
C++ Programming for Scientists

Science & Technology Support
High Performance Computing

Ohio Supercomputer Center
1224 Kinnear Road

Columbus, OH 43212-1163

2
C++ Programming for Scientists

Features of C++ -- A Better C

1) A Better C

• Providing features that make common C errors unlikely

• C++ is a superset of C

• Extensions to C

• Improvements to C performance/ease-of-use.

3
C++ Programming for Scientists

Features of C++ -- Object-Oriented Programming

2) Enabling Object-Oriented Programming (OOP)
• Entirely new approach to programming: next major programming style beyond

functional decomposition
– Model real world by making data types that replicate real objects
– Facilitates code reuse: reuse and enhance existing libraries

• Main program consists of creation and manipulation of objects

• Object = data + functions which allow you to interact with the data

• In general, data controlled only through these interface functions: Data
Encapsulation

• C operators can work with your objects: Operator Overloading

• “Advanced” objects can incorporate features of “Simpler” objects:
Inheritance

• With the same syntax, objects can act differently in different situations:
Polymorphism

4
C++ Programming for Scientists

Features of C++ -- Templates

• Function templates allow the C++ programmer to write a single function that
will work for all types of data.

• Similarly, class templates allow the C++ programmer to represent a family of
classes.

• The Standard Template Library (STL) is a collection of extremely useful
class templates, function templates and algorithms, allowing the programmer a
wide variety of capabilities.

5
C++ Programming for Scientists

Table of Contents

• A Better C
• Object-Oriented Programming (OOP)
• Templates and The Standard Template Library (STL)

6
C++ Programming for Scientists

A Better C

General:
• End-of-line Comments
• Boolean Data Type
• Type-casting Syntax
• Input/Output Streams
• Omnipresent Variable Declaration
• const Keyword
• Memory Allocation Syntax

Function-related:
• Improved Argument Type

Checking/Strict Function
Prototyping

• Interpretation of the void
keyword

• Type-safe Linkage
• Default Arguments
• Function Overloading
• Inlined Functions
• Reference Declarations
• Operator Overloading!!

7
C++ Programming for Scientists

End-of-Line Comments

• Single line form of a comment begun with the // symbol

– Everything from the delimiter // to the end-of-the-line is ignored

– Reminiscent for the Fortran 90 use of ! for one-line commenting

• Familiar, multi-line style of commenting still works in C++

Warning: /* … */ commenting may not nest with some compilers

8
C++ Programming for Scientists

End-of-Line Comments Sample Program

#include <stdio.h>
main() {

float r, theta; // polar coordinates
float x,y,z; // Cartesian coordinates

// only works for one line
/* code might need later
x=10; y=100;
z=x*3+2-y/4;
printf("z is %d \n",z);
*/

}

9
C++ Programming for Scientists

Boolean Data Type

• C++ now supports a Boolean data type identified by the keyword bool.
Variables of this type will take on the values true and false. As in both C and
C++ “false” is defined to be 0. A “true” Boolean variable will take on the
value 1. Below is a small program that demonstrates how Boolean variables
work:
#include <iostream.h>
main() {

int i=4;
int j=78;
bool logic1;
bool logic2;
logic1 = (i==j);
cout << "logic1=" << logic1 << endl;
logic2 = (i<j);
cout << "logic2=" << logic2 << endl;

}

logic1=0
logic2=1

10
C++ Programming for Scientists

Type-casting Syntax

• In C, override type casting was possible with the following (awkward) syntax:

int i;
(double) i

• In C++, a second (less awkward) syntax can also be used:

double(i)
char(3+'A')

• Additional usefulness of this new syntax will be seen later in the OOP Section.

11
C++ Programming for Scientists

Input/Output Streams

• Probably the strangest thing you would notice when looking at a C++ for the
first time…

• Replacement of the stdio library of C with the iostream library of C++.
For example the C++ version of the classic “Hello World” program looks as
follows:

Notice the 3 changes:
1 Include iostream.h instead of stdio.h
2 The cout keyword indicates that the output should go to standard out. There

are corresponding keywords cin and cerr which represent standard in and
standard error, respectively

3 Use of the insertion operator << as opposed to the printf function. The
corresponding extraction operator for input is >>

#include <iostream.h>
main() {

cout << "Hello World\n";
}

12
C++ Programming for Scientists

Advantages of iostream Approach

• Can extend the insertion/extraction operators to work exactly the way you
want for your own data types (structures variables/objects)

• Can just use default format for quick output display (analogous to Fortran
print *)

• Stream approach more type-safe. Avoid run-time mismatch of format
specifiers and their “matching” arguments in printf and scanf

• Better performance: avoids run-time interpretation of format specifiers in
stdio library functions

13
C++ Programming for Scientists

I/O Streams: Default Formats

#include <iostream.h>
main() {

int i=44;
float f=10.40;
double d=2.718281828459045;
char c='E';
char *s="Logan";
cout << c << endl;
cout << s << endl;
cout << f << endl;
cout << d << endl;
cout << i << endl;
cout << s << c << f << i << endl;
cout << &i << endl; }

E
Logan
10.4
2.71828
44
LoganE10.444
0xae41

14
C++ Programming for Scientists

Formatting I/O Streams

• Formatted output is performed by including format manipulators (such as the
just seen endl) into the stream.

• Include the iomanip.h file in your code header.

• Some popular manipulators and their functions:

Format Manipulator Function
“ “ String of desired spaces
“\t” Horizontal tab
setw(w) Set field width to w
setfill(c) Set fill character to c (blank is default)
setprecision(p) Set float precision to p
dec, oct, hex Use the indicated base

15
C++ Programming for Scientists

Formatting I/O Streams Example

#include <iostream.h>
#include <iomanip.h>
main() {

cout << "[" << setw(6) << setfill('*') << 192;
cout << "]" << endl;
cout << hex << "[" << setw(6);
cout << setfill('^') << 192 << "]" << endl;
cout << setprecision(4) << 3.14159 << endl;

}

[***192]
[^^^^c0]
3.142

16
C++ Programming for Scientists

The Input Stream

• Analogous to output stream in syntax and use of format manipulators.

int c,d;
cin >> c >> d;

• Advantage: Avoid the common error of forgetting that the arguments to
scanf are addresses.

Compare
cout << "Number of time steps:";
cin >> T;

to
printf("Number of time steps:");
scanf("%d",&T);

• The I/O stream approach also exists for files <fstream.h> and strings
<strstream.h>

17
C++ Programming for Scientists

Using the cerr Stream

#include <iostream.h>
main() {

int number=34;
float divisor;
cout << number << " divided by 2.3 equals "

<< number/2.3 << endl;
cout < "Please enter your own divisor: ";
cin >> divisor;
if (divisor==0.0)

cerr << "Cannot divide by zero" << endl;
else

cout << " Result is " << number/divisor << endl;
}

(981) conan% a.out
34 divided by 2.3 equals 14.7826
Please enter your own divisor: 0.0
Cannot divide by zero
(982) conan% a.out
34 divided by 2.3 equals 14.7826
Please enter your own divisor: 78.2
Result is 0.434783

18
C++ Programming for Scientists

Movable Variable Declarations

• Variables can be declared anywhere in C++ code. Local variables need not all
be declared at the beginning of a function (or block).

– Similar to implicit-typing and variable creation/use in Fortran.

• Variables come into existence when declared and cease existence when the
present code block is exited.

– Don’t tie-up memory until you really need it and free it up when you don’t
need it anymore.

– Improve code readability (“intuitively right” places for declaration)

19
C++ Programming for Scientists

Movable Variable Declarations Example

• Popular use of this feature is with loop counter.
float sum(float *a, int N) {

float res=0.0;
for (int i=0;i<N;++i)

res += a[i];
return(res);

}

Warning (compiler-dependent): scope of int extends to end of entire sum
function. So if included another “int i” statement anywhere else in the sum
function, would get compiler error for redeclaration of the same variable.

• Possible performance improvement: make loop counter register class as
well

for (register int i=0;….

20
C++ Programming for Scientists

Symbolic Constants in C++

• In C, there exists the standard macro method for declaring symbolic constants:
#define LIMIT 2300

• Two problems with this approach are that macros lack type and the macro
name is typically not available to a debugger.

• In C++ (and ANSI C), the const keyword can be used at declaration to
indicate that the identifier cannot be subsequently changed:

const int LIMIT=2300;

LIMIT now has scope and type and is tracked in the name space used by the
compiler and most debuggers. Making symbolic constants ALL CAPITAL
LETTERS has long been a C/C++ convention.

• The const keyword can also be used in function argument list to insure that
the argument cannot be changed in the body of the function:

void bobba(const int i) {
i=5; // illegal!
...

21
C++ Programming for Scientists

C++ Memory Allocation Functions

• In C++, the malloc library of dynamic memory allocation functions are
replaced with the new and delete operators built into the language.

• The justification for this change is that the “new” operators are easier to use:
avoiding

– the ancillary use of the C sizeof function and

– extraneous type-casting

– operator versus function call overhead

• Above is especially true with user-defined types.

Warning: Do not mix & match C’s malloc() and free() with C++’s new
and delete.

22
C++ Programming for Scientists

Dynamic Allocation Examples: Single Variable and Arrays

• Sample code for C++ dynamic allocation of a single variable type
float *fp;
fp=new float;
*fp=9.87;
cout << *fp << endl;
delete fp;

• As this program demonstrates, the new operator returns the address of a block
of memory large enough to hold a variable of the argument type. The
delete operator then frees up the memory when it is no longer needed.

• A similar procedure with slightly different syntax is used for dynamic memory
allocation for entire arrays:

float *a;
a=new float[50];
a[44]=34.5;
delete [] a;

Rule of Thumb: Whenever new is followed by [], delete should be too.

23
C++ Programming for Scientists

Dynamic Allocation Example: User-defined Data Types

• Perhaps, the most convincing proof of how easily new & delete allow dynamic
memory control, is when working with user-defined data types. Consider this
classic linked list example:

#include <iostream.h>

struct node {
int id;
double value;
node *next;

};

main() {
node *current;
current=new node;
current->id=78;
current->value=45.67;
cout << current->id << endl;
cout << current->value << endl;
delete current;

}

24
C++ Programming for Scientists

Type Checking

• In general, C++ uses very strict type checking.

• With respect to functions, C++ (as well as ANSI C) requires that functions
be prototyped before their use. This is to insure that the compiler can check
that

– the proper number of arguments are passed

– where possible and if needed, cast the actual arguments to the proper type

– the return type is properly used in the calling function

25
C++ Programming for Scientists

Type Checking Illustration

• To illustrate the power of function prototyping and argument checking, the
following code

• produces these compiler error messages

#include <iostream.h>
int firstchar(char *s);

main() {
float name=3.0;
int ascii;
ascii=firstchar(name);
cout << "Ascii code of first char is " << ascii << endl;

}
int firstchar(char *s) {

return(int(s[0]));
}

type.C: In function ‘int main()’:
type.C:7: argument passing to ‘char *’ from ‘float’

1
2
3
4
5
6
7
8
9

10
11
12

26
C++ Programming for Scientists

Functions with no arguments in C and C++

• In C, a function prototype with an empty argument list

extern int freak)();

indicates that the argument list of the declared function is not prototyped and
could have any number of arguments (it is also defined in a separate file).

