with the member-by-member copying action of the
assignment statement can arise when there are pointer data member s.

* When pointers are included in the object, the data items that the pointers
reference are not actually copied-only the addresses themselves. Because of
this, a copied object can inadvertently alter the contents of the original object.

» Consider the code on the following page.

63
Osc C++ Programming for Scientists

Copying Objects with Pointers Example

#i ncl ude <i ostream h>
class Ints {

int x; int *p;
publi c:
void setp(int a) { *p=a; }
Ints (int a=1) { x=a; p=new int; *p=a; }
voi d display() {
cout << "x=" << X << " *p=" << *p << endl; }

mai n() {

Ints s(3);

Ints t;

s. di splay(); t. display();
t =s;

t.display();

t.setp(8);

t.display(); s. di splay();

* p:3
* p:l
* p:3
* p:8
* p:8

Contents of s changed when working with copy t !!
64

C++ Programming for Scientists

Copy Constructor

* Thecopy constructor is used to make a new class object safely duplicate an
existing class object. The salient properties of a copy constructor are:

Special type of constructor member function

Has exactly one argument which isar efer ence to the class type
Invoked with the following syntax

cl ass- nane new- obj ect - nane(exi sti ng- obj ect - nane)

Typically defined when the class contains pointer members and the
assignment operator is inappropriate

The copy constructor produces what is referred to as deep copying
whereas the assignment operator performs shallow copying.

« The program on the following page fixes the problem just presented with our
| nt s class and its shallow copying. The copy constructor shown on the next

page actually creates a new address for the copied class'si nt pointer and
not the same address asthe original.

0SC

65

C++ Programming for Scientists

Copy Constructor Example

OSC C++ Programming for Scientists

#i ncl ude <i ostream h>
class Ints {
int x; int *p;
publi c:
void setp(int a) { *p=a; }
Ints (int a=1) { x=a; p=new int; *p=a; }
Ints(Ints& r) { p=new int; x=r.x; *p=*(r.p); }
voi d display() {
cout << "x=" << X << " *p=" << *p << endl; }
}
mai n() {
Ints s(3);
Ints t;
s. di splay();
Ints t(s); /'l replaces t=s;
t.display();
t.setp(8);
t.display(); s. di splay();

wWooww

*
*
*
*

P
P
P
P

s isunchanged by actionsont !!

66

Conversion Constructor

* Yet another type of constructor enables type conversion from other typesto
the classtype. It is, naturally, called a conversion constructor.

« Theconversion constructor has exactly one argument of atype other than the
class type.

— If the compiler encounters a“mixed-type” operation, the conversion
constructor is used to make a temporary object of the class type and use
this converted variable in the calculations.

Note: the data members of classes involved in conversion operation often have
to be made public since they will be used in non-member functions.

67
Osc C++ Programming for Scientists

Conversion Constructor Example

* Consider the following two classes for English and Metric distances and the
conversion constructor to go from Metric unitsto English units:

class Metric {

public:
float cm
Metric (float x) { cnex; }
¥
class English {
publi c:
float in;
English(float x) { in=x; }
English(Metric m {
I n=m cn1 2. 54;
cout << "Convert construct invoked" << endl; }
English add(English y) { return(in+ty.in); }
void display() { cout << "Length is " << in
<< " inches" << endl; }
¥
0SC o

C++ Programming for Scientists

Conversion Constructor Example Continued

 Hereisthe main program that demonstrates how the conversion works:

mai n()
Engl i sh d1(6.25);
Engli sh d2(3.375);
dl=dl. add(d2);
dl. di spl ay();
Metric mil(30.48);
dl=dl. add(nl);
dl. di spl ay();

Length is 9.625 inches

Convert construct i1 nvoked
Length is 21.625 inches

69
OSC C++ Programming for Scientists

Operator Overloading and C++ Classes

* Aswe have seen previously, C++ offers the ability to overload built-in
operators so that they can work with user-defined types. Can operator
overloading be applied to C++ classes? Yes:. all that is needed isto makethe
definition function for the operator be a member function of the class.

o Consider in the previous program the definition of the function add for the
Engl i sh class which resulted in the somewhat awkward looking “addition”
Statement:

d1=d1. add(d2):

« The example on the following pages is the previous program rewritten with the
+ operator overloaded to work with Engl i sh class variables. Notice how

much more readable and sensible the main program becomes.

70
Osc C++ Programming for Scientists

Operator Overloading Example

class Metric {

publi c:
float cm
Metric (float x) { cnex; }
¥
cl ass English {
public:
float in;
English() {}
English(float x) { in=x;
Engllsh(thric m { in=mcm 2.54; }
Engl i sh operat or+(const English& a) {
English res;
res.in=int+a.in);
return res; }
void display() { cout << "Length is " << in
<< " inches" << endl; }
¥

71
OSC C++ Programming for Scientists

Operator Overloading Example Continued

mai n()

Engl i sh d1(6.25);
Engli sh d2(3.375);
dl=d1+d2;

dl. di spl ay();
Metric mil(30.48);
dl=d1+mi;

dl. di spl ay();

Length is 9.625 inches

Length is 21.625 inches

72
OSC C++ Programming for Scientists

Scientific Application: Adding Stellar Magnitudes

« Sincethetime of the ancient Greek astronomers, the brightness of a star has

been measured by its magnitude IM, areal number. The lower the magnitude,

the brighter the star: in fact, the brightest stars have negative magnitudes.
Stellar magnitudes are actually measured on alogarithmic scale in which

m:2.512xlog$

« where F istheflux from the star and I is the flux from a zero-magnitude
Star.

» Often astronomers will have two starsin their field of view and would like to
know the magnitude of the stars combined. One simply cannot add together
the magnitudes of the separate stars since it isonly physically correct to add
the fluxes from the stars.

* Inthe program on the next page, the “+” operator is overloaded to correctly
work for the addition of stellar magnitudes. Again, notice how readable and
sensible the statements of the main program are.

73
OSC C++ Programming for Scientists

Adding Stellar Magnitudes: Example Program

#i ncl ude <i ostream h>
#i ncl ude <mat h. h>
class Star {
doubl e mag;
publi c:
Star() {}
Star (double x) { mag=x; }
Star operator+(const Star& a) {
Star res;
res. mg=2. 512*1 og10(1. 0/ (pow 10. 0, - mag/ 2. 512) +
pow 10. 0, -a. mag/ 2. 512)));
return res; }
voi d display() { cout << "Magnitude is " << mag <<endl; }

}s

mai n() {
Star Deneb(1l. 26);
Star Al debaran(0. 86);
Star Field;
Fi el d=Deneb+Al debar an;
Fi el d. di spl ay();

}

Magni tude is 0.285582

74
OSC C++ Programming for Scientists

Mathematical Application: Array-bounds Overflow

* A long-standing and common error made by programmersisto reference an
array element that is beyond the bounds of the array. The results are
unpredictable depending on what binary pattern is actually located in the
(incorrect) memory location that is used. This classic problem is demonstrated
In the following C program:

#i ncl ude <stdi o. h>
mai n() {
I nt x[20];
Int 1I;
for (i=0; i<20; i++)
x[1]=2%i;
for (i=0; i<=30; i+=5)
printf("At index %: value is %\n",i,x[i1]); }

O: value is O

5: value is 10
10: value is 20
15: value is 30

20: value is 5
25: value is -268436436
30: value is O

75
OSC C++ Programming for Scientists

Array-bounds Overflow: C++ Example Program

* In C++, one can redefine the array element reference operator “[]” to check to
make sure that a correct index is used before actually getting an array element.
Thus, we see that operators can be overloaded not only to work normally
with classes and structures of a certain type, but that their capabilities can be
extended to include safety and error-checking.

