
JSF and AJAX with
Netbeans 5.5

Wanasanan Thongsongkrit

(NAS) :)

2

AJAX

3

AJAX’s shortcoming
 Because AJAX is new, it has very inconsistent

support among browsers.

 Also, to develop with AJAX, you need to have
some knowledge of JavaScript, which is out of
reach for many page authors.

4

Learning AJAX
 Fast (easy) if you

 are a JavaScript guru

 have memorized the entire
DOM API

 own and study books on
DHTML, JavaScript, CSS,
AJAX and useful hacks for
each technology

 Slow (hard) if you
 come from a mostly static

HTML/CSS background

 are comfortable with
traditional web application
architectures built around
an HTTP POST

 primary use of JavaScript
is cut-and-paste of cute
animations and other cool
in-page behaviors

5

AJAX toolkits
 The complete list indicates some 160 toolkits exist
 Keith provided a pointer to a popularity survey of AJAX

toolkits (as of September 23, 2006)
 Prototype (48%)
 Script.aculo.us (33%)
 Dojo (19%)
 DWR (12%)
 Moo.fx (11%)
 jQuery (7%)
 Rico (5%)
 Yahoo UI (5%)
 Atlas (4%)
 MochiKit (4%)
 XAjAX (4%)
 GWT (3%)

6

How to avoid learning javascript
and all toolkits?
 Use components that encapsulate AJAX inside

 Benefits
 Hide functionality behind simple building blocks

 Page author do not have to write all java scripts themselves but
let the component do the complicated work

 Page authors have an easier time maintaining their pages

 Reusable components

 Technology used: Java Server Faces (JSF)
 author can just drag and drop the components onto a page using

a tool such as Sun Java Studio Creator or the NetBeans IDE.

7

Create Great-Looking GUIs With
NetBeans IDE 5.5

8

NetBeans Enterprise Pack
(Beta version)

9

jMaki Framework (plug-in)
 JavaScript Wrapper framework for the Java platform
 wraps popular AJAX frameworks into a JSP or JSF tag
 Provides a common programming model to developers
 Familiar to Java EE application developers
 Leverages the widgets from popular frameworks (See)

DojoDojo FlickrFlickr GoogleGoogle ScriptaculusScriptaculus
MochikitMochikit SprySpry YahooYahoo DHTMDHTMLL

 What you need is: jMaki Plug-in

https://ajax.dev.java.net/files/documents/3115/41646/
org-netbeans-modules-sun-jmaki.nbm

10

Basic jMaki
Application
Structure

<a:ajax name="jmaki.delicious"/>

jmaki.js  the JavaScript
bootstrapper and utilities that
manages
• the loading of jMaki widgets
on the client,
• makes XMLHttpRequests,
• loads additional resources,
• provides inter-widget
communication using publish
and subscribe
• stores widget instances to be
shared across an application. config.json  configuration of

3rd party libraries used by jMaki

11

 made up of JavaScript Runtime, the Server Side
Runtime, and the XmlHttpProxy.

jMaki:

12

JavaScript Runtime (jmaki.js)
 responsible for

 bootstrapping all widgets and passing parameters provided by a
server-side runtime.

 makes sure that each widget instance gets the correct parameters
that were passed from the server-side runtime.

 uses default parameters (if not provided) that may then be
customized for each widget.

 provides convenient APIs for performing an XMLHttpRequest
and loading resources based on JSON with Padding (JSONP).

 provides APIs for a widget to load extra scripts, styles, and
resources needed by a widget.

 provides a publish subscribe mechanism for widget-based
communication.

 provides a common namespace to store and access widgets

The key point of the API is that you can program toThe key point of the API is that you can program to
one API and access widgets from any given toolkit.one API and access widgets from any given toolkit.

13

Server-Side Runtime
 responsible for

 applying changes and rendering HTML templates.

 renders all script and CSS references based on which
type is centrally configured.

 responsible for serializing parameters (specified as
attributes in a JSP or JSF tag) that are passed to the
JavaScript runtime.

 capable of mapping widget values back into server-
based model data, such as managed objects, web
services, or databases.

14

XmlHttpProxy
 provides a generic JSON-based access to a

widget range of XML-based services using an
HTTP client.
 services include RSS feeds, Yahoo services such as

geocoding, Flickr image searches, and many more to
come.

 allows widgets to access services in a uniform
way by providing XSL-to-JSON transformations
that can be easily customized.

15

How author configure
widgets’ parameters via jMaki?

 using JSON

jMaki Widget
JSON

(parameters)
wrapped
Widget

16

Using Your Own Data With a
jMaki Widget
 to add your own data to a widget (JSON format):

 Using a static file

 Using a JavaServer Faces managed bean

 Using a JSP page or a servlet

17

Demo: Publish and Subscribe
Mechanism with Yahoo Geocoder

 <a:ajax name="yahoo.geocoder" service="/xhp"/>

<script type="text/javascript">
 function geoCoderListener(coordinates) {
 var targetDiv = document.getElementById("geocoder001_message");
 var reponseText = "";
 for (var i in coordinates) {
 reponseText += "Latitude=" + coordinates[i].latitude + " Longitude=" +

coordinates[i].longitude + "
";
 }
 targetDiv.innerHTML = reponseText;
 }
 // subscribe to the topic '/yahoo/geocode' to which this widget publishes events
 jmaki.subscribe("/yahoo/geocoder", geoCoderListener);
 </script>

<div id="geocoder001_message"></div> Display location

Subscribe

widget

18

Geocoder’s
Component.html (hidden)

<div id="${uuid}">

 <form
onsubmit="jmaki.attributes.get('${uuid}').getCoordinates();
return false;">

Location: <input type="text" id="${uuid}_location">

<input type="button" value="Get Coordinates"
onclick="jmaki.attributes.get('${uuid}').getCoordinates();">

 </form>

 </div>

19

Geocoder’s
Component.js (hidden)
if (typeof jmaki.GeoCoder == 'undefined'){

 jmaki.GeoCoder = function(_widget) {
var topic = "/yahoo/geocoder";

 var uuid = _widget.uuid;
 var service = _widget.service;
 if (typeof widget.args != 'undefined' &&
 typeof widget.args.topic != 'undefined') {

topic = widget.args.topic;
}

uses default
parameters

20

Geocoder’s
Component.js (hidden)
var location;
this.getCoordinates = function() {

location =
encodeURIComponent(document.getElementById(uuid +
"_location").value);

var encodedLocation = encodeURIComponent("location=" +
location);

var url = service + "?key=yahoogeocoder&urlparams=" +
encodedLocation;

jmaki.doAjax({url: url, callback: function(req) { var _req=req;
postProcess(_req);}});

 }

Wrapped function

21

Componet.js (hidden)
function postProcess(req) {
 if (req.readyState == 4) {
 if (req.status == 200) {
 var response = eval("(" + req.responseText + ")");
 jmaki.publish(topic, response.coordinates);
 }
 }
 }
}
}

var geocoder = new jmaki.GeoCoder(widget);

// add to the instance map for later refernece
jmaki.attributes.put(widget.uuid, geocoder);

Publish
response

22

References
 https://ajax.dev.java.net/

 https://ajax.dev.java.net/download.html

 http://javaserver.org/jmaki/

 http://www.netbeans.org/

 http://java.sun.com/javaee/javaserverfaces
/ajax/tutorial.jsp

 http://www.javapassion.com/handsonlabs/ajaxj
makiintro/

 http://www.google.com/apis/maps/

