
IBM XL C/C++ Advanced Edition for Linux, V9.0

Compiler Reference

SC23-5889-00

���

IBM XL C/C++ Advanced Edition for Linux, V9.0

Compiler Reference

SC23-5889-00

���

Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

351.

First Edition

This edition applies to IBM XL C/C++ Advanced Edition for Linux, V9.0 (Program number 5724-S73) and to all

subsequent releases and modifications until otherwise indicated in new editions. Make sure you are using the

correct edition for the level of the product.

© Copyright International Business Machines Corporation 1998, 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this document vii

Who should read this document vii

How to use this document vii

How this document is organized vii

Conventions used in this document viii

Related information xi

IBM XL C/C++ publications xi

Standards and specifications documents xii

Other IBM publications xii

Other publications xiii

Technical support xiii

How to send your comments xiii

Chapter 1. Compiling and linking

applications 1

Invoking the compiler 1

Command-line syntax 2

Types of input files 3

Types of output files 4

Specifying compiler options 5

Specifying compiler options on the command line 5

Specifying compiler options in a configuration file 7

Specifying compiler options in program source

files 7

Resolving conflicting compiler options 8

Specifying compiler options for

architecture-specific, 32-bit or 64-bit compilation . 9

Reusing GNU C/C++ compiler options with gxlc

and gxlc++ 10

gxlc and gxlc++ syntax 11

Preprocessing 12

Directory search sequence for include files . . . 12

Linking 13

Order of linking 14

Redistributable libraries 14

Compiler messages and listings 15

Compiler messages 15

Compiler return codes 17

Compiler listings 18

Message catalog errors 19

Paging space errors during compilation 20

Chapter 2. Configuring compiler

defaults 21

Setting environment variables 21

Compile-time and link-time environment

variables 22

Runtime environment variables 22

Using custom compiler configuration files 29

Creating custom configuration files 30

Configuring the gxlc and gxlc++ option mapping . . 32

Chapter 3. Compiler options reference 35

Summary of compiler options by functional

category 35

Output control 35

Input control 36

Language element control 36

Template control (C++ only) 38

Floating-point and integer control 38

Object code control 39

Error checking and debugging 41

Listings, messages, and compiler information . . 42

Optimization and tuning 43

Linking 46

Portability and migration 47

Compiler customization 47

Deprecated options 48

Individual option descriptions 48

-+ (plus sign) (C++ only) 49

-# (pound sign) 50

-q32, -q64 51

-qabi_version (C++ only) 51

-qaggrcopy 52

-qalias 53

-qalign 55

-qalloca, -ma (C only) 56

-qaltivec 57

-qarch 58

-qasm 61

-qasm_as 63

-qattr 64

-B 65

-qbigdata 66

-qbitfields 66

-c 67

-C, -C! 68

-qcache 68

-qchars 71

-qcheck 72

-qcinc (C++ only) 73

-qcommon 74

-qcompact 75

-qcomplexgccincl 76

-qcpluscmt (C only) 77

-qcrt 78

-qc_stdinc (C only) 79

-qcpp_stdinc (C++ only) 80

-D 81

-qdataimported, -qdatalocal, -qtocdata 82

-qdbxextra (C only) 83

-qdigraph 84

-qdirectstorage 85

-qdollar 85

-qdump_class_hierarchy (C++ only) 86

-e 86

-E 87

-qeh (C++ only) 88

-qenum 89

© Copyright IBM Corp. 1998, 2007 iii

-qenablevmx 94

-F 94

-qfdpr 95

-qflag 96

-qfloat 98

-qflttrap 102

-qformat 105

-qfullpath 106

-g 107

-qgcc_c_stdinc (C only) 107

-qgcc_cpp_stdinc (C++ only) 108

-qgenproto (C only) 109

-qhalt 110

-qhaltonmsg (C++ only) 112

-qhot 112

-I 115

-qidirfirst 116

-qignerrno 117

-qignprag 118

-qinclude 119

-qinfo 120

-qinitauto 125

-qinlglue 127

-qinline 128

-qipa 128

-qisolated_call 136

-qkeepinlines (C++ only) 138

-qkeepparm 139

-qkeyword 140

-l 141

-L 142

-qlanglvl 143

-qldbl128 154

-qlib 154

-qlibansi 155

-qlinedebug 156

-qlist 157

-qlistopt 158

-qlonglit 159

-qlonglong 159

-ma (C only) 160

-qmakedep, -M 160

-qmaxerr 162

-qmaxmem 164

-qmbcs, -qdbcs 164

-MF 166

-qminimaltoc 166

-qmkshrobj 167

-o 168

-O, -qoptimize 169

-qoptdebug 173

-p, -pg, -qprofile 173

-P 174

-qpack_semantic 175

-qpath 176

-qpdf1, -qpdf2 178

-qphsinfo 182

-qpic 183

-qppline 184

-qprefetch 185

-qprint 185

-qpriority (C++ only) 186

-qprocimported, -qproclocal, -qprocunknown 187

-qproto (C only) 189

-Q, -qinline 190

-r 192

-R 193

-qreport 193

-qreserved_reg 195

-qro 196

-qroconst 197

-qrtti (C++ only) 198

-s 198

-S 199

-qsaveopt 200

-qshowinc 202

-qshowpdf 203

-qsmallstack 203

-qsmp 204

-qsource 208

-qsourcetype 209

-qspill 210

-qsrcmsg (C only) 211

-qstaticinline (C++ only) 212

-qstaticlink 213

-qstatsym 214

-qstdinc 214

-qstrict 215

-qstrict_induction 216

-qsuppress 217

-qsymtab (C only) 218

-qsyntaxonly (C only) 219

-t 220

-qtabsize 221

-qtbtable 222

-qtempinc (C++ only) 223

-qtemplatedepth (C++ only) 224

-qtemplaterecompile (C++ only) 225

-qtemplateregistry (C++ only) 226

-qtempmax (C++ only) 227

-qthreaded 227

-qtls 228

-qtmplinst (C++ only) 230

-qtmplparse (C++ only) 231

-qtocdata 231

-qtrigraph 232

-qtune 232

-U 234

-qunroll 235

-qunwind 238

-qupconv (C only) 238

-qutf 239

-v, -V 240

-qversion 240

-qvrsave 242

-w 243

-W 244

-qwarn64 245

-qxcall 246

-qxref 247

-y 248

iv XL C/C++ Compiler Reference

Chapter 4. Compiler pragmas

reference 251

Pragma directive syntax 251

Scope of pragma directives 252

Summary of compiler pragmas by functional

category 252

Language element control 253

C++ template pragmas 253

Floating-point and integer control 253

Error checking and debugging 253

Listings, messages and compiler information 253

Optimization and tuning 254

Object code control 254

Portability and migration 255

Compiler customization 255

Individual pragma descriptions 255

#pragma align 256

#pragma alloca (C only) 256

#pragma altivec_vr_save 256

#pragma block_loop 256

#pragma chars 259

#pragma comment 259

#pragma complexgcc 260

#pragma define, #pragma instantiate (C++ only) 261

#pragma disjoint 261

#pragma do_not_instantiate (C++ only) 263

#pragma enum 263

#pragma execution_frequency 263

#pragma expected_value 265

#pragma hashome (C++ only) 266

#pragma ibm snapshot 267

#pragma implementation (C++ only) 268

#pragma info 269

#pragma ishome (C++ only) 269

#pragma isolated_call 269

#pragma langlvl (C only) 269

#pragma leaves 269

#pragma loopid 270

#pragma map 271

#pragma mc_func 273

#pragma nosimd 275

#pragma novector 275

#pragma options 275

#pragma option_override 277

#pragma pack 279

#pragma priority (C++ only) 284

#pragma reachable 284

#pragma reg_killed_by 285

#pragma report (C++ only) 286

#pragma STDC cx_limited_range 287

#pragma stream_unroll 288

#pragma strings 290

#pragma unroll 290

#pragma unrollandfuse 290

#pragma weak 291

Pragma directives for parallel processing . . . 294

Chapter 5. Compiler predefined

macros 307

General macros 307

Macros indicating the XL C/C++ compiler product 308

Macros related to the platform 308

Macros related to compiler features 309

Macros related to compiler option settings . . . 309

Macros related to architecture settings 311

Macros related to language levels 312

Chapter 6. Compiler built-in functions 319

Fixed-point built-in functions 319

Absolute value functions 320

Assert functions 320

Count zero functions 320

Load functions 320

Multiply functions 321

Population count functions 321

Rotate functions 322

Store functions 323

Trap functions 323

Binary floating-point built-in functions 324

Absolute value functions 324

Conversion functions 325

FPSCR functions 326

Multiply-add/subtract functions 328

Reciprocal estimate functions 329

Rounding functions 329

Select functions 330

Square root functions 331

Software division functions 331

Store functions 332

Synchronization and atomic built-in functions . . 332

Check lock functions 332

Clear lock functions 333

Compare and swap functions 334

Fetch functions 335

Load functions 336

Store functions 337

Synchronization functions 338

Cache-related built-in functions 339

Data cache functions 339

Prefetch functions 340

Protected stream functions 340

Block-related built-in functions 343

__bcopy 343

Miscellaneous built-in functions 343

Optimization-related functions 343

Move to/from register functions 344

Memory-related functions 346

Built-in functions for parallel processing 346

OpenMP built-in functions 346

Notices 351

Trademarks and service marks 353

Industry standards 353

Index 355

Contents v

vi XL C/C++ Compiler Reference

About this document

This document contains reference information for the IBM® XL C/C++ Advanced

Edition for Linux® compiler. Although it provides information on compiling and

linking applications written in C and C++, it is primarily intended as a reference

for compiler command-line options, pragma directives, predefined macros, built-in

functions, environment variables, and error messages and return codes.

Who should read this document

This document is for experienced C or C++ developers who have some familiarity

with the XL C/C++ compilers or other command-line compilers on UNIX®

operating systems. It assumes thorough knowledge of the C or C++ programming

language, and basic knowledge of operating system commands. Although this

document is intended as a reference guide, programmers new to XL C/C++ can

still use this document to find information on the capabilities and features unique

to the XL C/C++ compiler.

How to use this document

Unless indicated otherwise, all of the text in this reference pertains to both C and

C++ languages. Where there are differences between languages, these are indicated

through qualifying text and icons, as described in “Conventions used in this

document” on page viii.

Throughout this document, the xlc and xlc++ command invocations are used to

describe the actions of the compiler. You can, however, substitute other forms of

the compiler invocation command if your particular environment requires it, and

compiler option usage will remain the same unless otherwise specified.

While this document covers information on configuring the compiler environment,

and compiling and linking C or C++ applications using XL C/C++ compiler, it

does not include the following topics:

v Compiler installation: see the XL C/C++ Installation Guide. for information on

installing XL C/C++.

v The C or C++ programming languages: see the XL C/C++ Language Reference for

information on the syntax, semantics, and IBM implementation of the C or C++

programming languages.

v Programming topics: see the XL C/C++ Programming Guide for detailed

information on developing applications with XL C/C++, with a focus on

program portability and optimization.

How this document is organized

Chapter 1, “Compiling and linking applications,” on page 1 discusses topics related

to compilation tasks, including invoking the compiler, preprocessor, and linker;

types of input and output files; different methods for setting include file path

names and directory search sequences; different methods for specifying compiler

options and resolving conflicting compiler options; how to reuse GNU C/C++

compiler options through the use of the compiler utilities gxlc and gxlc++; and

compiler listings and messages.

© Copyright IBM Corp. 1998, 2007 vii

Chapter 2, “Configuring compiler defaults,” on page 21 discusses topics related to

setting up default compilation settings, including setting environment variables,

customizing the configuration file, and customizing the gxlc and gxlc++ option

mappings.

Chapter 3, “Compiler options reference,” on page 35 begins with a summary of

options according to functional category, which allows you to look up and link to

options by function; and includes individual descriptions of each compiler option

sorted alphabetically.

Chapter 4, “Compiler pragmas reference,” on page 251 begins with a summary of

pragma directives according to functional category, which allows you to look up

and link to pragmas by function; and includes individual descriptions of pragmas

sorted alphabetically, including OpenMP directives.

Chapter 5, “Compiler predefined macros,” on page 307 provides a list of compiler

macros according to category.

Chapter 6, “Compiler built-in functions,” on page 319 contains individual

descriptions of XL C/C++built-in functions for PowerPC® architectures, categorized

by their functionality.

Conventions used in this document

Typographical conventions

The following table explains the typographical conventions used in this document.

 Table 1. Typographical conventions

Typeface Indicates Example

bold Lowercase commands, executable

names, compiler options and

directives.

If you specify -O3, the compiler

assumes -qhot=level=0. To prevent

all HOT optimizations with -O3, you

must specify -qnohot.

italics Parameters or variables whose

actual names or values are to be

supplied by the user. Italics are

also used to introduce new terms.

Make sure that you update the size

parameter if you return more than

the size requested.

underlining The default setting of a parameter

of a compiler option or directive.

nomaf | maf

monospace Programming keywords and

library functions, compiler built-in

functions, examples of program

code, command strings, or

user-defined names.

If one or two cases of a switch

statement are typically executed

much more frequently than other

cases, break out those cases by

handling them separately before the

switch statement.

Icons

All features described in this document apply to both C and C++ languages.

Where a feature is exclusive to one language, or where functionality differs

between languages, the following icons are used:

viii XL C/C++ Compiler Reference

C

The text describes a feature that is supported in the C language only; or

describes behavior that is specific to the C language.

C++

The text describes a feature that is supported in the C++ language only; or

describes behavior that is specific to the C++ language.

Syntax diagrams

Throughout this document, diagrams illustrate XL C/C++ syntax. This section will

help you to interpret and use those diagrams.

v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.

The ��─── symbol indicates the beginning of a command, directive, or statement.

The ───� symbol indicates that the command, directive, or statement syntax is

continued on the next line.

The �─── symbol indicates that a command, directive, or statement is continued

from the previous line.

The ───�� symbol indicates the end of a command, directive, or statement.

Fragments, which are diagrams of syntactical units other than complete

commands, directives, or statements, start with the │─── symbol and end with

the ───│ symbol.

v Required items are shown on the horizontal line (the main path):

�� keyword required_argument ��

v Optional items are shown below the main path:

�� keyword

optional_argument
 ��

v If you can choose from two or more items, they are shown vertically, in a stack.

If you must choose one of the items, one item of the stack is shown on the main

path.

�� keyword required_argument1

required_argument2
 ��

If choosing one of the items is optional, the entire stack is shown below the

main path.

�� keyword

optional_argument1

optional_argument2

 ��

v An arrow returning to the left above the main line (a repeat arrow) indicates

that you can make more than one choice from the stacked items or repeat an

item. The separator character, if it is other than a blank, is also indicated:

About this document ix

��

�

 ,

keyword

repeatable_argument

��

v The item that is the default is shown above the main path.

��

keyword
 default_argument

alternate_argument

��

v Keywords are shown in nonitalic letters and should be entered exactly as shown.

v Variables are shown in italicized lowercase letters. They represent user-supplied

names or values.

v If punctuation marks, parentheses, arithmetic operators, or other such symbols

are shown, you must enter them as part of the syntax.

Sample syntax diagram

The following syntax diagram example shows the syntax for the #pragma

comment directive.

��
 (1) (2) (3) (4) (5) (9) (10)

#

pragma

comment

(

compiler

)

date

timestamp

(6)

copyright

user

(7)

(8)

,

"

token_sequence

"

��

Notes:

1 This is the start of the syntax diagram.

2 The symbol # must appear first.

3 The keyword pragma must appear following the # symbol.

4 The name of the pragma comment must appear following the keyword pragma.

5 An opening parenthesis must be present.

6 The comment type must be entered only as one of the types indicated:

compiler, date, timestamp, copyright, or user.

7 A comma must appear between the comment type copyright or user, and an

optional character string.

8 A character string must follow the comma. The character string must be

enclosed in double quotation marks.

9 A closing parenthesis is required.

10 This is the end of the syntax diagram.
The following examples of the #pragma comment directive are syntactically correct

according to the diagram shown above:

 #pragma

 comment(date)

 #pragma comment(user)

 #pragma comment(copyright,"This text will appear in the module")

Examples

x XL C/C++ Compiler Reference

The examples in this document, except where otherwise noted, are coded in a

simple style that does not try to conserve storage, check for errors, achieve fast

performance, or demonstrate all possible methods to achieve a specific result.

Related information

The following sections provide information on documentation related to XL

C/C++:

v “IBM XL C/C++ publications”

v “Standards and specifications documents” on page xii

v “Other IBM publications” on page xii

v “Other publications” on page xiii

IBM XL C/C++ publications

XL C/C++ provides product documentation in the following formats:

v README files

README files contain late-breaking information, including changes and

corrections to the product documentation. README files are located by default

in the XL C/C++ directory and in the root directory of the installation CD.

v Installable man pages

Man pages are provided for the compiler invocations and all command-line

utilities provided with the product. Instructions for installing and accessing the

man pages are provided in the XL C/C++ Installation Guide.

v Information center

The information center of searchable HTML files can be launched on a network

and accessed remotely or locally. Instructions for installing and accessing the

online information center are provided in the XL C/C++ Installation Guide. The

information center is also viewable on the Web at http://
publib.boulder.ibm.com/infocenter/lnxphelp/v9v111/index.jsp.

v PDF documents

PDF documents are located by default in the /opt/ibmcmp/vac/9.0/doc/
LANG/pdf/ directory, where LANG is one of en_US, zh_CN, or ja_JP. The PDF

files are also available on the Web at http://www.ibm.com/software/awdtools/
xlcpp/library.

The following files comprise the full set of XL C/C++ product manuals:

 Table 2. XL C/C++ PDF files

Document title

PDF file

name Description

IBM XL C/C++ Advanced

Edition for Linux, V9.0

Installation Guide,

GC23-5893-00

install.pdf Contains information for installing XL C/C++

and configuring your environment for basic

compilation and program execution.

Getting Started with IBM

XL C/C++ Advanced

Edition for Linux, V9.0,

GC23-5891-00

getstart.pdf Contains an introduction to the XL C/C++

product, with information on setting up and

configuring your environment, compiling and

linking programs, and troubleshooting

compilation errors.

IBM XL C/C++ Advanced

Edition for Linux, V9.0

Compiler Reference,

SC23-5889-00

compiler.pdf Contains information about the various

compiler options, pragmas, macros,

environment variables, and built-in functions,

including those used for parallel processing.

About this document xi

http://publib.boulder.ibm.com/infocenter/comphelp/v9v111/index.jsp
http://publib.boulder.ibm.com/infocenter/comphelp/v9v111/index.jsp
http://www.ibm.com/software/awdtools/xlcpp/library
http://www.ibm.com/software/awdtools/xlcpp/library

Table 2. XL C/C++ PDF files (continued)

Document title

PDF file

name Description

IBM XL C/C++ Advanced

Edition for Linux, V9.0

Language Reference,

SC23-5892-00

langref.pdf Contains information about the C and C++

programming languages, as supported by IBM,

including language extensions for portability

and conformance to non-proprietary standards.

IBM XL C/C++ Advanced

Edition for Linux, V9.0

Programming Guide,

SC23-5890-00

proguide.pdf Contains information on advanced

programming topics, such as application

porting, interlanguage calls with Fortran code,

library development, application optimization

and parallelization, and the XL C/C++

high-performance libraries.

To read a PDF file, use the Adobe® Reader. If you do not have the Adobe

Reader, you can download it (subject to license terms) from the Adobe Web site

at http://www.adobe.com.

More documentation related to XL C/C++ including redbooks, white papers,

tutorials, and other articles, is available on the Web at:

http://www.ibm.com/software/awdtools/xlcpp/library

Standards and specifications documents

XL C/C++ is designed to support the following standards and specifications. You

can refer to these standards for precise definitions of some of the features found in

this document.

v Information Technology – Programming languages – C, ISO/IEC 9899:1990, also

known as C89.

v Information Technology – Programming languages – C, ISO/IEC 9899:1999, also

known as C99.

v Information Technology – Programming languages – C++, ISO/IEC 14882:1998, also

known as C++98.

v Information Technology – Programming languages – C++, ISO/IEC 14882:2003(E),

also known as Standard C++.

v Information Technology – Programming languages – Extensions for the programming

language C to support new character data types, ISO/IEC DTR 19769. This draft

technical report has been accepted by the C standards committee, and is

available at http://www.open-std.org/JTC1/SC22/WG14/www/docs/
n1040.pdf.

v Draft Technical Report on C++ Library Extensions, ISO/IEC DTR 19768. This draft

technical report has been submitted to the C++ standards committee, and is

available at http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/
n1836.pdf.

v AltiVec Technology Programming Interface Manual, Motorola Inc. This specification

for vector data types, to support vector processing technology, is available at

http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf.

v OpenMP Application Program Interface Version 2.5, available at

http://www.openmp.org

Other IBM publications

v ESSL for Linux on POWER V4.2 Guide and Reference, SA22-7904, available at

http://publib.boulder.ibm.com/infocenter/clresctr/index.jsp

xii XL C/C++ Compiler Reference

http://www.adobe.com
http://www.ibm.com/software/awdtools/xlcpp/library
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1040.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1040.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1836.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1836.pdf
http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf
http://www.openmp.org
http://publib.boulder.ibm.com/infocenter/clresctr/index.jsp

Other publications

v Using the GNU Compiler Collection available at http://gcc.gnu.org/onlinedocs

Technical support

Additional technical support is available from the XL C/C++ Support page at

http://www.ibm.com/software/awdtools/xlcpp/support. This page provides a

portal with search capabilities to a large selection of technical support FAQs and

other support documents.

If you cannot find what you need, you can send e-mail to compinfo@ca.ibm.com.

For the latest information about XL C/C++, visit the product information site at

http://www.ibm.com/software/awdtools/xlcpp.

How to send your comments

Your feedback is important in helping to provide accurate and high-quality

information. If you have any comments about this document or any other XL

C/C++ documentation, send your comments by e-mail to compinfo@ca.ibm.com.

Be sure to include the name of the document, the part number of the document,

the version of XL C/C++, and, if applicable, the specific location of the text you

are commenting on (for example, a page number or table number).

About this document xiii

http://gcc.gnu.org/onlinedocs
http://www.ibm.com/software/awdtools/xlcpp/support
http://www.ibm.com/software/awdtools/xlcpp

xiv XL C/C++ Compiler Reference

Chapter 1. Compiling and linking applications

By default, when you invoke the XL C/C++ compiler, all of the following phases

of translation are performed:

v preprocessing of program source

v compiling and assembling into object files

v linking into an executable

These different translation phases are actually performed by separate executables,

which are referred to as compiler components. However, you can use compiler

options to perform only certain phases, such as preprocessing, or assembling. You

can then reinvoke the compiler to resume processing of the intermediate output to

a final executable.

The following sections describe how to invoke the XL C/C++ compiler to

preprocess, compile and link source files and libraries:

v “Invoking the compiler”

v “Types of input files” on page 3

v “Types of output files” on page 4

v “Specifying compiler options” on page 5

v “Reusing GNU C/C++ compiler options with gxlc and gxlc++” on page 10

v “Preprocessing” on page 12

v “Linking” on page 13

v “Compiler messages and listings” on page 15

Invoking the compiler

Different forms of the XL C/C++ compiler invocation commands support various

levels of the C and C++ languages. In most cases, you should use the xlc

command to compile your C source files, and the xlc++ command to compile C++

source files. Use xlc++ to link if you have both C and C++ object files.

 You can use other forms of the command if your particular environment requires

it. Table 3 lists the different basic commands, with the "special" versions of each

basic command. "Special" commands are described in Table 4 on page 2.

Note that for each invocation command, the compiler configuration file defines

default option settings and, in some cases, macros; for information on the defaults

implied by a particular invocation, see the /etc/opt/ibmcmp/vac/9.0/vac.cfg file

for your system.

 Table 3. Compiler invocations

Basic invocations Description

Equivalent special

invocations

xlc Invokes the compiler for C source files. This command

supports all of the ISO C99 standard features, and most

IBM language extensions. This invocation is recommended

for all applications.

xlc_r

© Copyright IBM Corp. 1998, 2007 1

Table 3. Compiler invocations (continued)

Basic invocations Description

Equivalent special

invocations

c99 Invokes the compiler for C source files. This command

supports all ISO C99 language features, but does not

support IBM language extensions. Use this invocation for

strict conformance to the C99 standard.

c99_r

c89 Invokes the compiler for C source files. This command

supports all ANSI C89 language features, but does not

support IBM language extensions. Use this invocation for

strict conformance to the C89 standard.

c89_r

cc Invokes the compiler for C source files. This command

supports pre-ANSI C, and many common language

extensions. You can use this command to compile legacy

code that does not conform to standard C.

cc_r

gxlc Invokes the compiler for C source files. This command

accepts many common GNU C options, maps them to their

XL C option equivalents, and then invokes xlc. For more

information, refer to “Reusing GNU C/C++ compiler

options with gxlc and gxlc++” on page 10.

xlc++, xlC Invokes the compiler for C++ source files. If any of your

source files are C++, you must use this invocation to link

with the correct runtime libraries.

Files with .c suffixes, assuming you have not used the -+

compiler option, are compiled as C language source code.

xlc++_r, xlC_r

gxlc++, gxlC Invokes the compiler for C++ files. This command accepts

many common GNU C/C++ options, maps them to their

XL C/C++ option equivalents, and then invokes xlc++. For

more information, refer to “Reusing GNU C/C++ compiler

options with gxlc and gxlc++” on page 10.

 Table 4. Suffixes for special invocations

_r-suffixed

invocations

All _r-suffixed invocations allow for threadsafe compilation and you can use them to link

the programs that use multi-threading. Use these commands if you want to create threaded

applications.

Command-line syntax

You invoke the compiler using the following syntax, where invocation can be

replaced with any valid XL C/C++ invocation command listed in Table 3 on page

1:

��

invocation

�

input_files

command_line_options

��

The parameters of the compiler invocation command can be the names of input

files, compiler options, and linker options.

Your program can consist of several input files. All of these source files can be

compiled at once using only one invocation of the compiler. Although more than

one source file can be compiled using a single invocation of the compiler, you can

2 XL C/C++ Compiler Reference

specify only one set of compiler options on the command line per invocation. Each

distinct set of command-line compiler options that you want to specify requires a

separate invocation.

Compiler options perform a wide variety of functions, such as setting compiler

characteristics, describing the object code and compiler output to be produced, and

performing some preprocessor functions.

By default, the invocation command calls both the compiler and the linker. It passes

linker options to the linker. Consequently, the invocation commands also accept all

linker options. To compile without linking, use the -c compiler option. The -c

option stops the compiler after compilation is completed and produces as output,

an object file file_name.o for each file_name.nnn input source file, unless you use the

-o option to specify a different object file name. The linker is not invoked. You can

link the object files later using the same invocation command, specifying the object

files without the -c option.

Related information

v “Types of input files”

Types of input files

The compiler processes the source files in the order in which they appear. If the

compiler cannot find a specified source file, it produces an error message and the

compiler proceeds to the next specified file. However, the linker will not be run

and temporary object files will be removed.

By default, the compiler preprocesses and compiles all the specified source files.

Although you will usually want to use this default, you can use the compiler to

preprocess the source file without compiling; see “Preprocessing” on page 12 for

details.

You can input the following types of files to the XL C/C++ compiler:

C and C++ source files

These are files containing C or C++ source code.

 To use the C compiler to compile a C language source file, the source file

must have a .c (lowercase c) suffix, unless you compile with the

-qsourcetype=c option.

 To use the C++ compiler, the source file must have a .C (uppercase C), .cc,

.cp, .cpp, .cxx, or .c++ suffix, unless you compile with the -+ or

-qsourcetype=c++ option.

Preprocessed source files

Preprocessed source files have a .i suffix, for example, file_name.i. The

compiler sends the preprocessed source file, file_name.i, to the compiler

where it is preprocessed again in the same way as a .c or .C file.

Preprocessed files are useful for checking macros and preprocessor

directives.

Object files

Object files must have a .o suffix, for example, file_name.o. Object files,

library files, and unstripped executable files serve as input to the linker.

After compilation, the linker links all of the specified object files to create

an executable file.

Chapter 1. Compiling and linking applications 3

Assembler files

Assembler files must have a .s suffix, for example, file_name.s, unless you

compile with the -qsourcetype=assembler option. Assembler files are

assembled to create an object file.

Unpreprocessed assembler files

Unpreprocessed assembler files must have a .S suffix, for example,

file_name.S, unless you compile with the -qsourcetype=assembler-with-
cpp option. The compiler compiles all source files with a .S extension as if

they are assembler language source files that need preprocessing.

Shared library files

Shared library files generally have a .a suffix, for example, file_name.a,

but they can also have a .so suffix, for example, file_name.so.

Unstripped executable files

Executable and linking format (ELF) files that have not been stripped with

the operating system strip command can be used as input to the compiler.

Related information

v Options summary by functional category: Input control

Types of output files

You can specify the following types of output files when invoking the XL C/C++

compiler:

Executable files

By default, executable files are named a.out. To name the executable file

something else, use the -o file_name option with the invocation command.

This option creates an executable file with the name you specify as

file_name. The name you specify can be a relative or absolute path name for

the executable file.

Object files

If you specify the -c option, an output object file, file_name.o, is produced

for each input file. The linker is not invoked, and the object files are placed

in your current directory. All processing stops at the completion of the

compilation. The compiler gives object files a .o suffix, for example,

file_name.o, unless you specify the -o file_name option, giving a different

suffix or no suffix at all.

 You can link the object files later into a single executable file by invoking

the compiler.

Shared library files

If you specify the -qmkshrobj option, the compiler generates a single

shared library file for all input files. The compiler names the output file

a.out, unless you specify the -o file_name option, and give the file a .so

suffix.

Assembler files

If you specify the -S option, an assembler file, file_name.s, is produced for

each input file.

 You can then assemble the assembler files into object files and link the

object files by reinvoking the compiler.

Preprocessed source files

If you specify the -P option, a preprocessed source file, file_name.i, is

produced for each input file.

4 XL C/C++ Compiler Reference

You can then compile the preprocessed files into object files and link the

object files by reinvoking the compiler.

Listing files

If you specify any of the listing-related options, such as -qlist or -qsource,

a compiler listing file, file_name.lst, is produced for each input file. The

listing file is placed in your current directory.

Target files

If you specify the -M or -qmakedep option, a target file suitable for

inclusion in a makefile, file_name.d is produced for each input file.

Related information

v Options summary by functional category: Output control

Specifying compiler options

Compiler options perform a wide variety of functions, such as setting compiler

characteristics, describing the object code and compiler output to be produced, and

performing some preprocessor functions. You can specify compiler options in one

or more of the following ways:

v On the command line

v In a custom configuration file, which is a file with a .cfg extension

v In your source program

v As system environment variables

v In a makefile

The compiler assumes default settings for most compiler options not explicitly set

by you in the ways listed above.

When specifying compiler options, it is possible for option conflicts and

incompatibilities to occur. XL C/C++ resolves most of these conflicts and

incompatibilities in a consistent fashion, as follows:

In most cases, the compiler uses the following order in resolving conflicting or

incompatible options:

1. Pragma statements in source code will override compiler options specified on

the command line.

2. Compiler options specified on the command line will override compiler options

specified as environment variables or in a configuration file. If conflicting or

incompatible compiler options are specified in the same command line

compiler invocation, the option appearing later in the invocation takes

precedence.

3. Compiler options specified as environment variables will override compiler

options specified in a configuration file.

4. Compiler options specified in a configuration file, command line or source

program will override compiler default settings.

Option conflicts that do not follow this priority sequence are described in

“Resolving conflicting compiler options” on page 8.

Specifying compiler options on the command line

Most options specified on the command line override both the default settings of

the option and options set in the configuration file. Similarly, most options

specified on the command line are in turn overridden by pragma directives, which

Chapter 1. Compiling and linking applications 5

provide you a means of setting compiler options right in the source file. Options

that do not follow this scheme are listed in “Resolving conflicting compiler

options” on page 8.

There are two kinds of command-line options:

v -qoption_keyword (compiler-specific)

v Flag options

-q options

��

�

 -q option_keyword

:

=

suboption

 ��

Command-line options in the -qoption_keyword format are similar to on and off

switches. For most -q options, if a given option is specified more than once, the last

appearance of that option on the command line is the one recognized by the

compiler. For example, -qsource turns on the source option to produce a compiler

listing, and -qnosource turns off the source option so no source listing is produced.

For example:

xlc -qnosource MyFirstProg.c -qsource MyNewProg.c

would produce a source listing for both MyNewProg.c and MyFirstProg.c because

the last source option specified (-qsource) takes precedence.

You can have multiple -qoption_keyword instances in the same command line, but

they must be separated by blanks. Option keywords can appear in either

uppercase or lowercase, but you must specify the -q in lowercase. You can specify

any -qoption_keyword before or after the file name. For example:

xlc -qLIST -qfloat=nomaf file.c

xlc file.c -qxref -qsource

You can also abbreviate many compiler options. For example, specifying -qopt is

equivalent to specifying -qoptimize on the command line.

Some options have suboptions. You specify these with an equal sign following the

-qoption. If the option permits more than one suboption, a colon (:) must separate

each suboption from the next. For example:

xlc -qflag=w:e -qattr=full file.c

compiles the C source file file.c using the option -qflag to specify the severity

level of messages to be reported. The -qflag suboption w (warning) sets the

minimum level of severity to be reported on the listing, and suboption e (error)

sets the minimum level of severity to be reported on the terminal. The -qattr with

suboption full will produce an attribute listing of all identifiers in the program.

Flag options

XL C/C++ supports a number of common conventional flag options used on UNIX

systems. Lowercase flags are different from their corresponding uppercase flags.

For example, -c and -C are two different compiler options: -c specifies that the

compiler should only preprocess and compile and not invoke the linker, while -C

can be used with -P or -E to specify that user comments should be preserved.

6 XL C/C++ Compiler Reference

XL C/C++ also supports flags directed to other programming tools and utilities

(for example, the ld command). The compiler passes on those flags directed to ld

at link time.

Some flag options have arguments that form part of the flag. For example:

xlc stem.c -F/home/tools/test3/new.cfg:xlc

where new.cfg is a custom configuration file.

You can specify flags that do not take arguments in one string. For example:

xlc -Ocv file.c

has the same effect as:

xlc -O -c -v file.c

and compiles the C source file file.c with optimization (-O) and reports on

compiler progress (-v), but does not invoke the linker (-c).

A flag option that takes arguments can be specified as part of a single string, but

you can only use one flag that takes arguments, and it must be the last option

specified. For example, you can use the -o flag (to specify a name for the

executable file) together with other flags, only if the -o option and its argument are

specified last. For example:

xlc -Ovo test test.c

has the same effect as:

xlc -O -v -otest test.c

Most flag options are a single letter, but some are two letters. Note that specifying

-pg (extended profiling) is not the same as specifying -p -g (-p for profiling, and -g

for generating debug information). Take care not to specify two or more options in

a single string if there is another option that uses that letter combination.

Specifying compiler options in a configuration file

The default configuration file (/etc/opt/ibmcmp/vac/9.0/vac.cfg) defines values

and compiler options for the compiler. The compiler refers to this file when

compiling C or C++ programs. The configuration file is a plain text file. You can

edit this file, or create an additional customized configuration file to support

specific compilation requirements. For more information, see “Using custom

compiler configuration files” on page 29.

Specifying compiler options in program source files

You can specify compiler options within your program source by using pragma

directives. A pragma is an implementation-defined instruction to the compiler. For

those options that have equivalent pragma directives, there are several ways to

specify the syntax of the pragmas:

v Using #pragma options option_name syntax — Many command-line options

allow you to use the #pragma options syntax, which takes the same name as the

option, and suboptions with a syntax identical to that of the option. For

example, if the command-line option is:

-qhalt=w

The pragma form is:

#pragma options halt=w

Chapter 1. Compiling and linking applications 7

The descriptions for each individual option indicates whether this form of the

pragma is supported; also, for a complete list of these, see “#pragma options” on

page 275.

v Using #pragma name syntax — Some options also have corresponding pragma

directives that use a pragma-specific syntax, which may include additional or

slightly different suboptions. Throughout the section “Individual option

descriptions” on page 48, each option description indicates whether this form of

the pragma is supported, and the syntax is provided.

v Using the standard C99 _Pragma operator — For options that support either

forms of the pragma directives listed above, you can also use the C99 _Pragma

operator syntax in both C and C++.

Complete details on pragma syntax are provided in “Pragma directive syntax” on

page 251.

Other pragmas do not have equivalent command-line options; these are described

in detail throughout Chapter 4, “Compiler pragmas reference,” on page 251.

 Options specified with pragma directives in program source files override all other

option settings, except other pragma directives. The effect of specifying the same

pragma directive more than once varies. See the description for each pragma for

specific information.

Pragma settings can carry over into included files. To avoid potential unwanted

side effects from pragma settings, you should consider resetting pragma settings at

the point in your program source where the pragma-defined behavior is no longer

required. Some pragma options offer reset or pop suboptions to help you do this.

These suboptions are listed in the detailed descriptions of the pragmas to which

they apply.

Resolving conflicting compiler options

In general, if more than one variation of the same option is specified (with the

exception of -qxref and -qattr), the compiler uses the setting of the last one

specified. Compiler options specified on the command line must appear in the

order you want the compiler to process them.

Two exceptions to the rules of conflicting options are the -Idirectory and -Ldirectory

options, which have cumulative effects when they are specified more than once.

In most cases, the compiler uses the following order in resolving conflicting or

incompatible options:

1. Pragma statements in source code override compiler options specified on the

command line.

2. Compiler options specified on the command line override compiler options

specified as environment variables or in a configuration file. If conflicting or

incompatible compiler options are specified on the command line, the option

appearing later on the command line takes precedence.

3. Compiler options specified as environment variables override compiler options

specified in a configuration file.

4. Compiler options specified in a configuration file override compiler default

settings.

Not all option conflicts are resolved using the above rules. The table below

summarizes exceptions and how the compiler handles conflicts between them.

8 XL C/C++ Compiler Reference

Rules for resolving conflicts between compiler mode and architecture-specific

options are discussed in “Specifying compiler options for architecture-specific,

32-bit or 64-bit compilation.”

 Option Conflicting options Resolution

-qalias=allptrs -qalias=noansi -qalias=noansi

-qalias=typeptr -qalias=noansi -qalias=noansi

-qhalt Multiple severities specified by -qhalt Lowest severity specified

-qnoprint -qxref, -qattr, -qsource, -qlistopt, -qlist -qnoprint

-qfloat=rsqrt -qnoignerrno Last option specified

-qxref -qxref=full -qxref=full

-qattr -qattr=full -qattr=full

-qfloat=hsflt -qfloat=spnans -qfloat=hsflt

-E -P, -o, -S -E

-P -c, -o, -S -P

-# -v -#

-F -B, -t, -W, -qpath -B, -t, -W, -qpath

-qpath -B, -t -qpath

-S -c -S

-qnostdinc -qc_stdinc, -qcpp_stdinc, -qgcc_c_stdinc,

-qgcc_cpp_stdinc

-qnostdinc

Specifying compiler options for architecture-specific, 32-bit or

64-bit compilation

You can use the -q32, -q64, -qarch, and -qtune compiler options to optimize the

output of the compiler to suit:

v The broadest possible selection of target processors

v A range of processors within a given processor architecture family

v A single specific processor

Generally speaking, the options do the following:

v -q32 selects 32-bit execution mode.

v -q64 selects 64-bit execution mode.

v -qarch selects the general family processor architecture for which instruction

code should be generated. Certain -qarch settings produce code that will run

only on systems that support all of the instructions generated by the compiler in

response to a chosen -qarch setting.

v -qtune selects the specific processor for which compiler output is optimized.

Some -qtune settings can also be specified as -qarch options, in which case they

do not also need to be specified as a -qtune option. The -qtune option influences

only the performance of the code when running on a particular system but does

not determine where the code will run.

The compiler evaluates compiler options in the following order, with the last

allowable one found determining the compiler mode:

1. Internal default (32-bit mode)

2. Configuration file settings

3. Command line compiler options (-q32, -q64, -qarch, -qtune)

Chapter 1. Compiling and linking applications 9

4. Source file statements (#pragma options tune=suboption)

The compilation mode actually used by the compiler depends on a combination of

the settings of the -q32, -q64, -qarch and -qtune compiler options, subject to the

following conditions:

v Compiler mode is set according to the last-found instance of the -q32 or -q64

compiler options.

v Architecture target is set according to the last-found instance of the -qarch

compiler option, provided that the specified -qarch setting is compatible with

the compiler mode setting. If the -qarch option is not set, the compiler sets -qarch

to the appropriate default based on the effective compiler mode setting. See

“-qarch” on page 58 for details.

v Tuning of the architecture target is set according to the last-found instance of the

-qtune compiler option, provided that the -qtune setting is compatible with the

architecture target and compiler mode settings. If the -qtune option is not set, the

compiler assumes a default -qtune setting according to the -qarch setting in use.

If -qarch is not specified, the compiler sets -qtune to the appropriate default

based on the effective -qarch as selected by default based on the effective

compiler mode setting.

Allowable combinations of these options are found in “-qtune” on page 232.

Possible option conflicts and compiler resolution of these conflicts are described

below:

v -q32 or -q64 setting is incompatible with user-selected -qarch option.

Resolution: -q32 or -q64 setting overrides -qarch option; compiler issues a

warning message, sets -qarch to its default setting, and sets the -qtune option

accordingly to its default value.

v -qarch option is incompatible with user-selected -qtune option.

Resolution: Compiler issues a warning message, and sets -qtune to the -qarch

setting’s default -qtune value.

v Selected -qarch or -qtune options are not known to the compiler.

Resolution: Compiler issues a warning message, sets -qarch and -qtune to their

default settings. The compiler mode (32-bit or 64-bit) is determined by the

-q32/-q64 compiler settings.

Related information

v “-qarch” on page 58

v “-qtune” on page 232

v “-q32, -q64” on page 51

Reusing GNU C/C++ compiler options with gxlc and gxlc++

Each of the gxlc and gxlc++ utilities accepts GNU C or C++ compiler options and

translates them into comparable XL C/C++ options. Both utilities use the XL

C/C++ options to create an xlc or xlc++ invocation command, which they then use

to invoke the compiler. These utilities are provided to facilitate the reuse of make

files created for applications previously developed with GNU C/C++. However, to

fully exploit the capabilities of XL C/C++, it is recommended that you use the XL

C/C++ invocation commands and their associated options.

The actions of gxlc and gxlc++ are controlled by the configuration file

/etc/opt/ibmcmp/vac/9.0/gxlc.cfg. The GNU C/C++ options that have an XL C

10 XL C/C++ Compiler Reference

or XL C++ counterpart are shown in this file. Not every GNU option has a

corresponding XL C/C++ option. gxlc and gxlc++ return warnings for input

options that were not translated.

 The gxlc and gxlc++ option mappings are modifiable. For information on adding

to or editing the gxlc and gxlc++ configuration file, see “Configuring the gxlc and

gxlc++ option mapping” on page 32.

gxlc and gxlc++ syntax

The following diagram shows the gxlc and gxlc++ syntax:

�� gxlc filename

gxlc++

-v

-Wx,

xlc_or_xlc++_options

gcc_or_g++_options

gxlC

-vv

 ��

where:

filename

Is the name of the file to be compiled.

-v Allows you to verify the command that will be used to invoke XL C/C++.

The utility displays the XL C/C++ invocation command that it has created,

before using it to invoke the compiler.

-vv Allows you to run a simulation. The utility displays the XL C/C++

invocation command that it has created, but does not invoke the compiler.

-Wx,xlc_or_xlc++_ options

Sends the given XL C/C++ options directly to the xlc or xlc++ invocation

command. The utility adds the given options to the XL C/C++ invocation

it is creating, without attempting to translate them. Use this option with

known XL C/C++ options to improve the performance of the utility.

Multiple xlc_or_xlc++_ options are delimited by a comma.

gcc_or_g++_options

Are the GNU C/C++ options that are to be translated to XL C/C++

options. The utility emits a warning for any option it cannot translate. The

GNU C/C++ options that are currently recognized by gxlc and gxlc++ are

in the configuration file gxlc.cfg. Multiple gcc_or_g++_options are delimited

by the space character.

Example

To use the GCC -fstrict-aliasing option to compile the C version of the Hello

World program, you can use:

gxlc -fstrict-aliasing hello.c

which translates into:

xlc -qalias=ansi hello.c

This command is then used to invoke the XL C compiler.

Related information

v “Configuring the gxlc and gxlc++ option mapping” on page 32

Chapter 1. Compiling and linking applications 11

Preprocessing

Preprocessing manipulates the text of a source file, usually as a first phase of

translation that is initiated by a compiler invocation. Common tasks accomplished

by preprocessing are macro substitution, testing for conditional compilation

directives, and file inclusion.

You can invoke the preprocessor separately to process text without compiling. The

output is an intermediate file, which can be input for subsequent translation.

Preprocessing without compilation can be useful as a debugging aid because it

provides a way to see the result of include directives, conditional compilation

directives, and complex macro expansions.

The following table lists the options that direct the operation of the preprocessor.

 Option Description

-E Preprocesses the source files and writes the output to standard output. By

default, #line directives are generated.

-P Preprocesses the source files and creates an intermediary file with a .i file

name suffix for each source file. By default, #line directives are not

generated.

-qppline Toggles on and off the generation of #line directives for the -E and -P

options.

-C, -C! Preserves comments in preprocessed output.

-D Defines a macro name from the command line, as if in a #define directive.

-U Undefines a macro name defined by the compiler or by the -D option.

Directory search sequence for include files

XL C/C++ supports the following types of include files:

v Header files supplied by the compiler (referred to throughout this document as

XL C/C++ headers)

v Header files mandated by the C and C++ standards (referred to throughout this

document as system headers)

v Header files supplied by the operating system (also referred to throughout this

document as system headers)

v User-defined header files

You can use any of the following methods to include any type of header file:

v Use the standard #include <file_name> preprocessor directive in the including

source file.

v Use the standard #include "file_name" preprocessor directive in the including

source file.

v Use the -qinclude compiler option.

If you specify the header file using a full (absolute) path name, you can use these

methods interchangeably, regardless of the type of header file you want to include.

However, if you specify the header file using a relative path name, the compiler

uses a different directory search order for locating the file depending on the

method used to include the file.

12 XL C/C++ Compiler Reference

Furthermore, the -qidirfirst and -qstdinc compiler options can affect this search

order. The following summarizes the search order used by the compiler to locate

header files depending on the mechanism used to include the files and on the

compiler options that are in effect:

1. Header files included with -qinclude only: The compiler searches the current

(working) directory from which the compiler is invoked.1

2. Header files included with -qinclude or #include "file_name": The compiler

searches the directory in which the including file is located.1

3. All header files: The compiler searches each directory specified by the -I

compiler option, in the order that it appears on the command line.

4. All header files:

C

The compiler searches the standard directory for the

XL C headers. The default directory for these headers is specified in the

compiler configuration file. This is normally /opt/ibmcmp/vac/9.0/include/,

but the search path can be changed with the -qc_stdinc compiler option.
C++

The compiler searches the standard directory for the XL C++ headers.

The default directory for these headers is specified in the compiler

configuration file. This is normally /opt/ibmcmp/vac/9.0//include/, but the

search path can be changed with the -qcpp_stdinc compiler option.2

5. All header files:

C

The compiler searches the standard directory for the

system headers. The default directory for these headers is specified in the

compiler configuration file. This is normally /opt/ibmcmp/vac/9.0/include/,

but the search path can be changed with the -qgcc_c_stdinc option.

C++

The compiler searches the standard directory for the system headers. The

default directory for these headers is specified in the compiler configuration

file. This is normally /opt/ibmcmp/vac/9.0//include/ but the search path can

be changed with the -qgcc_cpp_stdinc option.2

Notes:

1. If the -qidirfirst compiler option is in effect, step 3 is performed before steps 1

and 2.

2. If the -qnostdinc compiler option is in effect steps 4 and 5 are omitted.

Related information

v “-I” on page 115

v “-qc_stdinc (C only)” on page 79

v “-qcpp_stdinc (C++ only)” on page 80

v “-qgcc_c_stdinc (C only)” on page 107

v “-qgcc_cpp_stdinc (C++ only)” on page 108

v “-qidirfirst” on page 116

v “-qinclude” on page 119

v “-qstdinc” on page 214

Linking

The linker links specified object files to create one executable file. Invoking the

compiler with one of the invocation commands automatically calls the linker

unless you specify one of the following compiler options: -E, -P, -c, -S,

-qsyntaxonly or -#.

Input files

Object files, unstripped executable files, and library files serve as input to

the linker. Object files must have a .o suffix, for example, filename.o. Static

library file names have an .a suffix, for example, filename.a. Dynamic

library file names typically have a .so suffix, for example, filename.so.

Chapter 1. Compiling and linking applications 13

Output files

The linker generates an executable file and places it in your current

directory. The default name for an executable file is a.out. To name the

executable file explicitly, use the -o file_name option with the compiler

invocation command, where file_name is the name you want to give to the

executable file. For example, to compile myfile.c and generate an

executable file called myfile, enter:

xlc myfile.c -o myfile

If you use the -qmkshrobj option to create a shared library, the default

name of the shared object created is a.out. You can use the -o option to

rename the file and give it a .so suffix.

 You can invoke the linker explicitly with the ld command. However, the compiler

invocation commands set several linker options, and link some standard files into

the executable output by default. In most cases, it is better to use one of the

compiler invocation commands to link your object files. For a complete list of

options available for linking, see “Linking” on page 46.

Related information

v “-qmkshrobj” on page 167

Order of linking

The compiler links libraries in the following order:

1. System startup libraries

2. User .o files and libraries

3. XL C/C++ libraries

4. C++ standard libraries

5. C standard libraries

Related information

v “Linking” on page 46

v “Redistributable libraries”

Redistributable libraries

If you build your application using XL C/C++, it may use one or more of the

following redistributable libraries. If you ship the application, ensure that the users

of the application have the packages containing the libraries. To make sure the

required libraries are available to users, one of the following can be done:

v You can ship the packages that contain the redistributable libraries with the

application. The packages are stored under the rpms/ directory under the

appropriate Linux distribution directory on the installation CD.

v The user can download the packages that contain the redistributable libraries

from the XL C/C++ support Web site at:

http://www.ibm.com/software/awdtools/xlcpp/support/

For information on the licensing requirements related to the distribution of these

packages refer to LicAgree.pdf on the CD.

14 XL C/C++ Compiler Reference

http://www.ibm.com/software/awdtools/xlcpp/support

Table 5. Redistributable libraries

Package

name Libraries (and default installation path) Description

vac.lib /opt/ibmcmp/vac/V9.0/lib/libxl.a

/opt/ibmcmp/vac/V9.0/lib64/libxl.a

/opt/ibmcmp/vac/V9.0/lib/libxlopt.a

/opt/ibmcmp/vac/V9.0/lib64/libxlopt.a

XL C compiler

libraries

vacpp.rte /opt/ibmcmp/lib/libibmc++.so.1

/opt/ibmcmp/lib64/libibmc++.so.1

XL C++ runtime

libraries

xlsmp.rte /opt/ibmcmp/lib/libxlomp_ser.so.1

/opt/ibmcmp/lib/libxlsmp.so.1

/opt/ibmcmp/lib64/libxlomp_ser.so.1

/opt/ibmcmp/lib64/libxlsmp.so.1

SMP (OMP) runtime

libraries

xlsmp.msg.rte /opt/ibmcmp/msg/en_US/smprt.cat

/opt/ibmcmp/msg/en_US.utf8/smprt.cat

SMP message catalogs

(English)

/opt/ibmcmp/msg/ja_JP/smprt.cat

/opt/ibmcmp/msg/ja_JP.eucjp/smprt.cat

/opt/ibmcmp/msg/ja_JP.utf8/smprt.cat

SMP message catalogs

(Japanese)

/opt/ibmcmp/msg/zh_CN/smprt.cat

/opt/ibmcmp/msg/zh_CN.gb18030/smprt.cat

/opt/ibmcmp/msg/zh_CN.gb2312/smprt.cat

/opt/ibmcmp/msg/zh_CN.gbk/smprt.cat

/opt/ibmcmp/msg/zh_CN.utf8/smprt.cat

SMP message catalogs

(Chinese)

Compiler messages and listings

The following sections discuss the various methods of reporting provided by the

compiler after compilation:

v “Compiler messages”

v “Compiler return codes” on page 17

v “Compiler listings” on page 18

v “Message catalog errors” on page 19

v “Paging space errors during compilation” on page 20

Compiler messages

When the compiler encounters a programming error while compiling a C or C++

source program, it issues a diagnostic message to the standard error device and, if

you compile with the -qsource option, to a listing file. Note that messages are

specific to the C or C++ language.

C

If you specify the compiler option -qsrcmsg and the error is applicable to

a particular line of code, the reconstructed source line or partial source line is

included with the error message. A reconstructed source line is a preprocessed

source line that has all the macros expanded.

You can control the diagnostic messages issued, according to their severity, using

either the -qflag option or the -w option. To get additional informational messages

about potential problems in your program, use the -qinfo option.

Related information

v “-qsource” on page 208

v “-qsrcmsg (C only)” on page 211

Chapter 1. Compiling and linking applications 15

v “-qflag” on page 96

v “-w” on page 243

v “-qinfo” on page 120

Compiler message format

Diagnostic messages have the following format:

“file”, line line_number.column_number: 15dd-number (severity) text.

where:

file Is the name of the C or C++ source file with the error.

line_number

Is the source code line number where the error was found.

column_number

Is the source code column number where the error was found.