» Consider the same program on the previous pages, but written in terms of C++

classes and operator overloading:

#i ncl ude <i ostream h>
class Intarray {
I nt *data, si ze;
public:
Intarray(int sz=1) {
I f (sz<1l) { cout << "Intarray: size nust be >1, not "
<< sz << endl; exit(1l); }
Si ze=sz; data=new int[sz]; } }
I nt& operator[](int index) {

I f (i ndex<0 || index>=size) {
cout << "\'n\nlntarray: out of bounds, index=" << index
<< ", should be fromO to " << size-1 << endl;
exit(l); }

return(*(data+i ndex)); }

76
OSC C++ Programming for Scientists

Array-bounds Overflow: C++ Example Program Continued

mai n() {
I ntarray x(20);
for (register int i=0; i<20; i++);
x[1]=2%i;
for (register int i=0; i<=30; i+=5)
cout << "At index " << i << val ue is" << x[i]

<< endl ;

value is O
value is 10
value is 20
value is 30
val ue is

At 1 ndex O:
At |1 ndex b5:
At i ndex 10:
At i ndex 15:
At 1 ndex 20:

out of bounds, i ndex=20,

I ntarray:

0SC

should be fromO to 19

77

C++ Programming for Scientists

Conversion Operator Functions

» Recall that a Conversion Constructor can convert avariable to aclass type
from another type.

e Toconvert in the opposite direction (i.e., from the class type to another
type), one has to use a special member operator function.

— In place of the operator symbol the name of the type to-be-converted to is
used.

* Inthefollowing program we revisit the English to Metric conversion program
but this time with an English class operator function which converts inchesto
cm;

78
Osc C++ Programming for Scientists

Conversion Operator Function Example

class Metric {

publi c:
fl oat cm
Metric() {}

Metric(float x) { cnex; }
voi d display() {

cout << "Length is " << cm<< " cm << endl; }
Metric operator+(const Metric& a) {

Metric res;

res. cm=cnmta. cni

return(res); }

}s
cl ass English {
publi c:
float in;
English(float x) { in=x; }
operator Metric() {
Metric m
m cm=i n* 2. 54;
cout << "Eng-to-Met conversion occurred" << endl;
return(m; }
¥
0SC -

C++ Programming for Scientists

Conversion Operator Function Example Continued

mai n() {
Metric nmil(30.50);
Metric n2(2.60);
mML=ml+nL;
mL. di spl ay() ;
English d(3.937);
ml=nil+d;
mL. di spl ay();

}

Length is 33.1 cm
Eng-t o- Met conversi on occurred

Length is 43.1 cm

80
OSC C++ Programming for Scientists

Friend Functions

Osc C++ Programming for Scientists

In general only publ i ¢ members of aclass are accessible to functions that
are not member functions.

However, a class can declare afunction to be afriend function in which case
the friend function has accessto all members of the class (including
private).

— Friend status is granted by the class to the function and is afeature of the
class design.

— Friend functions are often used when a calcul ation needs access to the
private members of two objects of the same class.

To specify afriend function, declar e the function in the member list of the
class, preceded by thekeyword f ri end.

— The function may actually be defined asaglobal or a member function.

81

Friend Function Example

#i ncl ude <i ostream h>
#i ncl ude <mat h. h>
cl ass Point {

doubl e x, vy, z;

public:
Poi nt (doubl e a, doubl e b, double c) {
x=a; y=b; z=c; }
friend doubl e distance(Point& r, Point& s);

doubl e di stance(Point& r, Pointé& s)
return(sqgrt(pow(r.x-s.x, 2)+powr.y-s.y,2)+powr.z-s.z,2))),;

mai n() {
Poi nt center(1l.3,5.6,9.8);
Poi nt edge(12.4,34.6,56.7);
cout << "D stance between the points is "
<< di stance(center, edge) << endl;

Di stance between the points is 56.2478

82
OSC C++ Programming for Scientists

Overloading the I/O stream operators

* Thissection will describe how to overload the output stream operator << to
work with your own classes. A similar procedure is used for the input stream
operator

» Beforeoverloading << for user-defined classes we need to have alittle deeper

understanding of how it works. Thereis a built-in C++ class defined for us
called ost r eam(you can see the declaration of thisinthei ost ream h

includefile) . Infact cout , and cer r arejust objects of this class. So the
following code

int i1
cout |

o isteling usthat << isabinary operator where the right-hand operand isa

basic type (in this case integer) and the left-hand operator is an object of class
ostream

83
Osc C++ Programming for Scientists

Overloading the I/O stream operators Continued

» Therefore, the prototype for our overload function must have the form

ostream& operator<<(ostrean& argl, X argr);

* where X isthe class name we wish to output in a certain manner. The reason
this function returns a reference to an ost r eamclassis to enable “chaining
together” of << operations:

cout << X << "Just outputted ny own object\n";
* Isexecuted with aL-R associativity:

(cout << X) << "Just outputted ny own object\n";

« Lastly, since one usually wants to output private data member the overload
function istypically made afriend of the class.

84
GSC C++ Programming for Scientists

Overloading the I/O stream operators Example

#i ncl ude <i ostream h>
cl ass Point {
doubl e x,vy, z;
publi c:
Point() {}
Poi nt (doubl e a, doubl e b, double ¢c) { x=a; y=b; z=c; }
friend ostream& operat or<<(ostream& os, Point p);
friend i stream& operator>>(istrean& is,Point& p); };
ostream& oper at or <<(ostrean& os, Point p) {
0S <<' (' <<p. x<<' ' <<p.y<<' ' <<p. z<<') ' <<endl ;
return(os); }
| stream% operator>>(istream& i s, Point& p) {

cout << "Enter x coordinate of the point: "; is >> p.x;
cout << "Enter y coordinate of the point: "; Is >> p.y;
cout << "Enter z coordinate of the point: "; Is >> p.z;
return(is); }

mai n() {
Poi nt center;
cin >> center; cout << center; }

Enter x coordinate of the point: 3.4
Enter y coordinate of the point: 8.9

Enter z coordinate of the point: 12.3
(3.4,8.9,12. 3)

85
OSC C++ Programming for Scientists

Static Data Members

* A datamember of aclasscan be declared st at | ¢c. Such a data member is
associated with the class as a whole, rather than each particular object of the
class. A static data member is often referred to asa“ classvariable” andis
typically used to store values which characterize the class in some way. For
example a class variable may be used to keep track of the total number of
objects that have been created.

« Aswith all class data members, the static one must be declared in the
definition of the class. This brings the name of the class variable into scope,
but does not allocate memory for the member. The allocation is done when
the class variable is redeclared (and perhaps initialized) outside of the class
definition. Because of this seemingly redundant declaration of the class
variable, it is actually accessible before the first class object is created.