• In C, a function prototype with a void argument list

extern int freak(void);

indicates that the function has no arguments.

• Because C++ maintains such strict argument checking, an empty argument list
means there are literally no arguments. So in C++, the two above declarations
are equivalent.

27
C++ Programming for Scientists

Strict Argument Checking Example

• For example, consider the freak function declared in its own file freak.C:

• and a main program in a file called tstfrk.C that uses the freak function,

• when compiled with the gcc command (for example), the following compile-
time error messages are produced

• In C, the code in these two files would have run successfully.

#include <stdio.h>
extern int freak();
main() {

int x=23;
printf("%d\n",freak(x));

}

int freak(int a) {
return(a+5);

}

gcc tstfrk.C freak.C
tstfrk.C: In function ‘int main()’:
tstfrk.C:2: too many arguments to function ‘int freak()’
tstfrk.C:5: at this point in file

1
2
3
4
5
6

28
C++ Programming for Scientists

Type-safe Linkage Example

• C++ takes type checking to a further level beyond ANSI C, by comparing a
function prototyped in the “main” file and actually defined in a separate file.

• Consider the function colum defined in a file called colum.c

• and further consider the main source file, tstcol.c, which uses the colum
function:

double colum(double a, double b) {
return(a/2.0*(b+42.0));

}

#include <stdio.h>
extern double colum(int a, double b);
main() {

double a=5.5,b=6.7,c;
c=colum(a,b);
printf("%f\n",c);

}

1
2
3
4
5
6
7

29
C++ Programming for Scientists

Type-safe Linkage Example Discussion

• In tstcol.c, the function prototype incorrectly declares the first dummy
argument to be an int instead of a double. A C compiler will not find this
error and an incorrect value for c will be produced.

NOTE: C programmers who get in the habit of putting function prototypes in
their own include file can generally avoid the error.

• If this same code is compiled using a C++ compiler, it will find the error and
prevent the creation of an incorrect executable. This is accomplished at link
time through a process known as name-mangling. The function names
actually used by the linker are encoded with argument-typing information.

30
C++ Programming for Scientists

Type-safe Linkage Example Output

• For example, using the preceding code example and the following compilation
command, the following error messages would be produced.
CC tstcol.C colum.C
tstcol.C: In function ‘int main()’:
tstcol.C:5: warning: ‘double’ used for argument 1 of

‘colum(int,double)’

Undefined first referenced
symbol in file
colum_Fid /var/tmp/cca001cg1.o

ld: fatal: Symbol referencing errors. No output written to
a.out

31
C++ Programming for Scientists

Default Arguments

• In C++, the programmer can set default values for dummy arguments in
function definitions.

• If no actual value is passed to that dummy argument, the default value is used.

• Useful when a certain argument almost always has the same value when the
function is used.

• In addition, this approach can reduce the number of actual arguments in the
function reference.

• On the other hand, should comment on why/how the default value is used.

32
C++ Programming for Scientists

Default Arguments Example

• As illustration, consider the following program and its output:

#include <iostream.h>
void symm(float x, int k=13) {

cout << "Argument 1 is " << x << endl;
cout << "Argument 2 is " << k << endl;

}
main() {

symm(3.2,167);
symm(5.4);

}

Argument 1 is 3.2
Argument 2 is 167
Argument 1 is 5.4
Argument 2 is 13

33
C++ Programming for Scientists

Function Overloading

• Often, a function needs to perform the same operation, but using arguments of
different types.

• In C++, multiple versions of a function with the same name but different
type arguments can be defined.

• In the main program, the “correct” version of the function is actually used by
the compiler by examining the argument types. (Internally, this is done
through name-mangling again…).

• Function overloading avoids having multiple functions with slightly different
baroque names which essentially perform the same work.

• In the following program, a swap function is overloaded to work with both
integers and doubles.

34
C++ Programming for Scientists

Function Overloading Example

• In the following program, a swap function is overloaded to work with both
integers and doubles.
#include <iostream.h>
void swap(int* i, int* j) {

int temp;
cout << "int swap called" << endl;
temp=*i;
*i=*j;
*j=temp; }

void swap(double* x, double* y) {
double temp;
cout << "double swap called" << endl;
temp=*x;
*x=*y;
*y=temp; }

main() {
int a=5,b=23;
double r=34.5,s=1245.78;
swap (&a,&b);
swap (&r,&s);
cout << "a is " << a << " b is " << b << endl;
cout << "r is " << r << " s is " << s << endl; }

int swap called
double swap called
a is 23 b is 5
r is 1245.78 s is 34.5

35
C++ Programming for Scientists

Inlined Functions

• In C++, functions can be declared as inlined. Inlining is a general optimization
technique which causes any reference to a function to be replaced by the
actual code that makes up the function. The function body is input in the line
where the function reference occurs. The user programs in their own style and
the compiler does the inlining automatically. (Especially useful for small
functions referenced often).

• The advantages to inlining are:
– Don’t pay the overhead time-cost of the function call itself
– Unlike macros (the alternative approach), inlined functions can be

prototyped and thereby type-checked
– Less prone to errors than macros

• The disadvantage of inlining (and macros) is the assembly language “text
bloat” which will occur. In addition, the actual code must be known to the
compiler, thus functions in a run-time library cannot be inlined.

36
C++ Programming for Scientists

Macros -- C Example

• The following C code shows that macros can produce incorrect results due
to their literal substitution of arguments:

• The correct result we expected (10*3+2)*(100/4)=800 was not
calculated because the macro substitution resulted in the expression

x*3+2*y/4

which due to operator precedence gives the value 80.

#include <stdio.h>
#define MUL(a,b) a*b
main() {

int x,y,z;
x=10;y=100;
z=MUL(x*3+2,y/4);
printf("z is %d \n",z);

}

z is 80

37
C++ Programming for Scientists

Inlined Functions -- C++ Example

• The problem is solved in the following C++ program using inlining:

#include <iostream.h>
inline int mul(int a, int b) {

return a*b;
}

main() {
int x,y,z;
x=10;y=100;
z=mul(x*3+2,y/4);
cout << z << endl;

}

800

38
C++ Programming for Scientists

Call-by-Reference

• In C, the only way actual arguments are passed to dummy arguments when
referencing a function is call-by-value.

– The value of the actual argument is passed into the dummy argument. Any
changes the function makes to the dummy arguments will not affect the
actual arguments.

• C does provide an indirect method for changing the value of the actual
arguments, namely call-by-address.

– Addresses are passed from the actual to the dummy argument and the
indirection operator * is used to change the contents of the actual
argument.

39
C++ Programming for Scientists

Call-by-Address -- C Example

• The following C code demonstrates the use of call-by-address

#include <stdio.h>
struct item {

char* name;
float price;
int quantity;

};
void increase(struct item* p) {

(*p).price=1.10*(*p).price;
p->quantity=p->quantity+10;

}
main() {

struct item chicken={"Holly Farms",5.00,20};
increase(&chicken);
printf("New price is %0.2f\n",chicken.price);

}

New price is 5.50

40
C++ Programming for Scientists

Call-by-Reference -- C Example Discussion

• The drawbacks to the C call-by-address approach is that the function body is
difficult to interpret because of the necessary * and -> operators. In addition,
one must remember to use the address operator & for the actual argument in
the function reference itself.

• For these reasons, C++ has developed a true call-by-reference. If a dummy
argument is declared as a reference to the actual argument -- by using the
reference operator & (again!) -- it picks up the address of the actual argument
(automatically) and can change the contents of that address.

• Conceptually, the referenced actual argument just gets a new name in the
function: whatever is done to the dummy argument is also done to the actual
argument.

41
C++ Programming for Scientists

Call-by-Reference -- C++ Example

• The C++ version of the previous code using call-by-reference is:

#include <iostream.h>
struct item {

char* name;
float price;
int quantity;

};
void increase(item& thing) {

thing.price=1.10*thing.price;
thing.quantity=thing.quantity+10;

}
main() {

item chicken={"Holly Farms",5.00,20};
increase(chicken);
cout << "New price is " << chicken.price << endl;

}

New price is 5.5

read as “reference to an item structure”

42
C++ Programming for Scientists

Operator Overloading

• On of the more powerful features of C++ is that programmers can define the
basic C++ built-in operators -- such as +, *, [], !, for example -- to work
with user-defined types. Of course, the operators continue to work as
originally designed for basic types: thus the term overloading.

– This capability makes for sensible and more readable main programs and
is similar, in spirit, to function overloading.

– Keep in mind also that although you can use operator overloading to
define an operator to do anything you want, it is best to make the new
operator definition in some way analogous to the normal use of the
operator.

• The syntax for operator overloading looks exactly like the syntax for a
function definition except that the function name is replaced by the name

operator<operator symbol>

43
C++ Programming for Scientists

Operator Overloading Usage

• A sample operator overload prototype might look as follows:

clock operator+(const clock& a, const clock& b);

• where clock is some user-defined structure and the body of this prototype
will define what “+” will do to two clock structures (perhaps, add the hours
members to correct for different time zones).

NOTE: the use of the const keyword in operator overload prototype. This is
to insure that the operator cannot change the value of its operands, only
produce a result. NOTE: also the use of call-by-reference arguments. Both
noted procedures are suggested, not required.

• It should be pointed out that operator overloading only defines what the
operator does for user-defined types. It does not change the operator’s
precedence, direction of associativity, or number of operands. In addition, you
cannot make up your own new operator symbols.

44
C++ Programming for Scientists

Operator Overloading Example

#include <iostream.h>
struct complex { double real;

double img;};
complex operator+(const complex& a, const complex& b) {

complex res;
res.real=a.real + b.real;
res.img=a.img + b.img;
return(res); }

complex operator*(const complex& a, const complex& b) {
complex res;
res.real = a.real*b.real - a.img*b.img;
res.img = a.real*b.img + a.img*b.real;
return(res); }

complex operator!(const complex& a){
complex res;
res.real = a.real;
res.img = -a.img;
return(res); }

main() {
static complex x={1.0,2.0},y={3.0,4.0},z;
z=x+y;
cout << z.real << " +i" << z.img << endl;
z=x*y;
cout << z.real << " +i" << z.img << endl;
z=x*(!x);
cout << z.real << " +i" << z.img << endl; }

4 +i6
-5 +i10
5+i0

45
C++ Programming for Scientists

Object-Oriented Programming

• Classes and Objects
• Constructors and Destructors
• Object assignment & Type Casting
• Operators with Objects
• Friend Functions
• Using Objects with the I/O stream
• Static Class Members
• Inheritance
• Virtual Functions and Polymorphism

46
C++ Programming for Scientists

C++ Classes

• A class is a user-defined data type. You can think of it as an extended and
improved structure data type. An object is a variable of a certain class type.
It is often said that an object is an instantiation of the class.