15 Is the compiler product identifier.

dd is a two-digit code indicating the compiler component that issued the message.

dd can have the following values:

00 - code generating or optimizing message

01 - compiler services message

05 - message specific to the C compiler

06 - message specific to the C compiler

40 - message specific to the C++ compiler

86 - message specific to interprocedural analysis (IPA)

number

Is the message number.

severity

Is a letter representing the severity of the error. See “Message severity levels

and compiler response” for a description of these.

text

Is a message describing the error.

C

If you compile with -qsrcmsg, diagnostic messages have the following

format:

x - 15dd-nnn(severity) text.

where x is a letter referring to a finger in the finger line.

Message severity levels and compiler response

XL C/C++ uses a multi-level classification scheme for diagnostic messages. Each

level of severity is associated with a compiler response. The following table

provides a key to the abbreviations for the severity levels and the associated

default compiler response. Note that you can adjust the default compiler response

by using any of the following options:

v -qhalt allows you to halt the compilation phase at a lower severity level than the

default

v -qmaxerr allows you to halt the compilation phase as soon as a specific number

of errors at a specific severity level is reached

16 XL C/C++ Compiler Reference

v

C++

-qhaltonmsg allows you to halt the compilation phase as soon as a

specific error is encountered

 Table 6. Compiler message severity levels

Letter Severity Compiler response

I Informational Compilation continues and object code is generated. The

message reports conditions found during compilation.

W Warning Compilation continues and object code is generated. The

message reports valid but possibly unintended conditions.

C

E

Error Compilation continues and object code is generated. Error

conditions exist that the compiler can correct, but the

program might not produce the expected results.

S Severe error Compilation continues, but object code is not generated. Error

conditions exist that the compiler cannot correct:

v If the message indicates a resource limit (for example, file

system full or paging space full), provide additional

resources and recompile.

v If the message indicates that different compiler options are

needed, recompile using them.

v Check for and correct any other errors reported prior to the

severe error.

v If the message indicates an internal compiler error, the

message should be reported to your IBM service

representative.

C

U

Unrecoverable

error

The compiler halts. An internal compiler error has occurred.

The message should be reported to your IBM service

representative.

Related information

v “-qhalt” on page 110

v “-qmaxerr” on page 162

v “-qhaltonmsg (C++ only)” on page 112

v Options summary by functional category: Listings and messages

Compiler return codes

At the end of compilation, the compiler sets the return code to zero under any of

the following conditions:

v No messages are issued.

v The highest severity level of all errors diagnosed is less than the setting of the

-qhalt compiler option, and the number of errors did not reach the limit set by

the -qmaxerr compiler option.

v

C++

No message specified by the -qhaltonmsg compiler option is issued.

Otherwise, the compiler sets the return code to one of the following values:

 Return code Error type

1 Any error with a severity level higher than the setting of the -qhalt

compiler option has been detected.

40 An option error or an unrecoverable error has been detected.

41 A configuration file error has been detected.

249 A no-files-specified error has been detected.

Chapter 1. Compiling and linking applications 17

250 An out-of-memory error has been detected. The compiler cannot

allocate any more memory for its use.

251 A signal-received error has been detected. That is, an unrecoverable

error or interrupt signal has occurred.

252 A file-not-found error has been detected.

253 An input/output error has been detected: files cannot be read or

written to.

254 A fork error has been detected. A new process cannot be created.

255 An error has been detected while the process was running.

Note: Return codes may also be displayed for runtime errors.

gxlc and gxlc++ return codes

Like other invocation commands, gxlc and gxlc++ return output, such as listings,

diagnostic messages related to the compilation, warnings related to unsuccessful

translation of GNU options, and return codes. If gxlc or gxlc++ cannot successfully

call the compiler, it sets the return code to one of the following values:

40 A gxlc or gxlc++ option error or unrecoverable error has been detected.

255 An error has been detected while the process was running.

Compiler listings

A listing is a compiler output file (with a .lst suffix) that contains information

about a particular compilation. As a debugging aid, a compiler listing is useful for

determining what has gone wrong in a compilation. For example, any diagnostic

messages emitted during compilation are written to the listing.

To produce a listing, you can compile with any of the following options, which

provide different types of information:

v -qsource

v -qlistopt

v -qattr

v -qxref

v -qlist

When any of these options is in effect, a listing file filename.lst is saved in the

current directory for every input file named in the compilation.

Listing information is organized in sections. A listing contains a header section and

a combination of other sections, depending on other options in effect. The contents

of these sections are described as follows.

Header section

Lists the compiler name, version, and release, as well as the source file

name and the date and time of the compilation.

Source section

If you use the -qsource option, lists the input source code with line

numbers. If there is an error at a line, the associated error message appears

after the source line. Lines containing macros have additional lines

showing the macro expansion. By default, this section only lists the main

source file. Use the -qshowinc option to expand all header files as well.

18 XL C/C++ Compiler Reference

Options section

Lists the non-default options that were in effect during the compilation. To

list all options in effect, specify the -qlistopt option.

Attribute and cross-reference listing section

If you use the -qattr or -qxref options, provides information about the

variables used in the compilation unit, such as type, storage duration,

scope, and where they are defined and referenced. Each of these options

provides different information on the identifiers used in the compilation.

File table section

Lists the file name and number for each main source file and include file.

Each file is associated with a file number, starting with the main source

file, which is assigned file number 0. For each file, the listing shows from

which file and line the file was included. If the -qshowinc option is also in

effect, each source line in the source section will have a file number to

indicate which file the line came from.

Compilation epilogue section

Displays a summary of the diagnostic messages by severity level, the

number of source lines read, and whether or not the compilation was

successful.

Object section

If you use the -qlist option, lists the object code generated by the compiler.

This section is useful for diagnosing execution time problems, if you

suspect the program is not performing as expected due to code generation

error.

Related information

v Summary of command line options: Listings and messages

Message catalog errors

Before the compiler can compile your program, the message catalogs must be

installed and the environment variables LANG and NLSPATH must be set to a

language for which the message catalog has been installed.

If you see the following message during compilation, the appropriate message

catalog cannot be opened:

Error occurred while initializing the message system in

file: message_file

where message_file is the name of the message catalog that the compiler cannot

open. This message is issued in English only.

You should then verify that the message catalogs and the environment variables

are in place and correct. If the message catalog or environment variables are not

correct, compilation can continue, but diagnostic messages are suppressed and the

following message is issued instead:

No message text for message_number

where message_number is the compiler internal message number. This message is

issued in English only.

To determine which message catalogs are installed on your system, assuming that

you have installed the compiler to the default location, you can list all of the file

names for the catalogs by the following command:

Chapter 1. Compiling and linking applications 19

ls /opt/ibmcmp/vacpp/9.0/msg/$LANG/*.cat

where LANG is the environment variable on your system that specifies the system

locale.

The compiler calls the message catalogs for en_US by default if LANG is not set

correctly.

For more information about the NLSPATH and LANG environment variables, see

your operating system documentation.

Paging space errors during compilation

If the operating system runs low on paging space during a compilation, the

compiler issues the following message:

1501-229 Compilation ended due to lack of space.

To minimize paging-space problems, do any of the following and recompile your

program:

v Reduce the size of your program by splitting it into two or more source files

v Compile your program without optimization

v Reduce the number of processes competing for system paging space

v Increase the system paging space

See your operating system documentation for more information about paging

space and how to allocate it.

20 XL C/C++ Compiler Reference

Chapter 2. Configuring compiler defaults

When you compile an application with XL C/C++, the compiler uses default

settings that are determined in a number of ways:

v Internally defined settings. These settings are predefined by the compiler and

you cannot change them.

v Settings defined by system environment variables. Certain environment variables

are required by the compiler; others are optional. You may have already set

some of the basic environment variables during the installation process (for more

information, see the XL C/C++ Installation Guide). “Setting environment

variables” provides a complete list of the required and optional environment

variables you can set or reset after installing the compiler, including those used

for parallel processing.

v Settings defined in the compiler configuration file, /etc/opt/ibmcmp/vac/9.0/
vac.cfg. The compiler requires many settings that are determined by its

configuration file. Normally, the configuration file is automatically generated

during the installation procedure (for more information, see the XL C/C++

Installation Guide). However, you can customize this file after installation, to

specify additional compiler options, default option settings, library search paths,

and so on. Information on customizing the configuration file is provided in

“Using custom compiler configuration files” on page 29.

v Settings defined by the GCC options configuration file. If you are using gxlc or

gxlc++ utility to map GCC options, the default option mappings are defined in

the /etc/opt/ibmcmp/vac/9.0/gxlc.cfg file. You can customize this file to suit

your requirements; for more information, see “Configuring the gxlc and gxlc++

option mapping” on page 32.

Setting environment variables

To set environment variables in Bourne, Korn, and BASH shells, use the following

commands:

variable=value

export variable

where variable is the name of the environment variable, and value is the value you

assign to the variable.

To set environment variables in the C shell, use the following command:

setenv variable value

where variable is the name of the environment variable, and value is the value you

assign to the variable.

To set the variables so that all users have access to them, in Bourne, Korn, and

BASH shells, add the commands to the file /etc/profile. To set them for a specific

user only, add the commands to the file .profile in the user’s home directory. In C

shell, add the commands to the file /etc/csh.cshrc. To set them for a specific user

only, add the commands to the file .cshrc in the user's home directory. The

environment variables are set each time the user logs in.

The following sections discuss the environment variables you can set for XL

C/C++ and applications you have compiled with it:

© Copyright IBM Corp. 1998, 2007 21

v “Compile-time and link-time environment variables”

v “Runtime environment variables”

Compile-time and link-time environment variables

The following environment variables are used by the compiler when you are

compiling and linking your code. Many are built into the Linux operating system.

With the exception of LANG and NLSPATH, which must be set if you are using a

locale other than the default en_US, all of these variables are optional.

LANG

Specifies the locale for your operating system. The default locale used by

the compiler for messages and help files is United States English, en_US,

but the compiler supports other locales. For a list of these, see "National

language support" in the XL C/C++ Installation Guide. For more information

on setting the LANG environment variable to use an alternate locale, see

your operating system documentation.

LD_RUN_PATH

Specifies search paths for dynamically loaded libraries, equivalent to using

the -R link-time option. The shared-library locations named by the

environment variable are embedded into the executable, so the dynamic

linker can locate the libraries at application run time. For more information

about this environment variable, see your operating system documentation.

See also “-R” on page 193.

NLSPATH

Specifies the directory search path for finding the compiler message and

help files. You only need to set this environment variable if the national

language to be used for the compiler message and help files is not English.

For information on setting the NLSPATH, see "Enabling the XL C/C++

error messages" in the XL C/C++ Installation Guide.

PATH Specifies the directory search path for the executable files of the compiler.

Executables are in /opt/ibmcmp/vac/9.0/bin/ if installed to the default

location. For information on setting the PATH, see "Setting the PATH

environment variable to include the path to the XL C/C++ invocations" in

the XL C/C++ Installation Guide.

TMPDIR

Optionally specifies the directory in which temporary files are created

during compilation. The default location, /tmp/, may be inadequate at

high levels of optimization, where paging and temporary files can require

significant amounts of disk space, so you can use this environment variable

to specify an alternate directory.

XLC_USR_CONFIG

Specifies the location of a custom configuration file to be used by the

compiler. The file name must be given with its absolute path. The compiler

will first process the definitions in this file before processing those in the

default system configuration file, or those in a customized file specified by

the -F option; for more information, see “Using custom compiler

configuration files” on page 29.

Runtime environment variables

The following environment variables are used by the system loader or by your

application when it is executed. All of these variables are optional.

22 XL C/C++ Compiler Reference

LD_LIBRARY_PATH

Specifies an alternate directory search path for dynamically linked libraries

at application run time. If shared libraries required by your application

have been moved to an alternate directory that was not specified at link

time, and you do not want to relink the executable, you can set this

environment variable to allow the dynamic linker to locate them at run

time. For more information about this environment variable, see your

operating system documentation.

PDFDIR

Optionally specifies the directory in which profiling information is saved

when you run an application that you have compiled with the -qpdf1

option. The default value is unset, and the compiler places the profile data

file in the current working directory. When you recompile or relink your

application with -qpdf2, the compiler uses the data saved in this directory

to optimize the application. It is recommended that you set this variable to

an absolute path if you will be using profile-directed feedback. See

“-qpdf1, -qpdf2” on page 178 for more information.

XL_NOCLONEARCH

If you have compiled a program with the -qipa=clonearch option, which

generates multiple versions of functions optimized for different runtime

architectures, you can set this environment variable to instruct the

compiled application to only execute the generic code, that is, the code that

is not versioned for a specific architecture. This variable is unset by

default; you can set it to help debug your application. See “-qipa” on page

128 for more information.

Environment variables for parallel processing

The XLSMPOPTS environment variable sets options for program run time using

loop parallelization. Suboptions for the XLSMPOPTS environment variables are

discussed in detail in “XLSMPOPTS.”

If you are using OpenMP constucts for parallelization, you can also specify

runtime options using OMP environment variables, as discussed in “OpenMP

environment variables for parallel processing” on page 27.

When runtime options specified by OMP and XLSMPOPTS environment variables

conflict, OMP options will prevail.

Note: You must use threadsafe compiler mode invocations when compiling

parallelized program code.

Related information

v “Pragma directives for parallel processing” on page 294

v “Built-in functions for parallel processing” on page 346

XLSMPOPTS: Runtime options affecting parallel processing can be specified with

the XLSMPOPTS environment variable. This environment variable must be set

before you run an application, and uses basic syntax of the form:

��

�

 :

XLSMPOPTS

=

runtime_option_name

=

option_setting

"

"

��

Chapter 2. Configuring compiler defaults 23

You can specify option names and settings in uppercase or lowercase. You can add

blanks before and after the colons and equal signs to improve readability.

However, if the XLSMPOPTS option string contains imbedded blanks, you must

enclose the entire option string in double quotation marks (").

For example, to have a program run time create 4 threads and use dynamic

scheduling with chunk size of 5, you would set the XLSMPOPTS environment

variable as shown below:

XLSMPOPTS=PARTHDS=4:SCHEDULE=DYNAMIC=5

The following are the available runtime option settings for the XLSMPOPTS

environment variable:

Scheduling options are as follows:

schedule

Specifies the type of scheduling algorithms and chunk size (n) that are used for

loops to which no other scheduling algorithm has been explicitly assigned in

the source code.

 Work is assigned to threads in a different manner, depending on the

scheduling type and chunk size used. Choosing chunking granularity is a

tradeoff between overhead and load balancing. The syntax for this option is

schedule=suboption, where the suboptions are defined as follows:

affinity[=n] The iterations of a loop are initially divided into n partitions,

containing ceiling(number_of_iterations/number_of_threads)

iterations. Each partition is initially assigned to a thread and is

then further subdivided into chunks that each contain n

iterations. If n is not specified, then the chunks consist of

ceiling(number_of_iterations_left_in_partition / 2) loop iterations.

 When a thread becomes free, it takes the next chunk from its

initially assigned partition. If there are no more chunks in that

partition, then the thread takes the next available chunk from a

partition initially assigned to another thread.

 The work in a partition initially assigned to a sleeping thread

will be completed by threads that are active.

 The affinity scheduling type does not appear in the OpenMP

API standard.

dynamic[=n] The iterations of a loop are divided into chunks containing n

iterations each. If n is not specified, then the chunks consist of

ceiling(number_of_iterations/number_of_threads). iterations.

 Active threads are assigned these chunks on a ″first-come,

first-do″ basis. Chunks of the remaining work are assigned to

available threads until all work has been assigned.

 If a thread is asleep, its assigned work will be taken over by an

active thread once that thread becomes available.

guided[=n] The iterations of a loop are divided into progressively smaller

chunks until a minimum chunk size of n loop iterations is

reached. If n is not specified, the default value for n is 1

iteration.

 Active threads are assigned chunks on a ″first-come, first-do″

basis. The first chunk contains ceiling(number_of_iterations/

24 XL C/C++ Compiler Reference

number_of_threads) iterations. Subsequent chunks consist of

ceiling(number_of_iterations_left / number_of_threads) iterations.

static[=n] The iterations of a loop are divided into chunks containing n

iterations each. Each thread is assigned chunks in a

″round-robin″ fashion. This is known as block cyclic scheduling.

If the value of n is 1, then the scheduling type is specifically

referred to as cyclic scheduling.

 If n is not specified, the chunks will contain

ceiling(number_of_iterations/number_of_threads) iterations. Each

thread is assigned one of these chunks. This is known as block

scheduling.

 If a thread is asleep and it has been assigned work, it will be

awakened so that it may complete its work.

n Must be an integral assignment expression of value 1 or

greater.

 Specifying schedule with no suboption is equivalent to schedule=runtime.

Parallel environment options are as follows:

parthds=num Specifies the number of threads (num) requested,

which is usually equivalent to the number of

processors available on the system.

 Some applications cannot use more threads than

the maximum number of processors available.

Other applications can experience significant

performance improvements if they use more

threads than there are processors. This option gives

you full control over the number of user threads

used to run your program.

 The default value for num is the number of

processors available on the system.

usrthds=num Specifies the maximum number of threads (num)

that you expect your code will explicitly create if

the code does explicit thread creation. The default

value for num is 0.

stack=num Specifies the largest amount of space in bytes (num)

that a thread’s stack will need. The default value

for num is 2097152.

 Set num so it is within the acceptable upper limit.

num can be up to 256 MB for 32-bit mode, or up to

the limit imposed by system resources for 64-bit

mode. An application that exceeds the upper limit

may cause a segmentation fault.

 The glibc library is compiled by default to allow a

stack size of 2 MB. Setting num to a value greater

than this will cause the default stack size to be

used. If larger stack sizes are required, you should

link the program to a glibc library compiled with

the FLOATING_STACKS parameter turned on.

stackcheck[=num] When the -qsmp=stackcheck is in effect, enables

Chapter 2. Configuring compiler defaults 25

stack overflow checking for slave threads at

runtime.num is the size of the stack in bytes; when

the remaining stack size is less than this value, a

runtime warning message is issued. If you do not

specify a value for num, the default value is 4096

bytes. Note that this option only has an effect

when the -qsmp=stackcheck has also been

specified at compile time. See “-qsmp” on page 204

for more information.

startproc=cpu_id Enables thread binding and specifies the CPU ID to

which the first thread binds. If the value provided

is outside the range of available processors, a

warning message is issued and no threads are

bound.

stride=num Specifies the increment used to determine the CPU

ID to which subsequent threads bind. num must be

greater than or equal to 1. If the value provided

causes a thread to bind to a CPU outside the range

of available processors, a warning message is

issued and no threads are bound.

Performance tuning options are as follows:

spins=num

Specifies the number of loop spins, or iterations, before a yield occurs.

 When a thread completes its work, the thread continues executing in a tight

loop looking for new work. One complete scan of the work queue is done

during each busy-wait state. An extended busy-wait state can make a

particular application highly responsive, but can also harm the overall

responsiveness of the system unless the thread is given instructions to

periodically scan for and yield to requests from other applications.

 A complete busy-wait state for benchmarking purposes can be forced by

setting both spins and yields to 0.

 The default value for num is 100.

yields=num

Specifies the number of yields before a sleep occurs.

 When a thread sleeps, it completely suspends execution until another thread

signals that there is work to do. This provides better system utilization, but

also adds extra system overhead for the application.

 The default value for num is 100.

delays=num

Specifies a period of do-nothing delay time between each scan of the work

queue. Each unit of delay is achieved by running a single no-memory-access

delay loop.

 The default value for num is 500.

Dynamic profiling options are as follows:

profilefreq=n

Specifies the frequency with which a loop should be revisited by the dynamic

profiler to determine its appropriateness for parallel or serial execution.The

runtime library uses dynamic profiling to dynamically tune the performance of

26 XL C/C++ Compiler Reference

automatically parallelized loops. Dynamic profiling gathers information about

loop running times to determine if the loop should be run sequentially or in

parallel the next time through. Threshold running times are set by the

parthreshold and seqthreshold dynamic profiling options, described below.

 The allowed values for this option are the numbers from 0 to 32. If num is 0,

all profiling is turned off, and overheads that occur because of profiling will

not occur. If num is greater than 0, running time of the loop is monitored once

every num times through the loop. The default for num is 16. Values of num

exceeding 32 are changed to 32.

 It is important to note that dynamic profiling is not applicable to user-specified

parallel loops.

parthreshold=num

Specifies the time, in milliseconds, below which each loop must execute

serially. If you set num to 0, every loop that has been parallelized by the

compiler will execute in parallel. The default setting is 0.2 milliseconds,

meaning that if a loop requires fewer than 0.2 milliseconds to execute in

parallel, it should be serialized.

 Typically, num is set to be equal to the parallelization overhead. If the

computation in a parallelized loop is very small and the time taken to execute

these loops is spent primarily in the setting up of parallelization, these loops

should be executed sequentially for better performance.

seqthreshold=num

Specifies the time, in milliseconds, beyond which a loop that was previously

serialized by the dynamic profiler should revert to being a parallel loop. The

default setting is 5 milliseconds, meaning that if a loop requires more than 5

milliseconds to execute serially, it should be parallelized.

 seqthreshold acts as the reverse of parthreshold.

OpenMP environment variables for parallel processing: OpenMP runtime

options affecting parallel processing are set by specifying OMP environment

variables. These environment variables, use syntax of the form:

�� env_variable = option_and_args ��

If an OMP environment variable is not explicitly set, its default setting is used.

OpenMP runtime options fall into different categories as described below:

For information on the OpenMP specification, see: www.openmp.org/specs.

Chapter 2. Configuring compiler defaults 27

http://www.openmp.org

Scheduling algorithm environment variable:

 OMP_SCHEDULE=algorithm This option specifies the scheduling algorithm used for

loops not explictly assigned a scheduling algorithm with

the omp schedule directive. For example:

OMP_SCHEDULE=“guided, 4”

Valid options for algorithm are:

v dynamic[, n]

v guided[, n]

v runtime

v static[, n]

If specifying a chunk size with n, the value of n must be

an integer value of 1 or greater.

The default scheduling algorithm is static.

Parallel environment variables:

 OMP_NUM_THREADS=num num represents the number of parallel threads requested,

which is usually equivalent to the number of processors

available on the system.

This number can be overridden during program

execution by calling the omp_set_num_threads runtime

library function.

Some applications cannot use more threads than the

maximum number of processors available. Other

applications can experience significant performance

improvements if they use more threads than there are

processors. This option gives you full control over the

number of user threads used to run your program.

The default value for num is the number of processors

available on the system.

You can override the setting of OMP_NUM_THREADS

for a given parallel section by using the num_threads

clause available in several #pragma omp directives.

OMP_NESTED=TRUE|FALSE This environment variable enables or disables nested

parallelism. The setting of this environment variable can

be overridden by calling the omp_set_nested runtime

library function.

If nested parallelism is disabled, nested parallel regions

are serialized and run in the current thread.

In the current implementation, nested parallel regions are

always serialized. As a result, OMP_SET_NESTED does

not have any effect, and omp_get_nested always returns

0. If -qsmp=nested_par option is on (only in non-strict

OMP mode), nested parallel regions may employ

additional threads as available. However, no new team

will be created to run nested parallel regions.

The default value for OMP_NESTED is FALSE.

28 XL C/C++ Compiler Reference

Dynamic profiling environment variable:

 OMP_DYNAMIC=TRUE|FALSE This environment variable enables or disables dynamic

adjustment of the number of threads available for

running parallel regions.

If set to TRUE, the number of threads available for

executing parallel regions may be adjusted at run time to

make the best use of system resources. See the

description for profilefreq=num in “XLSMPOPTS” on

page 23 for more information.

If set to FALSE, dynamic adjustment is disabled.

The default setting is TRUE.

Using custom compiler configuration files

XL C/C++ generates a default configuration file /etc/opt/ibmcmp/vac/9.0/
vac.cfg at installation time. (See the XL C/C++ Installation Guide for more

information on the various tools you can use to generate the configuration file

during installation.) The configuration file specifies information that the compiler

uses when you invoke it.

If you are running on a single-user system, or if you already have a compilation

environment with compilation scripts or makefiles, you may want to leave the

default configuration file as it is.

Otherwise, especially if you want many users to be able to choose among several

sets of compiler options, you may want to use custom configuration files for

specific needs. For example, you might want to enable -qlist by default for

compilations using the xlc compiler invocation command. Rather than a user being

required to specify this option on the command line for every compilation, it

would automatically be in effect every time the compiler is invoked with the xlc

command.

You have several options for customizing configuration files:

v You can directly edit the default configuration file. In this case, the customized

options will apply for all users for all compilations. The disadvantage of this

option is that you will need to reapply your customizations to the new default

configuration file that is provided every time you install a compiler update.

v You can use the default configuration file as the basis of customized copies that

you specify at compile time with the -F option. In this case, the custom file

overrides the default file on a per-compilation basis. Again, the disadvantage of

this option is that you will need to reapply your customizations to the new

default configuration file that is provided every time you install a compiler

update.

v You can create custom, or user-defined, configuration files that are specified at

compile time with the XLC_USR_CONFIG environment variable. In this case,

the custom user-defined files complement, rather than override, the default

configuration file, and they can be specified on a per-compilation or global basis.

The advantage of this option is that you do not need to modify your existing,

custom configuration files when a new system configuration file is installed

during an update installation. Procedures for creating custom, user-defined

configuration files are provided below.

Chapter 2. Configuring compiler defaults 29

Related information:

v “-F” on page 94

v “Compile-time and link-time environment variables” on page 22

Creating custom configuration files

If you use the XLC_USR_CONFIG environment variable to instruct the compiler to

use a custom user-defined configuration file, the compiler will examine and

process the settings in that user-defined configuration file before looking at the

settings in the default system configuration file.

To create a custom user-defined configuration file, you add stanzas which specify

multiple levels of the use attribute. The user-defined configuration file can

reference definitions specified elsewhere in the same file, as well as those specified

in the system configuration file. For a given compilation, when the compiler looks

for a given stanza, it searches from the beginning of the user-defined configuration

file and then follows any other stanza named in the use attribute, including those

specified in the system configuration file.

If the stanza named in the use attribute has a name different from the stanza

currently being processed, then the search for the use stanza starts from the

beginning of the user-defined configuration file. This is the case for stanzas A, C,

and D in the example shown below. However, if the stanza in the use attribute has

the same name as the stanza currently being processed, as is the case of the two B

stanzas in the example, then the search for the use stanza starts from the location

of the current stanza.

The following example shows how you can use multiple levels for the use

attribute. This example uses the options attribute to help show how the use

attribute works, but any other attribute, such as libraries could also be used.

In this example:
v stanza A uses option sets A and Z

v stanza B uses option sets B1, B2, D, A, and Z

v stanza C uses option sets C, A, and Z

v stanza D uses option sets D, A, and Z

Attributes are processed in the same order as the stanzas. The order in which the

options are specified is important for option resolution. Ordinarily, if an option is

specified more than once, the last specified instance of that option wins.

A: use =DEFLT

 options=<set of options A>

B: use =B

 options=<set of options B1>

B: use =D

 options=<set of options B2>

C: use =A

 options=<set of options C>

D: use =A

 options=<set of options D>

DEFLT:

 options=<set of options Z>

Figure 1. Sample configuration file

30 XL C/C++ Compiler Reference

By default, values defined in a stanza in a configuration file are added to the list of

values specified in previously processed stanzas. For example, assume that the

XLC_USR_CONFIG environment variable is set to point to the user-defined

configuration file at ~/userconfig1. With the user-defined and default configuration

files shown in the example below, the compiler will reference the xlc stanza in the

user-defined configuration file and use the option sets specified in the

configuration files in the following order: A1, A, D, and C.

xlc: use=xlc

 options= <A1>

DEFLT: use=DEFLT

 options=<D>

Figure 2. Custom user-defined configuration

file ~/userconfig1

xlc: use=DEFLT

 options=<A>

DEFLT:

 options=<C>

Figure 3. Default configuration file vac.cfg

Overriding the default order of attribute values

You can override the default order of attribute values by changing the assignment

operator(=) for any attribute in the configuration file.

 Table 7. Assignment operators and attribute ordering

Assignment

Operator

Description

-= Prepend the following values before any values determined by the default

search order.

:= Replace any values determined by the default search order with the

following values.

+= Append the following values after any values determined by the default

search order.

For example, assume that the XLC_USR_CONFIG environment variable is set to

point to the custom user-defined configuration file at ~/userconfig2.

xlc_prepend: use=xlc

 options-=<B1>

xlc_replace:use=xlc

 options:=<B2>

xlc_append:use=xlc

 options+=<B3>

DEFLT: use=DEFLT

 options=<D>

Figure 4. Custom user-defined configuration

file ~/userconfig2

xlc: use=DEFLT

 options=

DEFLT:

 options=<C>

Figure 5. Default configuration file vac.cfg

The stanzas in the configuration files shown above will use the following option

sets, in the following orders:

Chapter 2. Configuring compiler defaults 31

1. stanza xlc uses B, D, and C

2. stanza xlc_prepend uses B1, B, D, and C

3. stanza xlc_replace uses B2

4. stanza xlc_append uses B, D, C, and B3

You can also use assignment operators to specify an attribute more than once. For

example:

Examples of stanzas in custom configuration files

 DEFLT: use=DEFLT

 options = -g

This example specifies that the -g option is to

be used in all compilations.

xlc: use=xlc

 options+=-qlist

xlc_r: use=xlc_r

 options+=-qlist

This example specifies that -qlist be used for

any compilation invoked by the xlc and xlc_r

commands. This -qlist specification overrides

the default setting of -qlist specified in the

system configuration file.

DEFLT: use=DEFLT

 libraries=-L/home/user/lib,-lmylib

This example specifies that all compilations

should link with /home/user/lib/libmylib.a.

Configuring the gxlc and gxlc++ option mapping

The gxlc and gxlc++ utilities use the configuration file /etc/opt/ibmcmp/vac/9.0/
gxlc.cfg to translate GNU C and C++ options to XL C/C++ options. Each entry in

gxlc.cfg describes how the utility should map a GNU C or C++ option to an XL

C/C++ option and how to process it.

 An entry consists of a string of flags for the processing instructions, a string for the

GNU C/C++ option, and a string for the XL C/C++ option. The three fields must

be separated by white space. If an entry contains only the first two fields and the

XL C/C++ option string is omitted, the GNU C option in the second field will be

recognized by gxlc or gxlc++ and silently ignored.

The # character is used to insert comments in the configuration file. A comment

can be placed on its own line, or at the end of an entry.

The following syntax is used for an entry in gxlc.cfg:

abcd "gcc_or_g++_option" "xlc_or_xlc++_option"

where:

a Lets you disable the option by adding no- as a prefix. The value is either y

for yes, or n for no. For example, if the flag is set to y, then finline can be

disabled as fno-inline, and the entry is:

ynn* "-finline" "-qinline"

If given -fno-inline, then the utility will translate it to -qnoinline.

xlc:

 use=xlc

 options-=-Isome_include_path

 options+=some options

Figure 6. Using additional assignment operations

32 XL C/C++ Compiler Reference

b Informs the utility that the XL C/C++ option has an associated value. The

value is either y for yes, or n for no. For example, if option -fmyvalue=n

maps to -qmyvalue=n, then the flag is set to y, and the entry is:

nyn* "-fmyvalue" "-qmyvalue"

The utility will then expect a value for these options.

c Controls the processing of the options. The value can be any of the

following:

n Tells the utility to process the option listed in the gcc_or_g++_option

field

i Tells the utility to ignore the option listed in the gcc_or_g++_option

field. The utility will generate a message that this has been done,

and continue processing the given options.

e Tells the utility to halt processing if the option listed in the

gcc_or_g++_option field is encountered. The utility will also

generate an error message.

For example, the GCC option -I- is not supported and must be ignored by

gxlc and gxlc++. In this case, the flag is set to i, and the entry is:

nni* "-I-"

If the utility encounters this option as input, it will not process it and will

generate a warning.

d Lets gxlc and gxlc++ include or ignore an option based on the type of

compiler. The value can be any of the following:

c Tells the utility to translate the option only for C.

x Tells the utility to translate the option only for C++.

* Tells gxlc and gxlc++ to translate the option for C and C++.

For example, -fwritable-strings is supported by both compilers, and maps

to -qnoro. The entry is:

nnn* "-fwritable-strings" "-qnoro"

"gcc_or_g++_option"

Is a string representing a GNU C/C++ option. This field is required and

must appear in double quotation marks.

"xlc__or_xlc++_option"

Is a string representing an XL C/C++ option. This field is optional, and, if

present, must appear in double quotation marks. If left blank, the utility

ignores the gcc_or_g++_option in that entry.

It is possible to create an entry that will map a range of options. This is

accomplished by using the asterisk (*) as a wildcard. For example, the GCC -D

option requires a user-defined name and can take an optional value. It is possible

to have the following series of options:

-DCOUNT1=100

-DCOUNT2=200

-DCOUNT3=300

-DCOUNT4=400

Instead of creating an entry for each version of this option, the single entry is:

nnn* "-D*" "-D*"

Chapter 2. Configuring compiler defaults 33

where the asterisk will be replaced by any string following the -D option.

Conversely, you can use the asterisk to exclude a range of options. For example, if

you want gxlc or gxlc++ to ignore all the -std options, then the entry would be:

nni* "-std*"

When the asterisk is used in an option definition, option flags a and b are not

applicable to these entries.

The character % is used with a GNU C/C++ option to signify that the option has

associated parameters. This is used to insure that gxlc or gxlc++ will ignore the

parameters associated with an option that is ignored. For example, the -isystem

option is not supported and uses a parameter. Both must be ignored by the

application. In this case, the entry is:

nni* "-isystem %"

For a complete list of GNU C and C++ and XL C/C++ option mappings, refer to:

http://www.ibm.com/support/docview.wss?rs=2239&context=SSJT9L
&uid=swg27009375

 Related information

v The GNU Compiler Collection online documentation at http://gcc.gnu.org/
onlinedocs/

34 XL C/C++ Compiler Reference

http://www.ibm.com/support/docview.wss?rs=2239&context=SSJT9L&uid=swg27009375
http://www.ibm.com/support/docview.wss?rs=2239&context=SSJT9L&uid=swg27009375
http://gcc.gnu.org/onlinedocs
http://gcc.gnu.org/onlinedocs

Chapter 3. Compiler options reference

This chapter contains a summary view of the options available in XL C/C++ by

functional category, followed by detailed descriptions of the individual options.

Summary of compiler options by functional category

The XL C/C++ options available on the Linux platform are grouped into the

following categories:

v Output control

v Input control

v Language element control

v Template control (C++ only)

v Floating-point and integer control

v Error checking and debugging

v Listings, messages, and compiler information

v Optimization and tuning

v Object code control

v Linking

v Portability and migration

v Compiler customization

If the option supports an equivalent pragma directive, this is indicated. To get

detailed information on any option listed, see the full description page for that

option.

Output control

The options in this category control the type of file output the compiler produces,

as well as the locations of the output. These are the basic options that determine

the compiler components that will be invoked, the preprocessing, compilation, and

linking steps that will (or will not) be taken, and the kind of output to be

generated.

 Table 8. Compiler output options

Option name Equivalent pragma name Description

-c None. Prevents the completed object from

being sent to the linker. With this

option, the output is a .o file for

each source file.

-C, -C! None. When used in conjunction with the

-E or -P options, preserves or

removes comments in preprocessed

output.

-E None. Preprocesses the source files named

in the compiler invocation, without

compiling, and writes the output to

the standard output.

-qmakedep, -M None. Creates an output file containing

targets suitable for inclusion in a

description file for the make

command.

© Copyright IBM Corp. 1998, 2007 35

Table 8. Compiler output options (continued)

Option name Equivalent pragma name Description

-MF None. Specifies the target for the output

generated by the -qmakedep or -M

options.

-qmkshrobj None. Creates a shared object from

generated object files.

-o None. Specifies a name for the output

object, assembler, or executable file.

-P None. Preprocesses the source files named

in the compiler invocation, without

compiling, and creates an output

preprocessed file for each input file.

-S None. Generates an assembler language file

for each source file.

Input control

The options in this category specify the type and location of your source files.

 Table 9. Compiler input options

Option name Equivalent pragma name Description

-+ (plus sign) (C++

only)

None. Compiles any file as a C++ language

file.

-qcinc (C++ only) None. Places an extern "C" { } wrapper

around the contents of include files

located in a specified directory.

-I None. Adds a directory to the search path for

include files.

-qidirfirst #pragma options idirfirst Specifies whether the compiler

searches for user include files in

directories specified by the -I option

before or after searching any other

directories.

-qinclude None. Specifies additional header files to be

included in a compilation unit, as

though the files were named in an

#include statement in the source file.

-qsourcetype None. Instructs the compiler to treat all

recognized source files as a specified

source type, regardless of the actual

file name suffix.

-qstdinc #pragma options stdinc Specifies whether the standard include

directories are included in the search

paths for system and user header files.

Language element control

The options in this category allow you to specify the characteristics of the source

code. You can also use these options to enforce or relax language restrictions and

enable or disable language extensions.

36 XL C/C++ Compiler Reference

Table 10. Language element control options

Option name Equivalent pragma name Description

-qaltivec None Enables compiler support for vector

data types and operators.

-qasm None Controls the interpretation of and

subsequent generation of code for

assembler language extensions.

-qcpluscmt (C only) None. Enables recognition of C++-style

comments in C source files.

-D None. Defines a macro as in a #define

preprocessor directive.

-qdigraph #pragma options digraph Enables recognition of digraph key

combinations or keywords to

represent characters not found on

some keyboards.

-qdollar #pragma options dollar Allows the dollar-sign ($) symbol to

be used in the names of identifiers.

-qignprag #pragma options ignprag Instructs the compiler to ignore certain

pragma statements.

-qkeyword None. Controls whether the specified name

is treated as a keyword or as an

identifier whenever it appears in your

program source.

-qlanglvl C

#pragma

options langlvl, #pragma

langlvl

Determines whether source code and

compiler options should be checked

for conformance to a specific language

standard, or subset or superset of a

standard.

-qlonglong #pragma options long long Allows IBM long long integer types in

your program.

-qmbcs, -qdbcs #pragma options mbcs,

#pragma options dbcs

Enables support for multibyte

character sets (MBCS) and Unicode

characters in your source code.

-qstaticinline (C++

only)

None. Controls whether inline functions are

treated as having static or extern

linkage.

-qtabsize None. Sets the default tab length, for the

purposes of reporting the column

number in error messages.

-qtrigraph None. Enables the recognition of trigraph

key combinations to represent

characters not found on some

keyboards.

-U None. Undefines a macro defined by the

compiler or by the -D compiler option.

-qutf None. Enables recognition of UTF literal

syntax.

Chapter 3. Compiler options reference 37

Template control (C++ only)

You can use these options to control how the C++ compiler handles templates.

 Table 11. C++ template options

Option name Equivalent pragma

name

Description

-qtempinc (C++ only) None. Generates separate template include

files for template functions and class

declarations, and places these files in

a directory which can be optionally

specified.

-qtemplatedepth (C++

only)

None. Specifies the maximum number of

recursively instantiated template

specializations that will be processed

by the compiler.

-qtemplaterecompile (C++

only)

None. Helps manage dependencies between

compilation units that have been

compiled using the

-qtemplateregistry compiler option.

-qtemplateregistry (C++

only)

None. Maintains records of all templates as

they are encountered in the source

and ensures that only one

instantiation of each template is

made.

-qtempmax (C++ only) None. Specifies the maximum number of

template include files to be

generated by the -qtempinc option

for each header file.

-qtmplinst (C++ only) None. Manages the implicit instantiation of

templates.

-qtmplparse (C++ only) None. Controls whether parsing and

semantic checking are applied to

template definitions (class template

definitions, function bodies, member

function bodies, and static data

member initializers) or only to

template instantiations.

Floating-point and integer control

Specifying the details of how your applications perform calculations can allow you

to take better advantage of your system’s floating-point performance and precision,

including how to direct rounding. However, keep in mind that strictly adhering to

IEEE floating-point specifications can impact the performance of your application.

Using the options in the following table, you can control trade-offs between

floating-point performance and adherence to IEEE standards.

 Table 12. Floating-point and integer control options

Option name Equivalent pragma name Description

-qbitfields None. Specifies whether bit fields are signed

or unsigned.

-qchars #pragma options chars,

#pragma chars

Determines whether all variables of

type char are treated as either signed

or unsigned.

38 XL C/C++ Compiler Reference

Table 12. Floating-point and integer control options (continued)

Option name Equivalent pragma name Description

-qenum #pragma options enum,

#pragma enum

Specifies the amount of storage

occupied by enumerations.

-qfloat #pragma options float Selects different strategies for

speeding up or improving the

accuracy of floating-point

calculations.

-qldbl128 #pragma options ldbl128 Increases the size of long double

types from 64 bits to 128 bits.

-qlonglit None. In 64-bit mode, promotes literals with

implicit type of int to long.

-y None. Specifies the rounding mode for the

compiler to use when evaluating

constant floating-point expressions at

compile time.

Object code control

These options affect the characteristics of the object code, preprocessed code, or

other output generated by the compiler.

 Table 13. Object code control options

Option name Equivalent pragma name Description

-q32, -q64 None. Selects either 32-bit or 64-bit

compiler mode.

-qalloca, -ma (C only) #pragma alloca Provides an inline definition of

system function alloca when it is

called from source code that does

not include the alloca.h header.

-qcommon None. Controls where uninitialized

global variables are allocated.

-qeh (C++ only) None. Controls whether exception

handling is enabled in the module

being compiled.

-qkeepinlines (C++

only)

None. Keeps or discards definitions for

unreferenced extern inline

functions.

-qpic None. Generates Position-Independent

Code suitable for use in shared

libraries.

-qppline None. When used in conjunction with

the -E or -P options, enables or

disables the generation of #line

directives.

-qpriority (C++ only) #pragma options priority,

#pragma priority

Specifies the priority level for the

initialization of static objects.

-qproto (C only) #pragma options proto Specifies the linkage conventions

for passing floating-point

arguments to functions that have

not been prototyped.

Chapter 3. Compiler options reference 39

Table 13. Object code control options (continued)

Option name Equivalent pragma name Description

-r None. Produces a relocatable object, even

though the file contains

unresolved symbols.

-qreserved_reg None. Indicates that the given list of

registers cannot be used during

the compilation except as a stack

pointer, frame pointer or in some

other fixed role.

-qro #pragma options ro, #pragma

strings

Specifies the storage type for

string literals.

-qroconst #pragma options roconst Specifies the storage location for

constant values.

-qrtti (C++ only) None. Generates runtime type

identification (RTTI) information

for exception handling and for use

by the typeid and dynamic_cast

operators.

-s None. Strips the symbol table, line

number information, and

relocation information from the

output file.

-qsaveopt None. Saves the command-line options

used for compiling a source file,

the version and level of each

compiler component invoked

during compilation, and other

information to the corresponding

object file.

-qstatsym None. Adds user-defined, nonexternal

names that have a persistent

storage class, such as initialized

and uninitialized static variables,

to the symbol table of the object

file.

-qtbtable #pragma options tbtable Controls the amount of debugging

traceback information that is

included in the object files.

-qthreaded None. Indicates to the compiler whether

it must generate threadsafe code.

-qtls None. Enables recognition of the

__thread storage class specifier,

which designates variables that are

to be allocated thread-local

storage; and specifies the

thread-local storage model to be

used.

-qvrsave #pragma altivec_vrsave Enables code in function prologs

and epilogs to maintain the

VRSAVE register.

40 XL C/C++ Compiler Reference

Table 13. Object code control options (continued)

Option name Equivalent pragma name Description

-qxcall None. Generates code to treat static

functions within a compilation

unit as if they were external

functions.

Error checking and debugging

The options in this category allow you to detect and correct problems in your

source code. In some cases, these options can alter your object code, increase your

compile time, or introduce runtime checking that can slow down the execution of

your application. The option descriptions indicate how extra checking can impact

performance.

To control the amount and type of information you receive regarding the behavior

and performance of your application, consult the options in “Listings, messages,

and compiler information” on page 42.

For information on debugging optimized code, see the XL C/C++ Programming

Guide.

 Table 14. Error checking and debugging options

Option name Equivalent pragma name Description

-# (pound sign) None. Previews the compilation steps

specified on the command line,

without actually invoking any

compiler components.

-qcheck #pragma options check Generates code that performs certain

types of runtime checking.

-qflttrap #pragma options flttrap Determines the types of

floating-point exception conditions to

be detected at run time

-qformat None. Warns of possible problems with

string input and output format

specifications.

-qfullpath #pragma options fullpath When used with the -g option, this

option records the full, or absolute,

path names of source and include

files in object files compiled with

debugging information, so that

debugging tools can correctly locate

the source files.

-g None. Generates debug information for use

by a symbolic debugger.

-qhalt #pragma options halt Stops compilation before producing

any object, executable, or assembler

source files if the maximum severity

of compile-time messages equals or

exceeds the severity you specify.

-qhaltonmsg (C++

only)

None. Stops compilation before producing

any object, executable, or assembler

source files if a specified error

message is generated.

Chapter 3. Compiler options reference 41

Table 14. Error checking and debugging options (continued)

Option name Equivalent pragma name Description

-qinfo #pragma options info,

#pragma info

Produces or suppresses groups of

informational messages.

-qinitauto #pragma options initauto Initializes uninitialized automatic

variables to a specific value, for

debugging purposes.

-qkeepparm None. When used with -O2 or higher

optimization, specifies whether

function parameters are stored on the

stack.

-qlinedebug None. Generates only line number and

source file name information for a

debugger.

-qmaxerr None. Halts compilation when a specified

number of errors of a specified

severity level or higher is reached.

-qoptdebug None. When used with high levels of

optimization, produces files

containing optimized pseudocode

that can be read by a debugger.

-qsyntaxonly (C only) None. Performs syntax checking without

generating an object file.

-qwarn64 None. Enables checking for possible data

conversion problems between 32-bit

and 64-bit compiler modes.

Listings, messages, and compiler information

The options in this category allow you control over the listing file, as well as how

and when to display compiler messages. You can use these options in conjunction

with those described in “Error checking and debugging” on page 41 to provide a

more robust overview of your application when checking for errors and

unexpected behavior.

 Table 15. Listings and messages options

Option name Equivalent pragma name Description

-qattr #pragma options attr Produces a compiler listing that

includes the attribute component

of the attribute and

cross-reference section of the

listing.

-qdump_class_hierarchy

(C++ only)

None. Dumps a representation of the

hierarchy and virtual function

table layout of each class object

to a file.

-qflag #pragma options flag,
C++

#pragma report

(C++ only)

Limits the diagnostic messages to

those of a specified severity level

or higher.

-qlist #pragma options list Produces a compiler listing file

that includes an object listing.

42 XL C/C++ Compiler Reference

Table 15. Listings and messages options (continued)

Option name Equivalent pragma name Description

-qlistopt None. Produces a compiler listing file

that includes all options in effect

at the time of compiler

invocation.

-qphsinfo None. Reports the time taken in each

compilation phase to standard

output.

-qprint None. Enables or suppresses listings.

-qreport None. Produces listing files that show

how sections of code have been

optimized.

-qshowinc #pragma options showinc When used with -qsource option

to generate a listing file,

selectively shows user or system

header files in the source section

of the listing file.

-qsource #pragma options source Produces a compiler listing file

that includes the source section of

the listing and provides

additional source information

when printing error messages.

-qsrcmsg (C only) None. Adds the corresponding source

code lines to diagnostic messages

generated by the compiler.

-qsuppress None. Prevents specific informational or

warning messages from being

displayed or added to the listing

file, if one is generated.

-v, -V None. Reports the progress of

compilation, by naming the

programs being invoked and the

options being specified to each

program.

-qversion None. Displays the version and release

of the compiler being invoked.

-w None. Suppresses informational,

language-level and warning

messages.

-qxref #pragma options xref Produces a compiler listing that

includes the cross-reference

component of the attribute and

cross-reference section of the

listing.

Optimization and tuning

The options in this category allow you to control the optimization and tuning

process, which can improve the performance of your application at run time.

Remember that not all options benefit all applications. Trade-offs sometimes occur

between an increase in compile time, a reduction in debugging capability, and the

improvements that optimization can provide.

Chapter 3. Compiler options reference 43

In addition to the option descriptions in this section, consult the XL C/C++

Programming Guide for a details on the optimization and tuning process as well as

writing optimization friendly source code.

 Table 16. Optimization and tuning options

Option name Equivalent pragma name Description

-qaggrcopy None. Enables destructive copy operations

for structures and unions.

-qalias None. Indicates whether a program

contains certain categories of aliasing

or does not conform to C/C++

standard aliasing rules. The compiler

limits the scope of some

optimizations when there is a

possibility that different names are

aliases for the same storage location..

-qarch None. Specifies the processor architecture

for which the code (instructions)

should be generated.

-qcache None. When specified with -O4, -O5, or

-qipa, specifies the cache

configuration for a specific execution

machine.

-qcompact #pragma options compact Avoids optimizations that increase

code size.

-qdataimported,

-qdatalocal, -qtocdata

None. Marks data as local or imported in

64-bit compilations.

-qdirectstorage None. Informs the compiler that a given

compilation unit may reference

write-through-enabled or

cache-inhibited storage.

-qenablevmx None. Enables generation of vector

instructions for processors that

support them.

-qfdpr None. Provides object files with information

that the IBM Feedback Directed

Program Restructuring (FDPR)

performance-tuning utility needs to

optimize the resulting executable file.

-qhot #pragma nosimd, #pragma

novector

Performs high-order loop analysis

and transformations (HOT) during

optimization.

-qignerrno #pragma options ignerrno Allows the compiler to perform

optimizations that assume errno is

not modified by system calls.

-qipa None. Enables or customizes a class of

optimizations known as

interprocedural analysis (IPA).

-qisolated_call #pragma options

isolated_call, #pragma

isolated_call

Specifies functions in the source file

that have no side effects other than

those implied by their parameters.

-qlibansi #pragma options libansi Assumes that all functions with the

name of an ANSI C library function

are in fact the system functions.

44 XL C/C++ Compiler Reference

Table 16. Optimization and tuning options (continued)

Option name Equivalent pragma name Description

-qmaxmem #pragma options maxmem Limits the amount of memory that

the compiler allocates while

performing specific,

memory-intensive optimizations to

the specified number of kilobytes.

-qminimaltoc None. Controls the generation of the table

of contents (TOC), which the

compiler creates for an executable

file in 64-bit compilation mode.

-O, -qoptimize #pragma options optimize Specifies whether to optimize code

during compilation and, if so, at

which level.

-p, -pg, -qprofile None. Prepares the object files produced by

the compiler for profiling.

-qpdf1, -qpdf2 None. Tunes optimizations through

profile-directed feedback (PDF), where

results from sample program

execution are used to improve

optimization near conditional

branches and in frequently executed

code sections.

-qprefetch None. Inserts prefetch instructions

automatically where there are

opportunities to improve code

performance.

-qprocimported,

-qproclocal,

-qprocunknown

#pragma options

procimported, #pragma

options proclocal, #pragma

options procunkown

Marks functions as local, imported,

or unknown in 64-bit compilations.

-Q, -qinline None. Attempts to inline functions instead

of generating calls to those functions,

for improved performance.

-qshowpdf None. When used with -qpdf1 and a

minimum optimization level of -O2

at compile and link steps, inserts

additional profiling information into

the compiled application to collect

call and block counts for all

procedures in the application.

-qsmallstack None. Reduces the size of the stack frame.

-qsmp None. Enables parallelization of program

code.

-qstrict #pragma options strict Ensures that optimizations done by

default at optimization levels -O3

and higher, and, optionally at -O2,

do not alter the semantics of a

program.

Chapter 3. Compiler options reference 45

Table 16. Optimization and tuning options (continued)

Option name Equivalent pragma name Description

-qstrict_induction None. Prevents the compiler from

performing induction (loop counter)

variable optimizations. These

optimizations may be unsafe (may

alter the semantics of your program)

when there are integer overflow

operations involving the induction

variables.

-qtune #pragma options tune Tunes instruction selection,

scheduling, and other

architecture-dependent performance

enhancements to run best on a

specific hardware architecture.

-qunroll #pragma options unroll,

#pragma unroll

Controls loop unrolling, for

improved performance.

-qunwind None. Specifies whether the call stack can

be unwound by code looking

through the saved registers on the

stack.

Linking

Though linking occurs automatically, the options in this category allow you to

direct input and output to the linker, controlling how the linker processes your

object files.

 Table 17. Linking options

Option name Equivalent pragma name Description

-qbigdata None. Allows initialized data to be larger

than 16 MB in size.

-qcrt None. Specifies whether system startup files

are to be linked.

-e None. When used together with the

-qmkshrobj, specifies an entry point

for a shared object.

-L None. At link time, searches the directory

path for library files specified by the

-l option.

-l None. Searches for the specified library file,

libkey.so, and then libkey.a for

dynamic linking, or just for libkey.a

for static linking.

-qlib None. Specifies whether standard system

libraries and XL C/C++ libraries are

to be linked.

-R None. At link time, writes search paths for

shared libraries into the executable, so

that these directories are searched at

program run time for any required

shared libraries.

46 XL C/C++ Compiler Reference

Table 17. Linking options (continued)

Option name Equivalent pragma name Description

-qstaticlink None. Controls how shared and non-shared

runtime libraries are linked into an

application.

Portability and migration

The options in this category can help you maintain application behavior

compatibility on past, current, and future hardware, operating systems and

compilers, or help move your applications to an XL compiler with minimal change.

 Table 18. Portability and migration options

Option name Equivalent pragma name Description

-qabi_version (C++

only)

None. Specifies the version of the C++

application binary interface (ABI)

version used during compilation.

This option is provided for

compatibility with different levels of

GNU C++.

-qalign #pragma options align,

#pragma align

Specifies the alignment of data

objects in storage, which avoids

performance problems with

misaligned data.