* A classvariable can be referred to with two different syntaxes:
— With theclassname cl ass _nane::static_data
— With any object of theclass cl ass object.static data

86
Osc C++ Programming for Scientists

Static Data Members Example

#i ncl ude <i ostream h>
cl ass Pi xel {
int X,V;
public:
Pixel (int i, int j) { x=i; y=; }

int abs x() { return(x+xo); }
int abs y() { return(y+yo); } };
I nt Pi xel :: xo;
i nt Pixel::yo;

mai n() {
Pi xel a(l17,42); Pi xel b(55, 75);
Pi xel : : xo=5; Pi xel : : yo=6;
cout << "The absol ute coordi nates of pixel a are ("
<< a.abs x() << "," << a.abs_ y() << ")\n";
cout << "The absol ute coordi nates of pixel b are ("
<< b.abs x() << "," << b.abs_y() << ")\n";

a. xo=0; a.yo=0;
cout << "The absol ute coordi nates of pixel b are ("
<< b.abs x() << "," << b.abs_y() << ")\n"; }

The absol ute coordi nates of pixel a are (22,48)
The absol ute coordi nates of pixel b are (60, 81)

The absol ute coordi nates of pixel b are (55, 75)

87
OSC C++ Programming for Scientists

Inheritance

 When anew classis declared in C++, you can specify that it should be derived
from an existing class.

 Thenew derived classinherits al data and function members from the base
class, asif those class members had been declared explicitly within the new
class declaration itsalf.

» Thederived class modifies or extends the capabilities of the base class.

* |tisthrough inheritance that C++ enables and facilitates softwarereuse. The

reuse is even possible in cases where classes are made available to the user in
the form of object libraries without accompanying member source code!

88
Osc C++ Programming for Scientists

Derived Class Syntax

* Thesyntax for making a derived classisto insert a colon after the name of the
derived class followed by an access method keyword and the name of the base
class. For example, the following line declared the derived class from
the base class Vehi cl e :

cl ass . public Vehicle { class-nenber-list };

e The classinherits all members of Vehi cl e class except its
constructors and destructor.

* A member function in the derived class can have the same name asa
corresponding member function of the base class. When this occurs we say the
derived class overrides (or redefines) the base member function. By defaullt,
the overridden function is used when a object of the derived class referencesiit.

Any derived class can serve as a base class for other derived classes and thus a
multi-layer class hierarchy can be constructed.

» Thefar-from-scientific program on the next page illustrates some of the basic
features of derived classes.

89
OSC C++ Programming for Scientists

Derived Class Example

#i ncl ude <i ostream h>
class Gol fer {
public:
i nt rounds_per _no; void swing() {cout << "#&&F@\n";} };
cl ass Serious _CGolfer: public Golfer {
public:
i nt handi cap; void swing() {cout << "Ahhhh!\n";} };
class Pro_Golfer: public Serious CGolfer {

publi c:
float inconme; void swng() {cout << "It's in the hole!'\n";} };
mai n() {
ol fer ne;

Serious_Col fer brother;

Pro_Gol fer john _cook;

me. rounds_per no=1; nme.sw ng();

br ot her. rounds_per_ _no=8; brother.handi cap=15; brother.sw ng();
j ohn_cook. rounds_per np=20; john_cook.inconme=800000. 00;

j ohn_cook. sw ng();

j ohn_cook. Gol fer::swing(); }

H&YF @
Ahhhh!

It's in the hol el
HE&YTF @

90
OSC C++ Programming for Scientists

Public Inheritance

* You may have noticed that with all the derived class declarations seen so far
the access method public has been used before the name of the base class.
Public inheritance is by far the most common form of class inheritance and has
the following properties

* Publicinheritanceisan “is-a’ relationship (A Isa
Serious_ ol f er also, but more)

* Theinherited public and protected members of the base class become public
and protected members of the derived class, respectively

» Private members of the base class are inherited but ar e accessible only to
member functions of the base class. If amember function of the derived
class needs to directly work with a data member of the base class, make the
base class data member protected.

« Because of the “is-a@’ nature of public inheritance, an object of the derived
class may appear unambiguoudly in any context requiring a base class object

» Pointersor references of the base class type also can point or refer to derived
class objects

91
Osc C++ Programming for Scientists

Public Inheritance Example

#i ncl ude <i ostream h>
class Vehicle {

I nt wei ght;

publi c:
i nt getweight() { return(weight); }
void setweight(int i) { weight=i; } };

cl ass Land: public Vehicle {
fl oat speed,;
publi c:
fl oat getspeed() { return(speed); }
voi d setspeed(float x) { speed=x; } };
main() {
Land car;
[l car.wei ght=2000; Illegal! Wight is private
car.setwei ght (2000); car.setspeed(110.5);
Vehi cl e v;
v=car;
cout << v.getweight() << endl;
Vehi cl e *vp; vp=&car;
/| vp->setspeed(65.4); Illegal! *vp only has Vehicle capabilities
vp- >set wei ght (1000) ; cout << car.getweight() << endl; }

2000
(0]0]0

92
OSC C++ Programming for Scientists

Derived Class objects Example

e Sinceit can be said that an object of aderived classis at the same time an
object of the base class, functions which use the base class will also work
when derived-class objects are passed as arguments. The following code

demonstrates this feature with our Vehi cl e-Land class hierarchy.

#i ncl ude <i ostream h>
class Vehicle { int weight;

public:
I nt getweight() { return(weight); }
void setweight(int i) { weight=i; } };
class Land: public Vehicle { float speed,;
public:

fl oat getspeed() { return(speed); }
voi d setspeed(float x) { speed=x; } };
voi d check wt (Vehicl e& v)
i f (v.getweight()>2000) cout << "Vehicle is too heavy\n"; }
mai n()
Vehi cl e bl ob; bl ob. set wei ght (100) ;
check _wt (bl ob);
Land car; car.setwei ght(5000);
check wt(car); }

Your vehicle is too heavy

93
OSC C++ Programming for Scientists

Constructors and Destructors of Derived Classes

» When an object of derived class is declared, the constructor for the base class
Isinvoked first, then the constructor for the derived class. It is the opposite
order for destruction. When a derived-class object goes out of scope, the
destructor for the derived classis invoked first, then the destructor for the base
class.

* Actua argumentsto a derived-class constructor are passed in the usual way.
To specify actual arguments to the base class constructor, insert a colon after
the derived class constructor’s formal argument list, followed by the name of
the base class and a parenthesized list of actual argumentsfor it.

» Thistechnigque is demonstrated in the code on the following page.

94
OSC C++ Programming for Scientists

Constructors and Destructors of Derived Classes Example

#i ncl ude <i ostream h>
cl ass Wdget {
I Nt WX;
publi c:
Wdget(int a) { wx=a; }
void display() { cout << "wx=" << wx << endl; }

¥
cl ass G dget: public Wdget {
I nt gx;
public:
Gdget(int 1, int j): Wdget(i) { gx=; }
void display() { cout << "gx=" << gx << endl; }
¥
mai n() {
G dget sally(5, 33);
sal ly. di spl ay();
sally. Wdget : : di splay();
}

gx=33
WX =5

95
OSC C++ Programming for Scientists

Mathematical Example: Averaging Data -- Data Class

» Inthis C++ code, the base class Dat a is responsible ssimply for inputting and
outputting two arrays of data.
cl ass Data {

pr ot ect ed:
doubl e *x, *vy;
int N;
publi c:
Data(int 1=1) {
N=i ;

x=new doubl e

y=new doubl e[
~Data() { delete
voi d getdata();
voi d showdat a() ;

N]
N]
[]x; delete[]y; }

}s
voi d Dat a:: showdata() {
for(int 1=0; i<N;, ++i)
cout << "j="<<i<<" o x="<x[i]<<" y="<<y[i]<<endl; }
voi d Data::getdata() {
for (int i=0; i<N, ++i)
cin >> x[i] > y[i]; }

96
OSC C++ Programming for Scientists

Mathematical Example : Averaging Data -- Average Class

 Thederived class-- Aver age -- extends and reuses the Dat a class. In
Aver age, dataisread in and averages of the data are also calculated.