• Intrinsic data-types, float for example have values they can contain (real
numbers) and a set of operations (+,/,*,etc) that can be applied to variables of
type float.

• These same concepts are carried over to class types. The values a class can
contain are called its data members. The set of operations that can be applied
to a certain class object are called its member functions.

• After a class has been declared, we will see in the rest of the course how its
objects can be treated in the same manner and syntax as “normal” data-type
variables.

47
C++ Programming for Scientists

C++ Class Example

data members

member functions

Common Error: forget this semicolon!

• In the following code fragment, a class Triangle is declared:

class Triangle {
double base;
double height;

public:
void set(double a, double b) {

base=a; height=b;
}
void display() {

cout << "base=" << base <<
" height=" << height << endl;

}
double area() {return(0.5*base*height);}

};

48
C++ Programming for Scientists

Triangle Class Example

• In this declaration of the class Triangle (it is customary to capitalize the
first letter of a class type), there are two data members -- base and height -
- and three member functions -- set, display, and area. The member
functions represent three typical tasks one might want to perform with a
Triangle object. In many ways the declaration of a class looks like the
declaration of a structure but with functions now being allowed as members.

• Here is an example of some main code that would use the Triangle Class data
type:

• It should be noted in this code that the same “dot” operator to access a member
of a structure is also used to access the member of a class. Specifically,
member functions are invoked with the traditional “dot” operator.

main() {
Triangle t;
t.set(2.0,3.0);
t.display();
cout << "area is " << t.area() << endl; }

base=2 height=3
area is 3

t is an object of class Triangle

49
C++ Programming for Scientists

Access to Class Members

• The user has complete control over which parts of a program can alter and/or
use the members (data and functions) of a class. There are three types of
member access allowed:

• The default access classification for classes is private. As in the class
Triangle previously declared, once an access-specifier -- like public --
appears, all members following the public keyword are declared public,
until a different access-specifier is typed in. Thus, all three member functions
of Triangle are public.

Access-
Specifier

Description

public Accessible to all functions in the program (everyone)
private Accessible only to member functions of the same class
protected Accessible only to functions of same or derived classes

50
C++ Programming for Scientists

Controlling Access to Class Members

• Controlling the access to class members facilitates the safe reuse of classes in
different programs, and avoids improper addressing and name collisions of
data. The practice of using public member functions to indirectly set, change,
and use private data members is called Data Hiding.

• Consider the following class Access:

class Access {
int x;

public:
float y;
int z;
void set(int a, float b, int c) {

x=a; y=b; z=c; }
void display() {

cout <<x<<" "<<y<<" "<<z << endl; }
};

51
C++ Programming for Scientists

Controlling Access Example

• Which contains a mixture of public and private data members. The proper an
improper accessing of these members is illustrated in the following main
code.
main() {

Access w;
Access *p;
p=&w;
w.set(1,2.45,3);
w.display();
w.y=4.343434
w.display();
// w.x=6; ILLEGAL! Private member
p->z=32
w.display();

}

1 2.45 3
1 4.34343 3
1 4.34343 32

52
C++ Programming for Scientists

Member Functions

• As we have already seen, an interesting feature of C++ classes (unlike C
structures) is that they can contain functions as members. In the class examples
we have shown so far the member functions have been defined within the
declaration of the class itself. The actual requirement is less severe: member
functions must be declared within the class declaration, that is, their
prototype must appear there. They can actually be defined outside the class
declaration. One advantage of defining the member function inside the class
is that it will automatically be inlined.

• In terms of access, member functions -- wherever they are defined -- have
access to all private, protected, and public class members (data & function).
When the member function is defined outside the class definition the scope
resolution operator -- :: -- must be used with the class name to indicate that
the function belongs to that class.

53
C++ Programming for Scientists

Member Function Definitions/Declarations

• In the following code fragment, the member function setx is defined in the
declaration of class Play, while the member functions showx and incx are
only declared there:

class Play {
int x;

public:
void setx(int a) {

x=a;
}
void showx();
void incx(int del);

};

• The following program uses the Play class and shows the syntax for defining
“outside” member functions.

54
C++ Programming for Scientists

Member Functions Example

#include <iostream.h>
class Play {

int x;
public:

void setx(int a){
x=a; }

void showx();
void incx(int del); };

void Play::showx(){
cout << "x is " << x << endl; }

inline void Play::incx(int del) {
x += del; }

main() {
Play fun;
fun.setx(5);
fun.showx();
fun.incx(4);
fun.showx();

}

x is 5
x is 9

55
C++ Programming for Scientists

The Constructor Function

Consider what happens when the following code is executed:

double x=4.567989;

• The basic-type variable x is brought into scope, enough memory for a double-
type is allocated to x and that memory is initialized with a value.

• Given that an underlying philosophy of C++ is that derived-types can and
should be treated the same (conceptually and syntactically) as intrinsic types,
one would expect a similar initialization sequence for class variables.

• This “construction” of a class variable is accomplished through a constructor
function.

56
C++ Programming for Scientists

Constructor Properties

Here are the basic properties of a constructor
• Special member function
• Has the same name as the class
• Is invoked automatically each time a new variable of its class is created

(declared, dynamically-allocated, type conversion to the class)
• Cannot be invoked explicitly
• Has no return type (not even void)
• Typically uses its arguments (if any) to initialize the new object’s data

members
• Can have default arguments and be overloaded
• Default (no-op) constructor is provided by the compiler if you do not provide

one.
Advice: Always define your own default constructor (and destructor) -- even if
they are empty -- you may need to fill them later…

57
C++ Programming for Scientists

Constructor Example

#include <iostream.h>
class Bookshelf {

float width; float height; int numshelves;
public:

Bookshelf(float i=4.0,float j=6.0, int k=5) {
width=i;height=j;numshelves=k;
cout << "Another Bookshelf made: " << width << "x"

<< height << " with " << numshelves << " shelves"
<< endl;} };

main() {
Bookshelf normal; Bookshelf wide(8.0);
Bookshelf tall(4.0,9.0); Bookshelf* custom;
custom=new Bookshelf(6.0,3.0,3);
for (int i=10; i<=15; i+=5) {

Bookshelf paperback(4.0,6.0,i); }
}

Another Bookshelf made: 4x6 with 5 shelves
Another Bookshelf made: 8x6 with 5 shelves
Another Bookshelf made: 4x9 with 5 shelves
Another Bookshelf made: 6x3 with 3 shelves
Another Bookshelf made: 4x6 with 10 shelves
Another Bookshelf made: 4x6 with 15 shelves

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

58
C++ Programming for Scientists

The Destructor Function

• The complementary function to the constructor. The destructor allows the user
to perform any necessary “clean-up” after a class variable is destroyed.

• Destructors have the following properties:
– Another special member function
– Has the same name as its class, preceded by a tilde (~)
– Implicitly invoked each time a class object is destroyed (goes out of scope

[local variable], dynamically de-allocated, temporary object made during a
type conversion no longer needed)

– Has no return type (not even void)
– Has no arguments and cannot be overloaded
– Default (no-op) destructor is provided by compiler (if you don’t)
– Typically used for classes whose member functions perform dynamic

memory allocation: destructor releases the memory

59
C++ Programming for Scientists

Invoking Constructors & Destructors Example

#include <iostream.h>
class Number {

int i;
public:

Number(int a) {
i=a;
cout << "Created Number "

<< i << endl;}
~Number() {

cout << "Destroyed Number "
<< i << endl;}

};
Number x(1);
main() {

Number y(2);
Number* np;
np=new Number(3);
delete np;
for (int i=4; i<7; ++i) {

Number z(i); }
}

Created Number 1
Created Number 2
Created Number 3
Destroyed Number 3
Created Number 4
Destroyed Number 4
Created Number 5
Destroyed Number 5
Created Number 6
Destroyed Number 6
Destroyed Number 2
Destroyed Number 1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

60
C++ Programming for Scientists

Deallocating Destructors Example

#include <iostream.h>
class Release {

int* p;
public:

Release(int a) {
p=new int; *p=a;
cout << "Allocated int: "

<< *p << endl;}
~Release() {

cout << "Deallocated int: "
<< *p << endl;

delete p; }
};

main() {
Release x(1);
Release* rp;
rp=new Release(2);
delete rp;
for (int i=3; i<5; ++i) {

Release z(i); }
}

Allocated int: 1
Allocated int: 2
Deallocated int: 2
Allocated int: 3
Deallocated int: 3
Allocated int: 4
Deallocated int: 4
Deallocated int: 1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

61
C++ Programming for Scientists

Copying Objects

• Is it possible to copy one object of a class into another object of a class? The
answer is yes and the assignment operator "=" has been designed so that the
copying is done with “natural” syntax.

• If you use an assignment statement to copy one object to another a data
member by data member copy is performed. That is, each member of the
object is copied in turn.

• The program on the following page copies objects.

62
C++ Programming for Scientists

Copying Objects Example

#include <iostream.h>
class Bookshelf {

float width; float height; int numshelves;
public:

Bookshelf(float i=4.0,float j=6.0, int k=5) {
width=i;height=j;numshelves=k; }

display() {
cout << "Bookshelf is " << width << "x"

<< height << " with " << numshelves
<< " shelves" << endl;} };

main() {
Bookshelf library(6.25,3.50,4);
Bookshelf bedroom;
bedroom.display()
bedroom=library;
bedroom.display()

}

Bookshelf is 4x6 with 5 shelves
Bookshelf is 6.5x3.5 with 4 shelves

63
C++ Programming for Scientists

Copying Objects with Pointer Members

• Potential problems with the member-by-member copying action of the
assignment statement can arise when there are pointer data members.

• When pointers are included in the object, the data items that the pointers
reference are not actually copied-only the addresses themselves. Because of
this, a copied object can inadvertently alter the contents of the original object.

• Consider the code on the following page.

64
C++ Programming for Scientists

Copying Objects with Pointers Example

#include <iostream.h>
class Ints {

int x; int *p;
public:

void setp(int a) { *p=a; }
Ints (int a=1) { x=a; p=new int; *p=a; }
void display() {

cout << "x=" << x << " *p=" << *p << endl; }
};
main() {

Ints s(3);
Ints t;
s.display(); t.display();
t=s;
t.display();
t.setp(8);
t.display(); s.display();

}

x=3 *p=3
x=1 *p=1
x=3 *p=3
x=3 *p=8
x=3 *p=8 Contents of s changed when working with copy t!!