-qgenproto (C only) None. Produces prototype declarations from

K&R function definitions or function

definitions with empty parentheses,

and displays them to standard

output.

-qpack_semantic None. Controls the syntax and semantics of

the #pragma pack directive.

-qupconv (C only) #pragma options upconv Specifies whether the unsigned

specification is preserved when

integral promotions are performed.

Compiler customization

The options in this category allow you to specify alternate locations for compiler

components, configuration files, standard include directories, and internal compiler

operation. You should only need to use these options in specialized installation or

testing scenarios.

 Table 19. Compiler customization options

Option name Equivalent pragma name Description

-qasm_as None. Specifies the path and flags used to

invoke the assembler in order to

handle assembler code in an asm

assembly statement.

-B None. Determines substitute path names for

XL C/C++ executables such as the

compiler, assembler, linker, and

preprocessor.

Chapter 3. Compiler options reference 47

Table 19. Compiler customization options (continued)

Option name Equivalent pragma name Description

-qcomplexgccincl #pragma complexgcc Specifies whether to use GCC

parameter-passing conventions for

complex data types (equivalent to

enabling -qfloat=complexgcc) for

selected include files only.

-qc_stdinc (C only) None. Changes the standard search location

for the XL C header files.

-qcpp_stdinc (C++

only)

None. Changes the standard search location

for the XL C++ header files.

-F None. Names an alternative configuration

file or stanza for the compiler.

-qgcc_c_stdinc (C

only)

None. Changes the standard search location

for the GNU C system header files.

-qgcc_cpp_stdinc

(C++ only)

None. Changes the standard search location

for the GNU C++ system header files.

-qpath None. Determines substitute path names for

XL C/C++ executables such as the

compiler, assembler, linker, and

preprocessor.

-qspill #pragma options spill Specifies the size (in bytes) of the

register spill space, the internal

program storage areas used by the

optimizer for register spills to storage.

-t None. Applies the prefix specified by the -B

option to the designated components.

-W None. Passes the listed options to a

component that is executed during

compilation.

Deprecated options

The compiler still accepts options listed in the following table. Options without an

asterisk have been replaced by other options that provide the same functionality.

Options with an asterisk can produce unexpected results and are not guaranteed to

perform as previously documented. Use with discretion.

 Table 20. Deprecated options

Option name Replacement option

-qipa=pdfname -qpdf1=pdfname, -qpdf2=pdfname

Individual option descriptions

This section contains descriptions of the individual compiler options available in

XL C/C++.

For each option, the following information is provided:

Category

The functional category to which the option belongs is listed here.

48 XL C/C++ Compiler Reference

Pragma equivalent

Many compiler options allow you to use an equivalent pragma directive to

apply the option's functionality within the source code, limiting the scope

of the option's application to a single source file, or even selected sections

of code. Where an option supports the #pragma options option_name

and/or #pragma name form of the directive, this is indicated.

Purpose

This section provides a brief description of the effect of the option (and

equivalent pragmas), and why you might want to use it.

Syntax

This section provides the syntax for the option, and where an equivalent

#pragma name is supported, the specific syntax for the pragma. Syntax for

#pragma options option_name forms of the pragma is not provided, as this

is normally identical to that of the option. Note that you can also use the

C99-style _Pragma operator form of any pragma; although this syntax is not

provided in the option descriptions. For complete details on pragma

syntax, see “Pragma directive syntax” on page 251

Defaults

In most cases, the default option setting is clearly indicated in the syntax

diagram. However, for many options, there are multiple default settings,

depending on other compiler options in effect. This section indicates the

different defaults that may apply.

Parameters

This section describes the suboptions that are available for the option and

pragma equivalents, where applicable. For suboptions that are specific to

the command-line option or to the pragma directive, this is indicated in the

descriptions.

Usage This section describes any rules or usage considerations you should be

aware of when using the option. These can include restrictions on the

option's applicability, valid placement of pragma directives, precedence

rules for multiple option specifications, and so on.

Predefined macros

Many compiler options set macros that are protected (that is, cannot be

undefined or redefined by the user). Where applicable, any macros that are

predefined by the option, and the values to which they are defined, are

listed in this section. A reference list of these macros (as well as others that

are defined independently of option setting) is provided in Chapter 5,

“Compiler predefined macros,” on page 307

Examples

Where appropriate, examples of the command-line syntax and pragma

directive use are provided in this section.

-+ (plus sign) (C++ only)

Category

Input control

Pragma equivalent

None.

Chapter 3. Compiler options reference 49

Purpose

Compiles any file as a C++ language file.

This option is equivalent to the -qsourcetype=c++ option.

Syntax

�� -+ ��

Usage

You can use -+ to compile a file with any suffix other than .a, .o, .so, .S or .s. If you

do not use the -+ option, files must have a suffix of .C (uppercase C), .cc, .cp, .cpp,

.cxx, or .c++ to be compiled as a C++ file. If you compile files with suffix .c

(lowercase c) without specifying -+, the files are compiled as a C language file.

The -+ option should not be used together with the -qsourcetype option.

Predefined macros

None.

Examples

To compile the file myprogram.cplspls as a C++ source file, enter:

 xlc++ -+ myprogram.cplspls

Related information

v “-qsourcetype” on page 209

-# (pound sign)

Category

Error checking and debugging

Pragma equivalent

None.

Purpose

Previews the compilation steps specified on the command line, without actually

invoking any compiler components.

When this option is enabled, information is written to standard output, showing

the names of the programs within the preprocessor, compiler, and linker that

would be invoked, and the default options that would be specified for each

program. The preprocessor, compiler, and linker are not invoked.

Syntax

�� -# ��

Usage

You can use this command to determine the commands and files that will be

involved in a particular compilation. It avoids the overhead of compiling the

source code and overwriting any existing files, such as .lst files.

50 XL C/C++ Compiler Reference

This option displays the same information as -v, but does not invoke the compiler.

The -# option overrides the -v option.

Predefined macros

None.

Examples

To preview the steps for the compilation of the source file myprogram.c, enter:

xlc myprogram.c -#

Related information

v “-v, -V” on page 240

-q32, -q64

Category

Object code control

Pragma equivalent

None.

Purpose

Selects either 32-bit or 64-bit compiler mode.

Use the -q32 and -q64 options, along with the -qarch and -qtune compiler options,

to optimize the output of the compiler to the architecture on which that output

will be used.

Syntax

��
 32

-q

64

��

Defaults

-q32

Predefined macros

__64BIT__ is defined to 1 when -q64 is in effect; otherwise, it is undefined.

Examples

To specify that the executable program testing compiled from myprogram.c is to

run on a computer with a 32-bit PowerPC architecture, enter:

xlc -o testing myprogram.c -q32 -qarch=ppc

Related information

v “Specifying compiler options for architecture-specific, 32-bit or 64-bit

compilation” on page 9

v “-qarch” on page 58

v “-qtune” on page 232

-qabi_version (C++ only)

Category

Portability and migration

Chapter 3. Compiler options reference 51

Pragma equivalent

None.

Purpose

Specifies the version of the C++ application binary interface (ABI) version used

during compilation. This option is provided for compatibility with different levels

of GNU C++.

Syntax

��
 2

-q

abi_version

=

1

��

Defaults

-qabi_version=2

Parameters

1 Specifies the same C++ ABI behavior as in GNU C++ 3.2.

2 Specifies the same C++ ABI behavior as in GNU C++ 3.4.

Predefined macros

None.

-qaggrcopy

Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Enables destructive copy operations for structures and unions.

Syntax

��
 nooverlap

-q

aggrcopy

=

overlap

��

Defaults

-qaggrcopy=nooverlap

Parameters

overlap | nooverlap

nooverlap assumes that the source and destination for structure and union

assignments do not overlap, allowing the compiler to generate faster code.

overlap inhibits these optimizations.

Predefined macros

None.

52 XL C/C++ Compiler Reference

-qalias

Category

Optimization and tuning

Pragma equivalent

None

Purpose

Indicates whether a program contains certain categories of aliasing or does not

conform to C/C++ standard aliasing rules. The compiler limits the scope of some

optimizations when there is a possibility that different names are aliases for the

same storage location.

Syntax

��

�

 :

notypeptr

restrict

global

noallptrs

ansi

noaddrtaken

-q

alias

=

addrtaken

noansi

allptrs

noglobal

norestrict

typeptr

��

Defaults

v

C++

-qalias=noaddrtaken:noallptrs:ansi:global:restrict:notypeptr

v

C

-qalias=noaddrtaken:noallptrs:ansi:global:restrict:notypeptr for all

invocation commands except cc.

-qalias=noaddrtaken:noallptrs:noansi:global:restrict:notypeptr for the cc

invocation command.

Parameters

addrtaken | noaddrtaken

When addrtaken is in effect, variables are disjoint from pointers unless their

address is taken. Any class of variable for which an address has not been

recorded in the compilation unit will be considered disjoint from indirect

access through pointers.

 When noaddrtaken is specified, the compiler generates aliasing based on the

aliasing rules that are in effect.

allptrs | noallptrs

When allptrs is in effect, pointers are never aliased (this also implies

-qalias=typeptr). Specifying allptrs is an assertion to the compiler that no two

pointers point to the same storage location. These suboptions are only valid if

ansi is also specified.

ansi | noansi

When ansi is in effect, type-based aliasing is used during optimization, which

restricts the lvalues that can be safely used to access a data object. The

Chapter 3. Compiler options reference 53

optimizer assumes that pointers can only point to an object of the same type.

This suboption has no effect unless you also specify an optimization option.

 When noansi is in effect, the optimizer makes worst case aliasing assumptions.

It assumes that a pointer of a given type can point to an external object or any

object whose address is already taken, regardless of type.

global | noglobal

When global is in effect, type-based aliasing rules are enabled during IPA

link-time optimization across compilation units. Both -qipa and -qalias=ansi

must be enabled for -qalias=global to have an effect. Specifying noglobal

disables type-based aliasing rules.

 -qlias=global produces better performance at higher optimization levels and

also better link-time performance. If you use -qalias=global, it is recommended

that you compile as much as possible of the application with the same version

of the compiler to maximize the effect of the suboption on performance.

restrict | norestrict

When restrict is in effect, optimizations for pointers qualified with the

restrict keyword are enabled. Specifying norestrict disables optimizations for

restrict-qualified pointers.

 -qalias=restrict is independent from other -qalias suboptions. Using the

-qalias=restrict option will usually result in performance improvements for

code that uses restrict-qualified pointers. Note, however, that using

-qalias=restrict requires that restricted pointers be used correctly; if they are

not, compile-time and runtime failures may result. You can use norestrict to

preserve compatibility with code compiled with versions of the compiler

previous to V9.0.

typeptr | notypeptr

When typeptr is in effect, pointers to different types are never aliased.

Specifying typeptr is an assertion to the compiler that no two pointers of

different types point to the same storage location. These suboptions are only

valid if ansi is also specified.

Usage

-qalias makes assertions to the compiler about the code that is being compiled. If

the assertions about the code are false, then the code generated by the compiler

may result in unpredictable behaviour when the application is run.

The following are not subject to type-based aliasing:

v Signed and unsigned types. For example, a pointer to a signed int can point to

an unsigned int.

v Character pointer types can point to any type.

v Types qualified as volatile or const. For example, a pointer to a const int can

point to an int.

Predefined macros

None.

Examples

To specify worst-case aliasing assumptions when compiling myprogram.c, enter:

xlc myprogram.c -O -qalias=noansi

Related information

v “-qipa” on page 128

v “#pragma disjoint” on page 261

54 XL C/C++ Compiler Reference

v "Type-based aliasing" in the XL C/C++ Language Reference

v "The restrict type qualifier" in the XL C/C++ Language Reference

-qalign

Category

Portability and migration

Pragma equivalent

#pragma options align, #pragma align

Purpose

Specifies the alignment of data objects in storage, which avoids performance

problems with misaligned data.

Syntax

Option syntax

��
 linuxppc

-q

align

=

bit_packed

��

Pragma syntax

��
 linuxppc

#

pragma

align

(

bit_packed

)

reset

��

Defaults

linuxppc

Parameters

bit_packed

Bit field data is packed on a bitwise basis without respect to byte boundaries.

linuxppc

Uses GNU C/C++ alignment rules to maintain binary compatibility with GNU

C/C++ objects.

reset (pragma only)

Discards the current pragma setting and reverts to the setting specified by the

previous pragma directive. If no previous pragma was specified, reverts to the

command-line or default option setting.

Usage

If you use the -qalign option more than once on the command line, the last

alignment rule specified applies to the file.

The pragma directives override the -qalign compiler option setting for a specified

section of program source code. The pragmas affect all aggregate definitions that

appear after a given pragma directive; if a pragma is placed inside a nested

aggregate, it applies only to the definitions that follow it, not to any containing

definitions. Any aggregate variables that are declared use the alignment rule that

applied at the point at which the aggregate was defined, regardless of pragmas that

precede the declaration of the variables. See below for examples.

Chapter 3. Compiler options reference 55

For a complete explanation of the option and pragma parameters, as well as usage

considerations, see "Aligning data in aggregates" in the XL C/C++ Programming

Guide.

Predefined macros

None.

Examples

The following examples show the interaction of the option and pragmas. Assuming

compilation with the command xlc file2.c, the following example shows how

the pragma affects only an aggregate definition, not subsequent declarations of

variables of that aggregate type.

/* file2.c The default alignment rule is in effect */

typedef struct A A2;

#pragma options align=bit_packed /* bit_packed alignment rules are now in effect */

struct A {

int a;

char c;

}; #pragma options align=reset /* Default alignment rules are in effect again */

struct A A1; /* A1 and A3 are aligned using bit_packed alignment rules since */

A2 A3; /* this rule applied when struct A was defined */

Assuming compilation with the command xlc file.c -qalign=bit_packed, the

following example shows how a pragma embedded in a nested aggregate

definition affects only the definitions that follow it.

/* file2.c The default alignment rule in effect is bit_packed */

struct A {

int a;

#pragma options align=linuxppc /* Applies to B; A is unaffected */

 struct B {

 char c;

 double d;

 } BB; /* BB uses linuxppc alignment rules */

} AA; /* AA uses bit_packed alignment rules /*

Related information

v “#pragma pack” on page 279

v "Aligning data" in the XL C/C++ Programming Guide

v "The __align specifier" in the XL C/C++ Language Reference

v ″The aligned variable attribute″ in the XL C/C++ Language Reference

v ″The packed variable attribute″ in the XL C/C++ Language Reference

-qalloca, -ma (C only)

Category

Object code control

Pragma equivalent

#pragma alloca

Purpose

Provides an inline definition of system function alloca when it is called from

source code that does not include the alloca.h header.

56 XL C/C++ Compiler Reference

The function void* alloca(size_t size) dynamically allocates memory, similarly

to the standard library function malloc. The compiler automatically substitutes

calls to the system alloca function with an inline built-in function __alloca in any

of the following cases:

v You include the header file alloca.h

v You compile with -Dalloca=__alloca

v You directly call the built-in function using the form __alloca

The -qalloca and -ma options and #pragma alloca directive provide the same

functionality in C only, if any of the above methods are not used.

Syntax

Option syntax

�� -q alloca

-ma
 ��

Pragma syntax

�� # pragma alloca ��

Defaults

Not applicable.

Usage

If you do not use any of the above-mentioned methods to ensure that calls to

alloca are replaced with __alloca, alloca is treated as a user-defined identifier

rather than as a built-in function.

Once specified, #pragma alloca applies to the rest of the file and cannot be

disabled. If a source file contains any functions that you want compiled without

#pragma alloca, place these functions in a different file.

You may want to consider using a C99 variable length array in place of alloca.

Predefined macros

None.

Examples

To compile myprogram.c so that calls to the function alloca are treated as inline,

enter:

xlc myprogram.c -qalloca

Related information

v “-D” on page 81

v “Miscellaneous built-in functions” on page 343

-qaltivec

Category

Language element control

Pragma equivalent

None.

Chapter 3. Compiler options reference 57

Purpose

Enables compiler support for vector data types and operators.

See the XL C/C++ Language Reference for complete documentation of vector data

types.

Syntax

��
 noaltivec

-q

altivec

��

Defaults

-qnoaltivec

Usage

This option has effect only when -qarch is set or implied to be a target architecture

that supports vector processing instructions and the -qenablevmx compiler option

is in effect (it is in effect by default on currently supported Linux distributions).

Otherwise, the compiler will ignore -qaltivec and issue a warning message.

Predefined macros

__ALTIVEC__ is defined to 1 and __VEC__ is defined to 10205 when -qaltivec is in

effect; otherwise, they are undefined.

Examples

To enable compiler support for vector programming, enter:

xlc myprogram.c -qarch=ppc64v -qaltivec

Related information

v “-qarch”

v “-qenablevmx” on page 94

v AltiVec Technology Programming Interface Manual, available at

http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf

-qarch

Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Specifies the processor architecture for which the code (instructions) should be

generated.

Syntax

58 XL C/C++ Compiler Reference

http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf

��
 ppc64grsq

-q

arch

=

auto

pwr3

pwr4

pwr5

pwr5x

pwr6

pwr6e

ppc

ppc64v

ppc64

ppcgr

ppc64gr

ppc970

rs64b

rs64c

��

Defaults

v -qarch=ppc64grsq

v -qarch=auto when -O4 or -O5 is in effect.

Parameters

auto

Automatically detects the specific architecture of the compiling machine. It

assumes that the execution environment will be the same as the compilation

environment. This option is implied if the -O4 or -O5 option is set or implied.

pwr3

Produces object code containing instructions that will run on any POWER3™,

POWER4™, POWER5™, POWER5+™, POWER6™, or PowerPC 970 hardware

platform.

pwr4

Produces object code containing instructions that will run on the POWER4,

POWER5, POWER5+, POWER6, or PowerPC 970 hardware platform.

pwr5

Produces object code containing instructions that will run on the POWER5,

POWER5+, or POWER6 hardware platforms.

pwr5x

Produces object code containing instructions that will run on the POWER5+ or

POWER6 hardware platforms.

pwr6

Produces object code containing instructions that will run on the POWER6

hardware platforms running in POWER6 architected mode.

pwr6e

Produces object code containing instructions that will run on the POWER6

hardware platforms running in POWER6 raw mode.

ppc

In 32-bit mode, produces object code containing instructions that will run on

any of the 32-bit PowerPC hardware platforms. This suboption causes the

compiler to produce single-precision instructions to be used with

single-precision data. Specifying -qarch=ppc together with -q64 silently

upgrades the architecture setting to -qarch=ppc64grsq.

Chapter 3. Compiler options reference 59

ppc64

Produces object code that will run on any of the 64-bit PowerPC hardware

platforms. This suboption can be selected when compiling in 32-bit mode, but

the resulting object code may include instructions that are not recognized or

behave differently when run on 32-bit PowerPC platforms.

ppcgr

In 32-bit mode, produces object code for PowerPC processors that support

optional graphics instructions. Specifying -qarch=ppcgr together with -q64

silently upgrades the architecture setting to -qarch=ppc64grsq.

ppc64gr

Produces code for any 64-bit PowerPC hardware platform that supports

optional graphics instructions.

ppc64grsq

Produces code for any 64-bit PowerPC hardware platform that supports

optional graphics and square root instructions.

ppc64v

Generates instructions for generic PowerPC chips with vector processors, such

as the PowerPC 970. Valid in 32-bit or 64-bit mode.

ppc970

Generates instructions specific to the PowerPC 970 architecture.

rs64b

Produces object code that will run on RS64II platforms.

rs64c

Produces object code that will run on RS64III platforms.

Usage

All PowerPC machines share a common set of instructions, but may also include

additional instructions unique to a given processor or processor family. Using the

-qarch option to target a specific architecture for the compilation results in code

that may not run on other architectures, but provides the best performance for the

selected architecture. If you want maximum performance on a specific architecture

and will not be using the program on other architectures, use the appropriate

architecture option. If you want to generate code that can run on more than one

architecture, specify a -qarch suboption that supports a group of architectures.

Table 21 shows the features supported by the different processor architectures and

their representative -qarch suboptions:

 Table 21. Feature support in processor architectures

Architecture Graphics

support

Square root

support

64-bit support Vector

processing

support

rs64b yes yes yes no

rs64c yes yes yes no

pwr3 yes yes yes no

pwr4 yes yes yes no

pwr5 yes yes yes no

pwr5x yes yes yes no

ppc no no no no

ppc64 no no yes no

ppc64gr yes no yes no

ppc64grsq yes yes yes no

ppc64v yes yes yes yes

ppc970 yes yes yes yes

60 XL C/C++ Compiler Reference

Table 21. Feature support in processor architectures (continued)

Architecture Graphics

support

Square root

support

64-bit support Vector

processing

support

pwr6 yes yes yes yes

pwr6e yes yes yes yes

For any given -qarch setting, the compiler defaults to a specific, matching -qtune

setting, which can provide additional performance improvements. Alternatively, if

you specify -qarch with a group argument, you can specify -qtune as either auto

or provide a specific architecture in the group. For detailed information on using

-qarch and -qtune together, see “-qtune” on page 232.

Specifying -q64 changes the effective -qarch setting as follows:

 Original -qarch setting Effective setting when -q64 is specified

ppc ppc64grsq

ppcgr ppc64grsq

For a given application program, make sure that you specify the same -qarch

setting when you compile each of its source files.

Predefined macros

See “Macros related to architecture settings” on page 311 for a list of macros that

are predefined by -qarch suboptions.

Examples

To specify that the executable program testing compiled from myprogram.c is to run

on a computer with a 32-bit PowerPC architecture, enter:

xlc -o testing myprogram.c -q32 -qarch=ppc

Related information

v “Specifying compiler options for architecture-specific, 32-bit or 64-bit

compilation” on page 9

v “-qtune” on page 232

v “-q32, -q64” on page 51

v "Optimizing your applications"in the XL C/C++ Programming Guide

-qasm

Category

Language element control

Pragma equivalent

None.

Purpose

Controls the interpretation of and subsequent generation of code for assembler

language extensions.

When -qasm is in effect, the compiler generates code for assembly statements in

the source code. Suboptions specify the syntax used to interpret the content of the

assembly statement.

Chapter 3. Compiler options reference 61

Note: The system assembler program must be available for this command to have

effect.

Syntax

-qasm syntax — C

��

 asm

gcc

=

-q

noasm

��

-qasm syntax — C++

��

 asm

gcc

=

stdcpp

-q

noasm

��

Defaults

-qasm=gcc

Parameters

gcc

Instructs the compiler to recognize the extended GCC syntax and semantics for

assembly statements.

C++

stdcpp

Reserved for possible future use.

 Specifying -qasm without a suboption is equivalent to specifying the default.

Usage

C

The token asm is not a C language keyword. Therefore, at language levels

stdc89 and stdc99, which enforce strict compliance to the C89 and C99 standards,

respectively, the option -qkeyword=asm must also be specified to compile source

that generates assembly code. At all other language levels, the token asm is treated

as a keyword unless the option -qnokeyword=asm is in effect. In C, the

compiler-specific variants __asm and __asm__ are keywords at all language levels

and cannot be disabled.

C++

The tokens asm, __asm, and __asm__ are keywords at all language levels.

Suboptions of -qnokeyword=token can be used to disable each of these reserved

words individually.

For detailed information on the syntax and semantics of inline asm statements, see

"Inline assembly statements" in the XL C/C++ Language Reference.

Predefined macros

v

C

__IBM_GCC_ASM is predefined to 1 when asm is recognized as a

keyword and assembler code is generated; that is, at all language levels except

stdc89 | stdc99, or when -qkeyword=asm is in effect, and when -qasm[=gcc] is

in effect. It is predefined to 0 when asm is recognized as a keyword but

assembler code is not generated; that is, at all language levels except stdc89 |

62 XL C/C++ Compiler Reference

stdc99, or when -qkeyword=asm is in effect, and when -qnoasm is in effect. It is

undefined when the stdc89 | stdc99 language level or -qnokeyword=asm is in

effect.

v

C++

__IBM_GCC_ASM is predefined to 1 when asm is recognized as a

keyword and assembler code is generated; that is, at all language levels, and

when -qasm[=gcc] is in effect. It is predefined to 0 when asm is recognized as a

keyword but assembler code is not generated; that is, at all language levels, and

when -qnoasm[=gcc] is in effect. It is undefined when -qnoasm=stdcpp is in

effect. __IBM_STDCPP_ASM is predefined to 0 when -qnoasm=stdcpp is in

effect; otherwise it is undefined.

Examples

The following code snippet shows an example of the GCC conventions for asm

syntax in inline statements:

int a, b, c;

int main() {

 asm("add %0, %1, %2" : "=r"(a) : "r"(b), "r"(c));

}

Related information

v -qasm_as

v “-qlanglvl” on page 143

v “-qkeyword” on page 140

v ″Inline assembly statements″ in the XL C/C++ Language Reference

v ″Keywords for language extensions″in the XL C/C++ Language Reference

-qasm_as

Category

Compiler customization

Pragma equivalent

None.

Purpose

Specifies the path and flags used to invoke the assembler in order to handle

assembler code in an asm assembly statement.

Normally the compiler reads the location of the assembler from the configuration

file; you can use this option to specify an alternate assembler program and flags to

pass to that assembler.

Syntax

�� -q asm_as = path

″

path

″

flags

 ��

Defaults

By default, the compiler invokes the assembler program defined for the as

command in the compiler configuration file.

Parameters

path

The full path name of the assembler to be used.

Chapter 3. Compiler options reference 63

flags

A space-separated list of options to be passed to the assembler for assembly

statements. Quotation marks must be used if spaces are present.

Predefined macros

None.

Examples

To instruct the compiler to use the assembler program at /bin/as when it

encounters inline assembler code in myprogram.c, enter:

xlc myprogram.c -qasm_as=/bin/as

To instruct the compiler to pass some additional options to the assembler at

/bin/as for processing inline assembler code in myprogram.c, enter:

xlc myprogram.c -qasm_as="/bin/as -a64 -l a.lst"

Related information

v “-qasm” on page 61

-qattr

Category

Listings, messages, and compiler information

Pragma equivalent

#pragma options [no]attr

Purpose

Produces a compiler listing that includes the attribute component of the attribute

and cross-reference section of the listing.

Syntax

��
 noattr

-q

attr

=

full

��

Defaults

-qnoattr

Parameters

full

Reports all identifiers in the program. If you specify attr without this

suboption, only those identifiers that are used are reported.

Usage

If -qattr is specified after -qattr=full, it has no effect; the full listing is produced.

This option does not produce a cross-reference listing unless you also specify

-qxref.

The -qnoprint option overrides this option.

Predefined macros

None.

64 XL C/C++ Compiler Reference

Examples

To compile the program myprogram.c and produce a compiler listing of all

identifiers, enter:

xlc myprogram.c -qxref -qattr=full

Related information

v “-qprint” on page 185

v “-qxref” on page 247

-B

Category

Compiler customization

Pragma equivalent

None.

Purpose

Determines substitute path names for XL C/C++ executables such as the compiler,

assembler, linker, and preprocessor.

You can use this option if you want to keep multiple levels of some or all of the

XL C/C++ executables and have the option of specifying which one you want to

use. However, it is recommended that you use the -qpath option to accomplish

this instead.

Syntax

�� -B

prefix
 ��

Defaults

The default paths for the compiler executables are defined in the compiler

configuration file.

Parameters

prefix

Defines part of a path name for programs you can name with the -t option.

You must add a slash (/). If you specify the -B option without the prefix, the

default prefix is /lib/o.

Usage

The -t option specifies the programs to which the -B prefix name is to be

appended; see “-t” on page 220 for a list of these. If you use the -B option without

-tprograms, the prefix you specify applies to all of the compiler executables.

The -B and -t options override the -F option.

Predefined macros

None.

Examples

In this example, an earlier level of the compiler components is installed in the

default installation directory. To test the upgraded product before making it

Chapter 3. Compiler options reference 65

available to everyone, the system administrator restores the latest installation

image under the directory /home/jim and then tries it out with commands similar

to:

xlc -tcbI -B/home/jim/opt/ibmcmp/vac/9.0/bin/ test_suite.c

Once the upgrade meets the acceptance criteria, the system administrator installs it

in the default installation directory.

Related information

v “-qpath” on page 176

v “-t” on page 220

v “Invoking the compiler” on page 1

-qbigdata

Category

Linking

Pragma equivalent

None.

Purpose

Allows initialized data to be larger than 16 MB in size.

Syntax

��
 nobigdata

-q

bigdata

��

Defaults

-qnobigdata

Usage

In 32-bit mode, the GNU C/C++ size limit for initialized data is 16 MB. Use this

option when creating 32-bit applications in which initialized data and call routines

in shared libraries (such as open, close, printf) exceed 16 MB.

Predefined macros

None.

-qbitfields

Category

Floating-point and integer control

Pragma equivalent

None.

Purpose

Specifies whether bit fields are signed or unsigned.

Syntax

��
 signed

-q

bitfields

=

unsigned

��

66 XL C/C++ Compiler Reference

Defaults

-qbitfields=signed

Parameters

signed

Bit fields are signed.

unsigned

Bit fields are unsigned.

Predefined macros

None.

-c

Category

Output control

Pragma equivalent

None.

Purpose

Prevents the completed object from being sent to the linker. With this option, the

output is a .o file for each source file.

Syntax

�� -c ��

Defaults

By default, the compiler invokes the linker to link object files into a final

executable.

Usage

When this option is in effect, the compiler creates an output object file, file_name.o,

for each valid source file, such as file_name.c, file_name.i, file_name.C, file_name.cpp.

You can use the -o option to provide an explicit name for the object file.

The -c option is overridden if the -E, -P, or -qsyntaxonly options are specified.

Predefined macros

None.

Examples

To compile myprogram.c to produce an object file myprogram.o, but no executable

file, enter the command:

xlc myprogram.c -c

To compile myprogram.c to produce the object file new.o and no executable file,

enter:

xlc myprogram.c -c -o new.o

Related information

v “-E” on page 87

v “-o” on page 168

Chapter 3. Compiler options reference 67

v “-P” on page 174

v “-qsyntaxonly (C only)” on page 219

-C, -C!

Category

Output control

Pragma equivalent

None.

Purpose

When used in conjunction with the -E or -P options, preserves or removes

comments in preprocessed output.

When -C is in effect, comments are preserved. When -C! is in effect, comments are

removed.

Syntax

��
 -C

-C!

��

Defaults

-C

Usage

The -C option has no effect without either the -E or the -P option. If -E is specified,

continuation sequences are preserved in the output. If -P is specified, continuation

sequences are stripped from the output, forming concatenated output lines.

You can use the -C! option to override the -C option specified in a default makefile

or configuration file.

Predefined macros

None.

Examples

To compile myprogram.c to produce a file myprogram.i that contains the

preprocessed program text including comments, enter:

xlc myprogram.c -P -C

Related information

v “-E” on page 87

v “-P” on page 174

-qcache

Category

Optimization and tuning

Pragma equivalent

None.

68 XL C/C++ Compiler Reference

Purpose

When specified with -O4, -O5, or -qipa, specifies the cache configuration for a

specific execution machine.

If you know the type of execution system for a program, and that system has its

instruction or data cache configured differently from the default case, use this

option to specify the exact cache characteristics. The compiler uses this information

to calculate the benefits of cache-related optimizations.

Syntax

��

�

 :

-q

cache

=

assoc

=

number

auto

cost

=

cycles

level

=

1

2

3

line

=

bytes

size

=

Kbytes

type

=

c

d

i

��

Defaults

Automatically determined by the setting of the -qtune option.

Parameters

assoc

Specifies the set associativity of the cache.

number

Is one of:

0 Direct-mapped cache

1 Fully associative cache

N>1 n-way set associative cache

auto

Automatically detects the specific cache configuration of the compiling

machine. This assumes that the execution environment will be the same as the

compilation environment.

cost

Specifies the performance penalty resulting from a cache miss.

cycles

level

Specifies the level of cache affected. If a machine has more than one level of

cache, use a separate -qcache option.

level

Is one of:

1 Basic cache

Chapter 3. Compiler options reference 69

2 Level-2 cache or, if there is no level-2 cache, the table lookaside buffer

(TLB)

3 TLB

line

Specifies the line size of the cache.

bytes

An integer representing the number of bytes of the cache line.

size

Specifies the total size of the cache.

Kbytes

An integer representing the number of kilobytes of the total cache.

type

Specifies that the settings apply to the specified cache_type.

cache_type

Is one of:

c Combined data and instruction cache

d Data cache

i Instruction cache

Usage

The -qtune setting determines the optimal default -qcache settings for most typical

compilations. You can use the -qcache to override these default settings. However,

if you specify the wrong values for the cache configuration, or run the program on

a machine with a different configuration, the program will work correctly but may

be slightly slower.

You must specify -O4, -O5, or -qipa with the -qcache option.

Use the following guidelines when specifying -qcache suboptions:

v Specify information for as many configuration parameters as possible.

v If the target execution system has more than one level of cache, use a separate

-qcache option to describe each cache level.

v If you are unsure of the exact size of the cache(s) on the target execution

machine, specify an estimated cache size on the small side. It is better to leave

some cache memory unused than it is to experience cache misses or page faults

from specifying a cache size larger than actually present.

v The data cache has a greater effect on program performance than the instruction

cache. If you have limited time available to experiment with different cache

configurations, determine the optimal configuration specifications for the data

cache first.

v If you specify the wrong values for the cache configuration, or run the program

on a machine with a different configuration, program performance may degrade

but program output will still be as expected.

v The -O4 and -O5 optimization options automatically select the cache

characteristics of the compiling machine. If you specify the -qcache option

together with the -O4 or -O5 options, the option specified last takes precedence.

Predefined macros

None.

70 XL C/C++ Compiler Reference

Examples

To tune performance for a system with a combined instruction and data level-1

cache, where cache is 2-way associative, 8 KB in size and has 64-byte cache lines,

enter:

xlc -O4 -qcache=type=c:level=1:size=8:line=64:assoc=2 file.c

Related information

v “-qcache” on page 68

v “-O, -qoptimize” on page 169

v “-qtune” on page 232

v “-qipa” on page 128

v "Optimizing your applications" in the XL C/C++ Programming Guide

-qchars

Category

Floating-point and integer control

Pragma equivalent

#pragma options chars, #pragma chars

Purpose

Determines whether all variables of type char are treated as either signed or

unsigned.

Syntax

Option syntax

��
 unsigned

-q

chars

=

signed

��

Pragma syntax

��
 unsigned

#

pragma

chars

(

signed

)

��

Defaults

-qchars=unsigned

Parameters

unsigned

Variables of type char are treated as unsigned char.

signed

Variables of type char are treated as signed char.

Usage

Regardless of the setting of this option or pragma, the type of char is still

considered to be distinct from the types unsigned char and signed char for

purposes of type-compatibility checking or C++ overloading.

The pragma must appear before any source statements. If the pragma is specified

more than once in the source file, the first one will take precedence. Once

Chapter 3. Compiler options reference 71

specified, the pragma applies to the entire file and cannot be disabled; if a source

file contains any functions that you want to compile without #pragma chars, place

these functions in a different file.

Predefined macros

v _CHAR_SIGNED and __CHAR_SIGNED__ are defined to 1 when signed is in

effect; otherwise, it is undefined.

v _CHAR_UNSIGNED and _CHAR_UNSIGNED__ are defined to 1 when

unsigned is in effect; otherwise, they are undefined.

Examples

To treat all char types as signed when compiling myprogram.c, enter:

xlc myprogram.c -qchars=signed

-qcheck

Category

Error checking and debugging

Pragma equivalent

#pragma options [no]check

Purpose

Generates code that performs certain types of runtime checking.

If a violation is encountered, a runtime error is raised by sending a SIGTRAP

signal to the process. Note that the runtime checks may result in slower

application execution.

Syntax

��

�

 nocheck

-q

check

:

all

=

bounds

nobounds

divzero

nodivzero

nullptr

nonullptr

��

Defaults

-qnocheck

Parameters

all

Enables all suboptions.

bounds | nobounds

Performs runtime checking of addresses for subscripting within an object of

known size. The index is checked to ensure that it will result in an address that

lies within the bounds of the object’s storage. A trap will occur if the address

does not lie within the bounds of the object.

 This suboption has no effect on accesses to a variable length array.

72 XL C/C++ Compiler Reference

divzero | nodivzero

Performs runtime checking of integer division. A trap will occur if an attempt

is made to divide by zero.

nullptr | nonullptr

Performs runtime checking of addresses contained in pointer variables used to

reference storage. The address is checked at the point of use; a trap will occur

if the value is less than 512.

 Specifying -qcheck option with no suboptions is equivalent to -qcheck=all.

Usage

You can specify the -qcheck option more than once. The suboption settings are

accumulated, but the later suboptions override the earlier ones.

You can use the all suboption along with the no... form of one or more of the other

options as a filter. For example, using:

xlc myprogram.c -qcheck=all:nonullptr

provides checking for everything except for addresses contained in pointer

variables used to reference storage. If you use all with the no... form of the

suboptions, all should be the first suboption.

Predefined macros

None.

Examples

The following code example shows the effect of -qcheck=nullptr : bounds:

void func1(int* p) {

 p = 42; / Traps if p is a null pointer */

}

void func2(int i) {

 int array[10];

 array[i] = 42; /* Traps if i is outside range 0 - 9 */

}

The following code example shows the effect of -qcheck=divzero:

void func3(int a, int b) {

 a / b; /* Traps if b=0 */

}

-qcinc (C++ only)

Category

Input control

Pragma equivalent

None.

Purpose

Places an extern "C" { } wrapper around the contents of include files located in a

specified directory.

Syntax

Chapter 3. Compiler options reference 73

��
 nocinc

-q

cinc

=

directory_path

��

Defaults

-qnocinc

Parameters

directory_path

The directory where the include files to be wrapped with an extern "C"

linkage specifier are located.

Predefined macros

None.

Examples

Assume your application myprogram.C includes header file foo.h, which is located

in directory /usr/tmp and contains the following code:

int foo();

Compiling your application with:

xlc++ myprogram.C -qcinc=/usr/tmp

will include header file foo.h into your application as:

extern "C" {

int foo();

}

-qcommon

Category

Object code control

Pragma equivalent

None.

Purpose

Controls where uninitialized global variables are allocated.

When -qcommon is in effect, uninitialized global variables are allocated in the

common section of the object file. When -qnocommon is in effect, uninitialized

global variables are initialized to zero and allocated in the data section of the object

file.

Syntax

�� -q common

nocommon
 ��

Defaults

v

C

-qcommon except when -qmkshrobj is specified; -qnocommon when

-qmkshrobj is specified.

v

C++

-qnocommon

74 XL C/C++ Compiler Reference

Usage

This option does not affect static or automatic variables, or the declaration of

structure or union members.

This option is overridden by the common|nocommon and section variable attributes.

See ″The common and nocommon variable attribute″ and ″The section variable

attribute″ in the XL C/C++ Language Reference.

Predefined macros

None.

Examples

In the following declaration, where a and b are global variables:

int a, b:

Compiling with -qcommon produces the equivalent of the following assembly

code:

.comm _a,4

.comm _b,4

Compiling with -qnocommon produces the equivalent of the following assembly

code:

 .globl _a

.data

.zerofill __DATA, __common, _a, 4, 2

 .globl _b

.data

.zerofill __DATA, __common, _b, 4, 2

Related information

v “-qmkshrobj” on page 167

v ″The common and nocommon variable attribute″ in the XL C/C++ Language

Reference

v ″The section variable attribute″ in the XL C/C++ Language Reference

-qcompact

Category

Optimization and tuning

Pragma equivalent

#pragma options [no]compact

Purpose

Avoids optimizations that increase code size.

Code size is reduced by inhibiting optimizations that replicate or expand code

inline, such as inlining or loop unrolling. Execution time may increase.

Syntax

��
 nocompact

-q

compact

��

Defaults

-qnocompact

Chapter 3. Compiler options reference 75

Usage

This option only has an effect when specified with an optimization option.

Predefined macros

__OPTIMIZE_SIZE__ is predefined to 1 when -qcompact and an optimization level

are in effect. Otherwise, it is undefined.

Examples

To compile myprogram.c, instructing the compiler to reduce code size whenever

possible, enter:

xlc myprogram.c -O -qcompact

-qcomplexgccincl

Category

Compiler customization

Pragma equivalent

None.

Purpose

Specifies whether to use GCC parameter-passing conventions for complex data

types (equivalent to enabling -qfloat=complexgcc) for selected include files only.

When -qcomplexgccincl is in effect, the compiler internally wraps #pragma

complexgcc(on) and #pragma complexgcc(pop) directives around the files located

in specified directories. When -qnocomplexgccincl is in effect, include files found

in the specified directories are not wrapped by these directives.

You can also use the pragma directives to enable or disable GCC

parameter-passing conventions for complex data types for selected files or sections

of code.

Syntax

Option syntax

��
 complexgccincl

-q

nocomplexgccincl

=

directory_path

��

Pragma syntax

�� # pragma complexgcc (on)

off

pop

 ��

Defaults

By default, files located in the standard directories for the XL C/C++ and GCC

header files are wrapped with #pragma complexgcc directives. For a list of these,

see “Directory search sequence for include files” on page 12.

Parameters

directory_path (option only)

The directory in which the include files to be wrapped with #pragma

76 XL C/C++ Compiler Reference

complexgcc directives are located. If you do not specify a directory_path, the

compiler assumes the default directories listed above.

on (pragma only)

Sets -qfloat=gccomplex for the code that follows it. This instructs the compiler

to use the GCC conventions for passing and returning parameters of complex

type, by using general purpose registers.

off (pragma only)

Sets -qfloat=nogccomplex for the code that follows it. This instructs the

compiler to use AIX® conventions for passing and returning parameters of

complex type, by using floating-point registers.

pop (pragma only)

Discards the current pragma setting and reverts to the setting specified by the

previous pragma directive. If no previous pragma was specified, reverts to the

command-line or default option setting.

Usage

The current setting of the pragma affects only functions declared or defined while

the setting is in effect. It does not affect other functions.

Calling functions through pointers to functions will always use the convention set

by the -qfloat=[no]complexgcc command-line option in effect. An error will result

if you mix and match functions that pass complex values by value or return

complex values. For example, assume the following code is compiled with

-qfloat=nocomplexgcc:

#pragma complexgcc(on)

void p (_Complex double x) {}

#pragma complexgcc(pop)

typedef void (*fcnptr) (_Complex double);

int main() {

 fcnptr ptr = p; /* error: function pointer is -qfloat=nocomplexgcc;

 function is -qfloat=complexgcc */

}

Predefined macros

None.

Related information

v “-qfloat” on page 98

-qcpluscmt (C only)

Category

Language element control

Pragma equivalent

None.

Purpose

Enables recognition of C++-style comments in C source files.

Chapter 3. Compiler options reference 77

Syntax

��
 cpluscmt

-q

nocpluscmt

��

Defaults

v -qcpluscmt when the xlc or c99 and related invocations are used, or when the

stdc99 | extc99 language level is in effect.

v -qnocpluscmt for all other invocation commands and language levels.

Predefined macros

__C99_CPLUSCMT is predefined to 1 when -qcpluscmt is in effect; otherwise, it is

undefined.

Examples

To compile myprogram.c so that C++ comments are recognized as comments, enter:

xlc myprogram.c -qcpluscmt

Note that // comments are not part of C89. The result of the following valid C89

program will be incorrect:

main() {

 int i = 2;

 printf(“%i\n”, i //* 2 */

 + 1);

}

The correct answer is 2 (2 divided by 1). When -qcpluscmt is in effect (as it is by

default), the result is 3 (2 plus 1).

Related information

v “-C, -C!” on page 68

v “-qlanglvl” on page 143

v "Comments" in the XL C/C++ Language Reference

-qcrt

Category

Linking

Pragma equivalent

None.

Purpose

Specifies whether system startup files are to be linked.

When -qcrt is in effect, the system startup routines are automatically linked. When

-qnocrt is in effect, the system startup files are not used at link time; only the files

specified on the command line with the -l flag will be linked.

This option can be used in system programming to disable the automatic linking of

the startup routines provided by the operating system.

Syntax

78 XL C/C++ Compiler Reference

��
 crt

-q

nocrt

��

Defaults

-qcrt

Predefined macros

None.

Related information

v “-qlib” on page 154

-qc_stdinc (C only)

Category

Compiler customization

Pragma equivalent

None.

Purpose

Changes the standard search location for the XL C header files.

Syntax

��

�

 :

-q

c_stdinc

=

directory_path

″

″

��

Defaults

By default, the compiler searches the directory specified in the configuration file

for the XL C header files (this is normally /opt/ibmcmp/vac/9.0/include/).

Parameters

directory_path

The path for the directory where the compiler should search for the XL C

header files. The directory_path can be a relative or absolute path. You can

surround the path with quotation marks to ensure it is not split up by the

command line.

Usage

This option allows you to change the search paths for specific compilations. To

permanently change the default search paths for the XL C headers, you use a

configuration file to do so; see “Directory search sequence for include files” on

page 12 for more information.

If this option is specified more than once, only the last instance of the option is

used by the compiler.

This option is ignored if the -qnostdinc option is in effect.

Predefined macros

None.

Chapter 3. Compiler options reference 79

Examples

To override the default search path for the XL C headers with mypath/headers1

and mypath/headers2, enter:

xlc myprogram.c -qc_stdinc=mypath/headers1:mypath/headers2

Related information

v “-qgcc_c_stdinc (C only)” on page 107

v “-qstdinc” on page 214

v “-qinclude” on page 119

v “Directory search sequence for include files” on page 12

v “Specifying compiler options in a configuration file” on page 7

-qcpp_stdinc (C++ only)

Category

Compiler customization

Pragma equivalent

None.

Purpose

Changes the standard search location for the XL C++ header files.

Syntax

��

�

 :

-q

cpp_stdinc

=

directory_path

″

″

��

Defaults

By default, the compiler searches the directory specified in the configuration file

for the XL C++ header files (this is normally /opt/ibmcmp/vac/9.0/include/).

Parameters

directory_path

The path for the directory where the compiler should search for the XL C++

header files. The directory_path can be a relative or absolute path. You can

surround the path with quotation marks to ensure it is not split up by the

command line.

Usage

This option allows you to change the search paths for specific compilations. To

permanently change the default search paths for the XL C++ headers, you use a

configuration file to do so; see “Directory search sequence for include files” on

page 12 for more information.

If this option is specified more than once, only the last instance of the option is

used by the compiler.

This option is ignored if the -qnostdinc option is in effect.

Predefined macros

None.

80 XL C/C++ Compiler Reference

Examples

To override the default search path for the XL C++ headers with mypath/headers1

and mypath/headers2, enter:

xlc++ myprogram.C -qcpp_stdinc=mypath/headers1:mypath/headers2

Related information

v “-qgcc_cpp_stdinc (C++ only)” on page 108

v “-qstdinc” on page 214

v “-qinclude” on page 119

v “Directory search sequence for include files” on page 12

v “Specifying compiler options in a configuration file” on page 7

-D

Category

Language element control

Pragma equivalent

None.

Purpose

Defines a macro as in a #define preprocessor directive.

Syntax

�� -D name

=

definition
 ��

Defaults

Not applicable.

Parameters

name

The macro you want to define. -Dname is equivalent to #define name. For

example, -DCOUNT is equivalent to #define COUNT.

definition

The value to be assigned to name. -Dname=definition is equivalent to #define

name definition. For example, -DCOUNT=100 is equivalent to #define COUNT

100.

Usage

Using the #define directive to define a macro name already defined by the -D

option will result in an error condition.

The -Uname option, which is used to undefine macros defined by the -D option,

has a higher precedence than the -Dname option.

Predefined macros

The compiler configuration file uses the -D option to predefine several macro

names for specific invocation commands. For details, see the configuration file for

your system.

Examples

To specify that all instances of the name COUNT be replaced by 100 in myprogram.c,

enter:

Chapter 3. Compiler options reference 81

xlc myprogram.c -DCOUNT=100

Related information

v “-U” on page 234

v Chapter 5, “Compiler predefined macros,” on page 307

-qdataimported, -qdatalocal, -qtocdata

Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Marks data as local or imported in 64-bit compilations.

Local variables are statically bound with the functions that use them. You can use

the -qdatalocal option to name variables that the compiler can assume are local.

Alternatively, you can use the -qtocdata option to instruct the compiler to assume

all variables are local.

Imported variables are dynamically bound with a shared portion of a library. You

can use the -qdataimported option to name variables that the compiler can assume

are imported. Alternatively, you can use the -qnotocdata option to instruct the

compiler to assume all variables are imported.

Syntax

��

�

�

 notocdata

dataimported

-q

:

=

variable_name

tocdata

datalocal

:

=

variable_name

��

Defaults

-qdataimported or -qnotocdata: The compiler assumes all variables are imported.

Parameters

variable_name

The name of a variable that the compiler should assume is local or imported

(depending on the option specified).

C++

Names must be specified using their mangled names. To obtain C++

mangled names, compile your source to object files only, using the -c compiler

option, and use the nm operating system command on the resulting object file.

(See also "Name mangling" in the XL C/C++ Language Reference for details on

using the extern "C" linkage specifier on declarations to prevent name

mangling.)

82 XL C/C++ Compiler Reference

Specifying -qdataimported without any variable_name is equivalent to

-qnotocdata: all variables are assumed to be imported. Specifying -qdatalocal

without any variable_name is equivalent to -qtocdata: all variables are assumed

to be local.

Usage

These options apply to 64-bit compilations only.

If any variables that are marked as local are actually imported, incorrect code may

be generated and performance may decrease.

If you specify any of these options with no variables, the last option specified is

used. If you specify the same variable name on more than one option specification,

the last one is used.

Predefined macros

None.

Related information

v “-qprocimported, -qproclocal, -qprocunknown” on page 187

-qdbxextra (C only)

Category

Error checking and debugging

Pragma equivalent

#pragma options dbxextra

Purpose

When used with the -g option, specifies that debugging information is generated

for unreferenced typedef declarations, struct, union, and enum type definitions.

To minimize the size of object and executable files, the compiler only includes

information for typedef declarations, struct, union, and enum type definitions that

are referenced by the program. When you specify the -qdbxextra option,

debugging information is included in the symbol table of the object file. This

option is equivalent to the -qsymtab=unref option.

Syntax

��
 nodbxextra

-q

dbxextra

��

Defaults

-qnodbxextra: Unreferenced typedef declarations, struct, union, and enum type

definitions are not included in the symbol table of the object file.

Usage

Using -qdbxextra may make your object and executable files larger.

Predefined macros

None.

Chapter 3. Compiler options reference 83

Examples

To compile myprogram.c so that unreferenced typedef, structure, union, and

enumeration declarations are included in the symbol table for use with a debugger,

enter:

xlc myprogram.c -g -qdbxextra

Related information

v “-qfullpath” on page 106

v “-qlinedebug” on page 156

v “-g” on page 107

v “#pragma options” on page 275

v “-qsymtab (C only)” on page 218

-qdigraph

Category

Language element control

Pragma equivalent

#pragma options [no]digraph

Purpose

Enables recognition of digraph key combinations or keywords to represent

characters not found on some keyboards.

Syntax

��
 digraph

-q

nodigraph

��

Defaults

v

C

-qdigraph when the extc89 | extended | extc99 | stdc99 language

level is in effect. -qnodigraph for all other language levels.

v

C++

-qdigraph

Usage

A digraph is a keyword or combination of keys that lets you produce a character

that is not available on all keyboards. For details on digraphs, see "Digraph

characters" in the XL C/C++ Language Reference.

Predefined macros

__DIGRAPHS__ is predefined to 1 when -qdigraph is in effect; otherwise it is not

defined.

Examples

To disable digraph character sequences when compiling your program, enter:

xlc myprogram.c -qnodigraph

Related information

v “-qlanglvl” on page 143

v “-qtrigraph” on page 232

84 XL C/C++ Compiler Reference

-qdirectstorage

Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Informs the compiler that a given compilation unit may reference

write-through-enabled or cache-inhibited storage.

Syntax

��
 nodirectstorage

-q

directstorage

��

Defaults

-qnodirectstorage

Usage

Use this option with discretion. It is intended for programmers who know how the

memory and cache blocks work, and how to tune their applications for optimal

performance. To ensure that your application will execute correctly on all

implementations, you should assume that separate instruction and data caches

exist and program your application accordingly.

-qdollar

Category

Language element control

Pragma equivalent

#pragma options [no]dollar

Purpose

Allows the dollar-sign ($) symbol to be used in the names of identifiers.

When dollar is in effect, the dollar symbol $ in an identifier is treated as a base

character.

Syntax

��
 nodollar

-q

dollar

��

Defaults

-qnodollar

Usage

If nodollar and the ucs language level are both in effect, the dollar symbol is

treated as an extended character and translated into \u0024.

Predefined macros

None.

Chapter 3. Compiler options reference 85

Examples

To compile myprogram.c so that $ is allowed in identifiers in the program, enter:

xlc myprogram.c -qdollar

Related information

v “-qlanglvl” on page 143

-qdump_class_hierarchy (C++ only)

Category

Listings, messages, and compiler information

Pragma equivalent

None.

Purpose

Dumps a representation of the hierarchy and virtual function table layout of each

class object to a file.

Syntax

�� -q dump_class_hierarchy ��

Defaults

Not applicable.

Usage

The output file name consists of the source file name appended with a .class suffix.

Predefined macros

None.

Examples

To compile myprogram.C to produce a file named myprogram.C.class containing the

class hierarchy information, enter:

xlc++ myprogram.C -qdump_class_hierarchy

-e

Category

Linking

Pragma equivalent

None.

Purpose

When used together with the -qmkshrobj, specifies an entry point for a shared

object.

Syntax

��
 noentry

-e

name

��

86 XL C/C++ Compiler Reference

Defaults

-e=noentry

Parameters

name

The name of the entry point for the shared executable.