cl ass Average: public Data {
doubl e nmux, nuy;
publi c:
Average(int i): Data(i) {}
voi d averagex() {
doubl e sun=0. O;
for(int i=0; i<N, ++i)
sum += x[i];
mux=sum' N; }
voi d averagey() {
doubl e sun=0. 0;
for(int i=0; i<N, ++i)
sum += y[i];

muy=sum N; }

void display () {
cout << "Average x: " << nmux << endl;
cout << "Average y: " << nmuy << endl;

97
OSC C++ Programming for Scientists

Mathematical Example : Averaging Data -- Main & Output

mai n() {
Aver age tenp(9);
t enp. getdat a();
t enp. aver agex() ;
t enp. aver agey() ;
t enp. di spl ay();
}

Aver age Xx: 95

Average y: 51. 8556

98
OSC C++ Programming for Scientists

Virtual Function Terminology

* Inmoretraditional programming languages, the act of invoking afunctionis
static, which means that the compiler has sufficient information at compile-
time to generate all the code necessary to implement the function call. Thisis
called early binding of the function name to its code.

* A principal feature of C++ isthat the same function name with the same
argument list can perform different actions depending on the class of the
object on which it isinvoked. This property is referred to as polymor phism.

In order to implement polymorphism, sometimes you must defer until run-time
the association of a specific function name with the code that implementsiit.
When this run-time connection occursit isreferred to as late binding. Finally,
functions for which late binding is used are called virtual functions.

99
Osc C++ Programming for Scientists

Virtual Functions: Syntax and Use

* To declare amember function to be virtual, precede the function declaration
with the keyword vi r t ual . Say that abase class has avirtual function and
that function is overridden in a derived class. When the function name is
invoked by an object of the derived class, the derived class version of the
function is always used, regar dless of how the derived-class object is
referred to. In other words, when using virtual functions the meaning sel ected
for the function depends on the class of the object rather than the way you
refer to the object.

* On the next two pages we have resurrected the Golfer class hierarchy to
demonstrate the difference between the actions of non-virtual and virtual
overridden functions.

OS c 100
C++ Programming for Scientists

Virtual Functions Example: Golfer revisited

#i ncl ude <i ostream h>
class Golfer {
publ i c:
I nt rounds_per _no;
void swing() {cout << "#&6@\n";} };
class Serious_Golfer: public Golfer {
publ i c:
I nt handi cap;
void swing() {cout << "Ahhhh!\n";} };
class Pro Golfer: public Serious Golfer {
publ i c:
fl oat incone;
void swing() {cout << "It's in the holel\n";} };
main() {
Pro Golfer jc;
ol fer *gp;
gp=¢& C;
gp- >sw ng() ;

}

OS C 101
C++ Programming for Scientists

Virtual Functions Example: modified Golfer revisited

#i ncl ude <i ostream h>
class Golfer {
publ i c:
I nt rounds_per _no;
virtual void swng() {cout << "#&W @\n";} };
cl ass Serious_Golfer: public Golfer {
public:
I nt handi cap;
void swing() {cout << "Ahhhh!\n";} };
class Pro Golfer: public Serious Golfer {
publ i c:
fl oat incone;
void swing() {cout << "It's in the holel\n";} };
main() {
Pro Golfer jc;
ol fer *gp;
gp=¢& C;
gp- >sw ng() ;

}
It's in the hol el

OS C 102
C++ Programming for Scientists

Pure Virtual Functions

e Thevirtua function Gol fer: : sw ng() shown on the previous pageisan
example of asimple virtual function becauseit is both declared and defined
in the base class. A purevirtual function, on the other hand, is only declared
In the base class. The (rather odd!) syntax for a pure virtual function isto
append = 0 to the function declaration:

virtual return-type func-nane(args) = O;

* Purevirtual functionsin base classes have the following characteristics:

— No objects of the base class can be declared. Base class can only be
used for the derivation of other classes.

— Must be overridden in each derived class

— A purevirtual function establishes afunction interface inherited by all
derived classes

— A classthat declares one or more pure virtual functionsis termed an
abstract base class

OS c 103
C++ Programming for Scientists

Pure Virtual Functions Example

e Thisprogram makesthe Gol f er: : sw ng function a pure virtual function
and thus makes Gol f er an abstract base class.

#i ncl ude <i ostream h>
class Golfer {

public:
i nt rounds_per _no; virtual void sw ng()=0; };
class Serious Golfer: public Golfer {
public:
I nt handi cap; void swing() {cout << "Ahhhh!\n";} };
class Pro _Golfer: public Serious Golfer {
publi c:

fl oat incone;
void swng() {cout << "It's in the hole!\n";} };
mai n() {
Pro Gol fer jc;
/|l CGolfer mke;lllegal! Can’t declare variable of an abstract base cl ass
Gol fer *gp;

gp=§j c;
gp- >swi ng() ;

}
It's in the hol e!

104
OSC C++ Programming for Scientists

C++ Templates and The Standard Template Library (STL)

e |ntroduction to C++ Templates

* Function Templates

» Templates, Macros & Overloaded Functions
* Function Template Specialization

e Class Templates

 Template Classes vs. Derived Classes

* Friend functions and Templates

e Introductionto STL

o STL Quick Overview

e Containers

e |terators

o Algorithms

 Functions Objects & Thef uncti onal Library
 Problem Set

105
Osc C++ Programming for Scientists

Introduction to C++ Templates

« Say you wrote afunction to sort an array of integers and you wanted to write a
function that sorted an array of doubles as well. The algorithm you would be
using would stay the same, but you would have to change all the type
definitions in your new function.

* Function templates allow the C++ programmer to write a single function to
do the sorting and essentially passthe type of element to be sorted to the
function. Specifically, afunction template contains a dummy argument
corresponding to the type of data used in the function; the actual argument in
the template function call determines what type of dataisworked on. The
programmer writes just one function template which will work for all types of
data (both standard types and derived types such as classes). This genera
style of coding is called generic programming.

o Similarly, C++ programmers can create class templates which represent a
family of classes determined by the type passed to the class when an object of
the classisinstantiated. Thus, in one situation the class data and member
functions could be working on integers and in another on a more advanced
datatype. But again, only one class template definition is written.

OS c 106
C++ Programming for Scientists

Function Template Syntax

» A function template definition is similar to an ordinary function definition
except that it is proceeded by atemplate specification header.

» A template specification consists of the keyword t enpl at e followed by an
angle-bracket-enclosed list of template arguments.

« Each template argument has the keyword cl ass in front of an identifier. The

identifier acts as a dummy argument for the type of data the actual template
function will be working on when it isinvoked.

* Hereisan example of afunction template definition:

tenpl ate <class T>
void worker (T x, ..) { function body }

OS c 107
C++ Programming for Scientists

Function Template Use

* To usetheworker function just type its name as with normal C++ functions.

» Based on the actual type of the first argument x, the compiler will know what
type T isfor the particular invocation and generate the appropriate code. Due

to this mechanism C++ requiresthat each template argument appear as a

typein the function argument list.

» |naddition, to insure that template functions work at all, implicit conversions
are never performed on template arguments.