65
C++ Programming for Scientists

Copy Constructor

• The copy constructor is used to make a new class object safely duplicate an
existing class object. The salient properties of a copy constructor are:
– Special type of constructor member function
– Has exactly one argument which is a reference to the class type
– Invoked with the following syntax

class-name new-object-name(existing-object-name)

– Typically defined when the class contains pointer members and the
assignment operator is inappropriate

– The copy constructor produces what is referred to as deep copying
whereas the assignment operator performs shallow copying.

• The program on the following page fixes the problem just presented with our
Ints class and its shallow copying. The copy constructor shown on the next
page actually creates a new address for the copied class’s int pointer and
not the same address as the original.

66
C++ Programming for Scientists

Copy Constructor Example
#include <iostream.h>
class Ints {

int x; int *p;
public:

void setp(int a) { *p=a; }
Ints (int a=1) { x=a; p=new int; *p=a; }
Ints(Ints& r) { p=new int; x=r.x; *p=*(r.p); }
void display() {

cout << "x=" << x << " *p=" << *p << endl; }
};
main() {

Ints s(3);
Ints t;
s.display();
Ints t(s); // replaces t=s;
t.display();
t.setp(8);
t.display(); s.display();

}

x=3 *p=3
x=3 *p=3
x=3 *p=8
x=3 *p=3 s is unchanged by actions on t!!

67
C++ Programming for Scientists

Conversion Constructor

• Yet another type of constructor enables type conversion from other types to
the class type. It is, naturally, called a conversion constructor.

• The conversion constructor has exactly one argument of a type other than the
class type.

– If the compiler encounters a “mixed-type” operation, the conversion
constructor is used to make a temporary object of the class type and use
this converted variable in the calculations.

Note: the data members of classes involved in conversion operation often have
to be made public since they will be used in non-member functions.

68
C++ Programming for Scientists

Conversion Constructor Example

• Consider the following two classes for English and Metric distances and the
conversion constructor to go from Metric units to English units:

class Metric {
public:

float cm;
Metric (float x) { cm=x; }

};
class English {

public:
float in;
English(float x) { in=x; }
English(Metric m) {

in=m.cm/2.54;
cout << "Convert construct invoked" << endl; }

English add(English y) { return(in+y.in); }
void display() { cout << "Length is " << in

<< " inches" << endl; }
};

69
C++ Programming for Scientists

main() {
English d1(6.25);
English d2(3.375);
d1=d1.add(d2);
d1.display();
Metric m1(30.48);
d1=d1.add(m1);
d1.display();

}

Conversion Constructor Example Continued

• Here is the main program that demonstrates how the conversion works:

Length is 9.625 inches
Convert construct invoked
Length is 21.625 inches

70
C++ Programming for Scientists

Operator Overloading and C++ Classes

• As we have seen previously, C++ offers the ability to overload built-in
operators so that they can work with user-defined types. Can operator
overloading be applied to C++ classes? Yes: all that is needed is to make the
definition function for the operator be a member function of the class.

• Consider in the previous program the definition of the function add for the
English class which resulted in the somewhat awkward looking “addition”
statement:

d1=d1.add(d2);

• The example on the following pages is the previous program rewritten with the
+ operator overloaded to work with English class variables. Notice how
much more readable and sensible the main program becomes.

71
C++ Programming for Scientists

Operator Overloading Example

class Metric {
public:

float cm;
Metric (float x) { cm=x; }

};
class English {

public:
float in;
English() {}
English(float x) { in=x; }
English(Metric m) { in=m.cm/2.54; }
English operator+(const English& a) {

English res;
res.in=in+a.in);
return res; }

void display() { cout << "Length is " << in
<< " inches" << endl; }

};

72
C++ Programming for Scientists

Operator Overloading Example Continued

main() {
English d1(6.25);
English d2(3.375);
d1=d1+d2;
d1.display();
Metric m1(30.48);
d1=d1+m1;
d1.display();

}

Length is 9.625 inches
Length is 21.625 inches

73
C++ Programming for Scientists

Scientific Application: Adding Stellar Magnitudes

• Since the time of the ancient Greek astronomers, the brightness of a star has
been measured by its magnitude m, a real number. The lower the magnitude,
the brighter the star: in fact, the brightest stars have negative magnitudes.
Stellar magnitudes are actually measured on a logarithmic scale in which

• where F is the flux from the star and F0 is the flux from a zero-magnitude
star.

• Often astronomers will have two stars in their field of view and would like to
know the magnitude of the stars combined. One simply cannot add together
the magnitudes of the separate stars since it is only physically correct to add
the fluxes from the stars.

• In the program on the next page, the “+” operator is overloaded to correctly
work for the addition of stellar magnitudes. Again, notice how readable and
sensible the statements of the main program are.

F
F.m 0logx5122=

74
C++ Programming for Scientists

Adding Stellar Magnitudes: Example Program

#include <iostream.h>
#include <math.h>
class Star {

double mag;
public:

Star() {}
Star(double x) { mag=x; }
Star operator+(const Star& a) {

Star res;
res.mag=2.512*log10(1.0/(pow(10.0,-mag/2.512)+

pow(10.0,-a.mag/2.512)));
return res; }

void display() { cout << "Magnitude is " << mag <<endl; }
};
main() {

Star Deneb(1.26);
Star Aldebaran(0.86);
Star Field;
Field=Deneb+Aldebaran;
Field.display();

}

Magnitude is 0.285582

75
C++ Programming for Scientists

Mathematical Application: Array-bounds Overflow

• A long-standing and common error made by programmers is to reference an
array element that is beyond the bounds of the array. The results are
unpredictable depending on what binary pattern is actually located in the
(incorrect) memory location that is used. This classic problem is demonstrated
in the following C program:
#include <stdio.h>
main() {

int x[20];
int i;
for (i=0; i<20; i++)

x[i]=2*i;
for (i=0; i<=30; i+=5)

printf("At index %d: value is %d\n",i,x[i]); }

At index 0: value is 0
At index 5: value is 10
At index 10: value is 20
At index 15: value is 30
At index 20: value is 5
At index 25: value is -268436436
At index 30: value is 0

76
C++ Programming for Scientists

Array-bounds Overflow: C++ Example Program

• In C++, one can redefine the array element reference operator “[]” to check to
make sure that a correct index is used before actually getting an array element.
Thus, we see that operators can be overloaded not only to work normally
with classes and structures of a certain type, but that their capabilities can be
extended to include safety and error-checking.

• Consider the same program on the previous pages, but written in terms of C++
classes and operator overloading:
#include <iostream.h>
class Intarray {

int *data,size;
public:
Intarray(int sz=1) {
if (sz<1) { cout << "Intarray: size must be >1, not "

<< sz << endl; exit(1); }
size=sz; data=new int[sz]; } }

int& operator[](int index) {
if (index<0 || index>=size) {

cout << "\n\nIntarray: out of bounds, index=" << index
<< ", should be from 0 to " << size-1 << endl;

exit(1); }
return(*(data+index)); }

};

77
C++ Programming for Scientists

Array-bounds Overflow: C++ Example Program Continued

main() {
Intarray x(20);
for (register int i=0; i<20; i++);

x[i]=2*i;
for (register int i=0; i<=30; i+=5)

cout << "At index " << i << " value is" << x[i]
<< endl;

}

At index 0: value is 0
At index 5: value is 10
At index 10: value is 20
At index 15: value is 30
At index 20: value is

Intarray: out of bounds, index=20, should be from 0 to 19

78
C++ Programming for Scientists

Conversion Operator Functions

• Recall that a Conversion Constructor can convert a variable to a class type
from another type.

• To convert in the opposite direction (i.e., from the class type to another
type), one has to use a special member operator function.

– In place of the operator symbol the name of the type to-be-converted to is
used.

• In the following program we revisit the English to Metric conversion program
but this time with an English class operator function which converts inches to
cm:

79
C++ Programming for Scientists

Conversion Operator Function Example

class Metric {
public:

float cm;
Metric() {}
Metric(float x) { cm=x; }
void display() {

cout << "Length is " << cm << " cm" << endl; }
Metric operator+(const Metric& a) {

Metric res;
res.cm=cm+a.cm;
return(res); }

};
class English {

public:
float in;
English(float x) { in=x; }
operator Metric() {

Metric m;
m.cm=in*2.54;
cout << "Eng-to-Met conversion occurred" << endl;
return(m); }

};

80
C++ Programming for Scientists

Conversion Operator Function Example Continued

main() {
Metric m1(30.50);
Metric m2(2.60);
m1=m1+m2;
m1.display();
English d(3.937);
m1=m1+d;
m1.display();

}

Length is 33.1 cm
Eng-to-Met conversion occurred
Length is 43.1 cm

81
C++ Programming for Scientists

Friend Functions

• In general only public members of a class are accessible to functions that
are not member functions.

• However, a class can declare a function to be a friend function in which case
the friend function has access to all members of the class (including
private).

– Friend status is granted by the class to the function and is a feature of the
class design.

– Friend functions are often used when a calculation needs access to the
private members of two objects of the same class.

• To specify a friend function, declare the function in the member list of the
class, preceded by the keyword friend.

– The function may actually be defined as a global or a member function.

82
C++ Programming for Scientists

Friend Function Example

#include <iostream.h>
#include <math.h>
class Point {

double x,y,z;
public:

Point(double a,double b,double c) {
x=a; y=b; z=c; }

friend double distance(Point& r, Point& s);
};
double distance(Point& r, Point& s) {

return(sqrt(pow(r.x-s.x,2)+pow(r.y-s.y,2)+pow(r.z-s.z,2)));
}
main() {

Point center(1.3,5.6,9.8);
Point edge(12.4,34.6,56.7);
cout << "Distance between the points is "

<< distance(center,edge) << endl;
}

Distance between the points is 56.2478

83
C++ Programming for Scientists

Overloading the I/O stream operators

• This section will describe how to overload the output stream operator << to
work with your own classes. A similar procedure is used for the input stream
operator >>.

• Before overloading << for user-defined classes we need to have a little deeper
understanding of how it works. There is a built-in C++ class defined for us
called ostream (you can see the declaration of this in the iostream.h
include file) . In fact cout, and cerr are just objects of this class. So the
following code

int i;

cout << i;

• is telling us that << is a binary operator where the right-hand operand is a
basic type (in this case integer) and the left-hand operator is an object of class
ostream.

84
C++ Programming for Scientists

Overloading the I/O stream operators Continued

• Therefore, the prototype for our overload function must have the form

ostream& operator<<(ostream& argl, X argr);

• where X is the class name we wish to output in a certain manner. The reason
this function returns a reference to an ostream class is to enable “chaining
together” of << operations:

cout << X << "Just outputted my own object\n";

• is executed with a L-R associativity:

(cout << X) << "Just outputted my own object\n";

• Lastly, since one usually wants to output private data member the overload
function is typically made a friend of the class.