Usage

When linking object files, it is recommended that you do not use the -e option. The

default entry point of the executable output is __start. Changing this label with

the -e flag can cause erratic results.

This option is used only together with the -qmkshrobj option. See the description

for the “-qmkshrobj” on page 167 for more information.

Predefined macros

None.

Related information

v “-qmkshrobj” on page 167

-E

Category

Output control

Pragma equivalent

None.

Purpose

Preprocesses the source files named in the compiler invocation, without compiling,

and writes the output to the standard output.

Syntax

�� -E ��

Defaults

By the default, source files are preprocessed, compiled, and linked to produce an

executable file.

Usage

The -E option accepts any file name. Source files with unrecognized file name

suffixes are treated and preprocessed as C files, and no error message is generated.

Unless -qnoppline is specified, #line directives are generated to preserve the

source coordinates of the tokens. Continuation sequences are preserved.

Unless -C is specified, comments are replaced in the preprocessed output by a

single space character. New lines and #line directives are issued for comments that

span multiple source lines.

The -E option overrides the -P, -o, and -qsyntaxonly options.

Chapter 3. Compiler options reference 87

Predefined macros

None.

Examples

To compile myprogram.c and send the preprocessed source to standard output,

enter:

xlc myprogram.c -E

If myprogram.c has a code fragment such as:

#define SUM(x,y) (x + y)

int a ;

#define mm 1 /* This is a comment in a

 preprocessor directive */

int b ; /* This is another comment across

 two lines */

int c ;

 /* Another comment */

c = SUM(a, /* Comment in a macro function argument*/

 b) ;

the output will be:

#line 2 "myprogram.c"

int a ;

#line 5

int b ;

int c ;

c = a + b ;

Related information

v “-qppline” on page 184

v “-C, -C!” on page 68

v “-P” on page 174

v “-qsyntaxonly (C only)” on page 219

-qeh (C++ only)

Category

Object code control

Pragma equivalent

None.

Purpose

Controls whether exception handling is enabled in the module being compiled.

When -qeh is in effect, exception handling is enabled. If your program does not

use C++ structured exception handling, you can compile with -qnoeh to prevent

generation of code that is not needed by your application.

Syntax

��
 eh

-q

noeh

��

Defaults

-qeh

88 XL C/C++ Compiler Reference

Usage

Specifying -qeh also implies -qrtti. If -qeh is specified together with -qnortti, RTTI

information will still be generated as needed.

Predefined macros

__EXCEPTIONS is predefined to 1 when -qeh is in effect; otherwise, it is

undefined.

Related information

v “-qrtti (C++ only)” on page 198

-qenum

Category

Floating-point and integer control

Pragma equivalent

#pragma options enum, #pragma enum

Purpose

Specifies the amount of storage occupied by enumerations.

Syntax

Option syntax

��
 intlong

-q

enum

=

int

small

1

2

4

8

��

Pragma syntax

��
 intlong

#

pragma

enum

(

int

)

small

1

2

4

8

pop

reset

��

Defaults

-qenum=intlong

Parameters

1 Specifies that enumerations occupy 1 byte of storage, are of type char if the

range of enumeration values falls within the limits of signed char, and

unsigned char otherwise.

2 Specifies that enumerations occupy 2 bytes of storage, are of type short if the

Chapter 3. Compiler options reference 89

range of enumeration values falls within the limits of signed short, and

unsigned short otherwise.

C

Values cannot exceed the range of signed

int.

4 | int

Specifies that enumerations occupy 4 bytes of storage, are of type int if the

range of enumeration values falls within the limits of signed int, and

unsigned int otherwise.

8 Specifies that enumerations occupy 8 bytes of storage. In 32-bit compilation

mode, the enumeration is of type long long if the range of enumeration values

falls within the limits of signed long long, and unsigned long long otherwise.

In 64-bit compilation mode, the enumeration is of type long if the range of

enumeration values falls within the limits of signed long, and unsigned long

otherwise.

intlong

Specifies that enumerations occupy 8 bytes of storage if the range of values in

the enumeration exceeds the limit for int. If the range of values in the

enumeration does not exceed the limit for int, the enumeration will occupy 4

bytes of storage and is represented by int.

small

Specifies that enumerations occupy the smallest amount of space (1, 2, 4, or 8

bytes of storage) that can accurately represent the range of values in the

enumeration. Signage is unsigned, unless the range of values includes negative

values. If an 8-byte enum results, the actual enumeration type used is

dependent on compilation mode.

pop | reset (pragma only)

Discards the current pragma setting and reverts to the setting specified by the

previous pragma directive. If no previous pragma was specified, reverts to the

command-line or default option setting.

Usage

The tables that follow show the priority for selecting a predefined type. The table

also shows the predefined type, the maximum range of enum constants for the

corresponding predefined type, and the amount of storage that is required for that

predefined type, that is, the value that the sizeof operator would yield when

applied to the minimum-sized enum. All types are signed unless otherwise noted.

90 XL C/C++ Compiler Reference

Ta
bl

e
22

.
E

nu
m

er
at

io
n

si
ze

s
an

d
ty

pe
s

en

um
=

1
en

um
=

2
en

um
=

4
en

um
=

8

32
-b

it

co

m
pi

la
ti

on

m

od
e

64
-b

it

co

m
pi

la
ti

on

m

od
e

R
an

ge

va
r

co
ns

t
va

r
co

ns
t

va
r

co
ns

t
va

r
co

ns
t

va
r

co
ns

t

0.
.1

27

ch
ar

in

t
sh

or
t

in
t

in
t

in
t

lo
ng

lo

ng

lo
ng

lo

ng

lo
ng

lo

ng

-1
28

..1
27

ch

ar

in
t

sh
or

t
in

t
in

t
in

t
lo

ng

lo

ng

lo
ng

lo

ng

lo
ng

lo

ng

0.
.2

55

un
si

gn
ed

ch
ar

in
t

sh
or

t
in

t
in

t
in

t
lo

ng

lo

ng

lo
ng

lo

ng

lo
ng

lo

ng

0.
.3

27
67

E

R
R

O
R

1
in

t
sh

or
t

in
t

in
t

in
t

lo
ng

lo

ng

lo
ng

lo

ng

lo
ng

lo

ng

-3
27

68
..3

27
67

E

R
R

O
R

1
in

t
sh

or
t

in
t

in
t

in
t

lo
ng

lo

ng

lo
ng

lo

ng

lo
ng

lo

ng

0.
.6

55
35

E

R
R

O
R

1
in

t
un

si
gn

ed

sh
or

t
in

t
in

t
in

t
lo

ng

lo

ng

lo
ng

lo

ng

lo
ng

lo

ng

0.
.2

14
74

83
64

7
E

R
R

O
R

1
in

t
E

R
R

O
R

1
in

t
in

t
in

t
lo

ng

lo

ng

lo
ng

lo

ng

lo
ng

lo

ng

-(
21

47
48

36
47

+
1)

..2
14

74
83

64
7

E
R

R
O

R
1

in
t

E
R

R
O

R
1

in
t

in
t

in
t

lo
ng

lo

ng

lo
ng

lo

ng

lo
ng

lo

ng

0.
.4

29
49

67
29

5
E

R
R

O
R

1
un

si
gn

ed

in

t
E

R
R

O
R

1
un

si
gn

ed

in
t

un
si

gn
ed

in

t
un

si
gn

ed

in

t
lo

ng

lo

ng

lo
ng

lo

ng

lo
ng

lo

ng

0.
.(2

63
-1

)
E

R
R

O
R

1
lo

ng
2

E
R

R
O

R
1

lo
ng

2
E

R
R

O
R

1
lo

ng
2

lo
ng

lo

ng
2

lo
ng

lo

ng
2

lo
ng

2
lo

ng
2

-2
63

..(
263

-1
)

E
R

R
O

R
1

lo
ng

2
E

R
R

O
R

1
lo

ng
2

E
R

R
O

R
1

lo
ng

2
lo

ng

lo

ng
2

lo
ng

lo

ng
2

lo
ng

2
lo

ng
2

0.
.2

64

E
R

R
O

R
1

un
si

gn
ed

lo
ng

2
E

R
R

O
R

1
un

si
gn

ed

lo
ng

2
E

R
R

O
R

1
un

si
gn

ed

lo
ng

2
un

si
gn

ed

lo
ng

lo

ng
2

un
si

gn
ed

lo
ng

lo

ng
2

un
si

gn
ed

lo
ng

2
un

si
gn

ed

lo
ng

2

Chapter 3. Compiler options reference 91

en
um

=
in

t
en

um
=

in
tl

on
g

en
um

=
sm

al
l

32
-b

it

co

m
pi

la
ti

on

m

od
e

64
-b

it

co

m
pi

la
ti

on

m

od
e

32
-b

it

co

m
pi

la
ti

on

m

od
e

64
-b

it

co

m
pi

la
ti

on

m

od
e

R
an

ge

va
r

co
ns

t
va

r
co

ns
t

va
r

co
ns

t
va

r
co

ns
t

va
r

co
ns

t

0.
.1

27

in
t

in
t

in
t

in
t

in
t

in
t

un
si

gn
ed

ch
ar

in
t

un
si

gn
ed

ch
ar

in
t

-1
28

..1
27

in

t
in

t
in

t
in

t
in

t
in

t
si

gn
ed

ch

ar

in
t

si
gn

ed

ch

ar

in
t

0.
.2

55

in
t

in
t

in
t

in
t

in
t

in
t

un
si

gn
ed

ch
ar

in
t

un
si

gn
ed

ch
ar

in
t

0.
.3

27
67

in

t
in

t
in

t
in

t
in

t
in

t
un

si
gn

ed

sh
or

t
in

t
un

si
gn

ed

sh
or

t
in

t

-3
27

68
..3

27
67

in

t
in

t
in

t
in

t
in

t
in

t
sh

or
t

in
t

sh
or

t
in

t

0.
.6

55
35

in

t
in

t
in

t
in

t
in

t
in

t
un

si
gn

ed

sh
or

t
in

t
un

si
gn

ed

sh
or

t
in

t

0.
.2

14
74

83
64

7
in

t
in

t
in

t
in

t
in

t
in

t
un

si
gn

ed

in
t

un
si

gn
ed

in
t

un
si

gn
ed

in
t

un
si

gn
ed

in
t

-(
21

47
48

36
47

+
1)

..2
14

74
83

64
7

in
t

in
t

in
t

in
t

in
t

in
t

in
t

in
t

in
t

in
t

0.
.4

29
49

67
29

5
un

si
gn

ed

in

t
un

si
gn

ed

in
t

un
si

gn
ed

in

t
un

si
gn

ed

in

t
un

si
gn

ed

in

t
un

si
gn

ed

in

t
un

si
gn

ed

in
t

un
si

gn
ed

in
t

un
si

gn
ed

in
t

un
si

gn
ed

in
t

0.
.(2

63
-1

)
E

R
R

2
E

R
R

2
lo

ng

lo

ng
2

lo
ng

lo

ng
2

lo
ng

2
lo

ng
2

un
si

gn
ed

lo
ng

lo

ng
2

un
si

gn
ed

lo
ng

lo

ng
2

un
si

gn
ed

lo
ng

2
un

si
gn

ed

lo
ng

2

-2
63

..(
263

-1
)

E
R

R
2

E
R

R
2

lo
ng

lo

ng
2

lo
ng

lo

ng
2

lo
ng

2
lo

ng
2

lo
ng

lo

ng
2

lo
ng

lo

ng
2

lo
ng

2
lo

ng
2

0.
.2

64

E
R

R
2

E
R

R
2

un
si

gn
ed

lo
ng

lo

ng
2

un
si

gn
ed

lo
ng

lo

ng
2

un
si

gn
ed

lo
ng

2
un

si
gn

ed

lo
ng

2
un

si
gn

ed

lo
ng

lo

ng
2

un
si

gn
ed

lo
ng

lo

ng
2

un
si

gn
ed

lo
ng

2
un

si
gn

ed

lo
ng

2

92 XL C/C++ Compiler Reference

Notes:

1. These enumerations are too large for the -qenum=1|2|48 settings. A Severe

error is issued and compilation stops. To correct this condition, you should

reduce the range of the enumerations, choose a larger -qenum setting, or

choose a dynamic -qenum setting, such as small or intlong.

2.

C

Enumeration types must not exceed the range of int when compiling

C applications to ISO C 1989 and ISO C 1999 Standards. When the stdc89 |

stdc99 language level in effect, the compiler will behave as follows if the value

of an enumeration exceeds the range of int:

a. If -qenum=int is in effect, a severe error message is issued and compilation

stops.

b. For all other settings of -qenum, an informational message is issued and

compilation continues.

The #pragma enum directive must be precede the declaration of enum variables that

follow; any directives that occur within a declaration are ignored and diagnosed

with a warning.

For each #pragma enum directive that you put in a source file, it is good practice

to have a corresponding #pragma enum=reset before the end of that file. This

should prevent one file from potentially changing the setting of another file that

includes it.

Examples

If the following fragment is compiled with the enum=small option:

enum e_tag {a, b, c} e_var;

the range of enumeration constants is 0 through 2. This range falls within all of the

ranges described in the table above. Based on priority, the compiler uses

predefined type unsigned char.

If the following fragment is compiled with the enum=small option:

enum e_tag {a=-129, b, c} e_var;

the range of enumeration constants is -129 through -127. This range only falls

within the ranges of short (signed short) and int (signed int). Because short

(signed short) is smaller, it will be used to represent the enum.

The following code segment generates a warning and the second occurrence of the

enum pragma is ignored:

#pragma enum=small

enum e_tag {

 a,

 b,

 #pragma enum=int /* error: cannot be within a declaration */

 c

} e_var;

#pragma enum=reset /* second reset isn’t required */

The range of enum constants must fall within the range of either unsigned int or

int (signed int). For example, the following code segments contain errors:

#pragma enum=small

enum e_tag { a=-1,

 b=2147483648 /* error: larger than maximum int */

 } e_var;

#pragma options enum=reset

Chapter 3. Compiler options reference 93

Predefined macros

None.

-qenablevmx

Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Enables generation of vector instructions for processors that support them.

These instructions can offer higher performance when used with

algorithmic-intensive tasks such as multimedia applications.

Syntax

��
 enablevmx

-q

noenablevmx

��

Defaults

-qenablevmx when -qarch is set to an architecture that supports vector processing.

-qnoenablevmx, otherwise.

Usage

If -qnoenablevmx is in effect, -qaltivec and-qhot=simd cannot be used.

Predefined macros

None.

Related information

v “-qaltivec” on page 57

v “-qarch” on page 58

v “-qhot” on page 112

-F

Category

Compiler customization

Pragma equivalent

None.

Purpose

Names an alternative configuration file or stanza for the compiler.

Syntax

�� -F file_path

:

stanza

:

stanza

 ��

94 XL C/C++ Compiler Reference

Defaults

By default, the compiler uses the configuration file that is configured at installation

time, and uses the stanza defined in that file for the invocation command currently

being used.

Parameters

file_path

The full path name of the alternate compiler configuration file to use.

stanza

The name of the configuration file stanza to use for compilation. This directs

the compiler to use the entries under that stanza regardless of the invocation

command being used. For example, if you are compiling with xlc, but you

specify the c99 stanza, the compiler will use all the settings specified in the c99

stanza.

Usage

Note that any file names or stanzas that you specify with the -F option override

the defaults specified in the system configuration file. If you have specified a

custom configuration file with the XLC_USR_CONFIG environment variable, that

file is processed before the one specified by the -F option.

The -B, -t, and -W options override the -F option.

Predefined macros

None.

Examples

To compile myprogram.c using a stanza called debug that you have added to the

default configuration file, enter:

xlc myprogram.c -F:debug

To compile myprogram.c using a configuration file called /usr/tmp/myconfig.cfg,

enter:

xlc myprogram.c -F/usr/tmp/myconfig.cfg

To compile myprogram.c using the stanza c99 you have created in a configuration

file called /usr/tmp/myconfig.cfg, enter:

xlc myprogram.c -F/usr/tmp/myconfig.cfg:c99

Related information

v “Using custom compiler configuration files” on page 29

v “-B” on page 65

v “-t” on page 220

v “-W” on page 244

v “Specifying compiler options in a configuration file” on page 7

v “Compile-time and link-time environment variables” on page 22

-qfdpr

Category

Optimization and tuning

Pragma equivalent

None.

Chapter 3. Compiler options reference 95

Purpose

Provides object files with information that the IBM Feedback Directed Program

Restructuring (FDPR) performance-tuning utility needs to optimize the resulting

executable file.

When -qfdpr is in effect, optimization data is stored in the object file.

Syntax

��
 nofdpr

-q

fdpr

��

Defaults

-qnofdpr

Usage

For best results, use -qfdpr for all object files in a program; FDPR will perform

optimizations only on the files compiled with -qfdpr, and not library code, even if

it is statically linked.

The optimizations that the FDPR utility performs are similar to those that the

-qpdf option performs.

The FDPR performance-tuning utility has its own set of restrictions, and it is not

guaranteed to speed up all programs or produce executables that produce exactly

the same results as the original programs.

Predefined macros

None.

Examples

To compile myprogram.c so it includes data required by the FDPR utility, enter:

xlc myprogram.c -qfdpr

Related information

v “-qpdf1, -qpdf2” on page 178

-qflag

Category

Listings, messages, and compiler information

Pragma equivalent

#pragma options flag, #pragma report (C++ only)

Purpose

Limits the diagnostic messages to those of a specified severity level or higher.

The messages are written to standard output and, optionally, to the listing file if

one is generated.

96 XL C/C++ Compiler Reference

Syntax

-qflag syntax – C

��

 (1) (2)

i

i

-qflag

=

w

:

w

e

e

s

s

��

Notes:

1 Minimum severity level of messages reported in listing

2 Minimum severity level of messages reported on terminal

-qflag syntax – C++

��

 (1)

i

-qflag

=

w

s

(2)

i

:

w

s

��

Notes:

1 Minimum severity level of messages reported in listing

2 Minimum severity level of messages reported on terminal

Defaults

-qflag=i : i, which shows all compiler messages

Parameters

i Specifies that all diagnostic messages are to display: warning, error and

informational messages. Informational messages (I) are of the lowest severity.

w Specifies that warning (W) and all types of error messages are to display.

C

e

Specifies that only error (E), severe error (S), and unrecoverable error (U)

messages are to display.

s C

Specifies that only severe error (S) and unrecoverable error (U)

messages are to display.

C++

Specifies that only severe error (S) messages

are to display.

Usage

C

You must specify a minimum message severity level for both listing and

terminal reporting.

C++

You must specify a minimum message severity level for the listing. If you

do not specify a suboption for the terminal, the compiler assumes the same

severity as for the listing.

Chapter 3. Compiler options reference 97

Note that using -qflag does not enable the classes of informational message

controlled by the -qinfo option; see -qinfo for more information.

Predefined macros

None.

Examples

To compile myprogram.c so that the listing shows all messages that were generated

and your workstation displays only error and higher messages (with their

associated information messages to aid in fixing the errors), enter:

xlc myprogram.c -qflag=i:e

Related information

v “-qinfo” on page 120

v “-w” on page 243

v “Compiler messages” on page 15

-qfloat

Category

Floating-point and integer control

Pragma equivalent

#pragma options float

Purpose

Selects different strategies for speeding up or improving the accuracy of

floating-point calculations.

Syntax

98 XL C/C++ Compiler Reference

��

�

 :

nospnans

norsqrt

norrm

rngchk

norelax

nonans

maf

nohsflt

nohscmplx

gcclongdouble

fold

nofltint

nofenv

complexgcc

-q

float

=

nocomplexgcc

fenv

fltint

nofold

nogcclongdouble

hscmplx

hsflt

nomaf

nans

relax

norngchk

rrm

rsqrt

spnans

��

Defaults

v -qfloat=complexgcc:nofenv:nofltint:fold:gcclongdouble:

nohscmplx:nohsflt:maf:nonans:norelax:rngchk:norrm:norsqrt:nospnans

v -qfloat=fltint:rsqrt:norngchk when -qnostrict or -O3 or higher optimization

level is in effect.

v -qfloat=nocomplexgcc when 64-bit mode is enabled.

Parameters

complexgcc | nocomplexgcc

Specifies whether GCC conventions for passing or returning complex numbers

are to be used. complexgcc preserves compatibility with GCC-compiled code.

This suboption does not have any effect if support for complex types is not in

effect; see “-qlanglvl” on page 143 for details.

fenv | nofenv

Specifies whether the code depends on the hardware environment and whether

to suppress optimizations that could cause unexpected results due to this

dependency.

 Certain floating-point operations rely on the status of Floating-Point Status and

Control Register (FPSCR), for example, to control the rounding mode or to

detect underflow. In particular, many compiler built-in functions read values

directly from the FPSCR.

 When nofenv is in effect, the compiler assumes that the program does not

depend on the hardware environment, and that aggressive compiler

optimizations that change the sequence of floating-point operations are

allowed. When fenv is in effect, such optimizations are suppressed.

Chapter 3. Compiler options reference 99

You should use fenv for any code containing statements that read or set the

hardware floating-point environment, to guard against optimizations that could

cause unexpected behavior.

 Any directives specified in the source code (such as the standard C

FENV_ACCESS pragma) take precedence over the option setting.

fltint | nofltint

Speeds up floating-point-to-integer conversions by using an inline sequence of

code instead of a call to a library function. The library function, which is called

when nofltint is in effect, checks for floating-point values outside the

representable range of integers and returns the minimum or maximum

representable integer if passed an out-of-range floating-point value.

 If you compile with -O3 or higher optimization level, fltint is enabled

automatically. To disable it, also specify -qstrict.

fold | nofold

Evaluates constant floating-point expressions at compile time, which may yield

slightly different results from evaluating them at run time. The compiler

always evaluates constant expressions in specification statements, even if you

specify nofold.

gcclongdouble | nogcclongdouble

Specifies whether the compiler uses GCC-supplied or IBM-supplied library

functions for 128-bit long double operations.

 gcclongdouble ensures binary compatibility with GCC for mathematical

calculations. If this compatibility is not important in your application, you

should use nogcclongdouble for better performance. This suboption only has

an effect when 128-bit long double types are enabled with -qldbl128.

Note: Passing results from modules compiled with nogcclongdouble to

modules compiled with gcclongdouble may produce different results for

numbers such as Inf, NaN and other rare cases. To avoid such

incompatibilities, the compiler provides built-in functions to convert

IBM long double types to GCC long double types; see “Binary

floating-point built-in functions” on page 324 for more information.

hscmplx | nohscmplx

Speeds up operations involving complex division and complex absolute value.

This suboption, which provides a subset of the optimizations of the hsflt

suboption, is preferred for complex calculations.

hsflt | nohsflt

Speeds up calculations by preventing rounding for single-precision expressions

and by replacing floating-point division by multiplication with the reciprocal of

the divisor. It also uses the same technique as the fltint suboption for

floating-point-to-integer conversions. hsflt implies hscmplx.

 The hsflt suboption overrides the nans and spnans suboptions.

Note: Use -qfloat=hsflt on applications that perform complex division and

floating-point conversions where floating-point calculations have known

characteristics. In particular, all floating-point results must be within the

defined range of representation of single precision. Use with discretion,

as this option may produce unexpected results without warning. For

complex computations, it is recommended that you use the hscmplx

suboption (described above), which provides equivalent speed-up

without the undesirable results of hsflt.

100 XL C/C++ Compiler Reference

maf | nomaf

Makes floating-point calculations faster and more accurate by using

floating-point multiply-add instructions where appropriate. The results may

not be exactly equivalent to those from similar calculations performed at

compile time or on other types of computers. Negative zero results may be

produced. This suboption may affect the precision of floating-point

intermediate results. If -qfloat=nomaf is specified, no multiply-add instructions

will be generated unless they are required for correctness.

nans | nonans

Allows you to use the -qflttrap=invalid:enable option to detect and deal with

exception conditions that involve signaling NaN (not-a-number) values. Use

this suboption only if your program explicitly creates signaling NaN values,

because these values never result from other floating-point operations.

relax | norelax

Relaxes strict IEEE conformance slightly for greater speed, typically by

removing some trivial floating-point arithmetic operations, such as adds and

subtracts involving a zero on the right.

rngchk | norngchk

At optimization level -O3 and above, and without -qstrict, controls whether

range checking is performed for input arguments for software divide and

inlined square root operations. Specifying norngchk instructs the compiler to

skip range checking, allowing for increased performance where division and

square root operations are performed repeatedly within a loop.

 Note that with norngchk in effect the following restrictions apply:

v The dividend of a division operation must not be +/-INF.

v The divisor of a division operation must not be 0.0, +/- INF, or

denormalized values.

v The quotient of dividend and divisor must not be +/-INF.

v The input for a square root operation must not be INF.

If any of these conditions are not met, incorrect results may be produced. For

example, if the divisor for a division operation is 0.0 or a denormalized

number (absolute value < 2-1022 for double precision, and absolute value < 2-126

for single precision), NaN, instead of INF, may result; when the divisor is +/-

INF, NaN instead of 0.0 may result. If the input is +INF for a sqrt operation,

NaN, rather than INF, may result.

 norngchk is only allowed when -qnostrict is in effect. If -qstrict is in effect,

norngchk is ignored.

rrm | norrm

Prevents floating-point optimizations that require the rounding mode to be the

default, round-to-nearest, at run time, by informing the compiler that the

floating-point rounding mode may change or is not round-to-nearest at run

time. You should use rrm if your program changes the runtime rounding mode

by any means; otherwise, the program may compute incorrect results.

rsqrt | norsqrt

Speeds up some calculations by replacing division by the result of a square

root with multiplication by the reciprocal of the square root.

 rsqrt has no effect unless -qignerrno is also specified; errno will not be set for

any sqrt function calls.

Chapter 3. Compiler options reference 101

If you compile with -O3 or higher optimization level, rsqrt is enabled

automatically. To disable it, also specify -qstrict.

spnans | nospnans

Generates extra instructions to detect signalling NaN on conversion from

single-precision to double-precision.

Usage

Using -qfloat suboptions other than the default settings may produce incorrect

results in floating-point computations if not all required conditions for a given

suboption are met. For this reason, you should only use this option if you are

experienced with floating-point calculations involving IEEE floating-point values

and can properly assess the possibility of introducing errors in your program. See

also "Handling floating point operations" in the XL C/C++ Programming Guide for

more information.

If the -qstrict | -qnostrict and float suboptions conflict, the last setting specified is

used.

Predefined macros

Examples

To compile myprogram.c so that constant floating point expressions are evaluated

at compile time and multiply-add instructions are not generated, enter:

xlc myprogram.c -qfloat=fold:nomaf

Related information

v “-qarch” on page 58

v “-qcomplexgccincl” on page 76

v “-qflttrap ”

v “-qldbl128” on page 154

v “-qstrict” on page 215

-qflttrap

Category

Error checking and debugging

Pragma equivalent

#pragma options [no]flttrap

Purpose

Determines the types of floating-point exception conditions to be detected at run

time

Syntax

102 XL C/C++ Compiler Reference

��

�

 noflttrap

-q

flttrap

:

zero

zerodivide

und

underflow

ov

overflow

inv

invalid

inex

inexact

=

enable

en

nanq

��

Defaults

-qnoflttrap

Parameters

enable, en

Enables trapping when the specified exceptions (overflow, underflow,

zerodivide, invalid, or inexact) occur. You must specify this suboption if you

want to turn on exception trapping without modifying your source code. If

any of the specified exceptions occur, a SIGTRAP or SIGFPE signal is sent to

the process with the precise location of the exception.

inexact, inex

Enables the detection of floating-point inexact operations. If a floating-point

inexact operation occurs, an inexact operation exception status flag is set in the

Floating-Point Status and Control Register (FPSCR).

invalid, inv

Enables the detection of floating-point invalid operations. If a floating-point

invalid operation occurs, an invalid operation exception status flag is set in the

FPSCR.

nanq

Generates code to detect NaNQ (Not a Number Quiet) and NaNS (Not a

Number Signalling) exceptions before and after each floating point operation,

including assignment, and after each call to a function returning a

floating-point result to trap if the value is a NaN. Trapping code is generated

regardless of whether the enable suboption is specified.

overflow, ov

Enables the detection of floating-point overflow. If a floating-point overflow

occurs, an overflow exception status flag is set in the FPSCR.

underflow, und

Enables the detection of floating-point underflow. If a floating-point underflow

occurs, an underflow exception status flag is set in the FPSCR.

zerodivide, zero

Enables the detection of floating-point division by zero. If a floating-point

zero-divide occurs, a zero-divide exception status flag is set in the FPSCR.

Specifying -qflttrap option with no suboptions is equivalent to -qflttrap=overflow

: underflow : zerodivide : invalid : inexact. Exceptions will be detected by the

Chapter 3. Compiler options reference 103

hardware, but trapping is not enabled. Because this default does not include

enable, it is probably only useful if you already use fpsets or similar subroutines

in your source.

Usage

It is recommended that you use the enable suboption whenever compiling the

main program with -qflttrap. This ensures that the compiler will generate the code

to automatically enable floating-point exception trapping, without requiring that

you include calls to the appropriate floating-point exception library functions in

your code.

If you specify -qflttrap more than once, both with and without suboptions, the

-qflttrap without suboptions is ignored.

This option is recognized during linking with IPA. Specifying the option at the link

step overrides the compile-time setting.

If your program contains signalling NaNs, you should use the -qfloat=nans option

along with -qflttrap to trap any exceptions.

The compiler exhibits behavior as illustrated in the following examples when the

-qflttrap option is specified together with an optimization option:

v with -O2:

– 1/0 generates a div0 exception and has a result of infinity

– 0/0 generates an invalid operation
v with -O3 or greater:

– 1/0 generates a div0 exception and has a result of infinity

– 0/0 returns zero multiplied by the result of the previous division.

Predefined macros

None.

Examples

When you compile this program:

#include <stdio.h>

int main()

{

 float x, y, z;

 x = 5.0;

 y = 0.0;

 z = x / y;

 printf("%f", z);

}

with the command:

xlc -qflttrap=zerodivide:enable divide_by_zero.c

the program stops when the division is performed.

The zerodivide suboption identifies the type of exception to guard against. The

enable suboption causes a SIGTRAP or SIGFPE signal to be generated when the

exception occurs.

104 XL C/C++ Compiler Reference

Related information

v “-qfloat” on page 98

v “-qarch” on page 58

-qformat

Category

Error checking and debugging

Pragma equivalent

None.

Purpose

Warns of possible problems with string input and output format specifications.

Functions diagnosed are printf, scanf, strftime, strfmon family functions and

functions marked with format attributes.

Syntax

��

�

 noformat

-q

format

:

all

=

noall

exarg

noexarg

nlt

nonlt

sec

nosec

y2k

noy2k

zln

nozln

��

Defaults

-qnoformat

Parameters

all | noall

Enables or disables all format diagnostic messages.

exarg | noexarg

Warns if excess arguments appear in printf and scanf style function calls.

nlt | nonlt

Warns if a format string is not a string literal, unless the format function takes

its format arguments as a va_list.

sec | nosec

Warns of possible security problems in use of format functions.

y2k | noy2k

Warns of strftime formats that produce a 2-digit year.

zln | nozln

Warns of zero-length formats.

Chapter 3. Compiler options reference 105

Specifying -qformat with no suboptions is equivalent to -qformat=all.

-qnoformat is equivalent to -qformat=noall.

Predefined macros

None.

Examples

To enable all format string diagnostics, enter either of the following:

xlc myprogram.c -qformat=all

xlc myprogram.c -qformat

To enable all format diagnostic checking except that for y2k date diagnostics, enter:

xlc myprogram.c -qformat=all:noy2k

-qfullpath

Category

Error checking and debugging

Pragma equivalent

#pragma options [no]fullpath

Purpose

When used with the -g option, this option records the full, or absolute, path names

of source and include files in object files compiled with debugging information, so

that debugging tools can correctly locate the source files.

When fullpath is in effect, the absolute (full) path names of source files are

preserved. When nofullpath is in effect, the relative path names of source files are

preserved.

Syntax

��
 nofullpath

-q

fullpath

��

Defaults

-qnofullpath

Usage

If your executable file was moved to another directory, the debugger would be

unable to find the file unless you provide a search path in the debugger. You can

use fullpath to ensure that the debugger locates the file successfully.

Predefined macros

None.

Related information

v “-qlinedebug” on page 156

v “-g” on page 107

106 XL C/C++ Compiler Reference

-g

Category

Error checking and debugging

Pragma equivalent

None.

Purpose

Generates debug information for use by a symbolic debugger.

Syntax

�� -g ��

Defaults

Not applicable.

Usage

Specifying -g will turn off all inlining unless you explicitly request it with an

optimization option.

To specify that source files used with -g are referred to by either their absolute or

their relative path name, use the -qfullpath option.

You can also use the -qlinedebug option to produce abbreviated debugging

information in a smaller object size.

Predefined macros

None.

Examples

To compile myprogram.c to produce an executable program testing so you can

debug it, enter:

xlc myprogram.c -o testing -g

Related information

v “-qfullpath” on page 106

v “-qlinedebug” on page 156

v “-O, -qoptimize” on page 169

-qgcc_c_stdinc (C only)

Category

Compiler customization

Pragma equivalent

None.

Purpose

Changes the standard search location for the GNU C system header files.

Syntax

Chapter 3. Compiler options reference 107

��

�

 :

-q

gcc_c_stdinc

=

directory_path

″

″

��

Defaults

By default, the compiler searches the directory specified in the configuration file.

Parameters

directory_path

The path for the directory where the compiler should search for the GNU C

header files. You can surround the path with quotation marks to ensure it is

not split up by the command line.

Usage

This option allows you to change the search paths for specific compilations. To

permanently change the default search paths for the GNU C headers, you use a

configuration file to do so; see “Directory search sequence for include files” on

page 12 for more information.

If this option is specified more than once, only the last instance of the option is

used by the compiler.

This option is ignored if the -qnostdinc option is in effect.

Predefined macros

None.

Examples

To override the default search paths for the GNU C headers with mypath/headers1

and mypath/headers2, enter:

xlc myprogram.c -qgcc_c_stdinc=mypath/headers1:mypath:headers2

Related information

v “-qc_stdinc (C only)” on page 79

v “-qstdinc” on page 214

v “-qinclude” on page 119

v “Directory search sequence for include files” on page 12

v “Specifying compiler options in a configuration file” on page 7

-qgcc_cpp_stdinc (C++ only)

Category

Compiler customization

Pragma equivalent

None

Purpose

Changes the standard search location for the GNU C++ system header files.

Syntax

108 XL C/C++ Compiler Reference

��

�

 :

-q

gcc_cpp_stdinc

=

directory_path

″

″

��

Defaults

By default, the compiler searches the directory specified in the configuration file.

Parameters

directory_path

The path for the directory where the compiler should search for the GNU C++

header files. You can surround the path with quotation marks to ensure it is

not split up by the command line.

Usage

This option allows you to change the search paths for specific compilations. To

permanently change the default search paths for the GNU C++ headers, you use a

configuration file to do so; see “Directory search sequence for include files” on

page 12 for more information.

If this option is specified more than once, only the last instance of the option is

used by the compiler.

This option is ignored if the -qnostdinc option is in effect.

Predefined macros

None.

Examples

To override the default search paths for the GNU C++ headers with

mypath/headers1 and mypath/headers2, enter:

xlc++ myprogram.C -qgcc_cpp_stdinc=mypath/headers1:mypath:headers2

Related information

v “-qcpp_stdinc (C++ only)” on page 80

v “-qstdinc” on page 214

v “-qinclude” on page 119

v “Directory search sequence for include files” on page 12

v “Specifying compiler options in a configuration file” on page 7

-qgenproto (C only)

Category

Portability and migration

Pragma equivalent

None.

Purpose

Produces prototype declarations from K&R function definitions or function

definitions with empty parentheses, and displays them to standard output.

The compiler accepts and compiles K&R function definitions or definitions with a

function declarator with empty parentheses; however, these function definitions are

considered by the C standard to be obsolete (the compiler will diagnose them if

Chapter 3. Compiler options reference 109

you enable the -qinfo=obs option). When -qgenproto is in effect, the compiler

generates the corresponding prototype declarations and displays them to standard

output. You can use this option to help you identify obsolete function definitions

and automatically obtain equivalent prototypes.

Syntax

��
 nogenproto

-q

genproto

=

parmnames

��

Defaults

-qnogenproto

Parameters

parmnames

Parameter names are included in the prototype. If you do not specify this

suboption, parameter names will not be included in the prototype.

Predefined macros

None.

Examples

Compiling with - qgenproto for the following function definitions:

int foo(a, b) // K&R function

 int a, b;

{

}

int faa(int i) { } // prototyped function

main() { // missing void parameter

}

produces the following output on the display:

int foo(int, int);

int main(void);

Specifying -qgenproto=parmnames produces:

int foo(int a, int b);

int main(void);

-qhalt

Category

Error checking and debugging

Pragma equivalent

#pragma options halt

Purpose

Stops compilation before producing any object, executable, or assembler source

files if the maximum severity of compile-time messages equals or exceeds the

severity you specify.

110 XL C/C++ Compiler Reference

Syntax

-qhalt syntax — C

��
 s

-qhalt

=

i

w

e

��

-qhalt syntax — C++

��
 s

-qhalt

=

i

w

��

Defaults

-qhalt=s

Parameters

i Specifies that compilation is to stop for all types of errors: warning, error and

informational. Informational diagnostics (I) are of the lowest severity.

w Specifies that compilation is to stop for warnings (W) and all types of errors.

C

e

Specifies that compilation is to stop for errors (E), severe errors (S), and

unrecoverable errors (U).

s C

Specifies that compilation is to stop for severe errors (S) and

unrecoverable errors (U).

C++

Specifies that compilation is to stop for

severe errors (S).

Usage

When the compiler stops as a result of the halt option, the compiler return code is

nonzero. For a list of return codes, see “Compiler return codes” on page 17.

When -qhalt is specified more than once, the lowest severity level is used.

Diagnostic messages may be controlled by the -qflag option.

You can also instruct the compiler to stop compilation based on the number of

errors of a type of severity by using the -qmaxerr option, which overrides -qhalt.

C++

You can also use the -qhaltonmsg option to stop compilation according

to error message number.

Predefined macros

None.

Examples

To compile myprogram.c so that compilation stops if a warning or higher level

message occurs, enter:

xlc myprogram.c -qhalt=w

Chapter 3. Compiler options reference 111

Related information

v “-qhaltonmsg (C++ only)”

v “-qflag” on page 96

v “-qmaxerr” on page 162

-qhaltonmsg (C++ only)

Category

Error checking and debugging

Pragma equivalent

None.

Purpose

Stops compilation before producing any object, executable, or assembler source

files if a specified error message is generated.

Syntax

��

�

 :

-qhaltonmsg

=

message_identifier

��

Defaults

Not applicable.

Parameters

message_identifier

Represents a message identifier. The message identifier must be in the

following format:

15dd-number

where:

dd Is the two-digit code representing the compiler component that

produces the message. See “Compiler message format” on page 16 for

descriptions of these.

number

Is the message number.

Usage

When the compiler stops as a result of the -qhaltonmsg option, the compiler return

code is nonzero.

Predefined macros

None.

Related information

v “Compiler messages” on page 15

-qhot

Category

Optimization and tuning

112 XL C/C++ Compiler Reference

Pragma equivalent

#pragma novector, #pragma nosimd

Purpose

Performs high-order loop analysis and transformations (HOT) during optimization.

The -qhot compiler option is a powerful alternative to hand tuning that provides

opportunities to optimize loops and array language. This compiler option will

always attempt to optimize loops, regardless of the suboptions you specify.

You can use the pragma directives to disable these transformations for selected

sections of code.

Syntax

Option syntax

��

�

 nohot

-q

hot

:

=

noarraypad

arraypad

=

number

1

level

=

0

simd

nosimd

vector

novector

��

Pragma syntax

�� # pragma novector

nosimd
 ��

Defaults

v -qnohot

v -qhot=noarraypad:level=0:nosimd:vector when -O3 is in effect.

v -qhot=noarraypad:level=1:nosimd:vector when -qsmp, -O4 or -O5 is in effect.

v Specifying -qhot without suboptions is equivalent to

-qhot=level=1:nosimd:noarraypad:vector. If you specify -qhot without

suboptions with -qenablevmx and a -qarch value that supports vector

processing, -qhot=simd is enabled by default.

Parameters

arraypad | noarraypad (option only)

Permits the compiler to increase the dimensions of arrays where doing so

might improve the efficiency of array-processing loops. (Because of the

implementation of the cache architecture, array dimensions that are powers of

two can lead to decreased cache utilization.) Specifying -qhot=arraypad when

your source includes large arrays with dimensions that are powers of 2 can

reduce cache misses and page faults that slow your array processing programs.

This can be particularly effective when the first dimension is a power of 2. If

you use this suboption with no number, the compiler will pad any arrays

Chapter 3. Compiler options reference 113

where it infers there may be a benefit and will pad by whatever amount it

chooses. Not all arrays will necessarily be padded, and different arrays may be

padded by different amounts. If you specify a number, the compiler will pad

every array in the code.

Note: Using arraypad can be unsafe, as it does not perform any checking for

reshaping or equivalences that may cause the code to break if padding

takes place.

number (option only)

A positive integer value representing the number of elements by which each

array will be padded in the source. The pad amount must be a positive integer

value. It is recommended that pad values be multiples of the largest array

element size, typically 4, 8, or 16.

level=0 (option only)

Performs a subset of the high-order transformations and sets the default to

novector:nosimd:noarraypad.

level=1 (option only)

Performs the default set of high-order transformations.

simd (option only) | nosimd

When simd is in effect, the compiler converts certain operations that are

performed in a loop on successive elements of an array into a call to a vector

instruction. This call calculates several results at one time, which is faster than

calculating each result sequentially. Applying this suboption is useful for

applications with significant image processing demands.

 This suboption has effect only if you specify an architecture that supports

vector processing, and -qenablevmx is enabled.

 nosimd disables the conversion of loop array operations into calls to vector

instructions.

vector (option only) | novector

When specified with -qnostrict and -qignerrno, or an optimization level of -O3

or higher, vector causes the compiler to convert certain operations that are

performed in a loop on successive elements of an array (for example, square

root, reciprocal square root) into a call to a routine in the Mathematical

Acceleration Subsystem (MASS) library in libxlopt. If the operations are in a

loop, the vector version of the routine is called. If the operations are scalar, the

scalar version of the routine is called. The vector suboption supports single

and double-precision floating-point mathematics, and is useful for applications

with significant mathematical processing demands.

 novector disables the conversion of loop array operations into calls to MASS

library routines.

 Since vectorization can affect the precision of your program’s results, if you are

using -O4 or higher, you should specify -qhot=novector if the change in

precision is unacceptable to you.

Usage

If you do not also specify an optimization level when specifying -qhot on the

command line, the compiler assumes -O2.

If you specify -O3, the compiler assumes -qhot=level=0; to prevent all HOT

optimizations with -O3, you must specify -qnohot.

114 XL C/C++ Compiler Reference

If you want to override the default level setting of 1 when using -qsmp, -O4 or

-O5, be sure to specify -qhot=level=0 after the other options.

The pragma directives apply only to while, do while, and for loops that

immediately follow the placement of the directives. They have no effect on other

loops that may be nested within the specified loop.

You can also use the -qreport option in conjunction with -qhot to produce a

pseudo-C report showing how the loops were transformed; see “-qreport” on page

193 for details.

Predefined macros

None.

Examples

The following example shows the usage of #pragma nosimd to disable -qhot=simd

for a specific for loop:

...

#pragma nosimd

for (i=1; i<1000; i++) {

 /* program code */

}

...

Related information

v “-qarch” on page 58

v “-qenablevmx” on page 94

v “-O, -qoptimize” on page 169

v “-qstrict” on page 215

v “-qsmp” on page 204

v ″Using the Mathematical Acceleration Subsystem (MASS)″in theXL C/C++

Programming Guide

-I

Category

Input control

Pragma equivalent

None.

Purpose

Adds a directory to the search path for include files.

Syntax

�� -I directory_path ��

Defaults

See “Directory search sequence for include files” on page 12 for a description of

the default search paths.

Chapter 3. Compiler options reference 115

Parameters

directory_path

The path for the directory where the compiler should search for the header

files.

Usage

If -qnostdinc is in effect, the compiler searches only the paths specified by the -I

option for header files, and not the standard search paths as well. If -qidirfirst is in

effect, the directories specified by the -I option are searched before any other

directories.

If the -I directory option is specified both in the configuration file and on the

command line, the paths specified in the configuration file are searched first. The -I

directory option can be specified more than once on the command line. If you

specify more than one -I option, directories are searched in the order that they

appear on the command line.

The -I option has no effect on files that are included using an absolute path name.

Predefined macros

None.

Examples

To compile myprogram.c and search /usr/tmp and then /oldstuff/history for

included files, enter:

xlc myprogram.c -I/usr/tmp -I/oldstuff/history

Related information

v “-qidirfirst”

v “-qstdinc” on page 214

v “-qinclude” on page 119

v “Directory search sequence for include files” on page 12

v “Specifying compiler options in a configuration file” on page 7

-qidirfirst

Category

Input control

Pragma equivalent

#pragma options [no]idirfirst

Purpose

Specifies whether the compiler searches for user include files in directories

specified by the -I option before or after searching any other directories.

When -qidirfirst is in effect, the compiler first searches the directories specified by

the -I option before searching any other directories. When -qnoidirfirst is in effect,

before searching directories named on the -I option, the compiler first searches a)

the directories in which source files named on the -qinclude option are located;

and b) the directories in which the including files are located.

116 XL C/C++ Compiler Reference

Syntax

��
 noidirfirst

-q

idirfirst

��

Defaults

-qnoidirfirst

Usage

This option only affects files included with the #include “file_name" directive or

the -qinclude option; -qidirfirst is independent of the -qnostdinc option and has

no effect on the search order for XL C/C++ or system header files. (For the search

order of header files, see “Directory search sequence for include files” on page 12.)

This option also has no effect on files that are included using an absolute path

name.

The last valid pragma directive remains in effect until replaced by a subsequent

pragma.

Predefined macros

None.

Examples

To compile myprogram.c and search /usr/tmp/myinclude for included files before

searching the current directory (where the source file resides), enter:

xlc myprogram.c -I/usr/tmp/myinclude -qidirfirst

Related information

v “-I” on page 115

v “-qinclude” on page 119

v “-qstdinc” on page 214

v “-qc_stdinc (C only)” on page 79

v “-qcpp_stdinc (C++ only)” on page 80

v “Directory search sequence for include files” on page 12

-qignerrno

Category

Optimization and tuning

Pragma equivalent

#pragma options [no]ignerrno

Purpose

Allows the compiler to perform optimizations that assume errno is not modified

by system calls.

Some system library functions set errno when an exception occurs. When ignerrno

is in effect, the setting and subsequent side effects of errno are ignored. This allows

the compiler to perform optimizations that assume errno is not modified by

system calls.

Syntax

Chapter 3. Compiler options reference 117

��
 noignerrno

-q

ignerrno

��

Defaults

v -qnoignerrno

v -qignerrno when -O3 or higher optimization is in effect.

Usage

If you require both -O3 or higher and the ability to set errno, you should specify

-qnoignerrno after the optimization option on the command line.

Predefined macros

C++

__IGNERRNO__ is defined to 1 when ignerrno is in effect; otherwise, it

is undefined.

Related information

v “-O, -qoptimize” on page 169

-qignprag

Category

Language element control

Pragma equivalent

#pragma options [no]ignprag

Purpose

Instructs the compiler to ignore certain pragma statements.

This option is useful for detecting aliasing pragma errors. Incorrect aliasing gives

runtime errors that are hard to diagnose. When a runtime error occurs, but the

error disappears when you use ignprag with the -O option, the information

specified in the aliasing pragmas is likely incorrect.

Syntax

��

�

 :

-qignprag

=

all

disjoint

isolated_call

ibm

omp

��

Defaults

Not applicable.

Parameters

all

Ignores all #pragma isolated_call and #pragma disjoint directives in the source

file.

disjoint

Ignores all #pragma disjoint directives in the source file.

118 XL C/C++ Compiler Reference

ibm

C

Ignores all #pragma ibm snapshot directives in the source file.

isolated_call

Ignores all #pragma isolated_call directives in the source file.

omp

Ignores all OpenMP parallel processing directives in the source file, such as

#pragma omp parallel, #pragma omp critical.

Predefined macros

None.

Examples

To compile myprogram.c and ignore any #pragma isolated_call directives, enter:

xlc myprogram.c -qignprag=isolated_call

Related information

v “#pragma disjoint” on page 261

v “-qisolated_call” on page 136

v “#pragma ibm snapshot” on page 267

v “Pragma directives for parallel processing” on page 294

-qinclude

Category

Input control

Pragma equivalent

None.

Purpose

Specifies additional header files to be included in a compilation unit, as though the

files were named in an #include statement in the source file.

The headers are inserted before all code statements and any headers specified by

an #include preprocessor directive in the source file.

This option is provided for portability among supported platforms.

Syntax

�� -qinclude = file_path ��

Defaults

Not applicable.

Parameters

file_path

The absolute or relative path and name of the header file to be included in the

compilation units being compiled. If file_path is specified with a relative path,

the search for it follows the sequence described in “Directory search sequence

for include files” on page 12.

Chapter 3. Compiler options reference 119

Usage

-qinclude is applied only to the files specified in the same compilation as that in

which the option is specified. It is not passed to any compilations that occur

during the link step, nor to any implicit compilations, such as those invoked by the

option -qtemplateregistry, nor to the files generated by -qtempinc.

When the option is specified multiple times in an invocation, the header files are

included in order of appearance on the command line. If the same header file is

specified multiple times with this option, the header is treated as if included

multiple times by #include directives in the source file, in order of appearance on

the command line.

C++

When used with -qtemplateregistry, -qinclude is recorded in the

template registry file, along with the source files affected by it. When these file

dependencies initiate recompilation of the template registry, the -qinclude option is

passed to the dependent files only if it had been specified for them when they

were added to the template registry.

If you generate a listing file with -qsource, the header files included by -qinclude

do not appear in the source section of the listing. Use -qshowinc=usr or

-qshowinc=all in conjunction with -qsource if you want these header files to

appear in the listing.

Any pragma directives that must appear before noncommentary statements in a

source file will be affected; you cannot use -qinclude to include files if you need to

preserve the placement of these pragmas.

Predefined macros

None.

Examples

To include the files foo1.h and foo2.h in the source file foo.c, enter:

xlc -qinclude=foo1.h foo.c -qinclude=foo2.h

Related information

v “Directory search sequence for include files” on page 12

-qinfo

Category

Error checking and debugging

Pragma equivalent

#pragma options [no]info, #pragma info

Purpose

Produces or suppresses groups of informational messages.

The messages are written to standard output and, optionally, to the listing file if

one is generated.

120 XL C/C++ Compiler Reference

Syntax

Option syntax

��

�

 -q noinfo

info

:

=

all

noall

group

nogroup

private

reduction

 ��

Pragma syntax

��

�

 ,

#

pragma

info

(

all

)

none

group

nogroup

private

reduction

restore

��

Defaults

v

C

-qnoinfo

v

C++

-qinfo=lan:trx

Parameters

all Enables all diagnostic messages for all groups.

noall (option only)

Disables all diagnostic messages for all groups.

none (pragma only)

Disables all diagnostic messages for all groups.

private

Lists shared variables made private to a parallel loop.

reduction

Lists all variables that are recognized as reduction variables inside a parallel

loop.

group | nogroup

Enables or disables specific groups of messages, where group can be one or

more of:

group Type of informational messages returned or suppressed

C

c99 | noc99

C code that may behave differently between C89 and C99

language levels.

Chapter 3. Compiler options reference 121

C++ cls | nocls

C++ classes.

cmp | nocmp Possible redundancies in unsigned comparisons.

cnd | nocnd Possible redundancies or problems in conditional expressions.

cns | nocns Operations involving constants.

cnv | nocnv Conversions.

dcl | nodcl Consistency of declarations.

eff | noeff Statements and pragmas with no effect.

enu | noenu Consistency of enum variables.

ext | noext Unused external definitions.

gen | nogen General diagnostic messages.

gnr | nognr Generation of temporary variables.

got | nogot Use of goto statements.

ini | noini Possible problems with initialization.

lan | nolan Language level effects.

obs | noobs Obsolete features.

ord | noord Unspecified order of evaluation.

par | nopar Unused parameters.

por | nopor Nonportable language constructs.

ppc | noppc Possible problems with using the preprocessor.

ppt | noppt Trace of preprocessor actions.

pro | nopro Missing function prototypes.

rea | norea Code that cannot be reached.

ret | noret Consistency of return statements.

trd | notrd Possible truncation or loss of data or precision.

tru | notru Variable names truncated by the compiler.

trx | notrx Hexadecimal floating point constants rounding.

uni | nouni Uninitialized variables.

upg | noupg Generates messages describing new behaviors of the current

compiler release as compared to the previous release.

use | nouse Unused auto and static variables.

C++

vft | novft

Generation of virtual function tables.

zea | nozea Zero-extent arrays.

restore (pragma only)

Discards the current pragma setting and reverts to the setting specified by the

previous pragma directive. If no previous pragma was specified, reverts to the

command-line or default option setting.

C

Specifying -qinfo with no suboptions is equivalent to -qinfo=all.

122 XL C/C++ Compiler Reference

C++ Specifying -qinfo with no suboptions is equivalent to -qinfo=all:noppt.

Specifying -qnoinfo is equivalent to -qinfo=noall.

Predefined macros

None.