* There are some examples of using the template function worker:

int i;
wor ker (i,

Bookshel f

0SC

)i

Typeholder Tissettoi nt

| i brary;
wor ker (I'i brary, ..)

v\Type holder Tissettocl ass Bookshel f

108

C++ Programming for Scientists

Demonstration Program

0SC

#i ncl ude <i ostream h>
class A {
I nt dat um
publ i c:
A(int 1) { datunei; }
voi d display() { cout << "(A)datunF" << datum << endl; } };
class B {
doubl e dat um
publ i c:
B(double d) { datuned; }
voi d display() { cout << "(B)datunF" << datum << endl; } };
tenpl ate <class T>
void repeat (T tt, int n) {
for (int i=1; i<=n; ++i) { tt.display(); } }
void main() {
A anAobj ect (1);
B aBobj ect(2.5);
repeat (anAobject, 2);
repeat (aBobject, 3);

A) dat unrl

B) dat um=2.
B) dat um=2.

109

C++ Programming for Scientists

Sample Function Template Program

#i ncl ude <i ostream h>
t enpl at e<cl ass ki nd>
kind max(kind d1, kind d2) {
1 f (dl1 > d2)
return(dl);
return(d2);

void main() {
cout << "The max of 3.5 and 8.7 is " << max(3.5,8.7) << endl;
cout << "The max of 100 and 567 is " << max(100,567) << endl;
cout << "The max of "A" and 'a' is " << max('A,'a'") << endl;

}

The nmax of 3.5 8.7 i1s 8.7
The max of 100 567 is 567

The nmax of 'A a' 1S a

C++ Programming for Scientists

Templates and Related C++ Entities

M acr os

* Function templates act as a sort of sophisticated macro expansion since the
template function code is created at compile time using the “passed” type.
Template Functions are preferred over macros for several reasons:

— Macros prone to subtle syntactic context errors
— Template functions allow for easier debugging and diagnostic information

— Since template functions almost look like normal functions they are easier
to understand

Overloaded Functions

« Like function templates, overloaded functions can be used to construct a
family of related functions that are associated with their argument profiles.
However, overloaded functions are typically used when the behavior of the
function differs depending on the function arguments. On the other hand
template functions ar e essentially applying identical logic, just with
different types.

OS c 111
C++ Programming for Scientists

Function Template Specialization

» Function templates are designed to work correctly for any data type passed to
it. What if thisisnot so? What if the programmer wants to do something
gpecial -- dightly modify the algorithm -- for certain special types?

 The user can create a separ ate special function to handle thiscase. This
function can have the same name and argument profile as the function
template. The new function will be used instead of the function template: its

logic will be applied.

OS c 112
C++ Programming for Scientists

Function Template Specialization Example

#i ncl ude <i ostream h>
#i ncl ude <string. h>
t enpl at e<cl ass ki nd>
ki nd max(kind di,
if (dl > d2)
return(dl);
return(d2);

kind d2) {

char* max(char* di,char* d2) {
I f (strcnp(dl, d2)>0)
return(dl);
return(d2);

void main() {

cout
cout
cout
cout

0SC

<<
<<
<<
<<
<<

"The nmax
"The max
"The max
"The nmax
endl ; }

3.5 and
100 and

"A" and
apple and apply is apply

of 3.5 and 8.7 is "
of 100 and 567 is "
of "A" and 'a' is "
of apple and apply i

8.7 i1s 8.7
567 i s 567
'a' 1s a

<< max(3.5,8.7) << endl;
<< max(100, 567) << endl;
<< max('A,'a') << endl;

S n

<< max("appl e", "appl y")

113

C++ Programming for Scientists

Class Templates

» A classtemplate defines afamily of related classes which differ only in the

type of the data stored and used by them. A class template definition is
preceded by the keyword t enpl at e followed by an angle-bracket-enclosed

list of class template arguments. These arguments consist of the keyword
cl ass followed by an identifier that will act as adummy argument for the

actual typethe classwill use. A class template argument can also be just a
normal type name followed by an identifier. Here is an example:

template<class T, int N>
class Array {
T array_elenent[N ;
public:
T first elenment() { return array_elenent[0]; }

'

« Each classin thistemplate can be thought of as“an N-element array of Ts’.

OS c 114
C++ Programming for Scientists

Class Templates Use

» To create an object of template class, the class template arguments must be
specified during the object’ s definition, as follows:

Array<int, 10> wave;

« Aswith traditional classes, member functions for class templates must be
declared in the body of the class template definition but may be defined either
inside or outside the body. If defined outside the class template definition a
special syntax must be used. The definition must be preceded by the class
template specifier and the class template name and argument list (without type

gpecifications). Hereis an “outside” definition of the function
first _el enment:

tenplate<class T, int N>
T Array<T,N>::first_elenment() {
return array_el enent[0];

}

OS c 115
C++ Programming for Scientists

Class Template Example

#i ncl ude <i ostream h>
cl ass Deno {
public:
Deno() { cout<<"Denp Constructor called"<<endl; } };
tenpl ate<class T, int N>
class Tuple {
publi c:
T data[N ;
int getsize() { return(N); }
T elenent(int i); };
tenplate<class T, int N>
T Tuple<T,N>::elenment(int i) { return data[i]; }
void main() {
Tupl e<Deno, 2> show, Tupl e<i nt, 3> poi nt;
poi nt. dat a[0] =2; poi nt. data[1] =78; poi nt. dat a[2] =5;
cout << "point is a "<<point.getsize()<<"-tuple\n";
cout << "2nd el enent of point is "<<point.elenent(l)<< endl;
Tupl e<f | oat, 2> gri d;
grid.data[0] =3.4; grid.data[l]=45. 6;
cout << "grid has "<<grid.getsize()<<" elenents\n";
cout << "1st elenent of grid is "<<grid.elenment(0)<<endl; }

Denb Constructor call ed
Denp Constructor call ed
point is a 3-tuple

2nd el enent of point is 78
grid has 2 el enents

0SC

1st elenment of gridis 3.4
116

C++ Programming for Scientists

Template Classes vs. Derived Classes

» |tisnatura to compare these two C++ constructs because both are used to
represent families of related classes. To choose between these two options,
there is a simple philosophy to follow:

— Usetemplate classes when classes in the family are similar in behavior
but different in the type of data used

— Useinheritance when classes in the family are different in behavior but
similar in terms of some base class properties.

* Onceinstantiated, template classes act like ordinary classes in terms of
inheritance. A template class can be a base class with no special syntax
required.

OS c 117
C++ Programming for Scientists

Template Classes and Friend Functions

» A function declared to be afriend by a class template is a friend function of
every template class that can be made from the template. That is, the friend
function will work with all the template classes regardless of the type that got
assigned to the class. As shown in the following sample program, friend

functions for template classes are often template functions.

#i ncl ude <i ostream h>
t enpl at e<cl ass T>
class A {
T dat a;
friend void show A<T> ff);
publi c:
A(T x) { data=x; } };
t enpl at e<cl ass T>
voi d shom(A<T> ff) { cout << ff.data << endl; }
void main() {
A<i nt > ai (23);
A<doubl e> ad(45. 678) ;
show ai) ;
show ad); }

23
45. 678

C++ Programming for Scientists

Introduction to STL

 The Standard Template Library is a collection of extremely useful class
templates and function templates allowing the programmer awide variety of
capabilities.

« Thereareliterally hundreds of classes and functions the programmer can use
with avariety of smple and derived data types.

* |t provides many of the data structures (“container classes’) and algorithms

useful in computer science thereby preventing the programmer from
“reinventing the wheel”.

OS c 119
C++ Programming for Scientists

STL Features

e Hereare some of the salient Features of STL:

0SC

Itisan ANSI standard and integral part of C++ (beware competitors...)