85
C++ Programming for Scientists

Overloading the I/O stream operators Example
#include <iostream.h>
class Point {

double x,y,z;
public:

Point() {}
Point(double a,double b,double c) { x=a; y=b; z=c; }
friend ostream& operator<<(ostream& os,Point p);
friend istream& operator>>(istream& is,Point& p); };

ostream& operator<<(ostream& os,Point p) {
os <<'('<<p.x<<','<<p.y<<','<<p.z<<')'<<endl;
return(os); }

istream& operator>>(istream& is,Point& p) {
cout << "Enter x coordinate of the point: "; is >> p.x;
cout << "Enter y coordinate of the point: "; is >> p.y;
cout << "Enter z coordinate of the point: "; is >> p.z;
return(is); }

main() {
Point center;
cin >> center; cout << center; }

Enter x coordinate of the point: 3.4
Enter y coordinate of the point: 8.9
Enter z coordinate of the point: 12.3
(3.4,8.9,12.3)

86
C++ Programming for Scientists

Static Data Members

• A data member of a class can be declared static. Such a data member is
associated with the class as a whole, rather than each particular object of the
class. A static data member is often referred to as a “class variable” and is
typically used to store values which characterize the class in some way. For
example a class variable may be used to keep track of the total number of
objects that have been created.

• As with all class data members, the static one must be declared in the
definition of the class. This brings the name of the class variable into scope,
but does not allocate memory for the member. The allocation is done when
the class variable is redeclared (and perhaps initialized) outside of the class
definition. Because of this seemingly redundant declaration of the class
variable, it is actually accessible before the first class object is created.

• A class variable can be referred to with two different syntaxes:
– With the class name class_name::static_data

– With any object of the class class_object.static_data

87
C++ Programming for Scientists

Static Data Members Example
#include <iostream.h>
class Pixel {

int x,y;
public:

Pixel(int i, int j) { x=i; y=j; }
static int xo,yo;
int abs_x() { return(x+xo); }
int abs_y() { return(y+yo); } };

int Pixel::xo;
int Pixel::yo;
main() {

Pixel a(17,42); Pixel b(55,75);
Pixel::xo=5; Pixel::yo=6;
cout << "The absolute coordinates of pixel a are ("

<< a.abs_x() << "," << a.abs_y() << ")\n";
cout << "The absolute coordinates of pixel b are ("

<< b.abs_x() << "," << b.abs_y() << ")\n";
a.xo=0; a.yo=0;
cout << "The absolute coordinates of pixel b are ("

<< b.abs_x() << "," << b.abs_y() << ")\n"; }

The absolute coordinates of pixel a are (22,48)
The absolute coordinates of pixel b are (60,81)
The absolute coordinates of pixel b are (55,75)

88
C++ Programming for Scientists

Inheritance

• When a new class is declared in C++, you can specify that it should be derived
from an existing class.

• The new derived class inherits all data and function members from the base
class, as if those class members had been declared explicitly within the new
class declaration itself.

• The derived class modifies or extends the capabilities of the base class.

• It is through inheritance that C++ enables and facilitates software reuse. The
reuse is even possible in cases where classes are made available to the user in
the form of object libraries without accompanying member source code!

89
C++ Programming for Scientists

Derived Class Syntax

• The syntax for making a derived class is to insert a colon after the name of the
derived class followed by an access method keyword and the name of the base
class. For example, the following line declared the derived class Land from
the base class Vehicle :

class Land: public Vehicle { class-member-list };

• The Land class inherits all members of Vehicle class except its
constructors and destructor.

• A member function in the derived class can have the same name as a
corresponding member function of the base class. When this occurs we say the
derived class overrides (or redefines) the base member function. By default,
the overridden function is used when a object of the derived class references it.

Any derived class can serve as a base class for other derived classes and thus a
multi-layer class hierarchy can be constructed.

• The far-from-scientific program on the next page illustrates some of the basic
features of derived classes.

90
C++ Programming for Scientists

Derived Class Example
#include <iostream.h>
class Golfer {

public:
int rounds_per_mo; void swing() {cout << "#&%*@!\n";} };

class Serious_Golfer: public Golfer {
public:

int handicap; void swing() {cout << "Ahhhh!\n";} };
class Pro_Golfer: public Serious_Golfer {

public:
float income; void swing() {cout << "It's in the hole!\n";} };

main() {
Golfer me;
Serious_Golfer brother;
Pro_Golfer john_cook;
me.rounds_per_mo=1; me.swing();
brother.rounds_per_mo=8; brother.handicap=15; brother.swing();
john_cook.rounds_per_mo=20; john_cook.income=800000.00;
john_cook.swing();
john_cook.Golfer::swing(); }

#&%*@!
Ahhhh!
It's in the hole!
#&%*@!

91
C++ Programming for Scientists

Public Inheritance

• You may have noticed that with all the derived class declarations seen so far
the access method public has been used before the name of the base class.
Public inheritance is by far the most common form of class inheritance and has
the following properties

• Public inheritance is an “is-a” relationship (A Pro_Golfer is a
Serious_Golfer also, but more)

• The inherited public and protected members of the base class become public
and protected members of the derived class, respectively

• Private members of the base class are inherited but are accessible only to
member functions of the base class. If a member function of the derived
class needs to directly work with a data member of the base class, make the
base class data member protected.

• Because of the “is-a” nature of public inheritance, an object of the derived
class may appear unambiguously in any context requiring a base class object

• Pointers or references of the base class type also can point or refer to derived
class objects

92
C++ Programming for Scientists

Public Inheritance Example
#include <iostream.h>
class Vehicle {

int weight;
public:

int getweight() { return(weight); }
void setweight(int i) { weight=i; } };

class Land: public Vehicle {
float speed;

public:
float getspeed() { return(speed); }
void setspeed(float x) { speed=x; } };

main() {
Land car;

// car.weight=2000; Illegal! Weight is private
car.setweight(2000); car.setspeed(110.5);
Vehicle v;
v=car;
cout << v.getweight() << endl;
Vehicle *vp; vp=&car;

// vp->setspeed(65.4); Illegal! *vp only has Vehicle capabilities
vp->setweight(1000); cout << car.getweight() << endl; }

2000
1000

93
C++ Programming for Scientists

Derived Class objects Example

• Since it can be said that an object of a derived class is at the same time an
object of the base class, functions which use the base class will also work
when derived-class objects are passed as arguments. The following code
demonstrates this feature with our Vehicle-Land class hierarchy.

#include <iostream.h>
class Vehicle { int weight;

public:
int getweight() { return(weight); }
void setweight(int i) { weight=i; } };

class Land: public Vehicle { float speed;
public:

float getspeed() { return(speed); }
void setspeed(float x) { speed=x; } };

void check_wt(Vehicle& v) {
if (v.getweight()>2000) cout << "Vehicle is too heavy\n"; }

main() {
Vehicle blob; blob.setweight(100);
check_wt(blob);
Land car; car.setweight(5000);
check_wt(car); }

Your vehicle is too heavy

94
C++ Programming for Scientists

Constructors and Destructors of Derived Classes

• When an object of derived class is declared, the constructor for the base class
is invoked first, then the constructor for the derived class. It is the opposite
order for destruction. When a derived-class object goes out of scope, the
destructor for the derived class is invoked first, then the destructor for the base
class.

• Actual arguments to a derived-class constructor are passed in the usual way.
To specify actual arguments to the base class constructor, insert a colon after
the derived class constructor’s formal argument list, followed by the name of
the base class and a parenthesized list of actual arguments for it.

• This technique is demonstrated in the code on the following page.

95
C++ Programming for Scientists

Constructors and Destructors of Derived Classes Example

#include <iostream.h>
class Widget {

int wx;
public:

Widget(int a) { wx=a; }
void display() { cout << "wx=" << wx << endl; }

};
class Gidget: public Widget {

int gx;
public:

Gidget(int i, int j): Widget(i) { gx=j; }
void display() { cout << "gx=" << gx << endl; }

};
main() {

Gidget sally(5,33);
sally.display();
sally.Widget::display();

}

gx=33
wx=5

96
C++ Programming for Scientists

Mathematical Example: Averaging Data -- Data Class

• In this C++ code, the base class Data is responsible simply for inputting and
outputting two arrays of data.
class Data {

protected:
double *x, *y;
int N;

public:
Data(int i=1) {

N=i;
x=new double[N];
y=new double[N]; }

~Data() { delete[]x; delete[]y; }
void getdata();
void showdata();

};
void Data::showdata() {

for(int i=0; i<N; ++i)
cout << "i="<<i<<" x="<<x[i]<<" y="<<y[i]<<endl; }

void Data::getdata() {
for (int i=0; i<N; ++i)

cin >> x[i] >> y[i]; }

97
C++ Programming for Scientists

Mathematical Example : Averaging Data -- Average Class

• The derived class -- Average -- extends and reuses the Data class. In
Average, data is read in and averages of the data are also calculated.

class Average: public Data {
double mux, muy;

public:
Average(int i): Data(i) {}
void averagex() {

double sum=0.0;
for(int i=0; i<N; ++i)

sum += x[i];
mux=sum/N; }

void averagey() {
double sum=0.0;
for(int i=0; i<N; ++i)

sum += y[i];
muy=sum/N; }

void display () {
cout << "Average x: " << mux << endl;
cout << "Average y: " << muy << endl;

};

98
C++ Programming for Scientists

Mathematical Example : Averaging Data -- Main & Output

main() {
Average temp(9);
temp.getdata();
temp.averagex();
temp.averagey();
temp.display();

}

Average x: 5
Average y: 51.8556

99
C++ Programming for Scientists

Virtual Function Terminology

• In more traditional programming languages, the act of invoking a function is
static, which means that the compiler has sufficient information at compile-
time to generate all the code necessary to implement the function call. This is
called early binding of the function name to its code.

• A principal feature of C++ is that the same function name with the same
argument list can perform different actions depending on the class of the
object on which it is invoked. This property is referred to as polymorphism.
In order to implement polymorphism, sometimes you must defer until run-time
the association of a specific function name with the code that implements it.
When this run-time connection occurs it is referred to as late binding. Finally,
functions for which late binding is used are called virtual functions.

100
C++ Programming for Scientists

Virtual Functions: Syntax and Use

• To declare a member function to be virtual, precede the function declaration
with the keyword virtual. Say that a base class has a virtual function and
that function is overridden in a derived class. When the function name is
invoked by an object of the derived class, the derived class version of the
function is always used, regardless of how the derived-class object is
referred to. In other words, when using virtual functions the meaning selected
for the function depends on the class of the object rather than the way you
refer to the object.