Examples

To compile myprogram.c to produce informational message about all items except

conversions and unreached statements, enter:

xlc myprogram.c -qinfo=all -qinfo=nocnv:norea

C

The following example shows code constructs that the compiler detects

when the code is compiled with -qinfo=cnd:eff:got:obs:par:pro:rea:ret:uni in effect:

#define COND 0

void faa() // Obsolete prototype (-qinfo=obs)

{

 printf("In faa\n"); // Unprototyped function call (-qinfo=pro)

}

int foo(int i, int k)

{

 int j; // Uninitialized variable (-qinfo=uni)

 switch(i) {

 case 0:

 i++;

 if (COND) // Condition is always false (-qinfo=cnd)

 i--; // Unreachable statement (-qinfo=rea)

 break;

 case 1:

 break;

 i++; // Unreachable statement (-qinfo=rea)

 default:

 k = (i) ? (j) ? j : i : 0;

}

 goto L; // Use of goto statement (-qinfo=got)

 return 3; // Unreachable statement (-qinfo=rea)

L:

 faa(); // faa() does not have a prototype (-qinfo=pro)

// End of the function may be reached without returning a value

// because of there may be a jump to label L (-qinfo=ret)

} //Parameter k is never referenced (-qinfo=ref)

int main(void) {

({ int i = 0; i = i + 1; i; }); // Statement does not have side effects (-qinfo=eff)

 return foo(1,2);

}

C++

The following example shows code constructs that the compiler detects,

with this code is compiled with -qinfo=cls:cnd:eff:use in effect:

#pragma abc // pragma not supported (-qinfo=eff or -qinfo=gen)

int bar() __attribute__((xyz)); // attribute not supported (-qinfo=eff)

int j();

Chapter 3. Compiler options reference 123

class A {

 public:

 A(): x(0), y(0), z(0) { }; // this constructor is in the correct order

 // hence, no info message.

 A(int m): y(0), z(0)

 { x=m; }; // suggest using member initialization list

 for x (-qinfo=cls)

 A(int m, int n):

 x(0), z(0) { }; // not all data members are initialized

 // namely, y is not initialized (-qinfo=cls)

 A(int m, int n, int* l):

 x(m), z(l), y(n) { }; // order of class initialization (-qinfo=cls)

 private:

 int x;

 int y;

 int *z; // suggest having user-defined copy constructor/

 // assignment operator to handle the pointer data member

 // (-qinfo=cls)

};

int foo() {

 int j=5;

 j; // null statement (-qinfo=eff)

 // The user may mean to call j().

return j;

}

void boo() {

 int x;

 int *i = &x;

 float *f; // f is not used (-qinfo=use)

 f = (float *) i; // incompatible type (-qinfo=eff)

 // With ansi aliasing mode, a float pointer

 // is not supposed to point to an int

}

void cond(int y) {

 const int i=0;

 int j;

 int k=0;

 if (i) { // condition is always false (-qinfo=cnd)

 j=3;

 }

 if (1) { // condition is always true (-qinfo=cnd)

 j=4;

 }

 j=0;

 if (j==0) { // cond. is always true (-qinfo=cnd)

 j=5;

 }

 if (y) {

 k+=5

 }

 if (k==5) { // This case cannot be determined, because k+=5

124 XL C/C++ Compiler Reference

// is in a conditional block.

 j=6;

 }

}

In the following example, the #pragma info(eff, nouni) directive preceding

MyFunction1 instructs the compiler to generate messages identifying statements or

pragmas with no effect, and to suppress messages identifying uninitialized

variables. The #pragma info(restore) directive preceding MyFunction2 instructs the

compiler to restore the message options that were in effect before the #pragma

info(eff, nouni) directive was specified.

#pragma info(eff, nouni)

int MyFunction1()

{

 .

 .

 .

}

#pragma info(restore)

int MyFunction2()

{

 .

 .

 .

}

Related information

v “-qflag” on page 96

-qinitauto

Category

Error checking and debugging

Pragma equivalent

#pragma options [no]initauto

Purpose

Initializes uninitialized automatic variables to a specific value, for debugging

purposes.

Syntax

��
 noinitauto

-q

initauto

=

hex_value

��

Defaults

-qnoinitauto

Parameters

hex_value

A two-digit hexadecimal byte value.

Chapter 3. Compiler options reference 125

Usage

This option generates extra code to initialize the value of automatic variables. It

reduces the runtime performance of the program and should only be used for

debugging.

Predefined macros

v

C++

__INITAUTO__ is defined to the hex value specified on the -qinitauto

option or pragma; otherwise, it is undefined.

v

C++

__INITAUTO_W__ is defined to the hex value, repeated 4 times,

specified on the -qinitauto option or pragma; otherwise, it is undefined.

Examples

To compile myprogram.c so that automatic variables are initialized to hex value FF

(decimal 255), enter:

xlc myprogram.c -qinitauto=FF

126 XL C/C++ Compiler Reference

-qinlglue

Processing

Object code control

Context

#pragma options [no]inlglue

Purpose

When used with -O2 or higher optimization, inlines glue code that optimizes

external function calls in your application.

Glue code, generated by the linker, is used for passing control between two external

functions. When inlglue is in effect, the optimizer inlines glue code for better

performance. When noinlglue is in effect, inlining of glue code is prevented.

Format

��
 noinlglue

-q

inlglue

��

Defaults

v -qnoinlglue

v -qinlglue when -qtune=pwr4 or higher, -qtune=auto, or -qtune=balanced is in

effect (that is, -qtune=pwr4 | pwr5 | pwr6 | ppc970, or -qtune=auto |

balanced is in effect on a machine with the appropriate POWER4, or later

processor).

Usage

If you use the -qtune option with any of the suboptions that imply -qinlglue and

you want to disable inlining of glue code, make sure to specify -qnoinlglue as

well.

Inlining glue code can cause the code size to grow. -qcompact overrides the

-qinlglue setting regardless of other options specified; if you want -qinlglue to be

enabled, do not specify -qcompact.

The -qinlglue option only affects function calls through pointers or calls to an

external compilation unit. For calls to an external function, you should specify that

the function is imported by using, for example, the -qprocimported option.

Results

None.

v “-qcompact” on page 75

v “-qprocimported, -qproclocal, -qprocunknown” on page 187

v “-qtune” on page 232

Chapter 3. Compiler options reference 127

-qinline

See “-Q, -qinline ” on page 190.

-qipa

Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Enables or customizes a class of optimizations known as interprocedural analysis

(IPA).

IPA is a two-step process: the first step, which takes place during compilation,

consists of performing an initial analysis and storing interprocedural analysis

information in the object file. The second step, which takes place during linking,

and causes a complete recompilation of the entire application, applies the

optimizations to the entire program.

You can use -qipa during the compilation step, the link step, or both. If you

compile and link in a single compiler invocation, only the link-time suboptions are

relevant. If you compile and link in separate compiler invocations, only the

compile-time suboptions are relevant during the compile step, and only the

link-time suboptions are relevant during the link step.

Syntax

-qipa compile-time syntax

��
 noipa

-q

ipa

object

=

noobject

��

-qipa link-time syntax

128 XL C/C++ Compiler Reference

��

�

�

�

�

�

�

�

�

�

�

 noipa

-q

ipa

:

noclonearch

,

=

clonearch

=

arch

,

nocloneproc

cloneproc

=

function_name

,

exits

=

function_name

inline

=

noauto

:

auto

limit

=

size

threshold

,

function_name

noinline

,

=

function_name

,

infrequentlabel

=

label_name

1

level

=

0

2

list

=

file_name

long

short

,

lowfreq

=

function_name

unknown

missing

=

safe

isolated

pure

medium

partition

=

small

large

threads

auto

=

number

noauto

nothreads

,

isolated

=

function_name

pure

safe

unknown

file_name

��

Defaults

v -qnoipa

v -qipa=inline=auto:level=1:missing=unknown:partition=medium:threads=auto

when -O4 is in effect

v -qipa=inline=auto:level=2:missing=unknown:partition=medium:threads=auto

when -O5 is in effect

v -qipa=inline=auto:level=0:missing=unknown:partition=medium:threads=auto

when -qpdf1 or -qpdf2 is in effect

Chapter 3. Compiler options reference 129

Parameters

The following are parameters that may be specified during a separate compile step

only:

object | noobject

Specifies whether to include standard object code in the output object files.

 Specifying noobject can substantially reduce overall compile time by not

generating object code during the first IPA phase. Note that if you specify -S

with noobject, noobject will be ignored.

 If compiling and linking are performed in the same step and you do not

specify the -S or any listing option, -qipa=noobject is implied.

 Specifying -qipa with no suboptions on the compile step is equivalent to

-qipa=object.

The following are parameters that may be specified during a combined compile

and link in the same compiler invocation, or during a separate link step only:

clonearch | noclonearch

Specifies the architectures for which multiple versions of the same instruction

set are produced.

 If clonearch is in effect, during the IPA link phase, the compiler generates a

generic version of the instruction set based on the -qarch setting in effect, and

if appropriate, clones specialized versions of the instruction set for the

architectures you specify in the clonearch suboption. The compiler inserts code

into your application to check for the processor architecture at run time. When

run, the application’s version of the instruction set that is best optimized for

the runtime environment is selected. Use this suboption if you require optimal

performance on multiple differing machines running the same copy of your

application.

 This suboption is disabled if -qcompact is in effect.

arch

Is a comma-separated list of architectures. The supported values are:

v pwr4

v pwr5

v ppc970

v pwr6

If you specify no value, an invalid value or a value equal to the -qarch setting,

no function versioning will be performed for this option. The following table

lists allowed clonearch for difference architectures.

 Table 23. Compatible architecture and clonearch settings

-qarch setting Allowed clonearch value

ppc, pwr3, ppc64, ppcgr, ppc64gr, ppc64grsq pwr4, pwr5, ppc970, pwr6

pwr4 pwr5, ppc970, pwr6

ppc64v ppc970, pwr6

pwr5 pwr6

ppc970 pwr6

pwr6 None

130 XL C/C++ Compiler Reference

To ensure compatibility across multiple platforms, the -qarch option must be

set to a value that is a subset of the architectures specified by -qipa=clonearch.

In the case that suboptions are specified for -qipa=clonearch and -qarch that

do not match the target architecture, the compiler will generate instructions

based on the suboption that most closely matches the system on which the

application is currently running.

 You can also use the -qreport option in conjunction with -qipa=clonearch to

produce a report showing how functions were cloned; see “-qreport” on page

193 for details.

cloneproc | nocloneproc

When -qipa=clonearch is in effect, cloneproc specifies that only the named

functions are to be cloned; nocloneproc specifies functions that should not be

cloned. Note that by default the compiler avoids cloning functions that are

specified as low frequency functions with the lowfreq suboption.

function_name

For all suboptions, the name of a function, or a comma-separated list of

functions.

C++

Names must be specified using their mangled names. To obtain C++

mangled names, compile your source to object files only, using the -c compiler

option, and use the nm operating system command on the resulting object file.

(See also "Name mangling" in the XL C/C++ Language Reference for details on

using the extern "C" linkage specifier on declarations to prevent name

mangling.)

 Regular expression syntax can be used to specify names for all suboptions that

take function names as suboptions. Syntax rules for specifying regular

expressions are described below:

 Expression Description

string Matches any of the characters specified in string. For example,

test will match testimony, latest, and intestine.

^string Matches the pattern specified by string only if it occurs at the

beginning of a line.

string$ Matches the pattern specified by string only if it occurs at the end

of a line.

str.ing The period (.) matches any single character. For example, t.st

will match test, tast, tZst, and t1st.

string\special_char The backslash (\) can be used to escape special characters. For

example, assume that you want to find lines ending with a

period. Simply specifying the expression .$ would show all lines

that had at least one character of any kind in it. Specifying \.$

escapes the period (.), and treats it as an ordinary character for

matching purposes.

[string] Matches any of the characters specified in string. For example,

t[a-g123]st matches tast and test, but not t-st or tAst.

[^string] Does not match any of the characters specified in string. For

example, t[^a-zA-Z]st matches t1st, t-st, and t,st but not test

or tYst.

string* Matches zero or more occurrences of the pattern specified by

string. For example, te*st will match tst, test, and teeeeeest.

string+ Matches one or more occurrences of the pattern specified by

string. For example, t(es)+t matches test, tesest, but not tt.

Chapter 3. Compiler options reference 131

Expression Description

string? Matches zero or one occurrences of the pattern specified by

string. For example, te?st matches either tst or test.

string{m,n} Matches between m and n occurrence(s) of the pattern specified

by string. For example, a{2} matches aa, and b{1,4} matches b,

bb, bbb, and bbbb.

string1 | string2 Matches the pattern specified by either string1 or string2. For

example, s | o matches both characters s and o.

exits

Specifies names of functions which represent program exits. Program exits are

calls which can never return and can never call any procedure which has been

compiled with IPA pass 1. The compiler can optimize calls to these functions

(for example, by eliminating save/restore sequences), because the calls never

return to the program. These procedures must not call any other parts of the

program that are compiled with -qipa.

infrequentlabel

Specifies user-defined labels that are likely to be called infrequently during a

program run.

label_name

The name of a label, or a comma-separated list of labels.

inline

Enables function inlining by the high-level optimizer. Valid suboptions are any

of the following:

auto | noauto

Enables or disables automatic function inlining by the high-level optimizer.

When -qipa=inline=auto is in effect, the compiler considers all functions

that are under the maximum size limit (see below) for inlining. When

-qipa=inline=noauto is in effect, only functions listed in the function_name

suboption are considered for inlining.

limit

When -qipa=inline=auto is in effect, specifies a limit on the size of a

calling function after inlining.

threshold

When -qipa=inline=auto is in effect, specifies a limit on the size of a called

function for it to be considered for inlining.

size

A nonnegative integer representing the relative size of function before and

after inlining. The size is an arbitrary value representing a combination of

factors, including the estimated size of the called function, the number of

calls to the function, and so on. If you do not specify a size, the default is

1024 for the threshold suboption and 8192 for the limit suboption. Larger

values for this number allow the compiler to inline larger functions, more

function calls, or both.

Specifying -qipa=inline with no suboptions is equivalent to -qipa=inline=auto.

Note: By default, the compiler will try to inline all functions, not just those

that you specified with the function_name suboption. If you want to turn

on inlining for only certain functions, specify inline=noauto after you

specify inline=function_name. (You must specify the suboptions in this

132 XL C/C++ Compiler Reference

order.) For example, to turn off inlining for all functions other than for

sub1, specify -qipa=inline=sub1:inline=noauto.

noinline

When specified with no suboption, disables automatic function inlining by the

high-level optimizer (equivalent to -qipa=inline=noauto). (Inlining may still be

performed by the compiler front end or by the low-level optimizer; see “-Q,

-qinline ” on page 190 for details.) When used with the function_name

suboption, specifies functions that are not to be considered for automatic

inlining by the high-level optimizer.

isolated

Specifies a comma-separated list of functions that are not compiled with -qipa.

Procedures that you specify as isolated or procedures within their call chains

cannot refer directly to any global variable.

level

Specifies the optimization level for interprocedural analysis. Valid suboptions

are one of the following:

0 Performs only minimal interprocedural analysis and optimization.

1 Enables inlining, limited alias analysis, and limited call-site tailoring.

2 Performs full interprocedural data flow and alias analysis.

If you do not specify a level, the default is 1.

list

Specifies that a listing file be generated during the link phase. The listing file

contains information about transformations and analyses performed by IPA, as

well as an optional object listing for each partition.

 If you do not specify a list_file_name, the listing file name defaults to a.lst. If

you specify -qipa=list together with any other option that generates a listing

file, IPA generates an a.lst file that overwrites any existing a.lst file. If you have

a source file named a.c, the IPA listing will overwrite the regular compiler

listing a.lst. You can use the -qipa=list=list_file_name suboption to specify an

alternative listing file name.

 Additional suboptions are one of the following:

short Requests less information in the listing file. Generates the Object File

Map, Source File Map and Global Symbols Map sections of the listing.

long Requests more information in the listing file. Generates all of the

sections generated by the short suboption, plus the Object Resolution

Warnings, Object Reference Map, Inliner Report and Partition Map

sections.

lowfreq

Specifies functions that are likely to be called infrequently. These are typically

error handling, trace, or initialization functions. The compiler may be able to

make other parts of the program run faster by doing less optimization for calls

to these functions.

missing

Specifies the interprocedural behavior of functions that are not compiled with

-qipa and are not explicitly named in an unknown, safe, isolated, or pure

suboption.

 Valid suboptions are one of the following:

Chapter 3. Compiler options reference 133

safe Specifies that the missing functions do not indirectly call a visible (not

missing) function either through direct call or through a function

pointer.

isolated

Specifies that the missing functions do not directly reference global

variables accessible to visible functions. Functions bound from shared

libraries are assumed to be isolated.

pure Specifies that the missing functions are safe and isolated and do not

indirectly alter storage accessible to visible functions. pure functions

also have no observable internal state.

unknown

Specifies that the missing functions are not known to be safe, isolated, or

pure. This option greatly restricts the amount of interprocedural

optimization for calls to missing functions.

The default is to assume unknown.

partition

Specifies the size of each program partition created by IPA during pass 2. Valid

suboptions are one of the following:

v small

v medium

v large

Larger partitions contain more procedures, which result in better

interprocedural analysis but require more storage to optimize. Reduce the

partition size if compilation takes too long because of paging.

pure

Specifies pure functions that are not compiled with -qipa. Any function

specified as pure must be isolated and safe, and must not alter the internal state

nor have side-effects, defined as potentially altering any data visible to the

caller.

safe

Specifies safe functions that are not compiled with -qipa and do not call any

other part of the program. Safe functions can modify global variables, but may

not call functions compiled with -qipa.

threads | nothreads

Runs portions of the IPA optimization process during pass 2 in parallel

threads, which can speed up the compilation process on multi-processor

systems. Valid suboptions for the threads suboption are as follows:

auto | noauto

When auto is in effect, the compiler selects a number of threads

heuristically based on machine load. When noauto is in effect, the compiler

spawns one thread per machine processor.

number

Instructs the compiler to use a specific number of threads. number can be

any integer value in the range of 1 to 32 767. However, number is

effectively limited to the number of processors available on your system.

Specifying threads with no suboptions implies -qipa=threads=auto.

unknown

Specifies unknown functions that are not compiled with -qipa. Any function

134 XL C/C++ Compiler Reference

specified as unknown can make calls to other parts of the program compiled

with -qipa, and modify global variables.

file_name

Gives the name of a file which contains suboption information in a special

format.

 The file format is the following:

... comment

attribute{, attribute} = name{, name}

clonearch=arch,{arch}

cloneproc=name,{name}

nocloneproc=name,{name}

missing = attribute{, attribute}

exits = name{, name}

lowfreq = name{, name}

inline

inline [= auto | = noauto]

inline = name{, name} [from name{, name}]

inline-threshold = unsigned_int

inline-limit = unsigned_int

list [= file-name | short | long]

noinline

noinline = name{, name} [from name{, name}]

level = 0 | 1 | 2

partition = small | medium | large

where attribute is one of:

v clonearch

v cloneproc

v nocloneproc

v exits

v lowfreq

v unknown

v safe

v isolated

v pure

Specifying -qipa with no suboptions on the link step is equivalent to

-qipa=inline=auto:level=1:missing=unknown:partition=medium:threads=auto.

Note: As of the V9.0 release of the compiler, the pdfname suboption is deprecated;

you should use -qpdf1=pdfname or -qpdf2=pdfname in your new

applications. See “-qpdf1, -qpdf2” on page 178 for details.

Usage

Specifying -qipa automatically sets the optimization level to -O2. For additional

performance benefits, you can also specify the -Q option. The -qipa option extends

the area that is examined during optimization and inlining from a single function

to multiple functions (possibly in different source files) and the linkage between

them.

If any object file used in linking with -qipa was created with the -qipa=noobject

option, any file containing an entry point (the main program for an executable

program, or an exported function for a library) must be compiled with -qipa.

You can link objects created with different releases of the compiler, but you must

ensure that you use a linker that is at least at the same release level as the newer

of the compilers used to create the objects being linked.

Chapter 3. Compiler options reference 135

Some symbols which are clearly referenced or set in the source code may be

optimized away by IPA, and may be lost to debug or nm outputs. Using IPA

together with the -g compiler will usually result in non-steppable output.

Note that if you specify -qipa with -#, the compiler does not display linker

information subsequent to the IPA link step.

For recommended procedures for using -qipa, see "Optimizing your applications"in

the XL C/C++ Programming Guide.

Predefined macros

None.

Examples

The following example shows how you might compile a set of files with

interprocedural analysis:

xlc -c *.c -qipa

xlc -o product *.o -qipa

Here is how you might compile the same set of files, improving the optimization

of the second compilation, and the speed of the first compile step. Assume that

there exist a set of routines, user_trace1, user_trace2, and user_trace3, which are

rarely executed, and the routine user_abort that exits the program:

xlc -c *.c -qipa=noobject

xlc -c *.o -qipa=lowfreq=user_trace[123]:exit=user_abort

Related information

v “-Q, -qinline ” on page 190

v “-qisolated_call”

v “#pragma execution_frequency” on page 263

v “-qpdf1, -qpdf2” on page 178

v “-S” on page 199

v "Optimizing your applications" in the XL C/C++ Programming Guide

-qisolated_call

Category

Optimization and tuning

Pragma equivalent

#pragma options isolated_call, #pragma isolated_call

Purpose

Specifies functions in the source file that have no side effects other than those

implied by their parameters.

Essentially, any change in the state of the runtime environment is considered a side

effect, including:

v Accessing a volatile object

v Modifying an external object

v Modifying a static object

v Modifying a file

v Accessing a file that is modified by another process or thread

v Allocating a dynamic object, unless it is released before returning

v Releasing a dynamic object, unless it was allocated during the same invocation

136 XL C/C++ Compiler Reference

v Changing system state, such as rounding mode or exception handling

v Calling a function that does any of the above

Marking a function as isolated indicates to the optimizer that external and static

variables cannot be changed by the called function and that pessimistic references

to storage can be deleted from the calling function where appropriate. Instructions

can be reordered with more freedom, resulting in fewer pipeline delays and faster

execution in the processor. Multiple calls to the same function with identical

parameters can be combined, calls can be deleted if their results are not needed,

and the order of calls can be changed.

Syntax

Option syntax

��

�

 :

-q

isolated_call

=

function

��

Pragma syntax

�� # pragma isolated_call (function) ��

Defaults

Not applicable.

Parameters

function

The name of a function that does not have side effects or does not rely on

functions or processes that have side effects. function is a primary expression

that can be an identifier, operator function, conversion function, or qualified

name. An identifier must be of type function or a typedef of function. C++

If the name refers to an overloaded function, all variants of that function are

marked as isolated calls.

Usage

The only side effect that is allowed for a function named in the option or pragma

is modifying the storage pointed to by any pointer arguments passed to the

function, that is, calls by reference. The function is also permitted to examine

non-volatile external objects and return a result that depends on the non-volatile

state of the runtime environment. Do not specify a function that causes any other

side effects; that calls itself; or that relies on local static storage. If a function is

incorrectly identified as having no side effects, the program behavior might be

unexpected or produce incorrect results.

The #pragma options isolated_call directive must be placed at the top of a source

file, before any statements. The #pragma isolated_call directive can be placed at

any point in the source file, before or after calls to the function named in the

pragma.

The -qignprag compiler option causes aliasing pragmas to be ignored; you can use

-qignprag to debug applications containing the #pragma isolated_call directive.

Chapter 3. Compiler options reference 137

Predefined macros

None.

Examples

To compile myprogram.c, specifying that the functions myfunction(int) and

classfunction(double) do not have side effects, enter:

xlc myprogram.c -qisolated_call=myfunction:classfunction

The following example shows you when to use the #pragma isolated_call directive

(on the addmult function). It also shows you when not to use it (on the same and

check functions):

#include <stdio.h>

#include <math.h>

int addmult(int op1, int op2);

#pragma isolated_call(addmult)

/* This function is a good candidate to be flagged as isolated as its */

/* result is constant with constant input and it has no side effects. */

int addmult(int op1, int op2) {

 int rslt;

 rslt = op1*op2 + op2;

 return rslt;

}

/* The function ’same’ should not be flagged as isolated as its state */

/* (the static variable delta) can change when it is called. */

int same(double op1, double op2) {

 static double delta = 1.0;

 double temp;

 temp = (op1-op2)/op1;

 if (fabs(temp) < delta)

 return 1;

 else {

 delta = delta / 2;

 return 0;

 }

}

/* The function ’check’ should not be flagged as isolated as it has a */

/* side effect of possibly emitting output. */

int check(int op1, int op2) {

 if (op1 < op2)

 return -1;

 if (op1 > op2)

 return 1;

 printf("Operands are the same.\n");

 return 0;

}

Related information

v “-qignprag” on page 118

v and in the XL C/C++ Language Reference

-qkeepinlines (C++ only)

Category

Object code control

138 XL C/C++ Compiler Reference

Pragma equivalent

None.

Purpose

Keeps or discards definitions for unreferenced extern inline functions.

When -qnokeepinlines is in effect, definitions of unreferenced external inline

functions are discarded. When -qkeepinlines is in effect, definitions of

unreferenced external inline functions are kept.

Syntax

��
 nokeepinlines

-q

keepinlines

��

Defaults

-qnokeepinlines

Usage

-qnokeepinlines reduces the size of the object files. -qkeepinlines provides the

same behavior as VisualAge® C++ compilers previous to the v5.0.2.1 update level,

allowing compatibility with shared libraries and object files built with the earlier

releases of the compiler.

Predefined macros

None.

Related information

v “-qstaticinline (C++ only)” on page 212

-qkeepparm

Category

Error checking and debugging

Pragma equivalent

None.

Purpose

When used with -O2 or higher optimization, specifies whether function parameters

are stored on the stack.

A function usually stores its incoming parameters on the stack at the entry point.

However, when you compile code with optimization options enabled, the compiler

may remove these parameters from the stack if it sees an optimizing advantage in

doing so. When -qkeepparm is in effect, parameters are stored on the stack even

when optimization is enabled. When -qnokeepparm is in effect, parameters are

removed from the stack if this provides an optimization advantage.

Syntax

��
 nokeepparm

-q

keepparm

��

Chapter 3. Compiler options reference 139

Defaults

-qnokeepparm

Usage

Specifying -qkeepparm that the values of incoming parameters are available to

tools, such as debuggers, by preserving those values on the stack. However, this

may negatively affect application performance.

Predefined macros

None.

Related information

v “-O, -qoptimize” on page 169

-qkeyword

Category

Language element control

Pragma equivalent

None

Purpose

Controls whether the specified name is treated as a keyword or as an identifier

whenever it appears in your program source.

Syntax

�� -q keyword = keyword_name

nokeyword
 ��

Defaults

By default all the built-in keywords defined in the C and C++ language standards

are reserved as keywords.

Usage

You cannot add keywords to the language with this option. However, you can use

-qnokeyword=keyword_name to disable built-in keywords, and use

-qkeyword=keyword_name to reinstate those keywords.

C++

This option can be used with all C++ built-in keywords.

C

This option can also be used with the following C keywords:

v asm

v inline

v restrict

v typeof

Note:

C

asm is not a keyword when the -qlanglvl option is set to stdc89 or

stdc99.

Predefined macros

v

C++

__BOOL__ is defined to 1 by default; however, it is undefined when

-qnokeyword=bool is in effect.

140 XL C/C++ Compiler Reference

v

C

__C99_INLINE is defined to 1 when -qkeyword=inline is in effect.

v __C99_RESTRICT is defined to 1 when -qkeyword=restrict is in effect.

v

C

__IBM_GCC_ASM is defined to 1 when -qkeyword=asm is in effect.

(In C++ it is defined by default.)

v __IBM__TYPEOF__ is defined to 1 when -qkeyword=typeof is in effect.

Examples

C++

You can reinstate bool with the following invocation:

xlc++ -qkeyword=bool

C

You can reinstate typeof with the following invocation:

xlc -qkeyword=typeof

Related information

v “-qasm” on page 61

-l

Category

Linking

Pragma equivalent

None.

Purpose

Searches for the specified library file, libkey.so, and then libkey.a for dynamic

linking, or just for libkey.a for static linking.

Syntax

�� -l key ��

Defaults

The compiler default is to search only some of the compiler runtime libraries. The

default configuration file specifies the default library names to search for with the

-l compiler option, and the default search path for libraries with the -L compiler

option.

The C and C++ runtime libraries are automatically added.

Parameters

key

The name of the library minus the lib characters.

Usage

You must also provide additional search path information for libraries not located

in the default search path. The search path can be modified with the -L option.

The -l option is cumulative. Subsequent appearances of the -l option on the

command line do not replace, but add to, the list of libraries specified by earlier

occurrences of -l. Libraries are searched in the order in which they appear on the

command line, so the order in which you specify libraries can affect symbol

resolution in your application.

Chapter 3. Compiler options reference 141

For more information, refer to the ld documentation for your operating system.

Predefined macros

None.

Examples

To compile myprogram.c and link it with library mylibrary (libmylibrary.a) found

in the /usr/mylibdir directory, enter:

xlc myprogram.c -lmylibrary -L/usr/mylibdir

Related information

v “-L”

v “Specifying compiler options in a configuration file” on page 7

-L

Category

Linking

Pragma equivalent

None.

Purpose

At link time, searches the directory path for library files specified by the -l option.

Syntax

�� -L directory_path ��

Defaults

The default is to search only the standard directories. See the compiler

configuration file for the directories that are set by default.

Parameters

directory_path

The path for the directory which should be searched for library files.

Usage

Paths specified with the -L compiler option are only searched at link time. To

specify paths that should be searched at run time, use the -R option.

If the -Ldirectory option is specified both in the configuration file and on the

command line, search paths specified in the configuration file are the first to be

searched at link time.

For more information, refer to the ld documentation for your operating system.

Predefined macros

None.

Examples

To compile myprogram.c so that the directory /usr/tmp/old is searched for the

library libspfiles.a, enter:

xlc myprogram.c -lspfiles -L/usr/tmp/old

142 XL C/C++ Compiler Reference

Related information

v “-l” on page 141

v “-R” on page 193

-qlanglvl

Category

Language element control

Pragma equivalent

C

#pragma options langlvl, #pragma langlvl

Purpose

Determines whether source code and compiler options should be checked for

conformance to a specific language standard, or subset or superset of a standard.

Syntax

-qlanglvl syntax — C

��

�

 :

extc99

ucs

-q

langlvl

=

classic

noucs

extc89

extended

saa

saal2

stdc89

stdc99

��

#pragma langlvl syntax — C only

��
 extc99

#

pragma

langlvl

(

classic

)

extc89

extended

saa

saal2

stdc89

stdc99

��

-qlanglvl syntax — C++

��

�

 :

extended

-q

langlvl

=

feature_suboption

��

Defaults

v

C

The default is set according to the command used to invoke the

compiler:

– -qlanglvl=extc99:ucs for the xlc and related invocation commands

– -qlanglvl=extended:noucs for the cc and related invocation commands

– -qlanglvl=stdc89:noucs for the c89 and related invocation commands

– -qlanglvl=stdc99:ucs for the c99 and related invocation commands

Chapter 3. Compiler options reference 143

v

C++

-qlanglvl=extended:anonstruct:anonunion:ansifor:ansisinit:c99__func__:noc99complex:c99compoundliteral:c99hexfloat:c99vla:dependentbaselookup:gn

Parameters

The following are the -qlanglvl/#pragma langlvl parameters for C language

programs:

classic

Allows the compilation of nonstandard programs, and conforms closely to the

K&R level preprocessor.

 The following outlines the differences between the classic language level and

all other standard-based language levels:

Tokenization

Tokens introduced by macro expansion may be combined with adjacent

tokens in some cases. Historically, this was an artifact of the text-based

implementations of older preprocessors, and because, in older

implementations, the preprocessor was a separate program whose output

was passed on to the compiler.

 For similar reasons, tokens separated only by a comment may also be

combined to form a single token. Here is a summary of how tokenization

of a program compiled in classic mode is performed:

1. At a given point in the source file, the next token is the longest

sequence of characters that can possibly form a token. For example,

i+++++j is tokenized as i ++ ++ + j even though i ++ + ++ j may

have resulted in a correct program.

2. If the token formed is an identifier and a macro name, the macro is

replaced by the text of the tokens specified on its #define directive.

Each parameter is replaced by the text of the corresponding argument.

Comments are removed from both the arguments and the macro text.

3. Scanning is resumed at the first step from the point at which the macro

was replaced, as if it were part of the original program.

4. When the entire program has been preprocessed, the result is scanned

again by the compiler as in the first step. The second and third steps do

not apply here since there will be no macros to replace. Constructs

generated by the first three steps that resemble preprocessing directives

are not processed as such.

It is in the third and fourth steps that the text of adjacent but previously

separate tokens may be combined to form new tokens.

 The \ character for line continuation is accepted only in string and

character literals and on preprocessing directives.

 Constructs such as:

#if 0

 “unterminated

#endif

#define US ”Unterminating string

char *s = US terminated now“

will not generate diagnostic messages, since the first is an unterminated

literal in a FALSE block, and the second is completed after macro

expansion. However:

char *s = US;

144 XL C/C++ Compiler Reference

will generate a diagnostic message since the string literal in US is not

completed before the end of the line.

 Empty character literals are allowed. The value of the literal is zero.

Preprocessing directives

The # token must appear in the first column of the line. The token

immediately following # is available for macro expansion. The line can be

continued with \ only if the name of the directive and, in the following

example, the (has been seen:

#define f(a,b) a+b

f\

(1,2) /* accepted */

#define f(a,b) a+b

f(\

1,2) /* not accepted */

The rules concerning \ apply whether or not the directive is valid. For

example,

#\

define M 1 /* not allowed */

#def\

ine M 1 /* not allowed */

#define\

M 1 /* allowed */

#dfine\

M 1 /* equivalent to #dfine M 1, even

 though #dfine is not valid */

Following are the preprocessor directive differences.

#ifdef/#ifndef

When the first token is not an identifier, no diagnostic message is

generated, and the condition is FALSE.

#else When there are extra tokens, no diagnostic message is generated.

#endif

When there are extra tokens, no diagnostic message is generated.

#include

The < and > are separate tokens. The header is formed by

combining the spelling of the < and > with the tokens between

them. Therefore /* and // are recognized as comments (and are

always stripped), and the ” and ’ do begin literals within the <

and >. (Remember that in C programs, C++-style comments // are

recognized when -qcpluscmt is specified.)

#line The spelling of all tokens which are not part of the line number

form the new file name. These tokens need not be string literals.

#error

Not recognized.

#define

A valid macro parameter list consists of zero or more identifiers

each separated by commas. The commas are ignored and the

parameter list is constructed as if they were not specified. The

parameter names need not be unique. If there is a conflict, the last

name specified is recognized.

Chapter 3. Compiler options reference 145

For an invalid parameter list, a warning is issued. If a macro name

is redefined with a new definition, a warning will be issued and

the new definition used.

#undef

When there are extra tokens, no diagnostic message is generated.

Macro expansion

v When the number of arguments on a macro invocation does not match

the number of parameters, a warning is issued.

v If the (token is present after the macro name of a function-like macro, it

is treated as too few arguments (as above) and a warning is issued.

v Parameters are replaced in string literals and character literals.

v Examples:

#define M() 1

#define N(a) (a)

#define O(a,b) ((a) + (b))

M(); /* no error */

N(); /* empty argument */

O(); /* empty first argument

 and too few arguments */

Text output

No text is generated to replace comments.

extc89

Compilation conforms to the ANSI C89 standard, and accepts

implementation-specific language extensions.

extc99

Compilation conforms to the ISO C99 standard, and accepts

implementation-specific language extensions.

extended

Provides compatibility with the RT compiler and classic. This language level is

based on C89.

saa

Compilation conforms to the current SAA® C CPI language definition. This is

currently SAA C Level 2.

saal2

Compilation conforms to the SAA C Level 2 CPI language definition, with

some exceptions.

stdc89

Compilation conforms strictly to the ANSI C89 standard, also known as ISO

C90.

stdc99

Compilation conforms strictly to the ISO C99 standard.

ucs | noucs (option only)

Controls whether Unicode characters are allowed in identifiers, string literals

and character literals in program source code. This suboption is enabled by

default when stdc99 or extc99 is in effect. For details on the Unicode character

set, see "The Unicode standard" in the XL C/C++ Language Reference.

146 XL C/C++ Compiler Reference

The following -qlanglvl suboptions are accepted but ignored by the C compiler.

Use extended | extc99 | extc89 to enable the functions that these suboptions

imply. For other language levels, the functions implied by these suboptions are

disabled.

[no]gnu_assert

GNU C portability option.

[no]gnu_explicitregvar

GNU C portability option.

[no]gnu_include_next

GNU C portability option.

[no]gnu_locallabel

GNU C portability option.

[no]gnu_warning

GNU C portability option.

The following are the -qlanglvl parameters for C++ language programs:

extended

Compilation is based on the ISO C++ standard, with some differences to

accommodate extended language features.

feature_suboption

Can be any of the following:

anonstruct | noanonstruct

Enables or disables support for anonymous structures and classes.

Anonymous structures are typically used in unions, as in the following

code fragment:

union U {

 struct {

 int i:16;

 int j:16;

 };

 int k;

} u;

// ...

u.j=3;

When the default, -qlanglvl=anonstruct, is in effect, anonymous structures

are supported.

 This is an extension to the C++ standard and gives behavior that is

designed to be compatible with Microsoft® Visual C++. Specify

-qlanglvl=noanonstruct for compliance with standard C++.

anonunion | noanonunion

Controls the members that are allowed in anonymous unions. When the

default, -qlanglvl=anonunion, is in effect, anonymous unions can have

members of all types that standard C++ allows in non-anonymous unions.

For example, non-data members, such as structures, typedefs, and

enumerations are allowed. Member functions, virtual functions, or objects

of classes that have non-trivial default constructors, copy constructors, or

destructors cannot be members of a union, regardless of the setting of this

option.

Chapter 3. Compiler options reference 147

This is an extension to standard C++ and gives behavior that is designed

to be compatible with previous versions of VisualAge C++ and predecessor

products, and Microsoft Visual C++. Specify -qlanglvl=noanonunion for

compliance with standard C++.

ansifor | noansifor

Controls whether scope rules defined in the C++ standard apply to names

declared in for loop initialization statements. When the default,

-qlanglvl=ansifor, is in effect, standard C++ rules are used, and the

following code causes a name lookup error:

{

 //...

 for (int i=1; i<5; i++) {

 cout << i * 2 << endl;

 }

 i = 10; // error

}

The reason for the error is that i, or any name declared within a for loop

initialization statement, is visible only within the for statement. To correct

the error, either declare i outside the loop or set noansifor.

 When -qlanglvl=noansifor is in effect, the old language behavior is used;

specify -qlanglvl=noansifor for compatibility with earlier versions of

VisualAge C++ and predecessor products, and Microsoft Visual C++.

ansisinit | noansisinit

Controls whether standard C++ rules apply for handling static destructors

for global and static objects. When the default, -qlanglvl=ansisinit, is in

effect, the standard rules are used.

 When -qlanglvl=noansisinit is in effect, the old language behavior is used;

specify -qlanglvl=noansisinit for compatibility with earlier versions of

VisualAge C++ and predecessor products.

c99__func__ | noc99__func__

Enables or disables support for the C99 __func__ identifier. For details of

this feature, see "The __func__ predefined identifier" in the XL C/C++

Language Reference.

c99complex | noc99complex

Enables or disables C99 complex data types and related keywords.

c99compoundliteral | noc99compoundliteral

Enables or disables support for C99 compound literals.

c99hexfloat | noc99hexfloat

Enables or disables support for C99-style hexadecimal floating constants.

c99vla | noc99vla

Enables or disables support for C99-type variable length arrays.

dependentbaselookup | nodependentbaselookup

Controls whether the name lookup rules for a template base class of

dependent type defined in the TC1 of the C++ Standard apply. When the

default, -qlanglvl=dependentbaselookup, is in effect, a member of a base

class that is a dependent type hides a name declared within a template or

any name from within the enclosing scope of the template. This setting is

compatible with the behavior of previous XL C++ compilers. Specify

-qlanglvl=nodependentbaselookup for compliance with TC1.

148 XL C/C++ Compiler Reference

gnu_assert | nognu_assert

Enables or disables support for the following GNU C system identification

assertions:

v #assert

v #unassert

v #cpu

v #machine

v #system

gnu_complex | nognu_complex

Enables or disables GNU complex data types and related keywords.

gnu_computedgoto | nognu_computedgoto

Enables or disables support for computed goto statements.

gnu_externtemplate | nognu_externtemplate

Enables or disables extern template instantiations. For details of this

feature, see "Explicit instantiation" in the XL C/C++ Language Reference.

gnu_include_next | nognu_include_next

Enables or disables support for the GNU C #include_next preprocessor

directive.

gnu_labelvalue | nognu_labelvalue

Enables or disables support for labels as values.

gnu_locallabel | nognu_locallabel

Enables or disables support for locally-declared labels.

gnu_membernamereuse | nognu_membernamereuse

Enables or disables reusing a template name in a member list as a typedef.

gnu_suffixij | nognu_suffixij

Enables or disables support for GNU-style complex numbers. When

-qlanglvl=gnu_suffixij is in effect, a complex number can be ended with

suffix i/I or j/J.

gnu_varargmacros | nognu_varargmacros

Enables or disables support for GNU-style macros with variable

arguments. For details of this feature, see "Variadic macro extensions" in

the XL C/C++ Language Reference.

gnu_warning | nognu_warning

Enables or disables support for the GNU C #warning preprocessor

directive.

illptom | noillptom

Controls the expressions that can be used to form pointers to members.

When the default, -qlanglvl=illptom, is in effect, the XL C++ compiler

accepts some forms that are in common use but do not conform to the C++

Standard. For example, the following code defines a pointer to a function

member, p, and initializes it to the address of C::foo, in the old style:

struct C {

void foo(int);

};

void (C::*p) (int) = C::foo;

This is an extension to standard C++ and gives behavior that is designed

to be compatible with earlier versions of VisualAge C++ and its

predecessor products, and Microsoft Visual C++.

Chapter 3. Compiler options reference 149

Specify -qlanglvl=noillptom for compliance with the C++ standard. The

example code above must be modified to use the & operator.

struct C {

void foo(int);

};

void (C::*p) (int) = &C::foo;

implicitint | noimplicitint

Controls whether the compiler accepts missing or partially specified types

as implicitly specifying int. When the default, -qlanglvl=implicitint, is in

effect, a function declaration at namespace scope or in a member list will

implicitly be declared to return int. Also, any declaration specifier

sequence that does not completely specify a type will implicitly specify an

integer type. The effect is as if the int specifier were present.

 The following specifiers do not completely specify a type:

v auto

v const

v extern

v extern “literal”

v inline

v mutable

v friend

v register

v static

v typedef

v virtual

v volatile

v platform-specific types

For example, the return type of function MyFunction is int because it was

omitted in the following code:

MyFunction()

{

 return 0;

}

Note that any situation where a type is specified is affected by this

suboption. This includes, for example, template and parameter types,

exception specifications, types in expressions (eg, casts, dynamic_cast,

new), and types for conversion functions.

 This is an extension to the C++ standard and gives behavior that is

designed to be compatible with earlier versions of VisualAge C++ and

predecessor products, and Microsoft Visual C++.

 Specify -qlanglvl=noimplicitint for compliance with standard C++. For

example, the function declaration above must be modified to:

int MyFunction()

{

 return 0;

}

offsetnonpod | nooffsetnonpod

Controls whether the offsetof macro can be applied to classes that are not

data-only. C++ programmers often casually call data-only classes “Plain

Old Data” (POD) classes. When the default, -qlanglvl=offsetnonpod, is in

effect, you can apply offsetof to a class that contains one of the following:

150 XL C/C++ Compiler Reference

v user-declared constructors or destructors

v user-declared assignment operators

v private or protected non-static data members

v base classes

v virtual functions

v non-static data members of type pointer to member

v a struct or union that has non-data members

v references

This is an extension to the C++ standard, and gives behavior that is

designed to be compatible with VisualAge C++ for OS/2® 3.0, VisualAge

for C++ for Windows®, V3.5, and Microsoft Visual C++. Specify

-qlanglvl=nooffsetnonpod for compliance with standard C++.

olddigraph | noolddigraph

Enables or disables support for old-style digraphs. When the default,

-qlanglvl=olddigraph, is in effect, old-style digraphs are not supported.

When -qlanglvl=olddigraph is in effect, the following digraphs are

supported:

Digraph Resulting character

%% # (pound sign)

%%%% ## (double pound sign, used as the preprocessor macro

concatenation operator)

Specify -qlanglvl=noolddigraph for compatibility with standard C++ and

the extended C++ language level supported by previous versions of

VisualAge C++ and predecessor products.

 This suboption only has effect when -qdigraphs is in effect.

oldfriend | nooldfriend

Controls whether friend declarations that name classes without elaborated

class names are treated as C++ errors. When the default,

-qlanglvl=oldfriend, is in effect, you can declare a friend class without

elaborating the name of the class with the keyword class. For example, the

statement below declares the class IFont to be a friend class:

friend IFont;

This is an extension to the C++ standard and gives behavior that is

designed to be compatible with earlier versions of VisualAge C++ and

predecessor products, and Microsoft Visual C++.

 Specify the -qlanglvl=nooldfriend for compliance with standard C++. The

example declaration above must be modified to the following:

friend class IFont;

oldtempacc | nooldtempacc

Controls whether access to a copy constructor to create a temporary object

is always checked, even if creation of the temporary object is avoided.

When the default, -qlanglvl=oldtempacc, is in effect, access checking is

suppressed.

 This is an extension to the C++ standard and gives behavior that is

designed to be compatible with VisualAge C++ for OS/2 3.0, VisualAge for

C++ for Windows, V3.5, and Microsoft Visual C++. Specify

-qlanglvl=nooldtempacc for compliance with standard C++. For example,

the throw statement in the following code causes an error because the copy

constructor is a protected member of class C:

Chapter 3. Compiler options reference 151

class C {

public:

 C(char *);

protected:

 C(const C&);

};

C foo() {return C(“test”);} // return copy of C object

void f()

{

// catch and throw both make implicit copies of

// the throw object

 throw C(“error”); // throw a copy of a C object

 const C& r = foo(); // use the copy of a C object

// created by foo()

}

The example code above contains three ill formed uses of the copy

constructor C(const C&).

oldtmplalign | nooldtmplalign

Controls whether alignment rules specified for nested templates are

ignored. When the default, -qlanglvl=nooldtmplalign, is in effect, these

alignment rules are not ignored. For example, given the following template

the size of A<char>::B will be 5 with -qlanglvl=nooldtmplalign, and 8

with -qlanglvl=oldtmplalign :

template <class T>

struct A {

#pragma options align=packed

 struct B {

 T m;

 int m2;

 };

#pragma options align=reset

};

Specify -qlanglvl=oldtmplalign for compatibility with VisualAge for C++

V4.0 and predecessor products.

oldtmplspec | nooldtmplspec

Controls whether template specializations that do not conform to the C++

standard are allowed. When the default, -qlanglvl=oldtmplspec, is in

effect, you can explicitly specialize a template class as in the following

example, which specializes the template class ribbon for type char:

template<class T> class ribbon { /*...*/};

class ribbon<char> { /*...*/};

This is an extension to standard C++ and gives behavior that is designed

to be compatible with VisualAge C++ for OS/2 3.0, VisualAge for C++ for

Windows, V3.5, and Microsoft Visual C++.

 Specify -qlanglvl=nooldtmplspec for compliance with standard C++. In

the example above, the template specialization must be modified to:

template<class T> class ribbon { /*...*/};

template<> class ribbon<char> { /*...*/};

redefmac | noredefmac

Controls whether a macro can be redefined without a prior #undef or

undefine() statement.

152 XL C/C++ Compiler Reference

trailenum | notrailenum

Controls whether trailing commas are allowed in enum declarations. When

the default, -qlanglvl=trailenum, is in effect, one or more trailing commas

are allowed at the end of the enumerator list. For example, the following

enum declaration uses this extension:

enum grain { wheat, barley, rye,, };

This is an extension to the C++ standard, and is intended to provide

compatibility with Microsoft Visual C++.

 Specify -qlanglvl=notrailenum for compliance with standard C++.

typedefclass | notypedefclass

Controls whether a typedef name can be specified where a class name is

expected. When the default, -qlanglvl=typedefclass, is in effect, the

standard C++ rule applies, and a typedef name cannot be specified where

a class name is expected. Specify -qlanglvl=typedefclass to allow the use

of typedef names in base specifiers and constructor initializer lists, for

compatibility with earlier versions of VisualAge for C++ and predecessor

products.

ucs | noucs

Controls whether Unicode characters are allowed in identifiers, string

literals and character literals in program source code. For details on the

Unicode character set, see "The Unicode standard" in the XL C/C++

Language Reference.

varargmacros | novarargmacros

Enables or disables support for C99-style variable argument lists in

function-like macros. For details of this feature, see "Function-like macros"

in the XL C/C++ Language Reference.

zeroextarray | nozeroextentarray

Controls whether zero-extent arrays are allowed as the last non-static data

member in a class definition. When the default, -qlanglvl=zeroextentarray,

is in effect, arrays with zero elements are allowed. The example

declarations below define dimensionless arrays a and b.

struct S1 { char a[0]; };

struct S2 { char b[]; };

This is an extension to the C++ standard, and is intended to provide

compatibility with Microsoft Visual C++.

 Specify -qlanglvl=nozeroextarray for compliance with standard C++ or

with the ANSI language level supported by previous versions of VisualAge

C++ and predecessor products.

Usage

C++

In general, if you specify a suboption with the no form of the option, the

compiler will diagnose any uses of the feature in your code with a warning, unless

you disable the warning with the -qsuppress option. Additionally, you can use the

-qinfo=por option to generate informational messages along with the following

suboptions:

v [no]c99complex

v [no]gnu_complex

Chapter 3. Compiler options reference 153

C Since the pragma directive makes your code non-portable, it is

recommended that you use the option rather than the pragma. If you do use the

pragma, it must appear before any noncommentary lines in the source code. Also,

because the directive can dynamically alter preprocessor behavior, compiling with

the preprocessing-only options may produce results different from those produced

during regular compilation.

Predefined macros

See “Macros related to language levels” on page 312 for a list of macros that are

predefined by -qlanglvl suboptions.

Related information

v “-qsuppress” on page 217

v ″The IBM XL C language extensions″ and ″The IBM XL C++ language

extensions″ in XL C/C++ Language Reference

-qldbl128

Category

Floating-point and integer control

Pragma equivalent

#pragma options [no]ldbl128

Purpose

Increases the size of long double types from 64 bits to 128 bits.

Syntax

��
 ldbl128

-q

noldbl128

��

Defaults

-qldbl128

Usage

The #pragma options directive must appear before the first C or C++ statement in

the source file, and the option applies to the entire file.

Predefined macros

v __LONGDOUBLE128 and __LONG_DOUBLE_128__ are defined to 1 when

-qldbl128 is in effect; otherwise, they are undefined.

v __LONGDOUBLE64 is defined to 1 when -qnoldbl128 is in effect; it is

undefined when -qldbl128 is in effect.

Examples

To compile myprogram.c so that long double types are 128 bits, enter:

xlc myprogram.c -qldbl128

-qlib

Category

Linking

154 XL C/C++ Compiler Reference

Pragma equivalent

None.

Purpose

Specifies whether standard system libraries and XL C/C++ libraries are to be

linked.

When -qlib is in effect, the standard system libraries and compiler libraries are

automatically linked. When -qnolib is in effect, the standard system libraries and

compiler libraries are not used at link time; only the libraries specified on the

command line with the -l flag will be linked.

This option can be used in system programming to disable the automatic linking of

unneeded libraries.

Syntax

��
 lib

-q

nolib

��

Defaults

-qlib

Usage

Using -qnolib specifies that no libraries, including the system libraries as well as

the XL C/C++ libraries (these are found in the lib/ and lib64/ subdirectories of the

compiler installation directory), are to be linked. The system startup files are still

linked, unless -qnocrt is also specified.

Note that if your program references any symbols that are defined in the standard

libraries or compiler-specific libraries, link errors will occur. To avoid these

unresolved references when compiling with -qnolib, be sure to explicitly link the

required libraries by using the command flag -l and the library name.

Predefined macros

None.

Examples

To compile myprogram.c without linking to any libraries except the compiler library

libxlopt.a, enter:

xlc myprogram.c -qnolib -lxlopt

Related information

v “-qcrt” on page 78

-qlibansi

Category

Optimization and tuning

Pragma equivalent

#pragma options [no]libansi

Chapter 3. Compiler options reference 155

Purpose

Assumes that all functions with the name of an ANSI C library function are in fact

the system functions.

When libansi is in effect, the optimizer can generate better code because it will

know about the behavior of a given function, such as whether or not it has any

side effects.

Syntax

��
 nolibansi

-q

libansi

��

Defaults

-qnolibansi

Predefined macros

C++

__LIBANSI__ is defined to 1 when libansi is in effect; otherwise, it is not

defined.

-qlinedebug

Category

Error checking and debugging

Pragma equivalent

None.

Purpose

Generates only line number and source file name information for a debugger.

When -qlinedebug is in effect, the compiler produces minimal debugging

information, so the resulting object size is smaller than that produced by the -g

debugging option. You can use the debugger to step through the source code, but

you will not be able to see or query variable information. The traceback table, if

generated, will include line numbers.

Syntax

��
 nolinedebug

-q

linedebug

��

Defaults

-qnolinedebug

Usage

When -qlinedebug is in effect, function inlining is disabled.

Avoid using -qlinedebug with -O (optimization) option. The information produced

may be incomplete or misleading.