STL isvery efficient: container classes use no inheritance or virtual
functions

STL algorithms are stand-alone functions which can work on virtually all
types of simple data, normal classes, and STL containers

In order to accommodate machine-dependent, varying mechanisms for
memory allocation and management, STL containers use special objects
called allocatorsto control storage. This enables the portability required
of an ANSI standard.

120

C++ Programming for Scientists

STL References

» Because of the sheer complexity of the STL, it isdifficult to list and
Impossible to cover all the classes and functions within it.

« Wewill attempt to teach the library material most useful to research scientists
and engineers.

» For acomplete description of thelibrary, see these recommended Web Sites

http://ww. sgi.conl Technol oy/ STL/
http://ww. di nkumnare. comi ht m cpl /

OS c 121
C++ Programming for Scientists

STL Quick Overview: Containers

* Inthe next few pages are small sample programs demonstrating the most
useful STL libraries. Thisis meant to give the reader ataste of the detailed
descriptions that will follow.

« Containers: Containers are classes designed to hold data objects. There are
ten major container classesin STL and each is written as a class template.
Thus, containers can hold data of virtually any type. Here is a program using
thevect or container template class.

#i ncl ude <vect or>
#i ncl ude <i ostream h>
void main() {
usi ng nanespace std;
vector<i nt> v;
V. push_back(42);
V. push_back(1);
cout << "vector size is " << v.size() << endl;
cout << "v[0]="<<v[0] << endl;

}
vector size is 2
v[0] =42

OS C 122
C++ Programming for Scientists

STL Quick Overview: lterators

* |terators. STL makes heavy use of iterators which can be thought of as
generalized pointers to the objects in a container. Iterators allow the
programmer to move through the container and access data. There are several
types of STL iterators which vary in the manner in which they scan container
objects. The following program compares STL iterators and traditional C++

pointers.

#i ncl ude <vector> array has 1

#i ncl ude <i ostream h> array has 42

int array[]={1, 42, 3},; array has 3

vect or<i nt> v; vector has 1

void main() { vect or has 42
i nt* pil; vector has 3

for (pl=array;pl!=array+3; ++pl)
cout << "array has "<<*pl<<endl;

V. push_back(1);

v. push_back(42);

v. push_back(3);

vector<int>::iterator p2;

for (p2=v.begin();p2!=v.end(); ++p2);
cout << "vector has "<<*p2<< endl;

C++ Programming for Scientists

STL Quick Overview: Algorithms

« Algorithms. The agorithmslibrary contains common tasks programmers
typically perform on containers of objects. Algorithms are stand-alone

template functions which can operate on all the types of containers and regular
C++ arrays. The program below illustrates the use of thesor t STL function.

#i ncl ude <vector> array has 1
#i ncl ude <i ostream h> array has 3
#i ncl ude <al gorithne array has 42
int array[]={1, 42, 3},; vector has 1
vector<i nt> v; vector has 3
void main() { vector has 42

int* pl;
sort(array, array+3);
for (pl=array;pl!=array+3; ++pl)
cout << "array has "<<*pl<<endl;
v. push_back(1);
v. push_back(42);
v. push_back(3);
vector<int>::iterator p2;
sort(v.begin(),v.end());
for (p2=v.begin();p2!'=v.end(); ++p2);
cout << "vector has "<<*p2<< endl; }

OS C 124
C++ Programming for Scientists

STL Quick Overview: Advanced I/O Stream

* Advanced I/O Stream: In addition to the basic capabilities presented earlier
In terms of using the I/O stream method with stdin and stdout, there exists
more sophisticated capabilities (i.e., string I/O, line 1/0O, file I/O, etc.) in the
STL classes and functions. The sample program below shows a common file

|/O application:
#i ncl ude <string> _ - Mow | awn
#i ncl ude <fstream h> Output is exactly what is Teach C++
#i ncl ude <list> inthefilel i st.in See novi e
void main() {

i fstreamin(“list.in”);
| i st<string> todo;
while (in.good()) {
string buf;
getline(in, buf);
t odo. push_back(buf);
}
|ist<string>:.:iterator iter;

for(iter=todo.begin();iter!=todo.end(); ++iter)
cout << *jter << endl;

OS C 125

C++ Programming for Scientists

Containers: Basic types

* Inthissection, the various types of STL containers will be explained as well as
the basic operations common to all containers. Here are ten STL containers
with a brief description of their structure:

vect or Linear, contiguous storage, fast inserts at end only
deque Linear, non-contiguous storage, fast inserts at both ends
| i st Doubly-linked list, fast inserts anywhere

set Set of items, fast associative lookup

mul ti set Likeset but duplicate objects allowed

map Collection of one-to-one mappings

mul ti map Collection of one-to-many mappings

st ack First-in, last-out data structure

gueue First-in, first-out data structure

priority_queue Maintainsobjectsin sorted order

OS c 126
C++ Programming for Scientists

Containers: Functions

» Although containers have different properties, they all share a set of common
functions which do basic bookkeeping and creation/comparison/destruction
tasks. Here are functions related to basic container existence (using a vector

container):
Function Example Description
Constructor vector () Construct the container
Destructor ~vector () Destroy a container
Empty bool enpty() Returns true if container is empty

Max_size Si ze_type max_size() Returns maximum number of
objects the container can hold

Size size type size() Returns the number of objectsin
the container

OS c 127
C++ Programming for Scientists

Containers: Functions -- Example

« Thefollowing program illustrates the use of the common “container existence’
functions with a vector container:

#i ncl ude <vector>
#i ncl ude <i ostream h>
void main() {
vect or <doubl e> v;
cout << "enpty=" << v.enpty() << endl;
cout << "size=" << v.size() << endl;
cout << "max_size=" << v.nmax_size() << endl;
V. push_back(42);
cout << "enpty=" << v.enpty() << endl;
cout << "sjze=" << v.size() << endl;

enpty=1
si ze=0

max_si ze=536870911

enpt y=0
size=1

C++ Programming for Scientists

Containers: More Functions

* The next two common functions allow assigning one container to another and
swapping the objects of two containers

vect or <T>& operat or=(const vector<T>& Xx)
replaces calling object’ s vector with a copy of the vector x

swap
voi d swap(vector<T>& y)
swap the calling object’ s vector with the vector y

0SC 129

C++ Programming for Scientists

Containers: More Functions -- Example

* |nthefollowing program = and swap are used:

#i ncl ude <vector>

#i ncl ude <i ostream h>

voi d print(vector<doubl e>& x) {
for (int i=0; i<x.size(); ++i)

cout << x[i] << "

cout << endl; }

void main() {
vect or<doubl e> v1; vl1.push_back(12.1); v1.push_back(45.6);
vect or <doubl e> v2; v2.push_back(2.893);

cout << "vl1="; print(vl);
cout << "v2="; print(v2);
vl. swap(v2);

cout << "vi1="; print(vl);
cout << "v2="; print(v2);
v2=vl;

cout << "v2="; print(v2); }

v1=12.1 45.
v2=2. 893
v1=2. 893

v2=12.1 45.
v2=2. 893

C++ Programming for Scientists

Containers: Even More Functions

« Thelast common function are related to comparing and copying containers:

Copy Constructor
vect or <T>(const vector<T>& Xx)
construct a container object to be a copy of x

bool operator==(const vector<T>& y)
returns true if container object contains same items in same order asy

bool operator<(const vector<T>& z)
returns true if container object is“lessthan” z (by lexicographical order)

OS c 131
C++ Programming for Scientists

Containers: Even More Functions -- Example

TIP: If you include the STL library called utility, the other relational operators
(!=,>, <=, >=) can aso be used since they can be built from == and <.