• On the next two pages we have resurrected the Golfer class hierarchy to
demonstrate the difference between the actions of non-virtual and virtual
overridden functions.

101
C++ Programming for Scientists

Virtual Functions Example: Golfer revisited

#include <iostream.h>
class Golfer {

public:
int rounds_per_mo;
void swing() {cout << "#&%*@!\n";} };

class Serious_Golfer: public Golfer {
public:

int handicap;
void swing() {cout << "Ahhhh!\n";} };

class Pro_Golfer: public Serious_Golfer {
public:

float income;
void swing() {cout << "It's in the hole!\n";} };

main() {
Pro_Golfer jc;
Golfer *gp;
gp=&jc;
gp->swing();

}

#&%*@!

102
C++ Programming for Scientists

Virtual Functions Example: modified Golfer revisited

#include <iostream.h>
class Golfer {

public:
int rounds_per_mo;
virtual void swing() {cout << "#&%*@!\n";} };

class Serious_Golfer: public Golfer {
public:

int handicap;
void swing() {cout << "Ahhhh!\n";} };

class Pro_Golfer: public Serious_Golfer {
public:

float income;
void swing() {cout << "It's in the hole!\n";} };

main() {
Pro_Golfer jc;
Golfer *gp;
gp=&jc;
gp->swing();

}

It's in the hole!

103
C++ Programming for Scientists

Pure Virtual Functions

• The virtual function Golfer::swing() shown on the previous page is an
example of a simple virtual function because it is both declared and defined
in the base class. A pure virtual function, on the other hand, is only declared
in the base class. The (rather odd!) syntax for a pure virtual function is to
append = 0 to the function declaration:

virtual return-type func-name(args) = 0;

• Pure virtual functions in base classes have the following characteristics:
– No objects of the base class can be declared. Base class can only be

used for the derivation of other classes.
– Must be overridden in each derived class
– A pure virtual function establishes a function interface inherited by all

derived classes
– A class that declares one or more pure virtual functions is termed an

abstract base class

104
C++ Programming for Scientists

Pure Virtual Functions Example

• This program makes the Golfer::swing function a pure virtual function
and thus makes Golfer an abstract base class.

#include <iostream.h>
class Golfer {

public:
int rounds_per_mo; virtual void swing()=0; };

class Serious_Golfer: public Golfer {
public:

int handicap; void swing() {cout << "Ahhhh!\n";} };
class Pro_Golfer: public Serious_Golfer {

public:
float income;
void swing() {cout << "It's in the hole!\n";} };

main() {
Pro_Golfer jc;

// Golfer mike;Illegal! Can’t declare variable of an abstract base class
Golfer *gp;
gp=&jc;
gp->swing();

}

It's in the hole!

105
C++ Programming for Scientists

C++ Templates and The Standard Template Library (STL)

• Introduction to C++ Templates
• Function Templates
• Templates, Macros & Overloaded Functions
• Function Template Specialization
• Class Templates
• Template Classes vs. Derived Classes
• Friend functions and Templates
• Introduction to STL
• STL Quick Overview
• Containers
• Iterators
• Algorithms
• Functions Objects & The functional Library
• Problem Set

106
C++ Programming for Scientists

Introduction to C++ Templates

• Say you wrote a function to sort an array of integers and you wanted to write a
function that sorted an array of doubles as well. The algorithm you would be
using would stay the same, but you would have to change all the type
definitions in your new function.

• Function templates allow the C++ programmer to write a single function to
do the sorting and essentially pass the type of element to be sorted to the
function. Specifically, a function template contains a dummy argument
corresponding to the type of data used in the function; the actual argument in
the template function call determines what type of data is worked on. The
programmer writes just one function template which will work for all types of
data (both standard types and derived types such as classes). This general
style of coding is called generic programming.

• Similarly, C++ programmers can create class templates which represent a
family of classes determined by the type passed to the class when an object of
the class is instantiated. Thus, in one situation the class data and member
functions could be working on integers and in another on a more advanced
data type. But again, only one class template definition is written.

107
C++ Programming for Scientists

Function Template Syntax

• A function template definition is similar to an ordinary function definition
except that it is proceeded by a template specification header.

• A template specification consists of the keyword template followed by an
angle-bracket-enclosed list of template arguments.

• Each template argument has the keyword class in front of an identifier. The
identifier acts as a dummy argument for the type of data the actual template
function will be working on when it is invoked.

• Here is an example of a function template definition:
template <class T>
void worker(T x, …) { function body }

108
C++ Programming for Scientists

Function Template Use

• To use the worker function just type its name as with normal C++ functions.

• Based on the actual type of the first argument x, the compiler will know what
type T is for the particular invocation and generate the appropriate code. Due
to this mechanism C++ requires that each template argument appear as a
type in the function argument list.

• In addition, to insure that template functions work at all, implicit conversions
are never performed on template arguments.

• There are some examples of using the template function worker:

int i;
worker(i,…);
Bookshelf library;
worker(library,…)

Type holder T is set to int

Type holder T is set to class Bookshelf

109
C++ Programming for Scientists

Demonstration Program

#include <iostream.h>
class A {

int datum;
public:
A(int i) { datum=i; }
void display() { cout << "(A)datum=" << datum << endl; } };

class B {
double datum;

public:
B(double d) { datum=d; }
void display() { cout << "(B)datum=" << datum << endl; } };

template <class T>
void repeat(T tt, int n) {
for (int i=1; i<=n; ++i) { tt.display(); } }

void main() {
A anAobject(1);
B aBobject(2.5);
repeat (anAobject,2);
repeat (aBobject,3);

}

(A)datum=1
(A)datum=1
(B)datum=2.5
(B)datum=2.5
(B)datum=2.5

110
C++ Programming for Scientists

Sample Function Template Program

#include <iostream.h>
template<class kind>
kind max(kind d1, kind d2) {

if (d1 > d2)
return(d1);

return(d2);
}
void main() {

cout << "The max of 3.5 and 8.7 is " << max(3.5,8.7) << endl;
cout << "The max of 100 and 567 is " << max(100,567) << endl;
cout << "The max of 'A' and 'a' is " << max('A','a') << endl;

}

The max of 3.5 and 8.7 is 8.7
The max of 100 and 567 is 567
The max of 'A' and 'a' is a

111
C++ Programming for Scientists

Templates and Related C++ Entities

Macros
• Function templates act as a sort of sophisticated macro expansion since the

template function code is created at compile time using the “passed” type.
Template Functions are preferred over macros for several reasons:
– Macros prone to subtle syntactic context errors
– Template functions allow for easier debugging and diagnostic information
– Since template functions almost look like normal functions they are easier

to understand

Overloaded Functions
• Like function templates, overloaded functions can be used to construct a

family of related functions that are associated with their argument profiles.
However, overloaded functions are typically used when the behavior of the
function differs depending on the function arguments. On the other hand
template functions are essentially applying identical logic, just with
different types.

112
C++ Programming for Scientists

Function Template Specialization

• Function templates are designed to work correctly for any data type passed to
it. What if this is not so? What if the programmer wants to do something
special -- slightly modify the algorithm -- for certain special types?

• The user can create a separate special function to handle this case. This
function can have the same name and argument profile as the function
template. The new function will be used instead of the function template: its
logic will be applied.

113
C++ Programming for Scientists

Function Template Specialization Example

#include <iostream.h>
#include <string.h>
template<class kind>
kind max(kind d1, kind d2) {

if (d1 > d2)
return(d1);

return(d2);
}
char* max(char* d1,char* d2) {

if (strcmp(d1,d2)>0)
return(d1);

return(d2);
}
void main() {

cout << "The max of 3.5 and 8.7 is " << max(3.5,8.7) << endl;
cout << "The max of 100 and 567 is " << max(100,567) << endl;
cout << "The max of 'A' and 'a' is " << max('A','a') << endl;
cout << "The max of apple and apply is " << max("apple","apply")

<< endl; }

The max of 3.5 and 8.7 is 8.7
The max of 100 and 567 is 567
The max of 'A' and 'a' is a
The max of apple and apply is apply

114
C++ Programming for Scientists

Class Templates

• A class template defines a family of related classes which differ only in the
type of the data stored and used by them. A class template definition is
preceded by the keyword template followed by an angle-bracket-enclosed
list of class template arguments. These arguments consist of the keyword
class followed by an identifier that will act as a dummy argument for the
actual type the class will use. A class template argument can also be just a
normal type name followed by an identifier. Here is an example:

template<class T, int N>
class Array {

T array_element[N];
public:
T first_element() { return array_element[0]; }

};

• Each class in this template can be thought of as “an N-element array of Ts”.

115
C++ Programming for Scientists

Class Templates Use

• To create an object of template class, the class template arguments must be
specified during the object’s definition, as follows:

Array<int,10> wave;

• As with traditional classes, member functions for class templates must be
declared in the body of the class template definition but may be defined either
inside or outside the body. If defined outside the class template definition a
special syntax must be used. The definition must be preceded by the class
template specifier and the class template name and argument list (without type
specifications). Here is an “outside” definition of the function
first_element:

template<class T, int N>
T Array<T,N>::first_element() {

return array_element[0];
}

116
C++ Programming for Scientists

Class Template Example
#include <iostream.h>
class Demo {
public:
Demo() { cout<<"Demo Constructor called"<<endl; } };

template<class T, int N>
class Tuple {
public:
T data[N];
int getsize() { return(N); }
T element(int i); };

template<class T, int N>
T Tuple<T,N>::element(int i) { return data[i]; }
void main() {
Tuple<Demo,2> show; Tuple<int,3> point;
point.data[0]=2; point.data[1]=78; point.data[2]=5;
cout << "point is a "<<point.getsize()<<"-tuple\n";
cout << "2nd element of point is "<<point.element(1)<< endl;
Tuple<float,2> grid;
grid.data[0]=3.4; grid.data[1]=45.6;
cout << "grid has "<<grid.getsize()<<" elements\n";
cout << "1st element of grid is "<<grid.element(0)<<endl; }

Demo Constructor called
Demo Constructor called
point is a 3-tuple
2nd element of point is 78
grid has 2 elements
1st element of grid is 3.4

117
C++ Programming for Scientists

Template Classes vs. Derived Classes

• It is natural to compare these two C++ constructs because both are used to
represent families of related classes. To choose between these two options,
there is a simple philosophy to follow:

– Use template classes when classes in the family are similar in behavior
but different in the type of data used

– Use inheritance when classes in the family are different in behavior but
similar in terms of some base class properties.

• Once instantiated, template classes act like ordinary classes in terms of
inheritance. A template class can be a base class with no special syntax
required.