The -g option overrides the -qlinedebug option. If you specify -g with

-qnolinedebug on the command line, -qnolinedebug is ignored and a warning is

issued.

156 XL C/C++ Compiler Reference

Predefined macros

None.

Examples

To compile myprogram.c to produce an executable program testing so you can step

through it with a debugger, enter:

xlc myprogram.c -o testing -qlinedebug

Related information

v “-g” on page 107

v “-O, -qoptimize” on page 169

-qlist

Category

Listings, messages, and compiler information

Pragma equivalent

#pragma options [no]list

Purpose

Produces a compiler listing file that includes an object listing.

When list is in effect, a listing file is generated with a .lst suffix for each source file

named on the command line. For details of the contents of the listing file, see

“Compiler listings” on page 18.

You can use the object listing to help understand the performance characteristics of

the generated code and to diagnose execution problems.

Syntax

��
 nolist

-q

list

nooffset

=

offset

��

Defaults

-qnolist

Parameters

offset | nooffset

Changes the offset of the PDEF header from 00000 to the offset of the start of

the text area. Specifying the option allows any program reading the .lst file to

add the value of the PDEF and the line in question, and come up with the

same value whether offset or nooffset is specified. The offset suboption is

only relevant if there are multiple procedures in a compilation unit.

 Specifying list without the suboption is equivalent to list=nooffset.

Usage

The -qnoprint compiler option overrides this option.

Predefined macros

None.

Chapter 3. Compiler options reference 157

Examples

To compile myprogram.c and to produce a listing (.lst) file that includes an object

listing, enter:

xlc myprogram.c -qlist

Related information

v “-qlistopt”

v “-qprint” on page 185

v “-qsource” on page 208

-qlistopt

Category

Listings, messages, and compiler information

Pragma equivalent

None.

Purpose

Produces a compiler listing file that includes all options in effect at the time of

compiler invocation.

When listopt is in effect, a listing file is generated with a .lst suffix for each source

file named on the command line. The listing shows options in effect as set by the

compiler defaults, the configuration file, and command line settings. For details of

the contents of the listing file, see “Compiler listings” on page 18.

Syntax

��
 nolistopt

-q

listopt

��

Defaults

-qnolistopt

Usage

Option settings caused by pragma statements in the program source are not shown

in the compiler listing.

The -qnoprint compiler option overrides this option.

Predefined macros

None.

Examples

To compile myprogram.c to produce a listing (.lst) file that shows all options in

effect, enter:

xlc myprogram.c -qlistopt

Related information

v “-qlist” on page 157

v “-qprint” on page 185

v “-qsource” on page 208

158 XL C/C++ Compiler Reference

-qlonglit

Category

Floating-point and integer control

Pragma equivalent

None.

Purpose

In 64-bit mode, promotes literals with implicit type of int to long.

Syntax

��
 nolonglit

-q

longlit

��

Defaults

-qnolonglit

Usage

The following table shows the default implicit types for constants and the implicit

types when -qlonglit is in effect.

 Suffix Decimal literals Hexadecimal or octal literals

Default implicit

type

Implicit type with

-qlonglit in effect

Default implicit type Implicit type with

-qlonglit in effect

unsuffixed int long int long int int

unsigned int

long int

unsigned long int

long int

unsigned long int

u or U unsigned int

unsigned long int

unsigned long int unsigned int

unsigned long int

unsigned long int

l or L long int long int long int

unsigned long int

long int

unsigned long int

Both u or U,

and l or L

unsigned long int unsigned long int unsigned long int unsigned long int

ll or LL long long int long long int long long int

unsigned long long int

long long int

unsigned long long int

Both u or U,

and ll or LL

unsigned long long

int

unsigned long long int unsigned long long int unsigned long long int

Predefined macros

None.

-qlonglong

Category

Language element control

Pragma equivalent

#pragma options [no]longlong

Chapter 3. Compiler options reference 159

Purpose

Allows IBM long long integer types in your program.

Syntax

�� -q longlong

nolonglong
 ��

Defaults

v

C

-qlonglong for the cc invocation command or the -qlanglvl=extended

| extc89 option; -qnolonglong for the c89 invocation command or

-qlanglvl=stdc89 option.

v

C++

-qlonglong

Usage

C

This option only has an effect with the cc or c89 invocation commands,

or when the -qlanglvl option is set to extended | stdc89 | extc89. It is not valid

for the xlc invocation command or when the language level stdc99 | extc99 is in

effect, as the long long support provided by this option is incompatible with the

semantics of the long long types mandated by the C99 standard. For details, see

"Integer literals" in the XL C/C++ Language Reference.

Predefined macros

_LONG_LONG is defined to 1 when long long data types are available; otherwise,

it is undefined.

Examples

To compile myprogram.c with support for IBM long long integers, enter:

cc myprogram.c [-qlonglong]

Related information

v "Integer literals" in the XL C/C++ Language Reference

-ma (C only)

See “-qalloca, -ma (C only)” on page 56.

-qmakedep, -M

Category

Output control

Pragma equivalent

None.

Purpose

Creates an output file containing targets suitable for inclusion in a description file

for the make command.

The output file is named with a .d suffix.

160 XL C/C++ Compiler Reference

Syntax

�� -M

-q

makedep

=

gcc

 ��

Defaults

Not applicable.

Parameters

gcc (-qmakedep option only)

The format of the generated make rule to matches the GCC format: the

description file includes a single target listing all of the main source file's

dependencies.

 If you specify -qmakedep with no suboption, or -M, the description file specifies a

separate rule for each of the main source file's dependencies.

Usage

For each source file with a .c, .C, .cpp, or .i suffix named on the command line, an

output file is generated with the same name as the object file and a .d suffix.

Output files are not created for any other types of input files. If you use the -o

option to rename the object file, the output file uses the name you specified on the

-o option. See below for examples.

The output files generated by these options are not make files; they must be linked

before they can be used with the make command. For more information on this

command, see your operating system documentation.

The output file contains a line for the input file and an entry for each include file.

It has the general form:

file_name.o:include_file_name

file_name.o:file_name.suffix

You can also use the following option with qmakedep and -M:

-MF=file_path

Sets the name of the output file, where file_path is the full or partial path or file

name for the output file. See below for examples.

 Include files are listed according to the search order rules for the #include

preprocessor directive, described in “Directory search sequence for include files”

on page 12. If the include file is not found, it is not added to the .d file.

Files with no include statements produce output files containing one line that lists

only the input file name.

Predefined macros

None.

Examples

To compile mysource.c and create an output file named mysource.d, enter:

xlc -c -qmakedep mysource.c

To compile foo_src.c and create an output file named mysource.d, enter:

Chapter 3. Compiler options reference 161

xlc -c -qmakedep foo_src.c -MF mysource.d

To compile foo_src.c and create an output file named mysource.d in the deps/

directory, enter:

xlc -c -qmakedep foo_src.c -MF deps/mysource.d

To compile foo_src.c and create an object file named foo_obj.o and an output file

named foo_obj.d, enter:

xlc -c -qmakedep foo_src.c -o foo_obj.o

To compile foo_src.c and create an object file named foo_obj.o and an output file

named mysource.d, enter:

xlc -c -qmakedep foo_src.c -o foo_obj.o -MF mysource.d

To compile foo_src1.c and foo_src2.c to create two output files, named

foo_src1.d and foo_src2.d, respectively, in the c:/tmp/ directory, enter:

xlc -c -qmakedep foo_src1.c foo_src2.c -MF c:/tmp/

Related information

v “-MF” on page 166

v “-o” on page 168

v “Directory search sequence for include files” on page 12

-qmaxerr

Category

Error checking and debugging

Pragma equivalent

None.

Purpose

Halts compilation when a specified number of errors of a specified severity level

or higher is reached.

Syntax

-qmaxerr syntax — C

��
 nomaxerr

-q

maxerr

=

number

s

:

i

w

e

��

-qmaxerr syntax — C++

��
 nomaxerr

-q

maxerr

=

number

s

:

i

w

��

162 XL C/C++ Compiler Reference

Defaults

-qnomaxerr: The compiler continues to process as much input as possible, until it

is not able to generate code.

Parameters

number

Must be an integer with a value of 1 or greater. An unrecoverable error occurs

when the number of errors reaches the limit specified, and compilation stops.

i Specifies a minimum severity level of Informational (I).

w Specifies a minimum severity level of Warning (W).

C

e

Specifies a minimum severity level of Error (E).

s Specifies a minimum severity level of Severe error (S).

 If you specify -qmaxerr with no severity level and the -qhalt option or pragma is

also in effect, the severity level specified by halt is used. If you specify -qmaxerr

with no severity level and halt is not in effect, the default severity level is s.

Usage

If the -qmaxerr option is specified more than once, the -qmaxerr option specified

last determines the action of the option. If both the -qmaxerr and -qhalt options

are specified, the -qmaxerr or -qhalt option specified last determines the severity

level used by the -qmaxerr option.

Diagnostic messages may be controlled by the -qflag option.

Predefined macros

None.

Examples

To stop compilation of myprogram.c when 10 warnings are encountered, enter the

command:

xlc myprogram.c -qmaxerr=10:w

To stop compilation of myprogram.c when 5 severe errors are encountered,

assuming that the current -qhalt option value is s (severe), enter the command:

xlc myprogram.c -qmaxerr=5

To stop compilation of myprogram.c when 3 informational messages are

encountered, enter the command:

xlc myprogram.c -qmaxerr=3:i

or:

xlc myprogram.c -qmaxerr=3 -qhalt=i

Related information

v “-qflag” on page 96

v “-qhalt” on page 110

v “Message severity levels and compiler response” on page 16

Chapter 3. Compiler options reference 163

-qmaxmem

Category

Optimization and tuning

Pragma equivalent

#pragma options maxmem

Purpose

Limits the amount of memory that the compiler allocates while performing

specific, memory-intensive optimizations to the specified number of kilobytes.

Syntax

�� -q maxmem = size_limit ��

Defaults

v -qmaxmem=8192 when -O2 is in effect.

v -qmaxmem=-1 when -O3 or higher optimization is in effect.

Parameters

size_limit

The number of kilobytes worth of memory to be used by optimizations. The

limit is the amount of memory for specific optimizations, and not for the

compiler as a whole. Tables required during the entire compilation process are

not affected by or included in this limit.

 A value of -1 permits each optimization to take as much memory as it needs

without checking for limits.

Usage

A smaller limit does not necessarily mean that the resulting program will be

slower, only that the compiler may finish before finding all opportunities to

increase performance. Increasing the limit does not necessarily mean that the

resulting program will be faster, only that the compiler is better able to find

opportunities to increase performance if they exist.

Setting a large limit has no negative effect on the compilation of source files when

the compiler needs less memory. However, depending on the source file being

compiled, the size of subprograms in the source, the machine configuration, and

the workload on the system, setting the limit too high, or to -1, might exceed

available system resources.

Predefined macros

None.

Examples

To compile myprogram.c so that the memory specified for local table is 16384

kilobytes, enter:

xlc myprogram.c -qmaxmem=16384

-qmbcs, -qdbcs

Category

Language element control

164 XL C/C++ Compiler Reference

Pragma equivalent

#pragma options [no]mbcs, #pragma options [no]dbcs

Purpose

Enables support for multibyte character sets (MBCS) and Unicode characters in

your source code.

When mbcs or dbcs is in effect, multibyte character literals and comments are

recognized by the compiler. When nombcs or nodbcs is in effect, the compiler

treats all literals as single-byte literals.

Syntax

��

 nodbcs

nombcs

-q

mbcs

dbcs

��

Defaults

-qnombcs, -qnodbcs

Usage

For rules on using multibyte characters in your source code, see "Multibyte

characters" in the XL C/C++ Language Reference.

In addition, you can use multibyte characters in the following contexts:

v In file names passed as arguments to compiler invocations on the command line;

for example:

xlc /u/myhome/c_programs/kanji_files/multibyte_char.c -omultibyte_char

v In file names, as suboptions to compiler options that take file names as

arguments

v In the definition of a macro name using the -D option; for example:

-DMYMACRO=“kpsmultibyte_chardcs”

-DMYMACRO=’multibyte_char’

Listing files display the date and time for the appropriate international language,

and multibyte characters in the source file name also appear in the name of the

corresponding list file. For example, a C source file called:

multibyte_char.c

gives a list file called

multibyte_char.lst

Predefined macros

None.

Examples

To compile myprogram.c if it contains multibyte characters, enter:

xlc myprogram.c -qmbcs

Related information

v “-D” on page 81

Chapter 3. Compiler options reference 165

-MF

Category

Output control

Pragma equivalent

None.

Purpose

Specifies the target for the output generated by the -qmakedep or -M options.

This option is used only together with the -qmakedep or -M options. See the

description for the “-qmakedep, -M” on page 160 for more information.

Syntax

�� -MF path ��

Defaults

Not applicable.

Parameters

path

The target output path. path can be a full directory path or file name. If path is

the name of a directory, the dependency file generated by the compiler is

placed into the specified directory. If you do not specify a directory, the

dependency file is stored in the current working directory.

Usage

If the file specified by -MF option already exists, it will be overwritten.

If you specify a single file name for the -MF option when compiling multiple

source files, only a single dependency file will be generated containing the make

rule for the last file specified on the command line.

Predefined macros

None.

Related information

v “-qmakedep, -M” on page 160

v “-o” on page 168

v “Directory search sequence for include files” on page 12

-qminimaltoc

Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Controls the generation of the table of contents (TOC), which the compiler creates

for an executable file in 64-bit compilation mode.

166 XL C/C++ Compiler Reference

Programs compiled in 64-bit mode have a limit of 8192 TOC entries. As a result,

you may encounter ″relocation truncation″ error messages when linking large

programs in 64-bit mode; these error messages are caused by TOC overflow

conditions. When -qminimaltoc is in effect, the compiler avoids these overflow

conditions by placing TOC entries into a separate data section for each object file.

Specifying -qminimaltoc ensures that the compiler creates only one TOC entry for

each compilation unit. Specifying this option can minimize the use of available

TOC entries, but its use impacts performance. Use the -qminimaltoc option with

discretion, particularly with files that contain frequently executed code.

Syntax

��
 nominimaltoc

-q

minimaltoc

��

Defaults

-qnominimaltoc

Usage

This compiler option applies to 64-bit compilations only.

Compiling with -qminimaltoc may create slightly slower and larger code for your

program. However, these effects may be minimized by specifying optimizing

options when compiling your program.

Predefined macros

None.

-qmkshrobj

Category

Output control

Pragma equivalent

None.

Purpose

Creates a shared object from generated object files.

You should use this option, together with the related options described below,

instead of calling the linker directly to create a shared object. The advantages of

using this option are the automatic handling of link-time C++ template

instantiation (using either the template include directory or the template registry),

and compatibility with -qipa link-time optimizations (such as those performed at

-O5)..

Syntax

�� -q mkshrobj ��

Defaults

By default, the output object is linked with the runtime libraries and startup

routines to create an executable file.

Chapter 3. Compiler options reference 167

Usage

Specifying -qmkshrobj implies -qpic.

You can also use the following related options with the -qmkshrobj:

-o shared_file

The name of the file that will hold the shared file information. The default is

a.out.

-e name

Sets the entry name for the shared executable to name.

 For detailed information on using -qmkshrobj to create shared libraries, see

"Constructing a library" in the XL C/C++ Programming Guide.

Predefined macros

None.

Examples

To construct the shared library big_lib.so from three smaller object files, type:

xlc -qmkshrobj -o big_lib.so lib_a.o lib_b.o lib_c.o

Related information

v “-o”

v “-e” on page 86

v “-qpriority (C++ only)” on page 186

v “-qpic” on page 183

-o

Category

Output control

Pragma equivalent

None.

Purpose

Specifies a name for the output object, assembler, or executable file.

Syntax

�� -o path ��

Defaults

See “Types of output files” on page 4 for the default file names and suffixes

produced by different phases of compilation.

Parameters

path

When you are using the option to compile from source files, path can be the

name of a file or directory. The path can be a relative or absolute path name.

When you are using the option to link from object files, path must be a file

name.

168 XL C/C++ Compiler Reference

If the path is the name of an existing directory, files created by the compiler are

placed into that directory. If path is not an existing directory, the path is the

name of the file produced by the compiler. See below for examples.

 You can not specify a file name with a C or C++ source file suffix (.C, .c, .cpp,

or .i), such as myprog.c or myprog.i; this results in an error and neither the

compiler nor the linker is invoked.

Usage

If you use the -c option with -o together and the path is not an existing directory,

you can only compile one source file at a time. In this case, if more than one

source file name is listed in the compiler invocation, the compiler issues a warning

message and ignores -o.

The -E, -P, and -qsyntaxonly options override the -o option.

Predefined macros

None.

Examples

To compile myprogram.c so that the resulting executable is called myaccount,

assuming that no directory with name myaccount exists, enter:

xlc myprogram.c -o myaccount

To compile test.c to an object file only and name the object file new.o, enter:

xlc test.c -c -o new.o

Related information

v “-c” on page 67

v “-E” on page 87

v “-P” on page 174

v “-qsyntaxonly (C only)” on page 219

-O, -qoptimize

Category

Optimization and tuning

Pragma equivalent

#pragma options [no]optimize

Purpose

Specifies whether to optimize code during compilation and, if so, at which level.

Syntax

Chapter 3. Compiler options reference 169

��

 noopt

nooptimize

-q

optimize

opt

=

0

2

3

4

5

-O0

-O

-O2

-O3

-O4

-O5

��

Defaults

-qnooptimize or -O0 or -qoptimize=0

Parameters

-O0 | nooptimize | noopt | optimize|opt=0

Performs only quick local optimizations such as constant folding and

elimination of local common subexpressions.

 This setting implies -qstrict_induction unless -qnostrict_induction is explicitly

specified.

-O

| -O2 | optimize | opt | optimize|opt=2

Performs optimizations that the compiler developers considered the best

combination for compilation speed and runtime performance. The

optimizations may change from product release to release. If you need a

specific level of optimization, specify the appropriate numeric value.

 This setting implies -qstrict and -qnostrict_induction, unless explicitly negated

by -qstrict_induction or -qnostrict.

-O3 | optimize|opt=3

Performs additional optimizations that are memory intensive, compile-time

intensive, or both. They are recommended when the desire for runtime

improvement outweighs the concern for minimizing compilation resources.

 -O3 applies the -O2 level of optimization, but with unbounded time and

memory limits. -O3 also performs higher and more aggressive optimizations

that have the potential to slightly alter the semantics of your program. The

compiler guards against these optimizations at -O2. The aggressive

optimizations performed when you specify -O3 are:

1. Aggressive code motion, and scheduling on computations that have the

potential to raise an exception, are allowed.

Loads and floating-point computations fall into this category. This

optimization is aggressive because it may place such instructions onto

execution paths where they will be executed when they may not have been

according to the actual semantics of the program.

For example, a loop-invariant floating-point computation that is found on

some, but not all, paths through a loop will not be moved at -O2 because

the computation may cause an exception. At -O3, the compiler will move it

because it is not certain to cause an exception. The same is true for motion

of loads. Although a load through a pointer is never moved, loads off the

static or stack base register are considered movable at -O3. Loads in general

170 XL C/C++ Compiler Reference

are not considered to be absolutely safe at -O2 because a program can

contain a declaration of a static array a of 10 elements and load

a[60000000003], which could cause a segmentation violation.

The same concepts apply to scheduling.

Example:

In the following example, at -O2, the computation of b+c is not moved out

of the loop for two reasons:

v It is considered dangerous because it is a floating-point operation

v t does not occur on every path through the loop
At -O3, the code is moved.

 ...

 int i ;

 float a[100], b, c ;

 for (i = 0 ; i < 100 ; i++)

 {

 if (a[i] < a[i+1])

 a[i] = b + c ;

 }

 ...

2. Conformance to IEEE rules are relaxed.

With -O2 certain optimizations are not performed because they may

produce an incorrect sign in cases with a zero result, and because they

remove an arithmetic operation that may cause some type of floating-point

exception.

For example, X + 0.0 is not folded to X because, under IEEE rules, -0.0 + 0.0

= 0.0, which is -X. In some other cases, some optimizations may perform

optimizations that yield a zero result with the wrong sign. For example, X -

Y * Z may result in a -0.0 where the original computation would produce

0.0.

In most cases the difference in the results is not important to an application

and -O3 allows these optimizations.

3. Floating-point expressions may be rewritten.

Computations such as a*b*c may be rewritten as a*c*b if, for example, an

opportunity exists to get a common subexpression by such rearrangement.

Replacing a divide with a multiply by the reciprocal is another example of

reassociating floating-point computations.

4. Specifying -O3 implies -qhot=level=0, unless you explicitly specify -qhot or

-qhot=level=1 option.

-qfloat=rsqrt is set by default with -O3.

 -qmaxmem=1 is set by default with -O3, allowing the compiler to use as much

memory as necessary when performing optimizations.

 Built-in functions do not change errno at -O3.

 Integer divide instructions are considered too dangerous to optimize even at

-O3.

 Refer to “-qflttrap ” on page 102 to see the behavior of the compiler when you

specify optimize options with the -qflttrap option.

 You can use the -qstrict and -qstrict_induction compiler options to turn off

effects of -O3 that might change the semantics of a program. Specifying -qstrict

Chapter 3. Compiler options reference 171

together with -O3 invokes all the optimizations performed at -O2 as well as

further loop optimizations. Reference to the -qstrict compiler option can appear

before or after the -O3 option.

 The -O3 compiler option followed by the -O option leaves -qignerrno on.

 When -O3 and -qhot=level=1 are in effect, the compiler replaces any calls in

the source code to standard math library functions with calls to the equivalent

MASS library functions, and if possible, the vector versions.

-O4 | optimize|opt=4

This option is the same as -O3, except that it also:

v Sets the -qarch and -qtune options to the architecture of the compiling

machine

v Sets the -qcache option most appropriate to the characteristics of the

compiling machine

v Sets the -qhot option

v Sets the -qipa option

Note: Later settings of -O, -qcache, -qhot, -qipa, -qarch, and -qtune options

will override the settings implied by the -O4 option.

-O5 | optimize|opt=5

This option is the same as -O4, except that it:

v Sets the -qipa=level=2 option to perform full interprocedural data flow and

alias analysis.

Note: Later settings of -O, -qcache, -qipa, -qarch, and -qtune options will

override the settings implied by the -O5 option.

Usage

Increasing the level of optimization may or may not result in additional

performance improvements, depending on whether additional analysis detects

further opportunities for optimization.

Compilations with optimizations may require more time and machine resources

than other compilations.

Optimization can cause statements to be moved or deleted, and generally should

not be specified along with the -g flag for debugging programs. The debugging

information produced may not be accurate.

Predefined macros

v __OPTIMIZE__ is predefined to 2 when -O | O2 is in effect; it is predefined to 3

when -O3 | O4 | O5 is in effect. Otherwise, it is undefined.

v __OPTIMIZE_SIZE__ is predefined to 1 when -O | -O2 | -O3 | -O4 | -O5 and

-qcompact are in effect. Otherwise, it is undefined.

Examples

To compile and optimize myprogram.c, enter:

xlc myprogram.c -O3

Related information

v ″Optimizing your applications″ in the XL C/C++ Programming Guide.

172 XL C/C++ Compiler Reference

-qoptdebug

Category

Error checking and debugging

Pragma equivalent

None.

Purpose

When used with high levels of optimization, produces files containing optimized

pseudocode that can be read by a debugger.

An output file with a .optdbg extension is created for each source file compiled

with -qoptdebug. You can use the information contained in this file to help you

understand how your code actually behaves under optimization.

Syntax

��

-q
 nooptdebug

optdebug

��

Defaults

-qnooptdebug

Usage

-qoptdebug only has an effect when used with an option that enables the

high-level optimizer, namely -O3 or higher optimization level, or -qhot, -qsmp,

-qipa, or -qpdf. You can use the option on both compilation and link steps. If you

specify it on the compile step, one output file is generated for each source file. If

you specify it on the -qipa link step, a single output file is generated.

You must still use the -g or -qlinedebug option to include debugging information

that can be used by a debugger.

For more information and examples of using this option, see "Using -qoptdebug to

help debug optimized programs" in the XL C/C++ Programming Guide.

Predefined macros

None.

Related information

v “-O, -qoptimize” on page 169

v “-qhot” on page 112

v “-qipa” on page 128

v “-qpdf1, -qpdf2” on page 178

v “-qsmp” on page 204

v “-g” on page 107

v “-qlinedebug” on page 156

-p, -pg, -qprofile

Category

Optimization and tuning

Chapter 3. Compiler options reference 173

Pragma equivalent

None.

Purpose

Prepares the object files produced by the compiler for profiling.

When you compile with a profiling option, the compiler produces monitoring code

that counts the number of times each routine is called. The compiler replaces the

startup routine of each subprogram with one that calls the monitor subroutine at

the start. When you execute the compiled program and it ends normally, it writes

the recorded information to a gmon.out file. You can then use the gprof command

to generate a runtime profile.

Syntax

�� -p

-pg

-q

profile

=

p

pg

 ��

Defaults

Not applicable.

Usage

When you are compiling and linking in separate steps, you must specify the

profiling option in both steps.

If the -qtbtable option is not set, the profiling options will generate full traceback

tables.

Predefined macros

None.

Examples

To compile myprogram.c to include profiling data, enter:

xlc myprogram.c -p

Remember to compile and link with one of the profiling options. For example:

xlc myprogram.c -p -c

xlc myprogram.o -p -o program

Related information

v “-qtbtable” on page 222

v See your operating system documentation for more information on the gprof

command.

-P

Category

Output control

Pragma equivalent

None.

174 XL C/C++ Compiler Reference

Purpose

Preprocesses the source files named in the compiler invocation, without compiling,

and creates an output preprocessed file for each input file.

The preprocessed output file has the same name as the input file, with an .i suffix.

Syntax

�� -P ��

Defaults

By default, source files are preprocessed, compiled, and linked to produce an

executable file.

Usage

The -P option accepts any file name, except those with an .i suffix. Otherwise,

source files with unrecognized file name suffixes are treated and preprocessed as C

files, and no error message is generated.

Unless -qppline is specified, #line directives are not generated.

Line continuation sequences are removed and the source lines are concatenated.

The -P option retains all white space including line-feed characters, with the

following exceptions:

v All comments are reduced to a single space (unless -C is specified).

v Line feeds at the end of preprocessing directives are not retained.

v White space surrounding arguments to function-style macros is not retained.

The -P option is overridden by the -E option. The -P option overrides the -c, -o,

and -qsyntaxonly option.

Predefined macros

None.

Related information

v “-C, -C!” on page 68

v “-E” on page 87

v “-qppline” on page 184

v “-qsyntaxonly (C only)” on page 219

-qpack_semantic

Category

Portability and migration

Pragma equivalent

None.

Purpose

Controls the syntax and semantics of the #pragma pack directive.

Chapter 3. Compiler options reference 175

Syntax

��
 ibm

-q

pack_semantic

=

gnu

��

Defaults

-qpack_semantic=ibm

Parameters

gnu

Uses the GCC syntax and semantics for #pragma pack. The effects of this

suboption are:

v The current packing value is independent from the packing stack.

v Values are only placed on the pack stack with the push parameter. Only

values that have been specified with the push parameter can be removed

from the stack by the pop parameter.

v If a #pragma pack directive is specified inside a nested aggregate, it affects

the outer, containing aggregate as well.

ibm

Uses the IBM syntax and semantics for #pragma pack. The effects of this

suboption are:

v The current packing value is automatically placed at the top of the packing

stack.

v There is no push parameter. Any value can be removed from the stack by

the pop parameter.

v If a #pragma pack directive is specified inside a nested aggregate, it only

affects aggregates that follow it; that is, it can only affected the inner

aggregates.

 See “#pragma pack” on page 279 for full details on the syntax and semantics, as

well as examples, of these suboptions.

Usage

You should not need to use this option unless you are porting applications

compiled with GCC and need to preserve source-level compatibility with the GCC

version of the pragma directive.

Predefined macros

None.

Examples

See “#pragma pack” on page 279 for examples.

-qpath

Category

Compiler customization

Pragma equivalent

None.

176 XL C/C++ Compiler Reference

Purpose

Determines substitute path names for XL C/C++ executables such as the compiler,

assembler, linker, and preprocessor.

You can use this option if you want to keep multiple levels of some or all of the

XL C/C++ executables and have the option of specifying which one you want to

use. This option is preferred over the -B and -t options.

Syntax

�� -q path = a : directory_path

b

c

C

d

I

L

l

p

 ��

Defaults

By default, the compiler uses the paths for compiler components defined in the

configuration file.

Parameters

directory_path

The path to the directory where the alternate programs are located.

 The following table shows the correspondence between -qpath parameters and the

component executable names:

 Parameter Description Executable name

a Assembler as

b Low-level optimizer xlCcode

c Compiler front end xlcentry, xlCentry

C++

C

C++ compiler front end xlCentry

d Disassembler dis

I High-level optimizer,

compile step

ipa

L High-level optimizer, link

step

ipa

l Linker ld

p Preprocessor n/a

Usage

The -qpath option overrides the -F, -t, and -B options.

Note that using the p suboption causes the source code to be preprocessed

separately before compilation, which can change the way a program is compiled.

Predefined macros

None.

Chapter 3. Compiler options reference 177

Examples

To compile myprogram.c using a substitute xlc compiler in /lib/tmp/mine/ enter:

xlc myprogram.c -qpath=c:/lib/tmp/mine/

To compile myprogram.c using a substitute linker in /lib/tmp/mine/, enter:

xlc myprogram.c -qpath=l:/lib/tmp/mine/

Related information

v “-B” on page 65

v “-F” on page 94

v “-t” on page 220

-qpdf1, -qpdf2

Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Tunes optimizations through profile-directed feedback (PDF), where results from

sample program execution are used to improve optimization near conditional

branches and in frequently executed code sections.

PDF is a two-step process. You first compile the application with -qpdf1 and a

minimum optimization level of -O2, with linking. You then run the resulting

application with a typical data set. During the test run, profile data is written to a

profile file (by default, this file is named ._pdf and is saved in the current working

directory, or in the directory named by the PDFDIR environment variable, if it is

set). You then recompile, and/or link or relink the application with -qpdf2 and a

minimum optimization level of -O2, which fine-tunes the optimizations applied

according to the profile data collected during the program execution.

PDF is intended to be used after other debugging and tuning is finished, as one of

the last steps before putting the application into production.

Syntax

��

 nopdf2

nopdf1

-q

pdf1

=

pdfname

=

file_path

pdf2

=

pdfname

=

file_path

��

Defaults

-qnopdf1, -qnopdf2

Parameters

pdfname= file_path

Specifies the path to the file that will hold the profile data. By default, the file

name is ._pdf, and it is placed in the current working directory or in the

directory named by the PDFDIR environment variable. You can use the

178 XL C/C++ Compiler Reference

pdfname suboption to allow you to do simultaneous runs of multiple

executables using the same PDF directory. This is especially useful when

tuning with PDF on dynamic libraries.

Usage

You must compile the main program with PDF for profiling information to be

collected at run time.

You must use the same compilation options for the PDF2 compilation as for the

PDF1 compilation.

If you do not want the optimized object files to be relinked during the second step,

specify -qpdf2 -qnoipa. Note, however, that if you change a source file that was

compiled previously with -qpdf1, you will need to go through the entire first pass

process again.

If you want to specify an alternate path and file name for the profile file, use the

pdfname suboption. Alternatively, you can use the PDFDIR environment variable

to specify the absolute path name for the directory. Do not compile or run two

different applications that use the same profiling directory at the same time, unless

you have used the pdfname suboption to distinguish the sets of profiling

information. For examples, see "Optimizing your applications" in the XL C/C++

Programming Guide.

You can also use the following option with -qpdf1:

-qshowpdf

Provides additional information, such as block and function call counts, to the

profile file. See “-qshowpdf” on page 203 for more information.

For recommended procedures for using PDF, see "Optimizing your applications" in

the XL C/C++ Programming Guide.

The following utility programs, found in /opt/ibmcmp/vac/9.0/bin/, are

available for managing the directory to which profile data is written:

cleanpdf

�� cleanpdf

directory_path
 ��

Removes all profiling information from the directory specified by

directory_path; or if pathname is not specified, from the directory set by the

PDFDIR environment variable; or if PDFDIR is not set, from the current

directory. Removing profiling information reduces runtime overhead if you

change the program and then go through the PDF process again.

 Run cleanpdf only when you are finished with the PDF process for a

particular application. Otherwise, if you want to resume using PDF with

that application, you will need to recompile all of the files again with

-qpdf1.

mergepdf

Chapter 3. Compiler options reference 179

��

�

mergepdf

input

-o

output

-r

scaling

-n

-v

��

Merges two or more PDF records into a single PDF output record.

-r scaling Specifies the scaling ratio for the PDF record file. This

value must be greater than zero and can be either an

integer or floating point value. If not specified, a ratio of

1.0 is assumed.

input Specifies the name of a PDF input record file, or a

directory that contains PDF record files.

-o output Specifies the name of the PDF output record file, or a

directory to which the merged output will be written.

-n If specified, PDF record files are not normalized. If not

specified, mergepdf normalizes records based on an

internally-calculated ratio before applying any user-defined

scaling factor.

-v Specifies verbose mode, and causes internal and

user-specified scaling ratios to be displayed to standard

output.

resetpdf

�� resetpdf

directory_path
 ��

Same as cleanpdf, described above.

showpdf

�� showpdf

directory_path

-f

file_path
 ��

Displays the function call and block counts written to the profile file,

specified by the -f option, during a program run. To use this command,

you must first compile your application specifying both -qpdf1 and

-qshowpdf compiler options on the command line.

Predefined macros

None.

Examples

Here is a simple example:

// Compile all files with -qpdf1.

xlc -qpdf1 -O3 file1.c file2.c file3.c

// Run with one set of input data.

./a.out < sample.data

// Recompile all files with -qpdf2.

xlc -qpdf2 -O3 file1.c file2.c file3.c

// The program should now run faster than

// without PDF if the sample data is typical.

180 XL C/C++ Compiler Reference

Here is a more elaborate example.

// Set the PDFDIR variable.

export PDFDIR=$HOME/project_dir

// Compile most of the files with -qpdf1.

xlc -qpdf1 -O3 -c file1.c file2.c file3.c

// This file is not so important to optimize.

xlc -c file4.c

// Non-PDF object files such as file4.o can be linked in.

xlc -qpdf1 -O3 file1.o file2.o file3.o file4.o

// Run several times with different input data.

./a.out < polar_orbit.data

./a.out < elliptical_orbit.data

./a.out < geosynchronous_orbit.data

// No need to recompile the source of non-PDF object files (file4.c).

xlc -qpdf2 -O3 file1.c file2.c file3.c

// Link all the object files into the final application. */

xlc -qpdf2 -O3 file1.o file2.o file3.o file4.o

Here is an example that bypasses recompiling the source with -qpdf2:

// Compile source with -qpdf1.

xlc -O3 -qpdf1 -c file.c

// Link in object file.

xlc -O3 -qpdf1 file.o

// Run with one set of input data.

./a.out < sample.data

// Link in object file from qpdf1 pass.

// (Bypass source recompilation with -qpdf2.)

 xlc -O3 -qpdf2 file.o

Here is an example of using pdf1 and pdf2 objects:

// Compile source with -qpdf1.

xlc -c -qpdf1 -O3 file1.c file2.c

// Link in object files.

xlc -qpdf1 -O3 file1.o file2.o

// Run with one set of input data.

./a.out < sample.data

// Link in the mix of pdf1 and pdf2 objects.

 xlc -qpdf2 -O3 file1.o file2.o

Here is an example that creates PDF-optimized object files without relinking into

an executable:

// Compile source with -qpdf1.

xlc -c -O3 -qpdf1 file1.c file2.c file3.c

// Link in object files.

xlc -O3 -qpdf1 file1.o file2.o file3.o

// Run with one set of input data.

./a.out < sample data

// Recompile the instrumented source files

xlc -c -O3 -qpdf2 -qnoipa file1.c file2.c file3.c

Chapter 3. Compiler options reference 181

Related information

v “-qshowpdf” on page 203

v “-qipa” on page 128

v "Optimizing your applications" in the XL C/C++ Programming Guide

-qphsinfo

Category

Listings, messages, and compiler information

Pragma equivalent

None.

Purpose

Reports the time taken in each compilation phase to standard output.

Syntax

��
 nophsinfo

-q

phsinfo

��

Defaults

-qnophsinfo

Usage

The output takes the form number1/number2 for each phase where number1

represents the CPU time used by the compiler and number2 represents the total of

the compiler time and the time that the CPU spends handling system calls.

Predefined macros

None.

Examples

C

To compile myprogram.c and report the time taken for each phase of the

compilation, enter:

xlc myprogram.c -qphsinfo

The output will look similar to:

C Init - Phase Ends; 0.010/ 0.040

IL Gen - Phase Ends; 0.040/ 0.070

W-TRANS - Phase Ends; 0.000/ 0.010

OPTIMIZ - Phase Ends; 0.000/ 0.000

REGALLO - Phase Ends; 0.000/ 0.000

AS - Phase Ends; 0.000/ 0.000

Compiling the same program with -O4 gives:

C Init - Phase Ends; 0.010/ 0.040

IL Gen - Phase Ends; 0.060/ 0.070

IPA - Phase Ends; 0.060/ 0.070

IPA - Phase Ends; 0.070/ 0.110

W-TRANS - Phase Ends; 0.060/ 0.180

OPTIMIZ - Phase Ends; 0.010/ 0.010

REGALLO - Phase Ends; 0.010/ 0.020

AS - Phase Ends; 0.000/ 0.000

182 XL C/C++ Compiler Reference

C++ To compile myprogram.C and report the time taken for each phase of the

compilation, enter:

xlc++ myprogram.C -qphsinfo

The output will look similar to:

Front End - Phase Ends; 0.004/ 0.005

W-TRANS - Phase Ends; 0.010/ 0.010

OPTIMIZ - Phase Ends; 0.000/ 0.000

REGALLO - Phase Ends; 0.000/ 0.000

AS - Phase Ends; 0.000/ 0.000

Compiling the same program with -O4 gives:

Front End - Phase Ends; 0.004/ 0.006

IPA - Phase Ends; 0.040/ 0.040

IPA - Phase Ends; 0.220/ 0.280

W-TRANS - Phase Ends; 0.030/ 0.110

OPTIMIZ - Phase Ends; 0.030/ 0.030

REGALLO - Phase Ends; 0.010/ 0.050

AS - Phase Ends; 0.000/ 0.000

-qpic

Category

Object code control

Pragma equivalent

None.

Purpose

Generates Position-Independent Code suitable for use in shared libraries.

Syntax

��
 nopic

-q

pic

small

=

large

��

Defaults

v -qnopic in 32-bit compilation mode.

v -qpic=small in 64-bit compilation mode.

v -qpic=small when the -qmkshrobj compiler option is specified.

Parameters

small

Instructs the compiler to assume that the size of the Global Offset Table is no

larger than 64 Kb.

large

Allows the Global Offset Table to be larger than 64 Kb in size, allowing more

addresses to be stored in the table. Code generated with this option is usually

larger than that generated with -qpic=small.

Specifying -qpic without any suboptions is equivalent to -qpic=small.

Chapter 3. Compiler options reference 183

Usage

When -q64 is in effect, -qpic is enabled and cannot be disabled.

Predefined macros

None.

Examples

To compile a shared library libmylib.so, use the following commands:

xlc mylib.c -qpic=small -c -o mylib

xlc -qmkshrobj mylib -o libmylib.so.1

Related information

v “-q32, -q64” on page 51

v “-qmkshrobj” on page 167

-qppline

Category

Object code control

Pragma equivalent

None.

Purpose

When used in conjunction with the -E or -P options, enables or disables the

generation of #line directives.

Syntax

�� -q ppline

noppline
 ��

Defaults

v -qnoppline when -P is in effect

v -qppline when -E is in effect

Usage

The -C option has no effect without either the -E or the -P option. With the -E

option, line directives are written to standard output. With the -P option, line

directives are written to an output file.

Predefined macros

None.

Examples

To preprocess myprogram.c to write the output to myprogram.i, and generate #line

directives:

xlc myprogram.c -P -qppline

Related information

v “-E” on page 87

v “-P” on page 174

184 XL C/C++ Compiler Reference

-qprefetch

Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Inserts prefetch instructions automatically where there are opportunities to

improve code performance.

When -qprefetch is in effect, the compiler may insert prefetch instructions in

compiled code. When -qnoprefetch is in effect, prefetch instructions are not

inserted in compiled code.

Syntax

��
 prefetch

-q

noprefetch

��

Defaults

-qprefetch

Usage

The -qnoprefetch option will not prevent built-in functions such as

__prefetch_by_stream from generating prefetch instructions.

Predefined macros

None.

-qprint

Category

Listings, messages, and compiler information

Pragma equivalent

None.

Purpose

Enables or suppresses listings.

When -qprint is in effect, listings are enabled if they are requested by other

compiler options that produce listings. When -qnoprint is in effect, all listings are

suppressed, regardless of whether listing-producing options are specified.

Syntax

��
 print

-q

noprint

��

Defaults

-qprint

Chapter 3. Compiler options reference 185

Usage

You can use -qnoprint to override all listing-producing options and equivalent

pragmas, regardless of where they are specified. These options are:

v -qattr

v -qlist

v -qlistopt

v -qsource

v -qxref

Predefined macros

None.

Examples

To compile myprogram.c and suppress all listings, even if some files have #pragma

options source and similar directives, enter:

xlc myprogram.c -qnoprint

-qpriority (C++ only)

Category

Object code control

Pragma equivalent

#pragma options priority, #pragma priority

Purpose

Specifies the priority level for the initialization of static objects.

The C++ standard requires that all global objects within the same translation unit

be constructed from top to bottom, but it does not impose an ordering for objects

declared in different translation units. The -qpriority option and #pragma priority

directive allow you to impose a construction order for all static objects declared

within the same load module. Destructors for these objects are run in reverse order

during termination.

Syntax

Option syntax

�� -q priority = number ��

Pragma syntax

�� # pragma priority (number) ��

Defaults

The default priority level is 65 535.

Parameters

number

An integer literal in the range of 101 to 65 535. A lower value indicates a

higher priority; a higher value indicates a lower priority. If you do not specify

a number, the compiler assumes 65 535.

186 XL C/C++ Compiler Reference

Usage

More than one #pragma priority can be specified within a translation unit. The

priority value specified in one pragma applies to the constructions of all global

objects declared after this pragma and before the next one. However, in order to be

consistent with the Standard, priority values specified within the same translation

unit must be strictly increasing. Objects with the same priority value are

constructed in declaration order.

The effect of a #pragma priority exists only within one load module. Therefore,

#pragma priority cannot be used to control the construction order of objects in

different load modules.

Note: The C++ variable attribute init_priority can also be used to assign a

priority level to a shared variable of class type. See ″The init_priority

variable attribute″ in the XL C/C++ Language Reference for more information.

Examples

To compile the file myprogram.C to produce an object file myprogram.o so that

objects within that file have an initialization priority of 2 000, enter:

 xlc++ myprogram.C -c -qpriority=2000

Refer to "Initializing static objects in libraries" in the XL C/C++ Programming Guide

for further examples.

Related information

v “-qpriority (C++ only)” on page 186

v "Initializing static objects in libraries"in the XL C/C++ Programming Guide

-qprocimported, -qproclocal, -qprocunknown

Category

Optimization and tuning

Pragma equivalent

#pragma options proclocal, #pragma options procimported, #pragma options

procunknown

Purpose

Marks functions as local, imported, or unknown in 64-bit compilations.

Local functions are statically bound with the functions that call them; smaller,

faster code is generated for calls to such functions. You can use the proclocal

option or pragma to name functions that the compiler can assume are local.

Imported functions are dynamically bound with a shared portion of a library. Code

generated for calls to functions marked as imported may be larger, but is faster

than the default code sequence generated for functions marked as unknown. You

can use the procimported option or pragma to name functions that the compiler

can assume are imported.

Unknown functions are resolved to either statically or dynamically bound objects

during linking. You can use the procunkown option or pragma to name functions

that the compiler can assume are unknown.

Chapter 3. Compiler options reference 187

Syntax

��

�

 procunknown

-q

proclocal

procimported

:

=

function_name

��

Defaults

-qprocunknown: The compiler assumes that all functions' definitions are unknown.

Parameters

function_name

The name of a function that the compiler should assume is local, imported, or

unknown (depending on the option specified). If you do not specify any

function_name, the compiler assumes that all functions are local, imported, or

unknown.

C++

Names must be specified using their mangled names. To obtain C++

mangled names, compile your source to object files only, using the -c compiler

option, and use the nm operating system command on the resulting object file.

(See also "Name mangling" in the XL C/C++ Language Reference for details on

using the extern "C" linkage specifier on declarations to prevent name

mangling.)

Usage

This option applies to 64-bit compilations only.

If any functions that are marked as local resolve to shared library functions, the

linker will detect the error and issue warnings. If any of the functions that are

marked as imported resolve to statically bound objects, the generated code may be

larger and run more slowly than the default code sequence generated for unknown

functions.

If you specify more than one of these options with no function names, the last

option specified is used. If you specify the same function name on more than one

option specification, the last one is used.

Predefined macros

None.

Examples

To compile myprogram.c along with the archive library oldprogs.a so that:

v Functions fun and sun are specified as local

v Functions moon and stars are specified as imported

v Function venus is specified as unknown

use the following command:

xlc myprogram.c oldprogs.a -qprolocal=fun(int):sun()

 -qprocimported=moon():stars(float) -qprocunknown=venus()

If the following example, in which a function marked as local instead resolves to a

shared library function, is compiled with -qproclocal:

188 XL C/C++ Compiler Reference

int main(void)

{

 printf("Just in function foo1()\n");

 printf("Just in function foo1()\n");

}

a linker error will result. To correct this problem, you should explicitly mark the

called routine as being imported from a shared object. In this case, you would

recompile the source file and explicitly mark printf as imported by compiling

with -qproclocal -qprocimported=printf.

Related information

v “-qdataimported, -qdatalocal, -qtocdata” on page 82

-qproto (C only)

Category

Object code control

Pragma equivalent

#pragma options [no]proto

Purpose

Specifies the linkage conventions for passing floating-point arguments to functions

that have not been prototyped.

When proto is in effect, the compiler assumes that the arguments in function calls

are the same types as the corresponding parameters of the function definition, even

if the function has not been prototyped. By asserting that an unprototyped function

actually expects a floating-point argument if it is called with one, you allow the

compiler to pass floating-point arguments in floating-point registers exclusively.

When noproto is in effect, the compiler does not make this assumption, and must

pass floating-point parameters in floating-point and general purpose registers.

Syntax

��
 noproto

-q

proto

��

Defaults

-qnoproto

Usage

This option only is only valid when the compiler allows unprototyped functions;

that is, with the cc or xlc invocation commands, or with the -qlanglvl option set to

classic | extended | extc89 | extc99.

Predefined macros

None.

Examples

To compile my_c_program.c to allow the compiler to use the standard linkage

conventions for floating-point parameters, even when functions are not prototyped,

enter:

xlc my_c_program.c -qproto

Chapter 3. Compiler options reference 189

-Q, -qinline

Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Attempts to inline functions instead of generating calls to those functions, for

improved performance.

C++

Specifying -Q (or -qinline) enables automatic inlining by the compiler

front end. Specifying -Q with -O provides additional inlining by enabling inlining

by the low-level optimizer. In both cases, the compiler attempts to inline all

functions, in addition to those defined inside a class declaration or explicitly

marked with the inline specifier.

C

You must specify a minimum optimization level of -O along with -Q (or

-qinline) to enable inlining of functions, including those declared with the inline

specifier. You can also use the -Q option to specify restrictions on the functions that

should or should not be inlined.

In all cases where -Q (or -qinline) is in effect, the compiler uses heuristics to

determine whether inlining a specific function will result in a performance benefit.

That is, whether a function is appropriate for inlining is subject to limits on the

number of inlined calls and the amount of code size increase as a result. Therefore,

simply enabling inlining does not guarantee that a given function will be inlined.

Specifying -Q (or -qnoinline) disables all inlining, including that performed by the

high-level optimizer with the -qipa option, and functions declared explicitly as

inline.

Syntax

-qinline and -Q syntax — C

��

�

 -qnoinline

-Q!

-qinline

-Q

=size_limit

:

+

names

-

��

-qinline and -Q syntax — C++

��

 -qnoinline

-Q!

-qinline

-Q

��

Defaults

-qnoinline or -Q!

190 XL C/C++ Compiler Reference

Parameters

C

size_limit

A positive integer representing the number of executable statements in a

function. Declarations are not counted, as you can see in the example below:

increment()

{

 int a, b, i;

 for (i=0; i<10; i++) /* statement 1 */

 {

 a=i; /* statement 2 */

 b=i; /* statement 3 */

 }

}

The number of executable statements in a function must be fewer than or

equal to size_limit for it to be considered for inlining. Specifying a value of 0

causes no functions to be inlined except those functions listed in the name

suboption, or those marked with supported forms of the inline function

specifier. If you do not specify size, the default value is 20.

C

+

The compiler attempts to inline all functions that meet the criterion specified

by size, as well as those listed by name.

C

-

The compiler attempts to inline all functions that meet the criterion specified

by size, except those listed by name.

C

name

The name of a function to be inlined. Separate each function name with a

colon (:). This suboption overrides any setting of the size value. Note that this

suboption does not affect functions explicitly declared with the inline

specifier; when -O and -Q | -qinline are in effect, those functions are always

considered for inlining. You can specify this suboption as an argument to both

the positive and negative forms of the options, to precisely control which

functions are most likely to be inlined.

 A warning message is issued for functions that are not defined in the source

file being compiled.

Usage

To maximize inlining, specify optimization (-O) and also specify the appropriate

-qinline or -Q options.

Because inlining does not always improve runtime performance, you should test

the effects of this option on your code. Do not attempt to inline recursive or

mutually recursive functions.

If you specify the -g option to generate debug information, inlining may be

suppressed.

Predefined macros

None.

Examples

To compile myprogram.c so that no functions are inlined, enter:

xlc myprogram.c -O -qnoinline

Chapter 3. Compiler options reference 191

C To compile myprogram.c so that the compiler attempts to inline all

functions of fewer than 12 statements, enter:

xlc myprogram.c -O -qinline=12

C

Assuming that the functions salary, taxes, expenses, and benefits have

more than 20 executable statements each, to compile myprogram.c so that the

compiler attempts to inline all appropriate functions (that is, those that have fewer

than the default of 20 statements) plus these functions, enter:

xlc myprogram.c -O -qinline+salary:taxes:expenses:benefits

C

Assuming that the functions salary, taxes, expenses, and benefits have

fewer than 20 executable statements each, to compile myprogram.c so that the

compiler attempts to inline all appropriate functions (that is, those that have fewer

than the default of 20 statements) except these functions, enter:

xlc myprogram.c -O -qinline-salary:taxes:expenses:benefits

C

You can use a size value of zero along with function names to inline

specific functions. For example:

-O -qinline=0

followed by:

-qinline+salary:taxes:benefits

causes only the functions named salary, taxes, or benefits to be inlined, if

possible, and no others.

Related information

v “-g” on page 107

v “-qipa” on page 128

v “-O, -qoptimize” on page 169

v ″The inline function specifier″ in XL C/C++ Language Reference

-r

Category

Object code control

Pragma equivalent

None.

Purpose

Produces a relocatable object, even though the file contains unresolved symbols.

Syntax

�� -r ��

Defaults

Not applicable.

Usage

A file produced with this flag is expected to be used as a file parameter in another

compiler invocation.

192 XL C/C++ Compiler Reference

Predefined macros

None.

Examples

To compile myprogram.c and myprog2.c into a single object file mytest.o, enter:

xlc myprogram.c myprog2.c -r -o mytest.o

-R

Category

Linking

Pragma equivalent

None.

Purpose

At link time, writes search paths for shared libraries into the executable, so that

these directories are searched at program run time for any required shared

libraries.

Syntax

�� -R directory_path ��

Defaults

The default is to include only the standard directories. See the compiler

configuration file for the directories that are set by default.

Usage

If the -Rdirectory_path option is specified both in the configuration file and on the

command line, the paths specified in the configuration file are searched first at run

time.

The -R compiler option is cumulative. Subsequent occurrences of -R on the

command line do not replace, but add to, any directory paths specified by earlier

occurrences of -R.

Predefined macros

None.

Examples

To compile myprogram.c so that the directory /usr/tmp/old is searched at run time

along with standard directories for the dynamic library libspfiles.so, enter:

xlc myprogram.c -lspfiles -R/usr/tmp/old

Related information

v “-L” on page 142

-qreport

Category

Listings, messages, and compiler information

Pragma equivalent

None.

Chapter 3. Compiler options reference 193

Purpose

Produces listing files that show how sections of code have been optimized.

A listing file is generated with a .lst suffix for each source file named on the

command line. When used with an option that enables automatic parallelization or

vectorization, the listing file shows a pseudo-C code listing and a summary of how

program loops are parallelized and/or optimized. The report also includes

diagnostic information to show why specific loops could not be parallelized

and/or vectorized.

When used with -qipa=clonearch, produces transformation reports on the

procedures that are cloned for the architectures specified by the option.

Syntax

��
 noreport

-q

report

��

Defaults

-qnoreport

Usage

For -qreport to generate a loop transformation listing, you must also specify one of

the following options on the command line:

v -qhot[=simd]

v -qsmp

v -O5

v -qipa=level=2

For -qreport to generate a parallel transformation listing or parallel performance

messages, you must also specify one of the following options on the command

line:

v -qsmp

v -O5

v -qipa=level=2

For -qreport to generate a function cloning listing, you must also specify

-qipa=clonearch.

If you use -qreport with -O5 or -qipa=level=2, the report will be generated after

the link step.