« Thefollowing program shows the use of several of the relational operators:

#i ncl ude <vector>
#i ncl ude <i ostream h>
#i nclude <utility>
void main() {
vect or <char > v;
V. push_back(' h');
V. push_back('i");
cout << "v=" << v[0] << v[1l] << endl;
vect or <char> W v);

W 1] =" o";

cout << "w=" << W0] << W 1] << endl;
cout << "(v==w) =" << (v==w) << endl;
cout << "(v<w) =" << (v<w) << endl;
cout << "(vl=w)=" << (vl=w) << endl;
cout << "(v>w) =" << (v>w) << endl; }

OS C 132
C++ Programming for Scientists

[terators

 We have aready been introduced to the idea of an STL iterator asa
“generalized pointer”. Before we can explore more sophisticated containers
than vector, the various types of iterators need to be discussed. Regardless of
the type of iterator one thing isalwaystrue: At any point in time, an iterator
IS positioned at exactly one placein a container until it isrepositioned.

» There arethree major types of iterators:
forward
— can work with object only in the forward direction

bidir ectional
— can move forwards and backwards

random access
— canjump an arbitrary distance

OS c 133
C++ Programming for Scientists

lterator Use

» |terators can be used with both input and output streams, as well as with
containers (as we have seen). Basically the same set of basic arithmetic,
logical, and de-referencing operations that can be performed with C++
pointers also work with STL iterators.

» Each STL container works with a certain typeiterator. Thevect or and
degue containers use random access iterators. Thel i st ,mul ti set, set,
mul t 1 map, and map containersuse bidirectional. In addition, each STL
container has a set of typedefs that describe its iterators. For a container
iterator there are the member functions begin and end to set the iterator to
extreme positions in the container:

| terator begin() --returnsan iterator positioned at the first object

| terator end() --returnsan iterator positioned immediately after
the last object

134
Osc C++ Programming for Scientists

Reverse lterators

* Asyou might expect, areverse iterator travels a container of objects
backwards instead of forwards. Aswith regular iterators there are container
member functions used to place the iterator at extreme positions

reverse_iterator rbegin() --returnsareverse iterator
positioned at the last object

reverse _iterator rend() --returnsareverseiterator positioned
immediately before the first object

S c 135
0 C++ Programming for Scientists

Reverse lterator Example

» Thefollowing program uses areverse iterator.

#i ncl ude <string>
#i ncl ude <i ostream h>
#i nclude <list>
void main() {
i st<string> niece;
ni ece. push_back(" Madel yn");
ni ece. push_back("C aire");
ni ece. push_back("Enni s");
|1 st<string>:.:reverse iterator r;
for (r=niece.rbegin(); r!=niece.rend(); ++r)
cout << *r << endl;

C++ Programming for Scientists

Random Access lterators

» Random accessiterators can do it all: more forward, move backward, and
jump from one position to another. Recall that the default iterator for a
container is while you study the following program:

#i ncl ude <vector>
#i ncl ude <i ostream h>
void main() {
vector<int> v;
v. push_back(11);
V. push_back(12);
V. push_back(13);
vector<int>::iterator i=v.end();
cout << "last object is " << *--1 << endl;
| - =2;
cout << "first object is " << *iI << endl;

| ast object is 13
first object is 11

OS C 137
C++ Programming for Scientists

Algorithms

 Thedesigners of the STL wished to implement generic algorithms:. those that
can be applied to a variety of data structures from normal integers and doubles
to advanced classes. This design was realized through the use of function
templates to define the algorithm functionsin the library. There are over 65
algorithmsin the algorithm library, the code for which actually makes up the
bulk of the entire STL.

 Toalow the STL algorithmsto work on avariety of data structures from C++
arraysto STL containers themselves, the STL algorithms only access data
indirectly by using iterators. In addition, some algorithms have severd
Implementations optimized for the kind of iterator involved.

* Inthefollowing pages, sample programs using several of the more popular

algorithms are presented. In a separate handout, a categorized listing of the
STL algorithms and a brief description of their operation is presented.

OS c 138
C++ Programming for Scientists

Min/Max Algorithm

#incl ude <al gorithne
#i ncl ude <i ostream h>
void main() {
doubl e x=m n(444. 90, 6.5);

cout
char
cout

m ni num

<< "mnimum of 444.90 and 6.5 is " << X << endl;
c=max('=","'3");

<< "maxi mum (by ASCI| value) of = and 3 is "

<< ¢ << endl:

of 444.90 and 6.5 1s 6.5

maxi num

0SC

(by ASCI| value) of = and 3 is =

139

C++ Programming for Scientists

Count Algorithm: (C++ array and vect or container)

#i ncl ude <al gorithne
#i ncl ude <i ostream h>
#1 ncl ude <vector>
int nunf]={1,4,2,8,9,12,2,13,8,2,2,1,4, 2,33, 1};
void main() {
I nt n=0; [/ nmust initialize, count iIncrenents n
I nt asi ze=si zeof (num / 4; /1 4 bytes per el enent
count (num numtasi ze, 2, n);
cout << "There are " << n << " twos in the array\n";

vector<int> v;

v. push_back(1);v. push _back(4);v. push _back(2);v.push_back(8);
v. push _back(9);v. push_back(12);v. push_back(2);v. push _back(13);
v. push_back(8);v. push_back(2);v. push _back(2);v.push back(1);
v. push_back(4);v. push_back(2);v. push_back(33);v. push_back(1);
n=0;

count (v. begin(),v.end(), 1,n);

cout << "There are " << n << " ones in the vector\n";

}

There are 5 twos in the array
There are 3 ones in the vector

C++ Programming for Scientists

Accumulate Algorithm: Summing

#include <algorithm // may be <nuneric> on sone systens
#i ncl ude <i ostream h>
void main() {
const int N=8;
int a[N ={4, 12, 3,6,10,7,8,5 };
sumrFaccunul at e(a, atN, 0) ;
cout << "Sumof all elenents:" << sum << endl ;
fun_sumraccunul at e(a+2, a+5, 1000) ;
cout << "1000+a[2] +a[3]+a[4] = " << fun_sum << endl;

Sum of all el enents: 55
1000+a[2] +a[3] +a[4] = 1019

OS C 141
C++ Programming for Scientists

Accumulate Algorithm: General Binary Operation

#incl ude <al gorithne
#i ncl ude <i ostream h>
#i ncl ude <vector>

int nult(int i, int j) {
return (i*j);
}

void main() {
vector<int> v(6);
I nt prod;
for (int i=0; i<v.size(); ++i)
v[i] =i +1;
prod=accunul ate(v. begin(), v.end(), 1, nmult);
cout << "The factorial of 6 is " << prod << endl;

}
The factorial of 6 is 720

142
OSC C++ Programming for Scientists

Inner Product Algorithm

#incl ude <al gorithnp
#i ncl ude <i ostream h>
void main() {
I nt a[3] ={2, 20, 4} ;
I nt b[3]={5, 2, 10};
I nt i nprod;
| npr od=i nner _product (a, at+3, b, 0);
cout << "<a, b>=" << inprod << endl;

}

143
OSC C++ Programming for Scientists

Inner Product Algorithm: General Operations

#incl ude <al gorithne
#i ncl ude <i ostream h>

int mult(int x, int y) {
return(x*y);