118
C++ Programming for Scientists

Template Classes and Friend Functions

• A function declared to be a friend by a class template is a friend function of
every template class that can be made from the template. That is, the friend
function will work with all the template classes regardless of the type that got
assigned to the class. As shown in the following sample program, friend
functions for template classes are often template functions.
#include <iostream.h>
template<class T>
class A {

T data;
friend void show(A<T> ff);

public:
A(T x) { data=x; } };

template<class T>
void show(A<T> ff) { cout << ff.data << endl; }
void main() {

A<int> ai(23);
A<double> ad(45.678);
show(ai);
show(ad); }

23
45.678

119
C++ Programming for Scientists

Introduction to STL

• The Standard Template Library is a collection of extremely useful class
templates and function templates allowing the programmer a wide variety of
capabilities.

• There are literally hundreds of classes and functions the programmer can use
with a variety of simple and derived data types.

• It provides many of the data structures (“container classes”) and algorithms
useful in computer science thereby preventing the programmer from
“reinventing the wheel”.

120
C++ Programming for Scientists

STL Features

• Here are some of the salient Features of STL:

– It is an ANSI standard and integral part of C++ (beware competitors…)

– STL is very efficient: container classes use no inheritance or virtual
functions

– STL algorithms are stand-alone functions which can work on virtually all
types of simple data, normal classes, and STL containers

– In order to accommodate machine-dependent, varying mechanisms for
memory allocation and management, STL containers use special objects
called allocators to control storage. This enables the portability required
of an ANSI standard.

121
C++ Programming for Scientists

STL References

• Because of the sheer complexity of the STL, it is difficult to list and
impossible to cover all the classes and functions within it.

• We will attempt to teach the library material most useful to research scientists
and engineers.

• For a complete description of the library, see these recommended Web Sites

http://www.sgi.com/Technoloy/STL/

http://www.dinkumware.com/htm_cpl/

122
C++ Programming for Scientists

STL Quick Overview: Containers

• In the next few pages are small sample programs demonstrating the most
useful STL libraries. This is meant to give the reader a taste of the detailed
descriptions that will follow.

• Containers: Containers are classes designed to hold data objects. There are
ten major container classes in STL and each is written as a class template.
Thus, containers can hold data of virtually any type. Here is a program using
the vector container template class.
#include <vector>
#include <iostream.h>
void main() {

using namespace std;
vector<int> v;
v.push_back(42);
v.push_back(1);
cout << "vector size is " << v.size() << endl;
cout << "v[0]="<<v[0] << endl;

}

vector size is 2
v[0]=42

123
C++ Programming for Scientists

STL Quick Overview: Iterators

• Iterators: STL makes heavy use of iterators which can be thought of as
generalized pointers to the objects in a container. Iterators allow the
programmer to move through the container and access data. There are several
types of STL iterators which vary in the manner in which they scan container
objects. The following program compares STL iterators and traditional C++
pointers:
#include <vector>
#include <iostream.h>
int array[]={1,42,3};
vector<int> v;
void main() {

int* p1;
for (p1=array;p1!=array+3;++p1)

cout << "array has "<<*p1<<endl;
v.push_back(1);
v.push_back(42);
v.push_back(3);
vector<int>::iterator p2;
for (p2=v.begin();p2!=v.end();++p2);

cout << "vector has "<<*p2<< endl;
}

array has 1
array has 42
array has 3
vector has 1
vector has 42
vector has 3

124
C++ Programming for Scientists

STL Quick Overview: Algorithms

• Algorithms: The algorithms library contains common tasks programmers
typically perform on containers of objects. Algorithms are stand-alone
template functions which can operate on all the types of containers and regular
C++ arrays. The program below illustrates the use of the sort STL function.
#include <vector>
#include <iostream.h>
#include <algorithm>
int array[]={1,42,3};
vector<int> v;
void main() {

int* p1;
sort(array,array+3);
for (p1=array;p1!=array+3;++p1)

cout << "array has "<<*p1<<endl;
v.push_back(1);
v.push_back(42);
v.push_back(3);
vector<int>::iterator p2;
sort(v.begin(),v.end());
for (p2=v.begin();p2!=v.end();++p2);

cout << "vector has "<<*p2<< endl; }

array has 1
array has 3
array has 42
vector has 1
vector has 3
vector has 42

125
C++ Programming for Scientists

STL Quick Overview: Advanced I/O Stream

• Advanced I/O Stream: In addition to the basic capabilities presented earlier
in terms of using the I/O stream method with stdin and stdout, there exists
more sophisticated capabilities (i.e., string I/O, line I/O, file I/O, etc.) in the
STL classes and functions. The sample program below shows a common file
I/O application:

#include <string>
#include <fstream.h>
#include <list>
void main() {

ifstream in(“list.in”);
list<string> todo;
while (in.good()) {

string buf;
getline(in,buf);
todo.push_back(buf);

}
list<string>::iterator iter;
for(iter=todo.begin();iter!=todo.end();++iter)

cout << *iter << endl;
}

Mow lawn
Teach C++
See movie

Output is exactly what is
in the file list.in

126
C++ Programming for Scientists

Containers: Basic types

• In this section, the various types of STL containers will be explained as well as
the basic operations common to all containers. Here are ten STL containers
with a brief description of their structure:

Container Type Brief Description
vector Linear, contiguous storage, fast inserts at end only
deque Linear, non-contiguous storage, fast inserts at both ends
list Doubly-linked list, fast inserts anywhere
set Set of items, fast associative lookup
multiset Like set but duplicate objects allowed
map Collection of one-to-one mappings
multimap Collection of one-to-many mappings
stack First-in, last-out data structure
queue First-in, first-out data structure
priority_queue Maintains objects in sorted order

127
C++ Programming for Scientists

Containers: Functions

• Although containers have different properties, they all share a set of common
functions which do basic bookkeeping and creation/comparison/destruction
tasks. Here are functions related to basic container existence (using a vector
container):

Function Example Description

Constructor vector() Construct the container

Destructor ~vector() Destroy a container

Empty bool empty() Returns true if container is empty

Max_size size_type max_size() Returns maximum number of
objects the container can hold

Size size_type size() Returns the number of objects in
the container

128
C++ Programming for Scientists

Containers: Functions -- Example

• The following program illustrates the use of the common “container existence”
functions with a vector container:

#include <vector>
#include <iostream.h>
void main() {

vector<double> v;
cout << "empty=" << v.empty() << endl;
cout << "size=" << v.size() << endl;
cout << "max_size=" << v.max_size() << endl;
v.push_back(42);
cout << "empty=" << v.empty() << endl;
cout << "size=" << v.size() << endl;

}

empty=1
size=0
max_size=536870911
empty=0
size=1

129
C++ Programming for Scientists

Containers: More Functions

• The next two common functions allow assigning one container to another and
swapping the objects of two containers

=
vector<T>& operator=(const vector<T>& x)

replaces calling object’s vector with a copy of the vector x

swap
void swap(vector<T>& y)

swap the calling object’s vector with the vector y

130
C++ Programming for Scientists

Containers: More Functions -- Example

• In the following program = and swap are used:
#include <vector>
#include <iostream.h>
void print(vector<double>& x) {

for (int i=0; i<x.size(); ++i)
cout << x[i] << " ";

cout << endl; }
void main() {

vector<double> v1; v1.push_back(12.1); v1.push_back(45.6);
vector<double> v2; v2.push_back(2.893);
cout << "v1="; print(v1);
cout << "v2="; print(v2);
v1.swap(v2);
cout << "v1="; print(v1);
cout << "v2="; print(v2);
v2=v1;
cout << "v2="; print(v2); }

v1=12.1 45.6
v2=2.893
v1=2.893
v2=12.1 45.6
v2=2.893

131
C++ Programming for Scientists

Containers: Even More Functions

• The last common function are related to comparing and copying containers:

Copy Constructor
vector<T>(const vector<T>& x)

construct a container object to be a copy of x

==
bool operator==(const vector<T>& y)

returns true if container object contains same items in same order as y

<
bool operator<(const vector<T>& z)

returns true if container object is “less than” z (by lexicographical order)

132
C++ Programming for Scientists

Containers: Even More Functions -- Example

TIP: If you include the STL library called utility, the other relational operators
(!=,>, <=, >=) can also be used since they can be built from == and <.

• The following program shows the use of several of the relational operators:

#include <vector>
#include <iostream.h>
#include <utility>
void main() {

vector<char> v;
v.push_back('h');
v.push_back('i');
cout << "v=" << v[0] << v[1] << endl;
vector<char> w(v);
w[1]='o';
cout << "w=" << w[0] << w[1] << endl;
cout << "(v==w)=" << (v==w) << endl;
cout << "(v<w)=" << (v<w) << endl;
cout << "(v!=w)=" << (v!=w) << endl;
cout << "(v>w)=" << (v>w) << endl; }

v=hi
w=ho
(v==w)=0
(v<w)=1
(v!=w)=1
(v>w)=0

133
C++ Programming for Scientists

Iterators

• We have already been introduced to the idea of an STL iterator as a
“generalized pointer”. Before we can explore more sophisticated containers
than vector, the various types of iterators need to be discussed. Regardless of
the type of iterator one thing is always true: At any point in time, an iterator
is positioned at exactly one place in a container until it is repositioned.

• There are three major types of iterators:
forward
– can work with object only in the forward direction

bidirectional
– can move forwards and backwards

random access
– can jump an arbitrary distance

134
C++ Programming for Scientists

Iterator Use

• Iterators can be used with both input and output streams, as well as with
containers (as we have seen). Basically the same set of basic arithmetic,
logical, and de-referencing operations that can be performed with C++
pointers also work with STL iterators.

• Each STL container works with a certain type iterator. The vector and
deque containers use random access iterators. The list, multiset, set,
multimap, and map containers use bidirectional. In addition, each STL
container has a set of typedefs that describe its iterators. For a container
iterator there are the member functions begin and end to set the iterator to
extreme positions in the container:

iterator begin() -- returns an iterator positioned at the first object

iterator end() -- returns an iterator positioned immediately after
the last object

135
C++ Programming for Scientists

Reverse Iterators

• As you might expect, a reverse iterator travels a container of objects
backwards instead of forwards. As with regular iterators there are container
member functions used to place the iterator at extreme positions

reverse_iterator rbegin() -- returns a reverse iterator
positioned at the last object

reverse_iterator rend() -- returns a reverse iterator positioned
immediately before the first object

136
C++ Programming for Scientists

Reverse Iterator Example

• The following program uses a reverse iterator.