The pseudo-C code listing is not intended to be compilable. Do not include any of

the pseudo-C code in your program, and do not explicitly call any of the internal

routines whose names may appear in the pseudo-C code listing.

Predefined macros

None.

Examples

To compile myprogram.c so the compiler listing includes a report showing how

loops are optimized, enter:

xlc -qhot -O3 -qreport myprogram.c

194 XL C/C++ Compiler Reference

To compile myprogram.c so the compiler listing also includes a report showing how

parallelized loops are transformed, enter:

xlc_r -qhot -qsmp -qreport myprogram.c

Related information

v “-qhot” on page 112

v “-qipa” on page 128

v “-qsmp” on page 204

v “-qoptdebug” on page 173

v Using -qoptdebug to help debug optimized programs in the XL C/C++

Programming Guide

-qreserved_reg

Category

Object code control

Pragma equivalent

None.

Purpose

Indicates that the given list of registers cannot be used during the compilation

except as a stack pointer, frame pointer or in some other fixed role.

You should use this option in modules that are required to work with other

modules that use global register variables or hand-written assembler code.

Syntax

��

�

 :

-q

reserved_reg

=

register_name

��

Defaults

Not applicable.

Parameters

register_name

A valid register name on the target platform. Valid registers are:

r0 to r31

General purpose registers

f0 to f31

Floating-point registers

v0 to v31

Vector registers (on selected processors only)

Usage

-qreserved_reg is cumulative, for example, specifying -qreserved_reg=r14 and

-qreserved_reg=r15 is equivalent to specifying -qreserved_reg=r14:r15.

Duplicate register names are ignored.

Predefined macros

None.

Chapter 3. Compiler options reference 195

Examples

To specify that myprogram.c reserves the general purpose registers r3 and r4, enter:

xlc myprogram.c -qreserved_reg=r3:r4

Related information

v ″Variables in specified registers″ in the XL C/C++ Language Reference

-qro

Category

Object code control

Pragma equivalent

#pragma options ro, #pragma strings

Purpose

Specifies the storage type for string literals.

When ro or strings=readonly is in effect, strings are placed in read-only storage.

When noro or strings=writeable is in effect, strings are placed in read/write

storage.

Syntax

Option syntax

��
 ro

-q

noro

��

Pragma syntax

��
 readonly

#

pragma

strings

(

writeable

)

��

Defaults

C

Strings are read-only for all invocation commands except cc. If the cc

invocation command is used, strings are writeable.

C++

Strings are read-only.

Parameters

readonly (pragma only)

String literals are to be placed in read-only memory.

writeable (pragma only)

String literals are to be placed in read-write memory.

Usage

Placing string literals in read-only memory can improve runtime performance and

save storage. However, code that attempts to modify a read-only string literal may

generate a memory error.

The pragmas must appear before any source statements in a file.

196 XL C/C++ Compiler Reference

Predefined macros

None.

Examples

To compile myprogram.c so that the storage type is writable, enter:

xlc myprogram.c -qnoro

Related information

v “-qro” on page 196

v “-qroconst”

-qroconst

Category

Object code control

Pragma equivalent

#pragma options [no]roconst

Purpose

Specifies the storage location for constant values.

When roconst is in effect, constants are placed in read-only storage. When

noroconst is in effect, constants are placed in read/write storage.

Syntax

��
 roconst

-q

noroconst

��

Defaults

v

C

-qroconst for all compiler invocations except cc and its derivatives.

-qnoroconst for the cc invocation and its derivatives.

v

C++

-qroconst

Usage

Placing constant values in read-only memory can improve runtime performance,

save storage, and provide shared access. However, code that attempts to modify a

read-only constant value generates a memory error.

"Constant" in the context of the -qroconst option refers to variables that are

qualified by const, including const-qualified characters, integers, floats,

enumerations, structures, unions, and arrays. The following constructs are not

affected by this option:

v Variables qualified with volatile and aggregates (such as a structure or a union)

that contain volatile variables

v Pointers and complex aggregates containing pointer members

v Automatic and static types with block scope

v Uninitialized types

v Regular structures with all members qualified by const

v Initializers that are addresses, or initializers that are cast to non-address values

Chapter 3. Compiler options reference 197

The -qroconst option does not imply the -qro option. Both options must be

specified if you wish to specify storage characteristics of both string literals (-qro)

and constant values (-qroconst).

Predefined macros

None.

Related information

v “-qro” on page 196

-qrtti (C++ only)

Category

Object code control

Pragma equivalent

#pragma options rtti

Purpose

Generates runtime type identification (RTTI) information for exception handling

and for use by the typeid and dynamic_cast operators.

Syntax

��
 rtti

-q

nortti

��

Defaults

-qrtti

Usage

For improved runtime performance, suppress RTTI information generation with

the -qnortti setting.

You should be aware of the following effects when specifying the -qrtti compiler

option:

v Contents of the virtual function table will be different when -qrtti is specified.

v When linking objects together, all corresponding source files must be compiled

with the correct -qrtti option specified.

v If you compile a library with mixed objects (-qrtti specified for some objects,

-qnortti specified for others), you may get an undefined symbol error.

Predefined macros

v __RTTI_ALL__ is defined to 1 when -qrtti is in effect; otherwise, it is undefined.

v __NO_RTTI__ is defined to 1 when -qnortti is in effect; otherwise, it is

undefined.

Related information

v “-qeh (C++ only)” on page 88

-s

Category

Object code control

198 XL C/C++ Compiler Reference

Pragma equivalent

None.

Purpose

Strips the symbol table, line number information, and relocation information from

the output file.

This command is equivalent to the operating system strip command.

Syntax

�� -s ��

Defaults

The symbol table, line number information, and relocation information are

included in the output file.

Usage

Specifying -s saves space, but limits the usefulness of traditional debug programs

when you are generating debug information using options such as -g.

Predefined macros

None.

Related information

v “-g” on page 107

-S

Category

Output control

Pragma equivalent

None.

Purpose

Generates an assembler language file for each source file.

The resulting file has an .s suffix and can be assembled to produce object .o files or

an executable file (a.out).

Syntax

�� -S ��

Defaults

Not applicable.

Usage

You can invoke the assembler with any compiler invocation command. For

example,

xlc myprogram.s

will invoke the assembler, and if successful, the linker to create an executable file,

a.out.

Chapter 3. Compiler options reference 199

If you specify -S with -E or -P, -E or -P takes precedence. Order of precedence

holds regardless of the order in which they were specified on the command line.

You can use the -o option to specify the name of the file produced only if no more

than one source file is supplied. For example, the following is not valid:

xlc myprogram1.c myprogram2.c -o -S

Predefined macros

None.

Examples

To compile myprogram.c to produce an assembler language file myprogram.s, enter:

xlc myprogram.c -S

To assemble this program to produce an object file myprogram.o, enter:

xlc myprogram.s -c

To compile myprogram.c to produce an assembler language file asmprogram.s, enter:

xlc myprogram.c -S -o asmprogram.s

Related information

v “-E” on page 87

v “-P” on page 174

-qsaveopt

Category

Object code control

Pragma equivalent

None.

Purpose

Saves the command-line options used for compiling a source file, the version and

level of each compiler component invoked during compilation, and other

information to the corresponding object file.

Syntax

��
 nosaveopt

-q

saveopt

��

Defaults

-qnosaveopt

Usage

This option has effect only when compiling to an object (.o) file (that is, using the

-c option). Though each object may contain multiple compilation units, only one

copy of the command-line options is saved. Compiler options specified with

pragma directives are ignored.

Command-line compiler options information is copied as a string into the object

file, using the following format:

200 XL C/C++ Compiler Reference

�� @(#) opt f invocation options

c

C

 ��

where:

f Signifies a Fortran language compilation.

c Signifies a C language compilation.

C Signifies a C++ language compilation.

invocation

Shows the command used for the compilation, for example, xlc.

options The list of command line options specified on the command line, with

individual options separated by spaces.

Compiler version and release information, as well as the version and level of each

component invoked during compilation, are also saved to the object file in the

format:

��

�

@(#)

version

Version

:

VV.RR.MMMM.LLLL

component_name

Version

:

VV.RR

(

product_name

)

Level

:

YYMMDD

��

where:

V Represents the version.

R Represents the release.

M Represents the modification.

L Represents the level.

component_name

Specifies the components that were invoked for this compilation, such as

the low-level optimizer.

product_name

Indicates the product to which the component belongs (for example, C/C++

or Fortran).

YYMMDD

Represents the year, month, and date of the installed update. If the update

installed is at the base level, the level is displayed as BASE.

If you want to simply output this information to standard output without writing

it to the object file, use the -qversion option.

Predefined macros

None.

Examples

Compile t.c with the following command:

xlc t.c -c -qsaveopt -qhot

Issuing the strings -a command on the resulting t.o object file produces

information similar to the following:

opt c /opt/ibmcmp/vac/9.0/bin/xlc -c -qsaveopt -qhot t.c

version IBM XL C/C++ Advanced Edition for Linux, V9.0

version Version: 09.00.0000.0001

version Driver Version: 09.00(C/C++) Level: 060414

version Front End Version: 09.00(C/C++) Level: 060419

version C++ Front End Version : 09.00(C/C++) Level: 060420

version High Level Optimizer Version: 09.00(C/C++) and 11.01(Fortran) Level: 060411

version Low Level Optimizer Version: 09.00(C/C++) and 11.01(Fortran) Level: 060418

Chapter 3. Compiler options reference 201

In the first line, c identifies the source used as C, /opt/ibmcmp/vac/9.0/bin/xlc

shows the invocation command used, and -qhot -qsaveopt shows the compilation

options.

The remaining lines list each compiler component invoked during compilation, and

its version and level. Components that are shared by multiple products may show

more than one version number. Level numbers shown may change depending on

the updates you have installed on your system.

Related information

v “-qversion” on page 240

-qshowinc

Category

Listings, messages, and compiler information

Pragma equivalent

#pragma options [no]showinc

Purpose

When used with -qsource option to generate a listing file, selectively shows user or

system header files in the source section of the listing file.

Syntax

��

�

 noshowinc

-q

showinc

:

all

=

sys

nosys

usr

nousr

��

Defaults

-qnoshowinc: Header files included in source files are not shown in the source

listing.

Parameters

all Shows both user and system include files in the program source listing.

sys

Shows system include files (that is, files included with the #include

<filename> preprocessor directive) in the program source listing.

usr

Shows user include files (that is, files included with the #include "filename"

preprocessor directive or with -qinclude) in the program source listing.

Specifying showinc with no suboptions is equivalent to -qshowinc=sys : usr and

-qshowinc=all. Specifying noshowinc is equivalent to -qshowinc=nosys : nousr.

Usage

This option has effect only when the -qlist or -qsource compiler options is in

effect.

202 XL C/C++ Compiler Reference

Predefined macros

None.

Examples

To compile myprogram.c so that all included files appear in the source listing, enter:

xlc myprogram.c -qsource -qshowinc

Related information

v “-qsource” on page 208

-qshowpdf

Category

Optimization and tuning

Pragma equivalent

None.

Purpose

When used with -qpdf1 and a minimum optimization level of -O2 at compile and

link steps, inserts additional profiling information into the compiled application to

collect call and block counts for all procedures in the application.

Syntax

��
 noshowpdf

-q

showpdf

��

Usage

After you run your application with training data, the call and block counts are

recorded in the profile file (by default, this is named ._pdf). You can retrieve the

contents of the profile file with the showpdf utility, described in “-qpdf1, -qpdf2”

on page 178.

For procedures and examples of using -qshowdpf and showpdf, see "Optimizing

your applications"in the XL C/C++ Programming Guide.

Predefined macros

None.

Related information

v “-qpdf1, -qpdf2” on page 178

v "Optimizing your applications"in the XL C/C++ Programming Guide

-qsmallstack

Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Reduces the size of the stack frame.

Chapter 3. Compiler options reference 203

Syntax

��
 nosmallstack

-q

smallstack

��

Defaults

-qnosmallstack

Usage

Programs that allocate large amounts of data to the stack, such as threaded

programs, may result in stack overflows. This option can reduce the size of the

stack frame to help avoid overflows.

This option is only valid when used together with IPA (-qipa, -O4, -O5 compiler

options).

Specifying this option may adversely affect program performance.

Predefined macros

None.

Examples

To compile myprogram.c to use a small stack frame, enter:

xlc myprogram.c -qipa -qsmallstack

Related information

v “-g” on page 107

v “-qipa” on page 128

-qsmp

Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Enables parallelization of program code.

Syntax

204 XL C/C++ Compiler Reference

��

�

 nosmp

-q

smp

:

nostackcheck

opt

norec_locks

noomp

nonested_par

explicit

auto

=

omp

nested_par

noauto

noexplicit

noopt

rec_locks

runtime

schedule

=

affinity

dynamic

=

n

guided

static

stackcheck

threshold

=

n

��

Defaults

-qnosmp. Code is produced for a uniprocessor machine.

Parameters

auto | noauto

Enables or disables automatic parallelization and optimization of program

code. When noauto is in effect, only program code explicitly parallelized with

OpenMP directives is optimized. noauto is implied if you specify -qsmp=omp

or -qsmp=noopt.

explicit | noexplicit

Enables or disables directives controlling explicit parallelization of loops.

nested_par | nonested_par

By default, the compiler serializes a nested parallel construct. When nested_par

is in effect, the compiler parallelizes prescriptive nested parallel constructs.

This includes not only the loop constructs that are nested within a scoping unit

but also parallel constructs in subprograms that are referenced (directly or

indirectly) from within other parallel constructs. Note that this suboption has

no effect on loops that are automatically parallelized. In this case, at most one

loop in a loop nest (in a scoping unit) will be parallelized. nested_par does not

provide true nested parallelism because it does not cause new team of threads

to be created for nested parallel regions. Instead, threads that are currently

available are reused.

 This suboption should be used with caution. Depending on the number of

threads available and the amount of work in an outer loop, inner loops could

be executed sequentially even if this option is in effect. Parallelization overhead

may not necessarily be offset by program performance gains.

 Note that the implementation of the nested_par suboption does not comply

with the OpenMP API. If you specify this suboption, the runtime library uses

the same threads for the nested constructs that it used for the enclosing

constructs.

Chapter 3. Compiler options reference 205

omp | noomp

Enforces or relaxes strict compliance to the OpenMP standard. When noomp is

in effect, auto is implied. When omp is in effect, noauto is implied and only

OpenMP parallelization directives are recognized. The compiler issues warning

messages if your code contains any language constructs that do not conform to

the OpenMP API.

opt | noopt

Enables or disables optimization of parallelized program code. When noopt is

in effect, the compiler will do the smallest amount of optimization that is

required to parallelize the code. This is useful for debugging because -qsmp

enables the -O2 and -qhot options by default, which may result in the

movement of some variables into registers that are inaccessible to the

debugger. However, if the -qsmp=noopt and -g options are specified, these

variables will remain visible to the debugger.

rec_locks | norec_locks

Determines whether recursive locks are used. When rec_locks is in effect,

nested critical sections will not cause a deadlock. Note that the rec_locks

suboption specifies behavior for critical constructs that is inconsistent with the

OpenMP API.

schedule

Specifies the type of scheduling algorithms and chunk size (n) that are used for

loops to which no other scheduling algorithm has been explicitly assigned in

the source code. Suboptions of the schedule suboption are as follows:

affinity[=n]

The iterations of a loop are initially divided into n partitions, containing

ceiling(number_of_iterations/number_of_threads) iterations. Each partition is

initially assigned to a thread and is then further subdivided into chunks

that each contain n iterations. If n is not specified, then the chunks consist

of ceiling(number_of_iterations_left_in_partition / 2) loop iterations.

 When a thread becomes free, it takes the next chunk from its initially

assigned partition. If there are no more chunks in that partition, then the

thread takes the next available chunk from a partition initially assigned to

another thread.

 The work in a partition initially assigned to a sleeping thread will be

completed by threads that are active.

 The affinity scheduling type does not appear in the OpenMP API

standard.

dynamic[=n]

The iterations of a loop are divided into chunks containing n iterations

each. If n is not specified, then the chunks consist of

ceiling(number_of_iterations/number_of_threads). iterations.

 Active threads are assigned these chunks on a ″first-come, first-do″ basis.

Chunks of the remaining work are assigned to available threads until all

work has been assigned.

 If a thread is asleep, its assigned work will be taken over by an active

thread once that thread becomes available.

guided[=n]

The iterations of a loop are divided into progressively smaller chunks until

a minimum chunk size of n loop iterations is reached. If n is not specified,

the default value for n is 1 iteration.

206 XL C/C++ Compiler Reference

Active threads are assigned chunks on a ″first-come, first-do″ basis. The

first chunk contains ceiling(number_of_iterations/number_of_threads)

iterations. Subsequent chunks consist of ceiling(number_of_iterations_left /

number_of_threads) iterations.

runtime

Specifies that the chunking algorithm will be determined at run time.

static[=n]

The iterations of a loop are divided into chunks containing n iterations

each. Each thread is assigned chunks in a ″round-robin″ fashion. This is

known as block cyclic scheduling. If the value of n is 1, then the scheduling

type is specifically referred to as cyclic scheduling.

 If n is not specified, the chunks will contain ceiling(number_of_iterations/
number_of_threads) iterations. Each thread is assigned one of these chunks.

This is known as block scheduling.

 If a thread is asleep and it has been assigned work, it will be awakened so

that it may complete its work.

n Must be an integral assignment expression of value 1 or greater.

 Specifying schedule with no suboption is equivalent to schedule=runtime.

stackcheck | nostackcheck

Causes the compiler to check for stack overflow by slave threads at run time,

and issue a warning if the remaining stack size is less than the number of

bytes specified by the stackcheck option of the XLSMPOPTS environment

variable. This suboption is intended for debugging purposes, and only takes

effect when XLSMPOPTS=stackcheck is also set; see “XLSMPOPTS” on page

23.

threshold[=n]

When -qsmp=auto is in effect, controls the amount of automatic loop

parallelization that occurs. The value of n represents the minimum amount of

work required in a loop in order for it to be parallelized. Currently, the

calculation of ″work″ is weighted heavily by the number of iterations in the

loop. In general, the higher the value specified for n, the fewer loops are

parallelized. Specifying a value of 0 instructs the compiler to parallelize all

auto-parallelizable loops, whether or not it is profitable to do so. Specifying a

value of 100 instructs the compiler to parallelize only those auto-parallelizable

loops that it deems profitable. Specifying a value of greater than 100 will result

in more loops being serialized.

n Must be a positive integer of 0 or greater.

If you specify threshold with no suboption, the program uses a default value

of 100.

 Specifying -qsmp without suboptions is equivalent to :

-qsmp=auto:explicit:opt:noomp:norec_locks:nonested_par:schedule=runtime:nostackcheck:threshold=100

Usage

v Specifying the omp suboption always implies noauto. Specify -qsmp=omp:auto

to apply automatic parallelization on OpenMP-compliant applications, as well.

v You should only use -qsmp with the _r-suffixed invocation commands, to

automatically link in all of the threadsafe components. You can use the -qsmp

option with the non-_r-suffixed invocation commands, but you are responsible

for linking in the appropriate components. . If you use the -qsmp option to

Chapter 3. Compiler options reference 207

compile any source file in a program, then you must specify the -qsmp option at

link time as well, unless you link by using the ld command.

v Object files generated with the -qsmp=opt option can be linked with object files

generated with -qsmp=noopt. The visibility within the debugger of the variables

in each object file will not be affected by linking.

v The -qnosmp default option setting specifies that no code should be generated

for parallelization directives, though syntax checking will still be performed. Use

-qignprag=omp to completely ignore parallelization directives.

v Specifying -qsmp implicitly sets -O2. The -qsmp option overrides -qnooptimize,

but does not override -O3, -O4, or -O5. When debugging parallelized program

code, you can disable optimization in parallelized program code by specifying

qsmp=noopt.

v The -qsmp=noopt suboption overrides performance optimization options

anywhere on the command line unless -qsmp appears after -qsmp=noopt. For

example, -qsmp=noopt -O3 is equivalent to -qsmp=noopt, while -qsmp=noopt

-O3 -qsmp is equivalent to -qsmp -O3.

Related information

v “-O, -qoptimize” on page 169

v “-qthreaded” on page 227

v “Environment variables for parallel processing” on page 23

v “Pragma directives for parallel processing” on page 294

v “Built-in functions for parallel processing” on page 346

-qsource

Category

Listings, messages, and compiler information

Pragma equivalent

#pragma options [no]source

Purpose

Produces a compiler listing file that includes the source section of the listing and

provides additional source information when printing error messages.

When source is in effect, a listing file is generated with a .lst suffix for each source

file named on the command line. For details of the contents of the listing file, see

“Compiler listings” on page 18.

Syntax

��
 nosource

-q

source

��

Defaults

-qnosource

Usage

You can selectively print parts of the source by using pairs of #pragma options

source and #pragma options nosource preprocessor directives throughout your

source program. The source following #pragma options source and preceding

#pragma options nosource is printed.

The -qnoprint option overrides this option.

208 XL C/C++ Compiler Reference

Predefined macros

None.

Examples

To compile myprogram.c to produce a compiler listing that includes the source

code, enter:

xlc myprogram.c -qsource

Related information

v “-qlist” on page 157

v “-qlistopt” on page 158

v “-qprint” on page 185

-qsourcetype

Category

Input control

Pragma equivalent

None.

Purpose

Instructs the compiler to treat all recognized source files as a specified source type,

regardless of the actual file name suffix.

Ordinarily, the compiler uses the file name suffix of source files specified on the

command line to determine the type of the source file. For example, a .c suffix

normally implies C source code, and a .C suffix normally implies C++ source code.

The -qsourcetype option instructs the compiler to not rely on the file name suffix,

and to instead assume a source type as specified by the option.

Syntax

��
 default

-q

sourcetype

=

assembler

assembler-with-cpp

c

c++

��

Defaults

-qsourcetype=default

Parameters

assembler

All source files following the option are compiled as if they are assembler

language source files.

assembler-with-cpp

All source files following the option are compiled as if they are assembler

language source files that need preprocessing.

c All source files following the option are compiled as if they are C language

source files.

Chapter 3. Compiler options reference 209

C++ c++

All source files following the option are compiled as if they are C++ language

source files. This suboption is equivalent to the -+ option.

default

The programming language of a source file is implied by its file name suffix.

Usage

If you do not use this option, files must have a suffix of .c to be compiled as C

files, and .C (uppercase C), .cc, .cp, .cpp, .cxx, or .c++ to be compiled as C++ files.

This option applies whether the file system is case-sensitive or not. That is, even in

a case-insensitive file system, where file.c and file.C refer to the same physical

file, the compiler still recognizes the case difference of the file name argument on

the command line and determines the source type accordingly.

Note that the option only affects files that are specified on the command line

following the option, but not those that precede the option. Therefore, in the

following example:

xlc goodbye.C -qsourcetype=c hello.C

hello.C is compiled as a C source file, but goodbye.C is compiled as a C++ file.

The -qsourcetype option should not be used together with the -+ option.

Predefined macros

None.

Examples

To treat the source file hello.C as being a C language source file, enter:

xlc -qsourcetype=c hello.C

Related information

v “-+ (plus sign) (C++ only)” on page 49

-qspill

Category

Compiler customization

Pragma equivalent

#pragma options [no]spill

Purpose

Specifies the size (in bytes) of the register spill space, the internal program storage

areas used by the optimizer for register spills to storage.

Syntax

�� -q spill = size ��

Defaults

-qspill=512

210 XL C/C++ Compiler Reference

Parameters

size

An integer representing the number of bytes for the register allocation spill

area.

Usage

If your program is very complex, or if there are too many computations to hold in

registers at one time and your program needs temporary storage, you might need

to increase this area. Do not enlarge the spill area unless the compiler issues a

message requesting a larger spill area. In case of a conflict, the largest spill area

specified is used.

Predefined macros

None.

Examples

If you received a warning message when compiling myprogram.c and want to

compile it specifying a spill area of 900 entries, enter:

xlc myprogram.c -qspill=900

-qsrcmsg (C only)

Category

Listings, messages, and compiler information

Pragma equivalent

#pragma options [no]srcmsg

Purpose

Adds the corresponding source code lines to diagnostic messages generated by the

compiler.

When nosrcmsg is in effect, the error message simply shows the file, line and

column where the error occurred. When srcmsg is in effect, the compiler

reconstructs the source line or partial source line to which the diagnostic message

refers and displays it before the diagnostic message. A pointer to the column

position of the error may also be displayed.

Syntax

��
 nosrcmsg

-q

srcmsg

��

Defaults

-qnosrcmsg

Usage

When srcmsg is in effect, the reconstructed source line represents the line as it

appears after macro expansion. At times, the line may be only partially

reconstructed. The characters “....” at the start or end of the displayed line

indicate that some of the source line has not been displayed.

Use -qnosrcmsg to display concise messages that can be parsed.

Chapter 3. Compiler options reference 211

Predefined macros

None.

Examples

To compile myprogram.c so that the source line is displayed along with the

diagnostic message when an error occurs, enter:

xlc myprogram.c -qsrcmsg

-qstaticinline (C++ only)

Category

Language element control

Pragma equivalent

None.

Purpose

Controls whether inline functions are treated as having static or extern linkage.

When -qnostaticinline is in effect, the compiler treats inline functions as extern:

only one function body is generated for a function marked with the inline

function specifier, regardless of how many definitions of the same function appear

in different source files. When -qstaticinline is in effect, the compiler treats inline

functions as having static linkage: a separate function body is generated for each

definition in a different source file of the same function marked with the inline

function specifier.

Syntax

��
 nostaticinline

-q

staticinline

��

Defaults

-qnostaticinline

Usage

When -qnostaticinline is in effect, any redundant functions definitions for which

no bodies are generated are discarded by default; you can use the -qkeepinlines

option to change this behavior.

Predefined macros

None.

Examples

Using the -qstaticinline option causes function f in the following declaration to be

treated as static, even though it is not explicitly declared as such. A separate

function body is created for each definition of the function. Note that this can lead

to a substantial increase in code size

inline void f() {/*...*/};

Related information

v "Linkage of inline functions" in the XL C/C++ Language Reference

v “-qkeepinlines (C++ only)” on page 138

212 XL C/C++ Compiler Reference

-qstaticlink

Category

Linking

Pragma equivalent

None.

Purpose

Controls how shared and non-shared runtime libraries are linked into an

application.

When -qstaticlink is in effect, the compiler links only static libraries with the object

file named in the invocation. When -qnostaticlink is in effect, the compiler links

shared libraries with the object file named in the invocation.

This option provides the ability to specify linking rules that are equivalent to those

implied by the GNU options -static, -static-libgcc, and -shared-libgcc, used singly

and in combination.

Syntax

��
 nostaticlink

-q

staticlink

=

libgcc

��

Defaults

-qnostaticlink

Parameters

libgcc

When specified together with nostaticlink, the compiler links to the shared

version of libgcc. When specified together with staticlink, the compiler links to

the static version of libgcc.

Usage

The following table shows the equivalent GNU and XL C/C++ options for

specifying linkage of shared and non-shared libraries.

 Table 24. Option mappings: control of the GNU linker

GNU option Meaning XL C/C++ option

-shared Build a shared object. -qmkshrobj

-static Build a static object and prevent

linking with shared libraries. Every

library linked to must be a static

library.

-qstaticlink

-shared-libgcc Link with the shared version of libgcc. -qnostaticlink=libgcc

-static-libgcc Link with the static version of libgcc. -qstaticlink=libgcc

WARNING: Any use of third-party libraries or products is subject to the

provisions in their respective licenses. Using the -qstaticlink option can have

significant legal consequences for the programs you compile. IBM strongly

recommends that you seek legal advice before using this option.

Chapter 3. Compiler options reference 213

Predefined macros

None.

-qstatsym

Category

Object code control

Pragma equivalent

None.

Purpose

Adds user-defined, nonexternal names that have a persistent storage class, such as

initialized and uninitialized static variables, to the symbol table of the object file.

Syntax

��
 nostatsym

-q

statsym

��

Defaults

-qnostatsym: Static variables are not added to the symbol table. However, static

functions are added to the symbol table.

Predefined macros

None.

Examples

To compile myprogram.c so that static symbols are added to the symbol table, enter:

xlc myprogram.c -qstatsym

-qstdinc

Category

Input control

Pragma equivalent

#pragma options [no]stdinc

Purpose

Specifies whether the standard include directories are included in the search paths

for system and user header files.

When -qstdinc is in effect, the compiler searches the following directories for

header files:

v

C

The directory specified in the configuration file for the XL C header

files (this is normally /opt/ibmcmp/vac/9.0/include/) or by the -qc_stdinc

option

v

C++

The directory specified in the configuration file for the XL C and C++

header files (this is normally /opt/ibmcmp/vacpp/9.0/include/) or by the

-qcpp_stdinc option

v The directory specified in the configuration file for the system header files or by

the -qgcc_c_stdinc and -qgcc_cpp_stdinc options

214 XL C/C++ Compiler Reference

When -qnostdinc is in effect, these directories are excluded from the search paths.

The only directories to be searched are:

v directories in which source files containing #include "filename" directives are

located

v directories specified by the -I option

v directories specified by the -qinclude option

Syntax

��
 stdinc

-q

nostdinc

��

Defaults

-qstdinc

Usage

The search order of header files is described in “Directory search sequence for

include files” on page 12.

This option only affects search paths for header files included with a relative name;

if a full (absolute) path name is specified, this option has no effect on that path

name.

The last valid pragma directive remains in effect until replaced by a subsequent

pragma.

Predefined macros

None.

Examples

To compile myprogram.c so that only the directory /tmp/myfiles (in addition to the

directory containing myprogram.c) is searched for the file included with the

#include “myinc.h” directive, enter:

xlc myprogram.c -qnostdinc -I/tmp/myfiles

Related information

v “-qc_stdinc (C only)” on page 79

v “-qcpp_stdinc (C++ only)” on page 80

v “-qgcc_c_stdinc (C only)” on page 107

v “-qgcc_cpp_stdinc (C++ only)” on page 108

v “-I” on page 115

v “Directory search sequence for include files” on page 12

-qstrict

Category

Optimization and tuning

Pragma equivalent

#pragma options [no]strict

Purpose

Ensures that optimizations done by default at optimization levels -O3 and higher,

and, optionally at -O2, do not alter the semantics of a program.

Chapter 3. Compiler options reference 215

Syntax

��
 strict

-q

nostrict

��

Defaults

v -qstrict

v -qnostrict when -O3 or higher optimization level is in effect

Usage

-qstrict disables the following optimizations:

v Performing code motion and scheduling on computations such as loads and

floating-point computations that may trigger an exception.

v Relaxing conformance to IEEE rules.

v Reassociating floating-point expressions.

This option is only valid with -O2 or higher optimization levels.

-qstrict sets -qfloat=norsqrt. -qnostrict sets -qfloat=rsqrt. To override these

settings, specify the appropriate -qfloat suboptions after -q[no]strict on the

command line.

Predefined macros

None.

Examples

To compile myprogram.c so that the aggressive optimizations of -O3 are turned off,

and division by the result of a square root is replaced by multiplying by the

reciprocal (-qfloat=rsqrt), enter:

xlc myprogram.c -O3 -qstrict -qfloat=rsqrt

Related information

v “-qfloat” on page 98

v “-O, -qoptimize” on page 169

-qstrict_induction

Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Prevents the compiler from performing induction (loop counter) variable

optimizations. These optimizations may be unsafe (may alter the semantics of your

program) when there are integer overflow operations involving the induction

variables.

Syntax

��
 strict_induction

-q

nostrict_induction

��

216 XL C/C++ Compiler Reference

Defaults

v -qstrict_induction

v -qnostrict_induction when -O2 or higher optimization level is in effect

Usage

When using -O2 or higher optimization, you can specify -qstrict_induction to

prevent optimizations that change the result of a program if truncation or sign

extension of a loop induction variable should occur as a result of variable overflow

or wrap-around. However, use of -qstrict_induction is generally not recommended

because it can cause considerable performance degradation.

Predefined macros

None.

Related information

v “-O, -qoptimize” on page 169

-qsuppress

Category

Listings, messages, and compiler information

Pragma equivalent

#pragma report (C++ only)

Purpose

Prevents specific informational or warning messages from being displayed or

added to the listing file, if one is generated.

Syntax

-qsuppress syntax — C

��

�

 nosuppress

:

-q

suppress

=

message_identifier

��

-qsuppress syntax — C++

��

�

 :

nosuppress

-q

suppress

=

message_identifier

��

Defaults

-qnosuppress: All informational and warning messages are reported, unless set

otherwise with the -qflag option.

Parameters

message_identifier

Represents a message identifier. The message identifier must be in the

following format:

15dd-number

Chapter 3. Compiler options reference 217

where:

dd Is the two-digit code representing the compiler component that

produces the message. See “Compiler message format” on page 16 for

descriptions of these.

number

Is the message number.

Usage

You can only suppress information (I) and warning (W) messages. You cannot

suppress other types of messages, such as (S) and (U) level messages. Note that

informational and warning messages that supply additional information to a severe

error cannot be disabled by this option.

To suppress all informational and warning messages, you can use the -w option.

To suppress IPA messages, enter -qsuppress before -qipa on the command line.

The -qnosuppress compiler option cancels previous settings of -qsuppress.

Predefined macros

None.

Examples

If your program normally results in the following output:

“myprogram.c”, line 1.1:1506-224 (I) Incorrect #pragma ignored

you can suppress the message by compiling with:

xlc myprogram.c -qsuppress=1506-224

Related information

v “-qflag” on page 96

-qsymtab (C only)

Category

Error checking and debugging

Pragma equivalent

None.

Purpose

Determines the information that appears in the symbol table.

Syntax

�� -q symtab = unref

static
 ��

Defaults

Static variables and unreferenced typedef, structure, union, and enumeration

declarations are not included in the symbol table of the object file.

218 XL C/C++ Compiler Reference

Parameters

unref

When used with the -g option, specifies that debugging information is

included for unreferenced typedef declarations, struct, union, and enum type

definitions in the symbol table of the object file. This suboption is equivalent to

-qdbxextra.

 Using -qsymtab=unref may make your object and executable files larger.

static

Adds user-defined, nonexternal names that have a persistent storage class,

such as initialized and uninitialized static variables, to the symbol table of the

object file. This suboption is equivalent to -qstatsym.

Predefined macros

None.

Examples

To compile myprogram.c so that static symbols are added to the symbol table, enter:

xlc myprogram.c -qsymtab=static

To compile myprogram.c so that unreferenced typedef, structure, union, and

enumeration declarations are included in the symbol table for use with a debugger,

enter:

xlc myprogram.c -g -qsymtab=unref

Related information

v “-g” on page 107

v “-qdbxextra (C only)” on page 83

v “-qstatsym” on page 214

-qsyntaxonly (C only)

Category

Error checking and debugging

Pragma equivalent

None.

Purpose

Performs syntax checking without generating an object file.

Syntax

�� -q syntaxonly ��

Defaults

By default, source files are compiled and linked to generate an executable file.

Usage

The -P, -E, and -C options override the -qsyntaxonly option, which in turn

overrides the -c and -o options.

The -qsyntaxonly option suppresses only the generation of an object file. All other

files, such as listing files, are still produced if their corresponding options are set.

Chapter 3. Compiler options reference 219

Predefined macros

None.

Examples

To check the syntax of myprogram.c without generating an object file, enter:

xlc myprogram.c -qsyntaxonly

Related information

v “-C, -C!” on page 68

v “-c” on page 67

v “-E” on page 87

v “-o” on page 168

v “-P” on page 174

-t

Category

Compiler customization

Pragma equivalent

None.

Purpose

Applies the prefix specified by the -B option to the designated components.

Syntax

��

�

-t

a

b

c

C

d

I

L

l

p

��

Defaults

The default paths for all of the compiler executables are defined in the compiler

configuration file.

Parameters

The following table shows the correspondence between -t parameters and the

component executable names:

 Parameter Description Executable name

a Assembler as

b Low-level optimizer xlCcode

c Compiler front end xlcentry, xlCentry

C++

C

C++ compiler front end xlCentry

d Disassembler dis

220 XL C/C++ Compiler Reference

Parameter Description Executable name

I High-level optimizer,

compile step

ipa

L High-level optimizer, link

step

ipa

l Linker ld

p Preprocessor n/a

Note: You can also specify x for the gxlc and gxlc++ utilities.

Usage

This option is intended to be used together with the -Bprefix option. If -B is

specified without the prefix, the default prefix is /lib/o. If -B is not specified at all,

the prefix of the standard program names is /lib/n.

Note that using the p suboption causes the source code to be preprocessed

separately before compilation, which can change the way a program is compiled.

Predefined macros

None.

Examples

To compile myprogram.c so that the name /u/newones/compilers/ is prefixed to the

compiler and assembler program names, enter:

xlc myprogram.c -B/u/newones/compilers/ -tca

Related information

v “-B” on page 65

-qtabsize

Category

Language element control

Pragma equivalent

#pragma options tabsize

Purpose

Sets the default tab length, for the purposes of reporting the column number in

error messages.

Syntax

�� -q tabsize = number ��

Defaults

-qtabsize=8

Parameters

number

The number of character spaces representing a tab in your source program.

Chapter 3. Compiler options reference 221

Usage

This option only affects error messages that specify the column number at which

an error occurred.

Predefined macros

None.

Examples

To compile myprogram.c so the compiler considers tabs as having a width of one

character, enter:

xlc myprogram.c -qtabsize=1

In this case, you can consider one character position (where each character and

each tab equals one position, regardless of tab length) as being equivalent to one

character column.

-qtbtable

Category

Object code control

Pragma equivalent

#pragma options tbtable

Purpose

Controls the amount of debugging traceback information that is included in the

object files.

Many performance measurement tools require a full traceback table to properly

analyze optimized code. If a traceback table is generated, it is placed in the text

segment at the end of the object code, and contains information about each

function, including the type of function, as well as stack frame and register

information.

Syntax

��
 full

-q

tbtable

=

none

small

��

Defaults

v -qtbtable=full

v -qtbtable=small when -O or higher optimization is in effect

Parameters

full

A full traceback table is generated, complete with name and parameter

information.

none

No traceback table is generated. The stack frame cannot be unwound so

exception handling is disabled.

222 XL C/C++ Compiler Reference

small

The traceback table generated has no name or parameter information, but

otherwise has full traceback capability. This suboption reduces the size of the

program code.

Usage

This option applies only to 64-bit compilations, and is ignored if specified for a

32-bit compilation.

The #pragma options directive must be specified before the first statement in the

compilation unit.

Predefined macros

None.

Related information

v “-g” on page 107

-qtempinc (C++ only)

Category

Template control

Pragma equivalent

None.

Purpose

Generates separate template include files for template functions and class

declarations, and places these files in a directory which can be optionally specified.

Syntax

��
 notempinc

-q

tempinc

=

directory_path

��

Defaults

-qnotempinc

Parameters

directory_path

The directory in which the generated template include files are to be placed.

Usage

The -qtempinc and -qtemplateregistry compiler options are mutually exclusive.

Specifying -qtempinc implies -qnotemplateregistry. Similarly, specifying

-qtemplateregistry implies -qnotempinc. However, specifying -qnotempinc does

not imply -qtemplateregistry.

Specifying either -qtempinc or -qtemplateregistry implies -qtmplinst=auto.

Predefined macros

__TEMPINC__ is predefined to 1 when -qtempinc is in effect; otherwise, it is not

defined.

Chapter 3. Compiler options reference 223

Examples

To compile the file myprogram.C and place the generated include files for the

template functions in the /tmp/mytemplates directory, enter:

 xlc++ myprogram.C -qtempinc=/tmp/mytemplates

Related information

v “#pragma implementation (C++ only)” on page 268

v “-qtmplinst (C++ only)” on page 230

v “-qtemplateregistry (C++ only)” on page 226

v “-qtemplaterecompile (C++ only)” on page 225

v ″Using C++ templates″ in the XL C/C++ Programming Guide.

-qtemplatedepth (C++ only)

Category

Template control

Pragma equivalent

None.

Purpose

Specifies the maximum number of recursively instantiated template specializations

that will be processed by the compiler.

Syntax

�� -q templatedepth = number ��

Defaults

-qtemplatedepth=300

Parameters

number

The maximum number of recursive template instantiations. The number can be

a value between 1 and INT_MAX. If your code attempts to recursively

instantiate more templates than number, compilation halts and an error

message is issued. If you specify an invalid value, the default value of 300 is

used.

Usage

Note that setting this option to a high value can potentially cause an

out-of-memory error due to the complexity and amount of code generated.

Predefined macros

None.

Examples

To allow the following code in myprogram.cpp to be compiled successfully:

template <int n> void foo() {

 foo<n-1>();

}

template <> void foo<0>() {}

224 XL C/C++ Compiler Reference

int main() {

 foo<400>();

}

Enter:

xlc++ myprogram.cpp -qtemplatedepth=400

Related information

v ″Using C++ templates″ in the XL C/C++ Programming Guide.

-qtemplaterecompile (C++ only)

Category

Template control

Pragma equivalent

None.

Purpose

Helps manage dependencies between compilation units that have been compiled

using the -qtemplateregistry compiler option.

Syntax

��
 templaterecompile

-q

notemplaterecompile

��

Defaults

-qtemplaterecompile

Usage

If a source file that has been compiled previously is compiled again, the

-qtemplaterecompile option consults the template registry to determine whether

changes to this source file require the recompile of other compilation units. This

can occur when the source file has changed in such a way that it no longer

references a given instantiation and the corresponding object file previously

contained the instantiation. If so, affected compilation units will be recompiled

automatically.

The -qtemplaterecompile option requires that object files generated by the

compiler remain in the subdirectory to which they were originally written. If your

automated build process moves object files from their original subdirectory, use the

-qnotemplaterecompile option whenever -qtemplateregistry is enabled.

Predefined macros

None.

Related information

v “-qtmplinst (C++ only)” on page 230

v “-qtempinc (C++ only)” on page 223

v “-qtemplateregistry (C++ only)” on page 226

v ″Using C++ templates″ in the XL C/C++ Programming Guide.

Chapter 3. Compiler options reference 225

-qtemplateregistry (C++ only)

Category

Template control

Pragma equivalent

None.

Purpose

Maintains records of all templates as they are encountered in the source and

ensures that only one instantiation of each template is made.

The first time that the compiler encounters a reference to a template instantiation,

that instantiation is generated and the related object code is placed in the current

object file. Any further references to identical instantiations of the same template in

different compilation units are recorded but the redundant instantiations are not

generated. No special file organization is required to use the -qtemplateregistry

option.

Syntax

��
 notemplateregistry

-q

templateregistry

=

file_path

��

Defaults

-qnotemplateregistry

Parameters

file_path

The path for the file that will contain the template instantiation information. If

you do not specify a location the compiler saves all template registry

information to the file templateregistry stored in the current working

directory.

Usage

Template registry files must not be shared between different programs. If there are

two or more programs whose source is in the same directory, relying on the

default template registry file stored in the current working directory may lead to

incorrect results.

The -qtempinc and -qtemplateregistry compiler options are mutually exclusive.

Specifying -qtempinc implies -qnotemplateregistry. Similarly, specifying

-qtemplateregistry implies -qnotempinc. However, specifying

-qnotemplateregistry does not imply -qtempinc.

Specifying either -qtempinc or -qtemplateregistry implies -qtmplinst=auto.

Predefined macros

None.

Examples

To compile the file myprogram.C and place the template registry information into

the /tmp/mytemplateregistry file, enter:

 xlc++ myprogram.C -qtemplateregistry=/tmp/mytemplateregistry

226 XL C/C++ Compiler Reference

Related information

v “-qtmplinst (C++ only)” on page 230

v “-qtempinc (C++ only)” on page 223

v “-qtemplaterecompile (C++ only)” on page 225

v ″Using C++ templates″ in the XL C/C++ Programming Guide.

-qtempmax (C++ only)

Category

Template control

Pragma equivalent

None.

Purpose

Specifies the maximum number of template include files to be generated by the

-qtempinc option for each header file.

Syntax

�� -q tempmax = number ��

Defaults

-qtempmax=1

Parameters

number

The maximum number of template include files. The number can be a value

between 1 and 99 999.

Usage

This option should be used when the size of files generated by the -qtempinc

option become very large and take a significant amount of time to recompile when

a new instance is created.

Instantiations are spread among the template include files.

Predefined macros

None.

Related information

v “-qtempinc (C++ only)” on page 223

v ″Using C++ templates″ in the XL C/C++ Programming Guide.

-qthreaded

Category

Object code control

Pragma equivalent

None.

Purpose

Indicates to the compiler whether it must generate threadsafe code.

Chapter 3. Compiler options reference 227

Always use this option when compiling or linking multithreaded applications. This

option does not make code threadsafe, but it will ensure that code already

threadsafe will remain so after compilation and linking. It also ensures that all

optimizations are threadsafe.

Syntax

��
 nothreaded

-q

threaded

��

Defaults

v -qnothreaded for all invocation commands except those with the _r suffix

v -qthreaded for all _r-suffixed invocation commands

Usage

This option applies to both compile and linker operations.

To maintain thread safety, a file compiled with the -qthreaded option, whether

explicitly by option selection or implicitly by choice of _r compiler invocation

mode, must also be linked with the -qthreaded option.

Predefined macros

None.

Related information

v “-qsmp” on page 204

-qtls

Category

Object code control

Pragma equivalent

None.

Purpose

Enables recognition of the __thread storage class specifier, which designates

variables that are to be allocated thread-local storage; and specifies the thread-local

storage model to be used.

When this option is in effect, any variables marked with the __thread storage class

specifier are treated as local to each thread in a multi-threaded application. At run

time, a copy of the variable is created for each thread that accesses it, and

destroyed when the thread terminates. Like other high-level constructs that you

can use to parallelize your applications, thread-local storage prevents race

conditions to global data, without the need for low-level synchronization of

threads.

Suboptions allow you to specify thread-local storage models, which provide better

performance but are more restrictive in their applicability.

Syntax

228 XL C/C++ Compiler Reference

��
 tls

-q

default

=

global-dynamic

initial-exec

local-exec

local-dynamic

unsupported

notls

��

Defaults

-qtls=default

Parameters

unsupported

The __thread keyword is not recognized and thread-local storage is not

enabled. This suboption is equivalent to -qnotls.

global-dynamic

This model is the most general, and can be used for all thread-local variables.

initial-exec

This model provides better performance than the global-dynamic or

local-dynamic models, and can be used for thread-local variables defined in

dynamically-loaded modules, provided that those modules are loaded at the

same time as the executable. That is, it can only be used when all thread-local

variables are defined in modules that are not loaded through dlopen.

local-dynamic

This model provides better performance than the global-dynamic model, and

can be used for thread-local variables defined in dynamically-loaded modules.

However, it can only be used when all references to thread-local variables are

contained in the same module in which the variables are defined.

local-exec

This model provides the best performance of all of the models, but can only be

used when all thread-local variables are defined and referenced by the main

executable.

default

Uses the appropriate model depending on the setting of the -qpic compiler

option, which determines whether position-independent code is generated or

not. When -qpic is in effect, this suboption results in -qtls=global-dynamic.

When -qnopic is in effect, this suboption results in -qtls=initial-exec (-qpic is

in effect by default in 64-bit mode, and cannot be disabled).

 Specifying -qtls with no suboption is equivalent to -qtls=default.

Predefined macros

None.

Related information

v “-qpic” on page 183

v "The __thread storage class specifier" in the XL C/C++ Language Reference

Chapter 3. Compiler options reference 229

-qtmplinst (C++ only)

Category

Template control

Pragma equivalent

None.

Purpose

Manages the implicit instantiation of templates.

Syntax

��
 auto

-q

tmplinst

=

always

noinline

none

��

Defaults

-qtmplinst=auto

Parameters

always

Instructs the compiler to always perform implicit instantiation. If specified,

-qtempinc and -qtemplateregistry compiler options are ignored.

auto

Manages the implicit instantiations according to the -qtempinc and

-qtemplateregistry options. If both -qtempinc and -qtemplateregistry are

disabled, implicit instantiation will always be performed; otherwise if one of

the options is enabled, the compiler manages the implicit instantiation

according to that option.

noinline

Instructs the compiler to not perform any implicit instantiations. If specified,

the -qtempinc and -qtemplateregistry compiler options are ignored.

none

Instructs the compiler to instantiate only inline functions. No other implicit

instantiation is performed. If specified, -qtempinc and -qtemplateregistry

compiler options are ignored.

Usage

You can also use #pragma do_not_instantiate to suppress implicit instantiation of

selected template classes. See “#pragma do_not_instantiate (C++ only)” on page

263.

Predefined macros

None.

Related information

v “-qtemplateregistry (C++ only)” on page 226

v “-qtempinc (C++ only)” on page 223

v “#pragma do_not_instantiate (C++ only)” on page 263

v "Explicit instantiation in the XL C/C++ Language Reference

230 XL C/C++ Compiler Reference

-qtmplparse (C++ only)

Category

Template control

Pragma equivalent

None.

Purpose

Controls whether parsing and semantic checking are applied to template

definitions (class template definitions, function bodies, member function bodies,

and static data member initializers) or only to template instantiations.

When the option is enabled, the compiler can check function bodies and variable

initializers in template definitions and produce error or warning messages.

Syntax

��
 no

-q

tmplparse

=

error

warn

��

Defaults

-qtmplparse=no

Parameters

error

Treats problems in template definitions as errors, even if the template is not

instantiated.

no Do not parse template definitions. This reduces the number of errors issued in

code written for previous versions of VisualAge C++ and predecessor

products.

warn

Parses template definitions and issues warning messages for semantic errors.

Usage

This option applies to template definitions, not their instantiations. Regardless of

the setting of this option, error messages are produced for problems that appear

outside definitions. For example, messages are always produced for errors found

during the parsing or semantic checking of constructs such as the following:

v return type of a function template

v parameter list of a function template

Predefined macros

None.

Related information

v ″Using C++ templates″ in the XL C/C++ Programming Guide.

-qtocdata

See “-qdataimported, -qdatalocal, -qtocdata” on page 82.

Chapter 3. Compiler options reference 231

-qtrigraph

Category

Language element control

Pragma equivalent

None.

Purpose

Enables the recognition of trigraph key combinations to represent characters not

found on some keyboards.

Syntax

��
 trigraph

-q

notrigraph

��

Defaults

-qtrigraph

Usage

A trigraph is a combination of three-key character combinations that let you

produce a character that is not available on all keyboards. For details, see "Trigraph

sequences" in the XL C/C++ Language Reference.

C++

To override the default -qtrigraph setting, you must specify -qnotrigraph

after the -qlanglvl option on the command line.

Predefined macros

None.

Related information

v "Trigraph sequences" in the XL C/C++ Language Reference

v “-qdigraph” on page 84

v “-qlanglvl” on page 143

-qtune

Category

Optimization and tuning

Pragma equivalent

#pragma options tune

Purpose

Tunes instruction selection, scheduling, and other architecture-dependent

performance enhancements to run best on a specific hardware architecture.

Syntax

232 XL C/C++ Compiler Reference

��
 balanced

-q

tune

=

auto

ppc970

pwr3

pwr4

pwr5

pwr6

rs64b

rs64c

��

Defaults

-qtune=balanced when the default -qarch setting is in effect. Otherwise, the

default depends on the effective -qarch setting. See Table 25 on page 234 for

details.

Parameters

auto

Optimizations are tuned for the platform on which the application is compiled.

balanced

Optimizations are tuned across a selected range of recent hardware.

ppc970

Optimizations are tuned for the PowerPC 970 processor.

pwr3

Optimizations are tuned for the POWER3 hardware platforms.

pwr4

Optimizations are tuned for the POWER4 hardware platforms.

pwr5

Optimizations are tuned for the POWER5 hardware platforms.

pwr6

Optimizations are tuned for the POWER6 hardware platforms.

rs64b

Optimizations are tuned for the RS64II processor.

rs64c

Optimizations are tuned for the RS64III processor.

Usage

If you want your program to run on more than one architecture, but to be tuned to

a particular architecture, you can use a combination of the -qarch and -qtune

options. These options are primarily of benefit for floating-point intensive

programs.

By arranging (scheduling) the generated machine instructions to take maximum

advantage of hardware features such as cache size and pipelining, -qtune can

improve performance. It only has an effect when used in combination with options

that enable optimization.

Although changing the -qtune setting may affect the performance of the resulting

executable, it has no effect on whether the executable can be executed correctly on

a particular hardware platform.

Chapter 3. Compiler options reference 233

Acceptable combinations of -qarch, and -qtune are shown in the following table.

 Table 25. Acceptable -qarch/-qtune combinations

-qarch option

Default -qtune

setting Available -qtune settings

ppc balanced auto | rs64b | rs64c | pwr3 | pwr4 | pwr5 | pwr6 | ppc970

| balanced

ppcgr balanced auto | rs64b | rs64c | pwr3 | pwr4 | pwr5 | pwr6 | ppc970

| balanced

ppc64 balanced auto | rs64b | rs64c | pwr3 | pwr4 | pwr5 | pwr6 | ppc970

| balanced

ppc64gr balanced auto | rs64b | rs64c | pwr3 | pwr4 | pwr5 | pwr6 | ppc970

| balanced

ppc64grsq balanced auto | rs64b | rs64c | pwr3 | pwr4 | pwr5 | pwr6 | ppc970

| balanced

ppc64v ppc970 auto | ppc970 | pwr6 | balanced

ppc970 ppc970 auto | ppc970 | balanced

pwr3 pwr3 auto | pwr3 | pwr4 | pwr5 | ppc970 | balanced

pwr4 pwr4 auto | pwr4 | pwr5 | ppc970 | balanced

pwr5 pwr5 auto | pwr5 | balanced

pwr5x pwr5 auto | pwr5 | balanced

pwr6 pwr6 auto | pwr6 | balanced

pwr6e pwr6 auto | pwr6 | balanced

rs64b rs64b auto | rs64b

rs64c rs64c auto | rs64c

Predefined macros

None.