}

int power(int x, int n) {
I nt y=1;
for (int k; k<n; ++k) y*=x;
return(y);

void main() {
I nt a[3]={2, 3, 5};
I nt b[3]={4,1, 2};
I nt strange;
st range=i nner _product (a, a+3, b, 1, nul t, power);
/] power (2, 4) *power (3, 1) *power (5, 2);
cout << "This strange cal cul ati on equal s "<<strange<<endl ;
}

Thi s strange cal cul ati on equal s 1200

144
OSC C++ Programming for Scientists

Find Algorithm

#i ncl ude <al gorithne
#i ncl ude <i ostream h>
#i ncl ude <vector>
void main() {
vector<int> v(5, 8);
for (int k=0; k<v.size(); ++k)
cout << v[Kk] << " ";
cout << endl;
v[2] =33;
vector<int>:.:iterator pos;
pos=find(v. begin(), v.end(), 33);
cout << "The value 33 was found at position "
<< pos-V.begin() << endl;

}

8 8888
The val ue 33 was found at position 2

C++ Programming for Scientists

Merge Algorithm: Mixing Containers

#i ncl ude <al gorithne
#i ncl ude <i ostream h>
#i ncl ude <vector>
#include <list>
void main() {
vector<int> a(5);
a[0] =2; a[l1l]=3; a[2]=8; a[3]=20; a[4]=25;
int b[6]={7,9, 23, 28, 30, 33};
list<int> c(11);
nmerge(a. begin(), a.end(), b, b+6, c.begin());
[ist<int>: :iterator k;
for (k=c.begin(); k!=c.end(); ++k)
cout << *k << " ",
cout << endl;

}

237 89 20 23 25 28 30 33

C++ Programming for Scientists

Merge Algorithm: User-defined C++ Structures

#i ncl ude <al gorithne
#i ncl ude <i ostream h>
struct entry {
| nt age,;
char nane[30];
bool operator<(const entry&b) {
return(age < b.age); }
void main() {
entry a[3]={ {10, "Andy"}, {45,"David"}, {114,"Takii"} };
entry b[2]={ {16,"Julie"}, {72,"Dorothy"} };
entry c[5], *p;
nerge(a, a+3, b, b+2, c);
for (p=c;p!=c+5; ++p)
cout << p->age << " " << p->npane << endl;

10 Andy
16 Julie

45 Davi d
72 Dor ot hy
114 Takii

OS C 147
C++ Programming for Scientists

The Functional Library

* Aswasshown in some of the previous sample programs, one can customize
(or radically modify) the behavior of certain algorithms by using your own
C++ functions and providing them as argumentsin the algorithm call. In
the STL library f unct i onal , the designers of STL have provided the user
with a set of built-in, useful functions that the programmer can use to do this
same customization. STL actually allows these built-in functions to be
encapsulated and treated as data objects and they are thus called function
obj ects.

« Specifically, recall the sample program which used the accumulate algorithm

to actually perform afactorial operation. In that previous program, the user
had to define and use the function nul t . On the next page, isthe identical

program but using thet i nes function object that is a part of the
functi onal library.

* |nasegparate handout, atable of all the function objects comprising the
functional library is shown.

OS c 148
C++ Programming for Scientists

Accumulate Algorithm: t i mes Function Object

#i ncl ude <al gorithne
#i ncl ude <i ostream h>
#i ncl ude <vector>
#i ncl ude <functional >
void main() {
vector<int> v(6);
I nt prod;
for (int i=0; i<v.size(); ++i)
v[i] =i +1;
prod=accunul ate(v. begin(), v.end(), 1, tinmes<int>());
/1l for some conpilers tinmes has been replaced by nultiplies
cout << "The factorial of 6 is " << prod << endl;
}

The factorial of 6 is 720

C++ Programming for Scientists

Function Objects

» A function object may be created, stored, and destroyed just like any other
kind of C++ objects. On the other hand, unlike an ordinary C function, a
function object can have associated data. The key requirement of afunction
object isthat the () operator is defined so that the use of the function object
can look like anormal function reference. In addition, many of function
objectsinthe STL f unct i onal library are written as templatesin order to
work with avariety of datatypes.

» For example, hereisthe structure template definition for thet i nes function
object we just used: (obtained fromthef unct i onal includefile)

tenpl ate <class T>
struct times: binary function<T, T, T> {
T operator()(const T& x, const T& y) const {
return x*y,; }

GS c 150
C++ Programming for Scientists

Function Objects Example

« Hereisasmall program in which a“times’ structure is created:

#i ncl ude <i ostream h>

#i ncl ude <functional >

void main() {
ti me<doubl e> prod; // create an instance of tinmes object
cout << prod.operator()(3.4,2.0) << endl;
cout << prod(3.4,2.0) << endl;

6.8
6.8

OS C 151
C++ Programming for Scientists

Categories of STL Function Objects

* There arethree kinds of function objects used in the STL ;

— Predicates. Boolean function objects used for setting the conditions for
the action of algorithm to take place.

— Comparitors. Boolean function objects used for ordering objectsin a
sequence (container or C++ array)

— General Functions: Perform an arbitrary (but usually mathematical)
operation on its arguments.

« Thefollowing pages contain sample programs in which each of these function
object categories are used.

OS c 152
C++ Programming for Scientists

Predicate Sample Program

#1 ncl ude <i ostream h>
#i ncl ude <functional >
#incl ude <al gorithnp
voi d mai n()
int tf[7]={1,0,0,1,1,0,1};
I nt n=0;
count if(tf, tf+7, logical _not<int>(), n);
cout << "The count of falses was " << n << endl;

}

The count of falses was 3

OS C 153
C++ Programming for Scientists

Comparitor Sample Program

#i ncl ude <i ostream h>
#i ncl ude <functi onal >
#incl ude <al gorithnp
#i ncl ude <vector>
void main() {
vector<int> v(3);
v[0] =4;
v[1] =1;
v[2] =9;
sort(v.begin(), v.end(), greater<int>());
vector<int>::iterator k=v.Dbegin;
while (k '= v.end())
cout << *k++ << endl;

154
OSC C++ Programming for Scientists

General Function Sample Program

#i ncl ude <i ostream h>
#i ncl ude <functi onal >
#incl ude <al gorithnp

voi d mai n()
int original[6]={2,3,-8,45,9,-3};
I nt changed][6] ;
transforn(ori gi nal, ori gi nal +6, changed, negat e<i nt>());
for (int k=0; k<6; ++k)
cout << changed[k] << " ";
cout << endl;

}

-2 -3 8 -45 -9 3

C++ Programming for Scientists

Problem Set

1) Use accumulate to subtract instead of add. Output whatever is necessary to
show that your program is working.

2) Write the code for afunction called pal i ndr orme which takes avector asits

argument and returns a Boolean that is true only if the vector is equal to the
reverse of itself. Useiteratorsto perform the comparison. Inyour mai n

program, test your pal i ndr one function with several vectors and output the
results.

3) Usether enpve algorithm to remove some objects from a vector. Does the
size of the vector decrease? If not, modify your program so that it actually
does remove the desired objects.

TIP: Usethef i | | agorithm to fill up your vector to begin with.

OS c 156
C++ Programming for Scientists

Problem Set Continued

4) Write and use afunction object choose() that takes two arguments and
randomly returns one of them each timeitiscalled. In your mai n program
make enough uses of the choose object to verify that, statistically, the returns
are random.

5) Write aprogram that uses the vector member functionspop_back and
| nsert to erase parts of avector and insert new objects in the middle.

6) Write aprogram that deals a set of hands for the card game Euchre.

HINT: Y ou should use one of the containers we did not cover in detail in the
class.

OS c 157
C++ Programming for Scientists