#include <string>
#include <iostream.h>
#include <list>
void main() {

list<string> niece;
niece.push_back("Madelyn");
niece.push_back("Claire");
niece.push_back("Ennis");
list<string>::reverse_iterator r;
for (r=niece.rbegin(); r!=niece.rend(); ++r)

cout << *r << endl;
}

Ennis
Claire
Madelyn

137
C++ Programming for Scientists

Random Access Iterators

• Random access iterators can do it all: more forward, move backward, and
jump from one position to another. Recall that the default iterator for a vector
container is random access while you study the following program:

#include <vector>
#include <iostream.h>
void main() {

vector<int> v;
v.push_back(11);
v.push_back(12);
v.push_back(13);
vector<int>::iterator i=v.end();
cout << "last object is " << *--i << endl;
i-=2;
cout << "first object is " << *i << endl;

}

last object is 13
first object is 11

138
C++ Programming for Scientists

Algorithms

• The designers of the STL wished to implement generic algorithms: those that
can be applied to a variety of data structures from normal integers and doubles
to advanced classes. This design was realized through the use of function
templates to define the algorithm functions in the library. There are over 65
algorithms in the algorithm library, the code for which actually makes up the
bulk of the entire STL.

• To allow the STL algorithms to work on a variety of data structures from C++
arrays to STL containers themselves, the STL algorithms only access data
indirectly by using iterators. In addition, some algorithms have several
implementations optimized for the kind of iterator involved.

• In the following pages, sample programs using several of the more popular
algorithms are presented. In a separate handout, a categorized listing of the
STL algorithms and a brief description of their operation is presented.

139
C++ Programming for Scientists

Min/Max Algorithm

#include <algorithm>
#include <iostream.h>
void main() {

double x=min(444.90,6.5);
cout << "minimum of 444.90 and 6.5 is " << x << endl;
char c=max('=','3');
cout << "maximum (by ASCII value) of = and 3 is "

<< c << endl;
}

minimum of 444.90 and 6.5 is 6.5
maximum (by ASCII value) of = and 3 is =

140
C++ Programming for Scientists

Count Algorithm: (C++ array and vector container)

#include <algorithm>
#include <iostream.h>
#include <vector>
int num[]={1,4,2,8,9,12,2,13,8,2,2,1,4,2,33,1};
void main() {

int n=0; // must initialize, count increments n
int asize=sizeof(num)/4; // 4 bytes per element
count(num,num+asize,2,n);
cout << "There are " << n << " twos in the array\n";

vector<int> v;
v.push_back(1);v.push_back(4);v.push_back(2);v.push_back(8);
v.push_back(9);v.push_back(12);v.push_back(2);v.push_back(13);
v.push_back(8);v.push_back(2);v.push_back(2);v.push_back(1);
v.push_back(4);v.push_back(2);v.push_back(33);v.push_back(1);
n=0;
count(v.begin(),v.end(),1,n);
cout << "There are " << n << " ones in the vector\n";

}

There are 5 twos in the array
There are 3 ones in the vector

141
C++ Programming for Scientists

Accumulate Algorithm: Summing

#include <algorithm> // may be <numeric> on some systems
#include <iostream.h>
void main() {

const int N=8;
int a[N]={4,12,3,6,10,7,8,5 };
sum=accumulate(a,a+N,0);
cout << "Sum of all elements:" << sum << endl;
fun_sum=accumulate(a+2,a+5,1000);
cout << "1000+a[2]+a[3]+a[4] = " << fun_sum << endl;

}

Sum of all elements:55
1000+a[2]+a[3]+a[4] = 1019

142
C++ Programming for Scientists

Accumulate Algorithm: General Binary Operation

#include <algorithm>
#include <iostream.h>
#include <vector>

int mult(int i, int j) {
return (i*j);

}

void main() {
vector<int> v(6);
int prod;
for (int i=0; i<v.size(); ++i)

v[i]=i+1;
prod=accumulate(v.begin(), v.end(), 1, mult);
cout << "The factorial of 6 is " << prod << endl;

}

The factorial of 6 is 720

143
C++ Programming for Scientists

Inner Product Algorithm

#include <algorithm>
#include <iostream.h>
void main() {

int a[3]={2,20,4};
int b[3]={5,2,10};
int inprod;
inprod=inner_product(a,a+3,b,0);
cout << "<a,b>=" << inprod << endl;

}

<a,b>=90

144
C++ Programming for Scientists

Inner Product Algorithm: General Operations

#include <algorithm>
#include <iostream.h>

int mult(int x, int y) {
return(x*y);

}

int power(int x, int n) {
int y=1;
for (int k; k<n; ++k) y*=x;
return(y);

}

void main() {
int a[3]={2,3,5};
int b[3]={4,1,2};
int strange;
strange=inner_product(a,a+3,b,1,mult,power);

// power(2,4)*power(3,1)*power(5,2);
cout << "This strange calculation equals "<<strange<<endl;

}

This strange calculation equals 1200

145
C++ Programming for Scientists

Find Algorithm

#include <algorithm>
#include <iostream.h>
#include <vector>
void main() {

vector<int> v(5,8);
for (int k=0; k<v.size(); ++k)

cout << v[k] << " ";
cout << endl;
v[2]=33;
vector<int>::iterator pos;
pos=find(v.begin(), v.end(), 33);
cout << "The value 33 was found at position "

<< pos-v.begin() << endl;
}

8 8 8 8 8
The value 33 was found at position 2

146
C++ Programming for Scientists

Merge Algorithm: Mixing Containers

#include <algorithm>
#include <iostream.h>
#include <vector>
#include <list>
void main() {

vector<int> a(5);
a[0]=2; a[1]=3; a[2]=8; a[3]=20; a[4]=25;
int b[6]={7,9,23,28,30,33};
list<int> c(11);
merge(a.begin(), a.end(), b, b+6, c.begin());
list<int>::iterator k;
for (k=c.begin(); k!=c.end(); ++k)

cout << *k << " ";
cout << endl;

}

2 3 7 8 9 20 23 25 28 30 33

147
C++ Programming for Scientists

Merge Algorithm: User-defined C++ Structures

#include <algorithm>
#include <iostream.h>
struct entry {

int age;
char name[30];
bool operator<(const entry&b) {

return(age < b.age); }
void main() {

entry a[3]={ {10,"Andy"}, {45,"David"},{114,"Takii"} };
entry b[2]={ {16,"Julie"}, {72,"Dorothy"} };
entry c[5],*p;
merge(a, a+3, b, b+2, c);
for (p=c;p!=c+5; ++p)

cout << p->age << " " << p->name << endl;
}

10 Andy
16 Julie
45 David
72 Dorothy
114 Takii

148
C++ Programming for Scientists

The Functional Library

• As was shown in some of the previous sample programs, one can customize
(or radically modify) the behavior of certain algorithms by using your own
C++ functions and providing them as arguments in the algorithm call. In
the STL library functional, the designers of STL have provided the user
with a set of built-in, useful functions that the programmer can use to do this
same customization. STL actually allows these built-in functions to be
encapsulated and treated as data objects and they are thus called function
objects.

• Specifically, recall the sample program which used the accumulate algorithm
to actually perform a factorial operation. In that previous program, the user
had to define and use the function mult. On the next page, is the identical
program but using the times function object that is a part of the
functional library.

• In a separate handout, a table of all the function objects comprising the
functional library is shown.

149
C++ Programming for Scientists

Accumulate Algorithm: times Function Object

#include <algorithm>
#include <iostream.h>
#include <vector>
#include <functional>
void main() {

vector<int> v(6);
int prod;
for (int i=0; i<v.size(); ++i)

v[i]=i+1;
prod=accumulate(v.begin(), v.end(), 1, times<int>());

// for some compilers times has been replaced by multiplies
cout << "The factorial of 6 is " << prod << endl;

}

The factorial of 6 is 720

150
C++ Programming for Scientists

Function Objects

• A function object may be created, stored, and destroyed just like any other
kind of C++ objects. On the other hand, unlike an ordinary C function, a
function object can have associated data. The key requirement of a function
object is that the () operator is defined so that the use of the function object
can look like a normal function reference. In addition, many of function
objects in the STL functional library are written as templates in order to
work with a variety of data types.

• For example, here is the structure template definition for the times function
object we just used: (obtained from the functional include file)

template <class T>
struct times: binary_function<T,T,T> {

T operator()(const T& x, const T& y) const {
return x*y; }

};

151
C++ Programming for Scientists

#include <iostream.h>
#include <functional>
void main() {

time<double> prod; // create an instance of times object
cout << prod.operator()(3.4,2.0) << endl;
cout << prod(3.4,2.0) << endl;

}

6.8
6.8

Function Objects Example

• Here is a small program in which a “times” structure is created:

152
C++ Programming for Scientists

Categories of STL Function Objects

• There are three kinds of function objects used in the STL:

– Predicates: Boolean function objects used for setting the conditions for
the action of algorithm to take place.

– Comparitors: Boolean function objects used for ordering objects in a
sequence (container or C++ array)

– General Functions: Perform an arbitrary (but usually mathematical)
operation on its arguments.

• The following pages contain sample programs in which each of these function
object categories are used.

153
C++ Programming for Scientists

Predicate Sample Program

#include <iostream.h>
#include <functional>
#include <algorithm>
void main() {

int tf[7]={1,0,0,1,1,0,1};
int n=0;
count_if(tf, tf+7, logical_not<int>(), n);
cout << "The count of falses was " << n << endl;

}

The count of falses was 3

154
C++ Programming for Scientists

Comparitor Sample Program

#include <iostream.h>
#include <functional>
#include <algorithm>
#include <vector>
void main() {

vector<int> v(3);
v[0]=4;
v[1]=1;
v[2]=9;
sort(v.begin(), v.end(), greater<int>());
vector<int>::iterator k=v.begin;
while (k != v.end())

cout << *k++ << endl;
}

9
4
1

155
C++ Programming for Scientists

General Function Sample Program

#include <iostream.h>
#include <functional>
#include <algorithm>

void main() {
int original[6]={2,3,-8,45,9,-3};
int changed[6];
transform(original,original+6,changed,negate<int>());
for (int k=0; k<6; ++k)

cout << changed[k] << " ";
cout << endl;

}

-2 -3 8 -45 -9 3

156
C++ Programming for Scientists

Problem Set

1) Use accumulate to subtract instead of add. Output whatever is necessary to
show that your program is working.

2) Write the code for a function called palindrome which takes a vector as its
argument and returns a Boolean that is true only if the vector is equal to the
reverse of itself. Use iterators to perform the comparison. In your main
program, test your palindrome function with several vectors and output the
results.

3) Use the remove algorithm to remove some objects from a vector. Does the
size of the vector decrease? If not, modify your program so that it actually
does remove the desired objects.
TIP: Use the fill algorithm to fill up your vector to begin with.

157
C++ Programming for Scientists

Problem Set Continued

4) Write and use a function object choose() that takes two arguments and
randomly returns one of them each time it is called. In your main program
make enough uses of the choose object to verify that, statistically, the returns
are random.

5) Write a program that uses the vector member functions pop_back and
insert to erase parts of a vector and insert new objects in the middle.

6) Write a program that deals a set of hands for the card game Euchre.
HINT: You should use one of the containers we did not cover in detail in the
class.