Examples

To specify that the executable program testing compiled from myprogram.c is to be

optimized for a POWER3 hardware platform, enter:

xlc -o testing myprogram.c -qtune=pwr3

Related information

v “-qarch” on page 58

v “-q32, -q64” on page 51

v “Specifying compiler options for architecture-specific, 32-bit or 64-bit

compilation” on page 9

v "Optimizing your applications"in the XL C/C++ Programming Guide

-U

Category

Language element control

Pragma equivalent

None.

Purpose

Undefines a macro defined by the compiler or by the -D compiler option.

234 XL C/C++ Compiler Reference

Syntax

�� -U name ��

Defaults

Many macros are predefined by the compiler; see Chapter 5, “Compiler predefined

macros,” on page 307 for those that can be undefined (that is, are not protected).

The compiler configuration file also uses the -D option to predefine several macro

names for specific invocation commands; for details, see the configuration file for

your system.

Parameters

name

The macro you want to undefine.

Usage

The -U option is not equivalent to the #undef preprocessor directive. It cannot

undefine names defined in the source by the #define preprocessor directive. It can

only undefine names defined by the compiler or by the -D option.

The -Uname option has a higher precedence than the -Dname option.

Predefined macros

None.

Examples

Assume that your operating system defines the name __unix, but you do not want

your compilation to enter code segments conditional on that name being defined,

compile myprogram.c so that the definition of the name __unix is nullified by

entering:

xlc myprogram.c -U__unix

Related information

v “-D” on page 81

-qunroll

Category

Optimization and tuning

Pragma equivalent

#pragma options [no]unroll, #pragma unroll

Purpose

Controls loop unrolling, for improved performance.

When unroll is in effect, the optimizer determines and applies the best unrolling

factor for each loop; in some cases, the loop control may be modified to avoid

unnecessary branching. The compiler remains the final arbiter of whether the loop

is actually unrolled. You can use the #pragma unroll directive to gain more control

over unrolling.

Chapter 3. Compiler options reference 235

Syntax

Option syntax

��

 unroll

auto

=

yes

no

-q

nounroll

��

Pragma syntax

�� # pragma nounroll

unroll

(

number

)

 ��

Defaults

-qunroll=auto

Parameters

auto (option only)

Instructs the compiler to perform basic loop unrolling.

yes (option only)

Instructs the compiler to search for more opportunities for loop unrolling than

that performed with auto. In general, this suboption has more chances to

increase compile time or program size than auto processing, but it may also

improve your application’s performance.

no (option only)

Instructs the compiler to not unroll loops.

number (pragma only)

Forces number − 1 replications of the designated loop body or full unrolling of

the loop, whichever occurs first. The value of number is unbounded and must

be a positive integer. Specifying #pragma unroll(1) effectively disables loop

unrolling, and is equivalent to specifying #pragma nounroll. If number is not

specified and if -qhot, -qsmp, or -O4 or higher is specified, the optimizer

determines an appropriate unrolling factor for each nested loop.

Specifying -qunroll without any suboptions is equivalent to -qunroll=yes.

-qnounroll is equivalent to -qunroll=no.

Usage

The pragma overrides the -q[no]unroll compiler option setting for a designated

loop. However, even if #pragma unroll is specified for a given loop, the compiler

remains the final arbiter of whether the loop is actually unrolled.

Only one pragma may be specified on a loop. The pragma must appear

immediately before the loop or the #pragma block_loop directive to have effect.

The pragma affects only the loop that follows it. An inner nested loop requires a

#pragma unroll directive to precede it if the desired loop unrolling strategy is

different from that of the prevailing -q[no]unroll option.

236 XL C/C++ Compiler Reference

The #pragma unroll and #pragma nounroll directives can only be used on for

loops or #pragma block_loop directives. They cannot be applied to do while and

while loops.

The loop structure must meet the following conditions:

v There must be only one loop counter variable, one increment point for that

variable, and one termination variable. These cannot be altered at any point in

the loop nest.

v Loops cannot have multiple entry and exit points. The loop termination must be

the only means to exit the loop.

v Dependencies in the loop must not be ″backwards-looking″. For example, a

statement such as A[i][j] = A[i -1][j + 1] + 4) must not appear within the

loop.

Predefined macros

None.

Examples

In the following example, the #pragma unroll(3) directive on the first for loop

requires the compiler to replicate the body of the loop three times. The #pragma

unroll on the second for loop allows the compiler to decide whether to perform

unrolling.

#pragma unroll(3)

for(i=0;i < n; i++)

{

 a[i] = b[i] * c[i];

}

#pragma unroll

for(j=0;j < n; j++)

{

 a[j] = b[j] * c[j];

}

In this example, the first #pragma unroll(3) directive results in:

i=0;

if (i>n-2) goto remainder;

for (; i<n-2; i+=3) {

 a[i]=b[i] * c[i];

 a[i+1]=b[i+1] * c[i+1];

 a[i+2]=b[i+2] * c[i+2];

}

if (i<n) {

 remainder:

 for (; i<n; i++) {

 a[i]=b[i] * c[i];

 }

}

Related information

v “#pragma block_loop” on page 256

v “#pragma loopid” on page 270

v “#pragma stream_unroll” on page 288

v “#pragma unrollandfuse” on page 290

Chapter 3. Compiler options reference 237

-qunwind

Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Specifies whether the call stack can be unwound by code looking through the

saved registers on the stack.

Specifying -qnounwind asserts to the compiler that the stack will not be unwound,

and can improve optimization of non-volatile register saves and restores.

Syntax

��
 unwind

-q

nounwind

��

Defaults

-qunwind

Usage

The setjmp and longjmp families of library functions are safe to use with

-qnounwind.

C++

Specifying -qnounwind also implies -qnoeh.

Predefined macros

None.

Related information

v “-qeh (C++ only)” on page 88

-qupconv (C only)

Category

Portability and migration

Pragma equivalent

#pragma options [no]upconv

Purpose

Specifies whether the unsigned specification is preserved when integral promotions

are performed.

When noupconv is in effect, any unsigned type smaller than an int is converted to

int during integral promotions. When upconv is in effect, these types are

converted to unsigned int during integral promotions.

Syntax

��
 noupconv

-q

upconv

��

238 XL C/C++ Compiler Reference

Defaults

v -qnoupconv for all language levels except classic or extended

v -qupconv when the classic or extended language levels are in effect

Usage

Sign preservation is provided for compatibility with older dialects of C. The ANSI

C standard requires value preservation as opposed to sign preservation.

Predefined macros

None.

Examples

To compile myprogram.c so that all unsigned types smaller than int are converted

to unsigned int, enter:

xlc myprogram.c -qupconv

The following short listing demonstrates the effect of -qupconv:

#include <stdio.h>

int main(void) {

 unsigned char zero = 0;

 if (-1 <zero)

 printf(“Value-preserving rules in effect\n”);

 else

 printf(“Unsignedness-preserving rules in effect\n”);

 return 0;

}

Related information

v "Integral and floating-point promotions" in the XL C/C++ Language Reference

v “-qlanglvl” on page 143

-qutf

Category

Language element control

Pragma equivalent

None.

Purpose

Enables recognition of UTF literal syntax.

Syntax

�� -q noutf

utf
 ��

Defaults

v

C

-qnoutf

v

C++

-qutf

Usage

The compiler uses iconv to convert the source file to Unicode. If the source file

cannot be converted, the compiler will ignore the -qutf option and issue a

warning.

Chapter 3. Compiler options reference 239

Predefined macros

None.

Related information

v "UTF literals"in the XL C/C++ Language Reference

-v, -V

Category

Listings, messages, and compiler information

Pragma equivalent

None.

Purpose

Reports the progress of compilation, by naming the programs being invoked and

the options being specified to each program.

When the -v option is in effect, information is displayed in a comma-separated list.

When the -V option is in effect, information is displayed in a space-separated list.

Syntax

�� -v

-V
 ��

Defaults

The compiler does not display the progress of the compilation.

Usage

The -v and -V options are overridden by the -# option.

Predefined macros

None.

Examples

To compile myprogram.c so you can watch the progress of the compilation and see

messages that describe the progress of the compilation, the programs being

invoked, and the options being specified, enter:

xlc myprogram.c -v

Related information

v “-# (pound sign)” on page 50

-qversion

Category

Listings, messages, and compiler information

Pragma equivalent

None.

Purpose

Displays the version and release of the compiler being invoked.

240 XL C/C++ Compiler Reference

Syntax

��
 noversion

-q

version

=

verbose

��

Defaults

-qnoversion

Parameters

verbose

Additionally displays information about the version, release, and level of each

compiler component installed.

Usage

When you specify -qversion, the compiler displays the version information and

exits; compilation is stopped

-qversion specified without the verbose suboption shows compiler information in

the format:

product_name
Version: VV.RR.MMMM.LLLL

where:

V Represents the version.

R Represents the release.

M Represents the modification.

L Represents the level.

Example:

IBM XL C/C++ Advanced Edition for Linux, V9.0

Version: 09.00.0000.0001

-qversion=verbose shows component information in the following format:

component_name Version: VV.RR(product_name) Level: component_level

where:

component_name

Specifies an installed component, such as the low-level optimizer.

component_level

Represents the level of the installed component.

Example:

IBM XL C/C++ Advanced Edition for Linux, V9.0

Version: 09.00.0000.0001

Driver Version: 09.00(C/C++) Level: 060414

C Front End Version: 09.00(C/C++) Level: 060419

C++ Front End Version: 09.00(C/C++) Level: 060420

High Level Optimizer Version: 09.00(C/C++) and 11.01(Fortran) Level: 060411

Low Level Optimizer Version: 09.00(C/C++) and 11.01(Fortran) Level: 060418

If you want to save this information to the output object file, you can do so with

the -qsaveopt -c options.

Predefined macros

None.

Chapter 3. Compiler options reference 241

Related information

v “-qsaveopt” on page 200

-qvrsave

Category

Object code control

Pragma equivalent

#pragma altivec_vrsave

Purpose

Enables code in function prologs and epilogs to maintain the VRSAVE register.

Each bit in the VRSAVE register corresponds to a vector register and, if set to 1,

indicates that the corresponding vector register contains data to be saved when a

context switch occurs. Use -qvrsave to indicate to the compiler that functions in

the compilation unit include code needed to maintain the VRSAVE register. Use

-qnovrsave to indicate to the compiler that functions in the compilation unit do not

include code needed to maintain the VRSAVE register.

You can use the pragma to override the current setting of the compiler option for

individual functions within your program source.

Syntax

Option syntax

��
 vrsave

-q

novrsave

��

Pragma syntax

��
 on

#

pragma

altivec_vrsave

off

allon

��

Defaults

vrsave: The VRSAVE register is always maintained.

Parameters

on (pragma only)

Function prologs and epilogs include code to maintain the VRSAVE register.

off (pragma only)

Function prologs and epilogs do not include code to maintain the VRSAVE

register.

allon (pragma only)

The function containing pragma sets all bits of the VRSAVE register to 1,

indicating that all vectors are used and should be saved if a context switch

occurs.

Usage

This option and pragma are only supported when -qaltivec is in effect.

242 XL C/C++ Compiler Reference

The pragma can be used only within a function, and its effects apply only to the

function in which it appears. Specifying this pragma with different settings within

the same function will create an error condition.

Predefined macros

None.

Related information

v “-qaltivec” on page 57

-w

Category

Listings, messages, and compiler information

Pragma equivalent

None.

Purpose

Suppresses informational, language-level and warning messages.

C

This option is equivalent to specifying -qflag=e : e.

C++

This option

is equivalent to specifying -qflag=s : s.

Syntax

�� -w ��

Defaults

All informational and warning messages are reported.

Usage

Informational and warning messages that supply additional information to a

severe error are not disabled by this option.

Predefined macros

None.

Examples

To compile myprogram.c so that no warning messages are displayed, enter:

xlc myprogram.c -w

The following example shows how informational messages that result from a

severe error, in this case caused by problems with overload resolution in C++, are

not disabled :

void func(int a){}

void func(int a, int b){}

int main(void)

{

func(1,2,3);

return 0;

}

The output is as follows:

Chapter 3. Compiler options reference 243

"x.cpp", line 6.4: 1540-0218 (S) The call does not match any parameter list for "func".

"x.cpp", line 1.6: 1540-1283 (I) "func(int)" is not a viable candidate.

"x.cpp", line 6.4: 1540-0215 (I) The wrong number of arguments have been specified for "func(int)".

"x.cpp", line 2.6: 1540-1283 (I) "func(int, int)" is not a viable candidate.

"x.cpp", line 6.4: 1540-0215 (I) The wrong number of arguments have been specified for "func(int, int)".

Related information

v “-qflag” on page 96

v “-qsuppress” on page 217

-W

Category

Compiler customization

Pragma equivalent

None.

Purpose

Passes the listed options to a component that is executed during compilation.

Syntax

��

�

-W

a

,

option

b

c

C

d

I

L

l

p

��

Parameters

option

Any option that is valid for the component to which it is being passed. Spaces

must not appear before the option.

 The following table shows the correspondence between -W parameters and the

component executable names:

 Parameter Description Executable name

a Assembler as

b Low-level optimizer xlCcode

c Compiler front end xlcentry, xlCentry

C++

C

C++ compiler front end xlCentry

d Disassembler dis

I High-level optimizer,

compile step

ipa

L High-level optimizer, link

step

ipa

l Linker ld

244 XL C/C++ Compiler Reference

Parameter Description Executable name

p Preprocessor n/a

Note: You can also specify x to pass options to the the gxlc and gxlc++ utilities.

See “gxlc and gxlc++ syntax” on page 11 for details.

Usage

In the string following the -W option, use a comma as the separator for each

option, and do not include any spaces. If you need to include a character that is

special to the shell in the option string, precede the character with a backslash. For

example, if you use the -W option in the configuration file, you can use the escape

sequence backslash comma (\,) to represent a comma in the parameter string.

You do not need the -W option to pass most options to the linker ld: unrecognized

command-line options, except -q options, are passed to it automatically. Only

linker options with the same letters as compiler options, such as -v or -S, strictly

require -W.

Predefined macros

None.

Examples

To compile the file file.c and pass the linker option -berok to the linker, enter the

following command:

xlc -Wl,-berok file.c

To compile the file uses_many_symbols.c and the assembly file

produces_warnings.s so that produces_warnings.s is assembled with the assembler

option -x (issue warnings and produce cross-reference), and the object files are

linked with the option -s (write list of object files and strip final executable file),

issue the following command:.

xlc -Wa,-x -Wl,-s produces_warnings.s uses_many_symbols.c

Related information

v “Invoking the compiler” on page 1

-qwarn64

Category

Error checking and debugging

Pragma equivalent

None.

Purpose

Enables checking for possible data conversion problems between 32-bit and 64-bit

compiler modes.

When -qwarn64 is in effect, informational messages are displayed where data

conversion may cause problems in 64-bit compilation mode, such as:

v Truncation due to explicit or implicit conversion of long types into int types

v Unexpected results due to explicit or implicit conversion of int types into long

types

Chapter 3. Compiler options reference 245

v Invalid memory references due to explicit conversion by cast operations of

pointer types into int types

v Invalid memory references due to explicit conversion by cast operations of int

types into pointer types

v Problems due to explicit or implicit conversion of constants into long types

v Problems due to explicit or implicit conversion by cast operations of constants

into pointer types

Syntax

��
 nowarn64

-q

warn64

��

Defaults

-qnowarn64

Usage

This option functions in either 32-bit or 64-bit compiler modes. In 32-bit mode, it

functions as a preview aid to discover possible 32-bit to 64-bit migration problems.

Predefined macros

None.

Related information

v -q32, -q64

v “Compiler messages” on page 15

-qxcall

Category

Object code control

Pragma equivalent

None.

Purpose

Generates code to treat static functions within a compilation unit as if they were

external functions.

Syntax

��
 noxcall

-q

xcall

��

Defaults

-qnoxcall

Usage

-qxcall generates slower code than -qnoxcall.

Predefined macros

None.

246 XL C/C++ Compiler Reference

Examples

To compile myprogram.c so that all static functions are compiled as external

functions, enter:

xlc myprogram.c -qxcall

-qxref

Category

Listings, messages, and compiler information

Pragma equivalent

#pragma options [no]xref

Purpose

Produces a compiler listing that includes the cross-reference component of the

attribute and cross-reference section of the listing.

When xref is in effect, a listing file is generated with a .lst suffix for each source

file named on the command line. For details of the contents of the listing file, see

“Compiler listings” on page 18.

Syntax

��
 noxref

-q

xref

=

full

��

Defaults

-qnoxref

Parameters

full

Reports all identifiers in the program. If you specify xref without this

suboption, only those identifiers that are used are reported.

Usage

A typical cross-reference listing has the form:

The listing uses the following character codes:

 Table 26. Cross-reference listing codes

Character Meaning

X Function is declared.

Y Function is defined.

Z Function is called.

Chapter 3. Compiler options reference 247

Table 26. Cross-reference listing codes (continued)

Character Meaning

$ Type is defined, variable is declared/defined.

Variable is assigned to.

& Variable is defined and initialized.

[blank] Identifier is referenced.

The -qnoprint option overrides this option.

Any function defined with the #pragma mc_func directive is listed as being

defined on the line of the pragma directive.

Predefined macros

None.

Examples

To compile myprogram.c and produce a cross-reference listing of all identifiers,

whether they are used or not, enter:

xlc myprogram.c -qxref=full

Related information

v “-qattr” on page 64

v “#pragma mc_func” on page 273

-y

Category

Floating-point and integer control

Pragma equivalent

None.

Purpose

Specifies the rounding mode for the compiler to use when evaluating constant

floating-point expressions at compile time.

Syntax

��
 n

-y

m

p

z

��

Defaults

-yn, -ydn

Parameters

The following suboptions are valid for binary floating-point types only:

m Round toward minus infinity.

n Round to the nearest representable number, ties to even.

p Round toward plus infinity.

248 XL C/C++ Compiler Reference

z Round toward zero.

Usage

If your program contains operations involving long doubles, the rounding mode

must be set to -yn (round-to-nearest representable number, ties to even).

Predefined macros

None.

Examples

To compile myprogram.c so that constant floating-point expressions are rounded

toward zero at compile time, enter:

xlc myprogram.c -yz

Chapter 3. Compiler options reference 249

250 XL C/C++ Compiler Reference

Chapter 4. Compiler pragmas reference

The following sections describe the pragmas available in XL C/C++ for the Linux

platform:

v “Pragma directive syntax”

v “Scope of pragma directives” on page 252

v “Summary of compiler pragmas by functional category” on page 252

v “Individual pragma descriptions” on page 255

Pragma directive syntax

XL C/C++ supports three forms of pragma directives:

#pragma options option_name

These pragmas use exactly the same syntax as their command-line option

equivalent. The exact syntax and list of supported pragmas of this type are

provided in “#pragma options” on page 275.

#pragma name

This form uses the following syntax:

��

�

#

pragma

name

(

suboptions

)

��

The name is the pragma directive name, and the suboptions are any required

or optional suboptions that can be specified for the pragma, where

applicable.

_Pragma ("name")

This form uses the following syntax:

��

�

_Pragma

(

″

name

(

suboptions

)

″

)

��

For example, the statement:

_Pragma ("pack(1)")

is equivalent to:

#pragma pack(1)

For all forms of pragma statements, you can specify more than one name and

suboptions in a single #pragma statement.

The name on a pragma is subject to macro substitutions, unless otherwise stated.

The compiler ignores unrecognized pragmas, issuing an informational message

indicating this.

If you have any pragmas that are not common to both C and C++ in code that will

be compiled by both compilers, you may add conditional compilation directives

around the pragmas. (This is not strictly necessary since unrecognized pragmas are

© Copyright IBM Corp. 1998, 2007 251

ignored.) For example, #pragma object_model is only recognized by the C++

compiler, so you may decide to add conditional compilation directives around the

pragma.

#ifdef __cplusplus

#pragma object_model(pop)

#endif

Scope of pragma directives

Many pragma directives can be specified at any point within the source code in a

compilation unit; others must be specified before any other directives or source

code statements. In the individual descriptions for each pragma, the "Usage"

section describes any constraints on the pragma's placement.

In general, if you specify a pragma directive before any code in your source

program, it applies to the entire compilation unit, including any header files that

are included. For a directive that can appear anywhere in your source code, it

applies from the point at which it is specified, until the end of the compilation

unit.

You can further restrict the scope of a pragma's application by using

complementary pairs of pragma directives around a selected section of code. For

example, using #pragma options source and #pragma options nosource directives

as follows requests that only the selected parts of your source code be included in

your compiler listing:

#pragma options source

/* Source code between the source and nosource pragma

 options is included in the compiler listing */

#pragma options nosource

Many pragmas provide "pop" or "reset" suboptions that allow you to enable and

disable pragma settings in a stack-based fashion; examples of these are provided in

the relevant pragma descriptions.

Summary of compiler pragmas by functional category

The XL C/C++ pragmas available on the Linux platform are grouped into the

following categories:

v Language element control

v C++ template pragmas

v Floating-point and integer control

v Error checking and debugging

v Listings, messages and compiler information

v Optimization and tuning

v Object code control

v Portability and migration

v Compiler customization

For descriptions of these categories, see “Summary of compiler options by

functional category” on page 35.

252 XL C/C++ Compiler Reference

Language element control

 Table 27. Language element control pragmas

Pragma Description

#pragma langlvl (C only) Determines whether source code and compiler options

should be checked for conformance to a specific language

standard, or subset or superset of a standard.

#pragma mc_func Allows you to embed a short sequence of machine

instructions ″inline″ within your program source code.

#pragma options Specifies compiler options in your source program.

C++ template pragmas

 Table 28. C++ template pragmas

Pragma Description

#pragma define, #pragma

instantiate (C++ only)

Provides an alternative method for explicitly instantiating a

template class.

#pragma do_not_instantiate

(C++ only)

Prevents the specified template declaration from being

instantiated.

#pragma implementation

(C++ only)

For use with the -qtempinc compiler option, supplies the

name of the file containing the template definitions

corresponding to the template declarations contained in a

header file.

Floating-point and integer control

 Table 29. Floating-point and integer control pragmas

Pragma Description

#pragma chars Determines whether all variables of type char are treated as

either signed or unsigned.

#pragma enum Specifies the amount of storage occupied by enumerations.

Error checking and debugging

 Table 30. Error checking and debugging pragmas

Pragma Description

#pragma ibm snapshot Specifies a location at which a breakpoint can be set and

defines a list of variables that can be examined when

program execution reaches that location.

#pragma info Produces or suppresses groups of informational messages.

Listings, messages and compiler information

 Table 31. Listings, messages and compiler information pragmas

Pragma Description

“#pragma report (C++

only)” on page 286

Controls the generation of diagnostic messages.

Chapter 4. Compiler pragmas reference 253

Optimization and tuning

 Table 32. Optimization and tuning pragmas

Pragma Description

#pragma block_loop Marks a block with a scope-unique identifier.

#pragma STDC

cx_limited_range

Instructs the compiler that complex division and absolute

value are only invoked with values such that intermediate

calculation will not overflow or lose significance.

#pragma disjoint Lists identifiers that are not aliased to each other within the

scope of their use.

#pragma

execution_frequency

Marks program source code that you expect will be either

very frequently or very infrequently executed.

#pragma expected_value Specifies the value that a parameter passed in a function call

is most likely to take at run time. The compiler can use this

information to perform certain optimizations, such as

function cloning and inlining.

#pragma isolated_call Specifies functions in the source file that have no side effects

other than those implied by their parameters.

#pragma leaves Informs the compiler that a named function never returns to

the instruction following a call to that function.

#pragma loopid Marks a block with a scope-unique identifier.

#pragma nosimd When used with -qhot=simd, disables the generation of

SIMD instructions for the next loop.

#pragma novector When used with -qhot=novector, disables auto-vectorization

of the next loop.

#pragma option_override Allows you to specify optimization options at the

subprogram level that override optimization options given

on the command line.

#pragma reachable Informs the compiler that the point in the program after a

named function can be the target of a branch from some

unknown location.

#pragma reg_killed_by Specifies registers that may be altered by functions specified

by #pragma mc_func.

#pragma stream_unroll When optimization is enabled, breaks a stream contained in

a for loop into multiple streams.

#pragma unroll Controls loop unrolling, for improved performance.

#pragma unrollandfuse Instructs the compiler to attempt an unroll and fuse

operation on nested for loops.

Object code control

 Table 33. Object code control pragmas

Pragma Description

#pragma alloca (C only) Provides an inline definition of system function alloca when

it is called from source code that does not include the

alloca.h header.

#pragma altivec_vrsave Enables code in function prologs and epilogs to maintain the

VRSAVE register.

#pragma comment Places a comment into the object module.

254 XL C/C++ Compiler Reference

Table 33. Object code control pragmas (continued)

Pragma Description

#pragma hashome (C++

only)

Informs the compiler that the specified class has a home

module that will be specified by #pragma ishome.

#pragma ishome (C++ only) Informs the compiler that the specified class’s home module

is the current compilation unit.

#pragma map Converts all references to an identifier to another, externally

defined identifier.

#pragma pack Sets the alignment of all aggregate members to a specified

byte boundary.

#pragma priority (C++ only) Specifies the priority level for the initialization of static

objects.

#pragma reg_killed_by Specifies registers that may be altered by functions specified

by #pragma mc_func.

#pragma strings Specifies the storage type for string literals.

#pragma weak Prevents the linker from issuing error messages if it

encounters a symbol multiply-defined during linking, or if it

does not find a definition for a symbol.

Portability and migration

 Table 34. Portability and migration pragmas

Pragma Description

#pragma align Specifies the alignment of data objects in storage, which

avoids performance problems with misaligned data.

Compiler customization

 Table 35. Compiler customization pragmas

Pragma Description

#pragma complexgcc Specifies whether to use GCC parameter-passing conventions

for complex data types (equivalent to enabling

-qfloat=complexgcc).

Individual pragma descriptions

This section contains descriptions of individual pragmas available in XL C/C++.

For each pragma, the following information is given:

Category

The functional category to which the pragma belongs is listed here.

Purpose

This section provides a brief description of the effect of the pragma, and

why you might want to use it.

Syntax

This section provides the syntax for the pragma. For convenience, the

#pragma name form of the directive is used in each case. However, it is

Chapter 4. Compiler pragmas reference 255

perfectly valid to use the alternate C99-style _Pragma operator syntax; see

“Pragma directive syntax” on page 251 for details.

Parameters

This section describes the suboptions that are available for the pragma,

where applicable.

Usage This section describes any rules or usage considerations you should be

aware of when using the pragma. These can include restrictions on the

pragma's applicability, valid placement of the pragma, and so on.

Examples

Where appropriate, examples of pragma directive use are provided in this

section.

#pragma align

See “-qalign” on page 55.

#pragma alloca (C only)

See “-qalloca, -ma (C only)” on page 56.

#pragma altivec_vr_save

See “-qvrsave” on page 242.

#pragma block_loop

Category

Optimization and tuning

Purpose

Marks a block with a scope-unique identifier.

Syntax

��

�

 ,

#

pragma

block_loop

(

expression

,

name

)

��

Parameters

expression

An integer expression representing the size of the iteration group.

name

An identifier that is unique within the scoping unit. If you do not specify a

name, blocking occurs on the first for loop or loop following the #pragma

block_loop directive.

Usage

For loop blocking to occur, a #pragma block_loop directive must precede a for

loop.

If you specify #pragma unroll, #pragma unrollandfuse or #pragma stream_unroll

for a blocking loop, the blocking loop is unrolled, unrolled and fused or stream

unrolled respectively, if the blocking loop is actually created. Otherwise, this

directive has no effect.

256 XL C/C++ Compiler Reference

If you specify #pragma unrollandfuse, #pragma unroll or #pragma stream_unroll

directive for a blocked loop, the directive is applied to the blocked loop after the

blocking loop is created. If the blocking loop is not created, this directive is applied

to the loop intended for blocking, as if the corresponding #pragma block_loop

directive was not specified.

You must not specify #pragma block_loop more than once, or combine the

directive with #pragma nounroll, #pragma unroll, #pragma nounrollandfuse,

#pragma unrollandfuse, or #pragma stream_unroll directives for the same for

loop. Also, you should not apply more than one #pragma unroll directive to a

single block loop directive.

Processing of all #pragma block_loop directives is always completed before

performing any unrolling indicated by any of the unroll directives

Examples

The following two examples show the use of #pragma block_loop and #pragma

loop_id for loop tiling:

#pragma block_loop(50, mymainloop)

#pragma block_loop(20, myfirstloop, mysecondloop)

#pragma loopid(mymainloop)

 for (i=0; i < n; i++)

 {

#pragma loopid(myfirstloop)

 for (j=0; j < m; j++)

 {

#pragma loopid(mysecondloop)

 for (k=0; k < m; k++)

 {

 ...

 }

 }

 }

#pragma block_loop(50, mymainloop)

#pragma block_loop(20, myfirstloop, mysecondloop)

#pragma loopid(mymainloop)

 for (i=0; i < n; n++)

 {

#pragma loopid(myfirstloop)

 for (j=0; j < m; j++)

 {

#pragma loopid(mysecondloop)

 for (k=0; k < m; k++)

 {

 ...

 }

 }

 }

The following example shows the use #pragma block_loop and #pragma loop_id

for loop interchange.

 for (i=0; i < n; i++)

 {

 for (j=0; j < n; j++)

 {

#pragma block_loop(1,myloop1)

 for (k=0; k < m; k++)

 {

#pragma loopid(myloop1)

 for (l=0; l < m; l++)

 {

 ...

Chapter 4. Compiler pragmas reference 257

}

 }

 }

 }

The following example shows the use of #pragma block_loop and #pragma

loop_id for loop tiling for multi-level memory hierarchy:

 #pragma block_loop(l3factor, first_level_blocking)

 for (i=0; i < n; i++)

 {

 #pragma loopid(first_level_blocking)

 #pragma block_loop(l2factor, inner_space)

 for (j=0; j < n; j++)

 {

 #pragma loopid(inner_space)

 for (k=0; k < m; k++)

 {

 for (l=0; l < m; l++)

 {

 ...

 }

 }

 }

 }

The following example uses #pragma unrollandfuse and #pragma block_loop to

unroll and fuse a blocking loop.

#pragma unrollandfuse

#pragma block_loop(10)

 for (i = 0; i < N; ++i) {

 }

In this case, if the block loop directive is ignored, the unroll directives have no

effect.

The following example shows the use of #pragma unroll and #pragma block_loop

to unroll a blocked loop.

 #pragma block_loop(10)

 #pragma unroll(2)

 for (i = 0; i < N; ++i) {

 }

In this case, if the block loop directive is ignored, the unblocked loop is still

subjected to unrolling. If blocking does happen, the unroll directive is applied to

the blocked loop.

The following examples show invalid uses of the directive. The first example

shows #pragma block_loop used on an undefined loop identifier:

 #pragma block_loop(50, myloop)

 for (i=0; i < n; i++)

 {

 }

Referencing myloop is not allowed, since it is not in the nest and may not be

defined.

In the following example, referencing myloop is not allowed, since it is not in the

same loop nest:

258 XL C/C++ Compiler Reference

for (i=0; i < n; i++)

 {

 #pragma loopid(myLoop)

 for (j=0; j < i; j++)

 {

 ...

 }

 }

 #pragma block_loop(myLoop)

 for (i=0; i < n; i++)

 {

 ...

 }

The following examples are invalid since the unroll directives conflict with each

other:

 #pragma unrollandfuse(5)

 #pragma unroll(2)

 #pragma block_loop(10)

 for (i = 0; i < N; ++i) {

 }

 #pragma block_loop(10)

 #pragma unroll(5)

 #pragma unroll(10)

 for (i = 0; i < N; ++i) {

 }

Related information

v “#pragma loopid” on page 270

v “-qunroll” on page 235

v “#pragma unrollandfuse” on page 290

v “#pragma stream_unroll” on page 288

#pragma chars

See “-qchars” on page 71.

#pragma comment

Category

Object code control

Purpose

Places a comment into the object module.

Syntax

�� # pragma comment (compiler)

date

timestamp

copyright

user

,

"

token_sequence

"

 ��

Parameters

compiler

Appends the name and version of the compiler at the end of the generated

object module.

Chapter 4. Compiler pragmas reference 259

date

The date and time of the compilation are appended at the end of the generated

object module.

timestamp

Appends the date and time of the last modification of the source at the end of

the generated object module.

copyright

Places the text specified by the token_sequence, if any, into the generated object

module. The token_sequence is included in the generated executable and loaded

into memory when the program is run.

user

Places the text specified by the token_sequence, if any, into the generated object

module. The token_sequence is included in the generated executable but is not

loaded into memory when the program is run.

token_sequence

The characters in this field, if specified, must be enclosed in double quotation

marks ("). If the string literal specified in the token_sequence exceeds 32 767

bytes, an information message is emitted and the pragma is ignored.

Usage

More than one comment directive can appear in a translation unit, and each type

of comment directive can appear more than once, with the exception of copyright,

which can appear only once.

You can display the object-file comments by using the operating system strings

command.

Examples

Assume that following program code is compiled to produce output file a.out:

#pragma comment(date)

#pragma comment(compiler)

#pragma comment(timestamp)

#pragma comment(copyright,"My copyright")

int main() {

return 0;

}

Issuing the command:

strings a.out

will cause the comment information embedded in a.out to be displayed, along

with any other strings that may be found in a.out. For example, assuming the

program code shown above:

Mon Mar 1 10:28:03 2007

XL C/C++ for Linux Compiler Version 9.0

Mon Mar 1 10:28:09 2007

My copyright

#pragma complexgcc

See “-qcomplexgccincl” on page 76.

260 XL C/C++ Compiler Reference

#pragma define, #pragma instantiate (C++ only)

Category

Template control

Purpose

Provides an alternative method for explicitly instantiating a template class.

Syntax

�� # pragma define

instantiate
 (template_class_name) ��

Parameters

template_class_name

The name of the template class to be instantiated.

Usage

This pragma provides equivalent functionality to standard C++ explicit

instantiation, and is provided for backwards compatibility purposes only. New

applications should use standard C++ explicit instantiation.

The pragma can appear anywhere an explicit instantiation statement can appear.

Examples

The following directive:

#pragma define(Array<char>)

is equivalent to the following explicit instantiation:

template class Array<char>;

Related information

v "Explicit instantiation" in the XL C/C++ Language Reference

v “#pragma do_not_instantiate (C++ only)” on page 263

#pragma disjoint

Category

Optimization and tuning

Purpose

Lists identifiers that are not aliased to each other within the scope of their use.

By informing the compiler that none of the identifiers listed in the pragma shares

the same physical storage, the pragma provides more opportunity for

optimizations.

Syntax

�� #pragma disjoint �

Chapter 4. Compiler pragmas reference 261

�

�

�

�

(

variable_name

,

variable_name

)

*

*

��

Parameters

variable_name

The name of a variable. It must not refer to any of the following:

v A member of a structure, class, or union

v A structure, union, or enumeration tag

v An enumeration constant

v A typedef name

v A label

Usage

The #pragma disjoint directive asserts that none of the identifiers listed in the

pragma share physical storage; if any the identifiers do actually share physical

storage, the pragma may give incorrect results.

The pragma can appear anywhere in the source program that a declaration is

allowed. An identifier in the directive must be visible at the point in the program

where the pragma appears.

You must declare the identifiers before using them in the pragma. Your program

must not dereference a pointer in the identifier list nor use it as a function

argument before it appears in the directive.

This pragma can be disabled with the -qignprag compiler option.

Examples

The following example shows the use of #pragma disjoint.

int a, b, *ptr_a, *ptr_b;

#pragma disjoint(*ptr_a, b) /* *ptr_a never points to b */

#pragma disjoint(*ptr_b, a) /* *ptr_b never points to a */

one_function()

{

 b = 6;

 ptr_a = 7; / Assignment will not change the value of b */

 another_function(b); /* Argument "b" has the value 6 */

}

External pointer ptr_a does not share storage with and never points to the external

variable b. Consequently, assigning 7 to the object to which ptr_a points will not

change the value of b. Likewise, external pointer ptr_b does not share storage with

and never points to the external variable a. The compiler can assume that the

argument to another_function has the value 6 and will not reload the variable

from memory.

262 XL C/C++ Compiler Reference

#pragma do_not_instantiate (C++ only)

Category

Template control

Purpose

Prevents the specified template declaration from being instantiated.

You can use this pragma to suppress the implicit instantiation of a template for

which a definition is supplied.

Syntax

�� # pragma do_not_instantiate template_class_name ��

Parameters

template_class_name

The name of the template class that should not be instantiated.

Usage

If you are handling template instantiations manually (that is, -qnotempinc and

-qnotemplateregistry are specified), and the specified template instantiation

already exists in another compilation unit, using #pragma do_not_instantiate

ensures that you do not get multiple symbol definitions during the link step.

You can also use the -qtmplinst option to suppress implicit instantiation of

template declarations for multiple compilation units. See “-qtmplinst (C++ only)”

on page 230.

Examples

The following shows the usage of the pragma:

#pragma do_not_instantiate Stack < int >

Related information

v “#pragma define, #pragma instantiate (C++ only)” on page 261

v “-qtmplinst (C++ only)” on page 230

v "Explicit instantiation in the XL C/C++ Language Reference

v “-qtempinc (C++ only)” on page 223

v “-qtemplateregistry (C++ only)” on page 226

#pragma enum

See “-qenum” on page 89.

#pragma execution_frequency

Category

Optimization and tuning

Purpose

Marks program source code that you expect will be either very frequently or very

infrequently executed.

When optimization is enabled, the pragma is used as a hint to the optimizer.

Chapter 4. Compiler pragmas reference 263

Syntax

�� # pragma execution_frequency (very_low)

very_high
 ��

Parameters

very_low

Marks source code that you expect will be executed very infrequently.

very_high

Marks source code that you expect will be executed very frequently.

Usage

Use this pragma in conjunction with an optimization option; if optimization is not

enabled, the pragma has no effect.

The pragma must be placed within block scope, and acts on the closest point of

branching.

Examples

In the following example, the pragma is used in an if statement block to mark

code that is executed infrequently.

int *array = (int *) malloc(10000);

if (array == NULL) {

 /* Block A */

 #pragma execution_frequency(very_low)

 error();

}

In the next example, the code block Block B is marked as infrequently executed

and Block C is likely to be chosen during branching.

if (Foo > 0) {

 #pragma execution_frequency(very_low)

 /* Block B */

 doSomething();

} else {

 /* Block C */

 doAnotherThing();

}

In this example, the pragma is used in a switch statement block to mark code that

is executed frequently.

while (counter > 0) {

 #pragma execution_frequency(very_high)

 doSomething();

} /* This loop is very likely to be executed. */

switch (a) {

 case 1:

 doOneThing();

 break;

 case 2:

 #pragma execution_frequency(very_high)

 doTwoThings();

 break;

 default:

 doNothing();

} /* The second case is frequently chosen. */

264 XL C/C++ Compiler Reference

The following example shows how the pragma must be applied at block scope and

affects the closest branching.

int a;

#pragma execution_frequency(very_low)

int b;

int foo(boolean boo) {

 #pragma execution_frequency(very_low)

 char c;

 if (boo) {

 /* Block A */

 doSomething();

 {

 /* Block C */

 doSomethingAgain();

 #pragma execution_frequency(very_low)

 doAnotherThing();

 }

 } else {

 /* Block B */

 doNothing();

 }

 return 0;

}

#pragma execution_frequency(very_low)

#pragma expected_value

Category

Optimization and tuning

Purpose

Specifies the value that a parameter passed in a function call is most likely to take

at run time. The compiler can use this information to perform certain

optimizations, such as function cloning and inlining.

Syntax

�� #pragma expected_value (argument , value) ��

Parameters

argument

The name of the parameter for which you want to provide the expected value.

The parameter must be of a simple built-in integral, Boolean, character, or

floating-point type.

value

A constant literal representing the value that you expect will most likely be

taken by the parameter at run time. value can be an expression as long as it is a

compile time constant expression.

Usage

The directive must appear inside the body of a function definition, before the first

statement (including declaration statements). It is not supported within nested

functions.

Chapter 4. Compiler pragmas reference 265

If you specify an expected value of a type different from that of the declared type

of the parameter variable, the value will be implicitly converted only if allowed.

Otherwise, a warning is issued.

For each parameter that will be provided the expected value there is a limit of one

directive. Parameters that will not be provided the expected value do not require a

directive.

Examples

The following example tells the compiler that the most likely values for parameters

a and b are 1 and 0, respectively:

int func(int a,int b)

{

#pragma expected_value(a,1)

#pragma expected_value(b,0)

...

...

}

Related information

v “#pragma execution_frequency” on page 263

#pragma hashome (C++ only)

Category

Object code control

Purpose

Informs the compiler that the specified class has a home module that will be

specified by #pragma ishome.

This class’s virtual function table, along with certain inline functions, will not be

generated as static. Instead, they will be referenced as externals in the compilation

unit of the class in which #pragma ishome is specified.

Syntax

�� # pragma hashome (class_name)

allinlines
 ��

Parameters

class_name

The name of a class to be referenced externally. class_name must be a class and

it must be defined.

allinlines

Specifies that all inline functions from within class_name should be referenced

as being external.

Usage

A warning will be produced if there is a #pragma ishome without a matching

#pragma hashome.

266 XL C/C++ Compiler Reference

Examples

In the following example, compiling the code samples will generate virtual

function tables and the definition of S::foo() only for compilation unit a.o, but

not for b.o. This reduces the amount of code generated for the application.

// a.h

struct S

{

 virtual void foo() {}

 virtual void bar();

};

// a.C

#pragma ishome(S)

#pragma hashome (S)

#include "a.h"

int main()

{

 S s;

 s.foo();

 s.bar();

}

// b.C

#pragma hashome(S)

#include "a.h"

void S::bar() {}

Related information

v “#pragma ishome (C++ only)” on page 269

#pragma ibm snapshot

Category

Error checking and debugging

Purpose

Specifies a location at which a breakpoint can be set and defines a list of variables

that can be examined when program execution reaches that location.

You can use this pragma to facilitate debugging optimized code produced by the

compiler.

Syntax

��

�

 ,

#

pragma

ibm snapshot

(

variable_name

)

��

Parameters

variable_name

A variable name. It must not refer to structure, class, or union members.

Chapter 4. Compiler pragmas reference 267

Usage

During a debugging session, you can place a breakpoint on the line at which the

directive appears, to view the values of the named variables. When you compile

with optimization and the -g option, the named variables are guaranteed to be

visible to the debugger.

This pragma does not consistently preserve the contents of variables with a static

storage class at high optimization levels. Variables specified in the directive should

be considered read-only while being observed in the debugger, and should not be

modified. Modifying these variables in the debugger may result in unpredictable

behavior.

Examples

#pragma ibm snapshot(a, b, c)

Related information

v “-g” on page 107

v “-O, -qoptimize” on page 169

#pragma implementation (C++ only)

Category

Template control

Purpose

For use with the -qtempinc compiler option, supplies the name of the file

containing the template definitions corresponding to the template declarations

contained in a header file.

Syntax

�� # pragma implementation (" file_name ") ��

Parameters

file_name

The name of the file containing the definitions for members of template classes

declared in the header file.

Usage

This pragma is not normally required if your template implementation file has the

same name as the header file containing the template declarations, and a .c

extension. You only need to use the pragma if the template implementation file

does not conform to this file-naming convention. For more information about using

template implementation files, see "Using C++ Templates" in the XL C/C++

Programming Guide.

#pragma implementation is only effective if the -qtempinc option is in effect.

Otherwise, the pragma has no meaning and is ignored.

The pragma can appear in the header file containing the template declarations, or

in a source file that includes the header file. It can appear anywhere that a

declaration is allowed.

268 XL C/C++ Compiler Reference

Related information

v “-qtempinc (C++ only)” on page 223

v "Using C++ Templates" in the XL C/C++ Programming Guide

#pragma info

See “-qinfo” on page 120.

#pragma ishome (C++ only)

Category

Object code control

Purpose

Informs the compiler that the specified class’s home module is the current

compilation unit.

The home module is where items, such as the virtual function table, are stored. If

an item is referenced from outside of the compilation unit, it will not be generated

outside its home. This can reduce the amount of code generated for the

application.

Syntax

�� # pragma ishome (class_name) ��

Parameters

class_name

The name of the class whose home will be the current compilation unit.

Usage

A warning will be produced if there is a #pragma ishome without a matching

#pragma hashome.

Examples

See “#pragma hashome (C++ only)” on page 266

Related information

v “#pragma hashome (C++ only)” on page 266

#pragma isolated_call

See “-qisolated_call” on page 136.

#pragma langlvl (C only)

See “-qlanglvl” on page 143.

#pragma leaves

Category

Optimization and tuning

Purpose

Informs the compiler that a named function never returns to the instruction

following a call to that function.

Chapter 4. Compiler pragmas reference 269

By informing the compiler that it can ignore any code after the function, the

directive allows for additional opportunities for optimization.

This pragma is commonly used for custom error-handling functions, in which

programs can be terminated if a certain error is encountered.

Note: The compiler automatically inserts #pragma leaves directives for calls to the

longjmp family of functions (longjmp, _longjmp, siglongjmp, and

_siglongjmp) when you include the setjmp.h header.

Syntax

��

�

 ,

#

pragma

leaves

(

function_name

)

��

Parameters

function_name

The name of the function that does not return to the instruction following the

call to it.

Defaults

Not applicable.

Examples

#pragma leaves(handle_error_and_quit)

void test_value(int value)

{

 if (value == ERROR_VALUE)

 {

 handle_error_and_quit(value);

 TryAgain(); // optimizer ignores this because

 // never returns to execute it

 }

}

Related information

v “#pragma reachable” on page 284.

#pragma loopid

Category

Optimization and tuning

Purpose

Marks a block with a scope-unique identifier.

Syntax

�� # pragma loopid (name) ��

Parameters

name

An identifier that is unique within the scoping unit.

270 XL C/C++ Compiler Reference

Usage

The #pragma loopid directive must immediately precede a #pragma block_loop

directive or for loop. The specified name can be used by #pragma block_loop to

control transformations on that loop. It can also be used to provide information on

loop transformations through the use of the -qreport compiler option.

You must not specify #pragma loopid more than once for a given loop.

Examples

For examples of #pragma loopid usage, see “#pragma block_loop” on page 256.

Related information

v “-qunroll” on page 235

v “#pragma block_loop” on page 256

v “#pragma unrollandfuse” on page 290

#pragma map

Category

Object code control

Purpose

Converts all references to an identifier to another, externally defined identifier.

Syntax

#pragma map syntax – C

�� # pragma map (name1 , " name2 ") ��

#pragma map syntax – C++

�� # pragma map (name1 (argument_list) , " name2 ") ��

Parameters

name1

The name used in the source code.

C

name1 can represent a data object

or function with external linkage.

C++

name1 can represent a data object, a

non-overloaded or overloaded function, or overloaded operator, with external

linkage. If the name to be mapped is not in the global namespace, it must be

fully qualified.

 name1 should be declared in the same compilation unit in which it is

referenced, but should not be defined in any other compilation unit. name1

must not be used in another #pragma map directive or any assembly label

declaration anywhere in the program.

C++

argument_list

The list of arguments for the overloaded function or operator function

designated by name1. If name1 designates an overloaded function, the function

must be parenthesized and must include its argument list if it exists. If name1

designates a non-overloaded function, only name1 is required, and the

parentheses and argument list are optional.

Chapter 4. Compiler pragmas reference 271

name2

The name that will appear in the object code.

C

name2 can represent a

data object or function with external linkage.

C++

name2 can represent a data object, a non-overloaded or overloaded

function, or overloaded operator, with external linkage. name2 must specified

using its mangled name. To obtain C++ mangled names, compile your source

to object files only, using the -c compiler option, and use the nm operating

system command on the resulting object file. (See also "Name mangling" in the

XL C/C++ Language Reference for details on using the extern "C" linkage

specifier on declarations to prevent name mangling.)

 If the name exceeds 65535 bytes, an informational message is emitted and the

pragma is ignored.

 name2 may or may not be declared in the same compilation unit in which

name1 is referenced, but must not be defined in the same compilation unit.

Also, name2 should not be referenced anywhere in the compilation unit where

name1 is referenced. name2 must not be the same as that used in another

#pragma map directive or any assembly label declaration in the same

compilation unit.

Usage

The #pragma map directive can appear anywhere in the program. Note that in

order for a function to be actually mapped, the map target function (name2) must

have a definition available at link time (from another compilation unit), and the

map source function (name1) must be called in your program.

You cannot use #pragma map with compiler built-in functions.

Examples

The following is an example of #pragma map used to map a function name (using

the mangled name for the map name in C++):

/* Compilation unit 1: */

#include <stdio.h>

void foo();

extern void bar(); /* optional */

#if __cplusplus

#pragma map (foo, "_Z3barv")

#else

#pragma map (foo, "bar")

#endif

int main()

{

foo();

}

/* Compilation unit 2: */

#include <stdio.h>

void bar()

{

printf("Hello from foo bar!\n");

}

The call to foo in compilation unit 1 resolves to a call to bar:

272 XL C/C++ Compiler Reference

Hello from foo bar!

C++

The following is an example of #pragma map used to map an overloaded

function name (using C linkage, to avoid using the mangled name for the map

name):

// Compilation unit 1:

#include <iostream>

#include <string>

using namespace std;

void foo();

void foo(const string&);

extern "C" void bar(const string&); // optional

#pragma map (foo(const string&), "bar")

int main()

{

foo("Have a nice day!");

}

// Compilation unit 2:

#include <iostream>

#include <string>

using namespace std;

extern "C" void bar(const string& s)

{

cout << "Hello from foo bar!" << endl;

cout << s << endl;

}

The call to foo(const string&) in compilation unit 1 resolves to a call to bar(const

string&):

Hello from foo bar!

Have a nice day!

Related information

v "Assembly labels" in the XL C/C++ Language Reference

#pragma mc_func

Category

Language element control

Purpose

Allows you to embed a short sequence of machine instructions ″inline″ within your

program source code.

The pragma instructs the compiler to generate specified instructions in place rather

than the usual linkage code. Using this pragma avoids performance penalties

associated with making a call to an assembler-coded external function. This

pragma is similar in function to inline asm statements supported in this and other

compilers; see "Inline assembly statements" in the XL C/C++ Language Reference for

more information.

Chapter 4. Compiler pragmas reference 273

Syntax

��

�

#

pragma

mc_func

function_name

{

instruction_sequence

}

��

Parameters

function_name

The name of a previously-defined function containing machine instructions. If

the function is not previously-defined, the compiler will treat the pragma as a

function definition.

instruction_sequence

A string containing a sequence of zero or more hexadecimal digits. The

number of digits must comprise an integral multiple of 32 bits. If the string

exceeds 16384 bytes, a warning message is emitted and the pragma is ignored.

Usage

This pragma defines a function and should appear in your program source only

where functions are ordinarily defined.

The compiler passes parameters to the function in the same way as to any other

function. For example, in functions taking integer-type arguments, the first

parameter is passed to GPR3, the second to GPR4, and so on. Values returned by

the function will be in GPR3 for integer values, and FPR1 for float or double

values.

Code generated from instruction_sequence may use any and all volatile registers

available on your system unless you use #pragma reg_killed_by to list a specific

register set for use by the function. See “#pragma reg_killed_by” on page 285 for a

list of volatile registers available on your system.

Inlining options do not affect functions defined by #pragma mc_func. However,

you may be able to improve runtime performance of such functions with #pragma

isolated_call.

Examples

In the following example, #pragma mc_func is used to define a function called

add_logical. The function consists of machine instructions to add 2 integers with

so-called end-around carry; that is, if a carry out results from the add then add the

carry to the sum. This formula is frequently used in checksum computations.

int add_logical(int, int);

#pragma mc_func add_logical {"7c632014" "7c630194"}

 /* addc r3 <- r3, r4 */

 /* addze r3 <- r3, carry bit */

main() {

 int i,j,k;

 i = 4;

 k = -4;

 j = add_logical(i,k);

 printf("\n\nresult = %d\n\n",j);

}

The result of running the program is:

274 XL C/C++ Compiler Reference

result = 1

Related information

v “-qisolated_call” on page 136

v “#pragma reg_killed_by” on page 285

v "Inline assembly statements" in the XL C/C++ Language Reference

#pragma nosimd

See “-qhot” on page 112.

#pragma novector

See “-qhot” on page 112.

#pragma options

Category

Language element control

Purpose

Specifies compiler options in your source program.

Syntax

��

�

�

�

#

pragma

option

option_keyword

options

;

,

option_keyword

=

value

��

Parameters

The settings in the table below are valid options for #pragma options. For more

information, refer to the pages of the equivalent compiler option.

Chapter 4. Compiler pragmas reference 275

Valid settings for #pragma options

option_keyword

Compiler option equivalent

align=option -qalign

[no]attr

attr=full

-qattr

chars=option -qchars

[no]check -qcheck

[no]compact -qcompact

[no]dbcs -qmbcs, -qdbcs

[no]digraph -qdigraph

[no]dollar -qdollar

enum=option -qenum

flag=option -qflag

float=[no]option -qfloat

[no]flttrap=option -qflttrap

[no]fullpath -qfullpath

halt -qhalt

[no]idirfirst -qidirfirst

[no]ignerrno -qignerrno

ignprag=option -qignprag

[no]info=option -qinfo

initauto=value -qinitauto

isolated_call=names -qisolated_call

C

langlvl

-qlanglvl

[no]ldbl128 -qldbl128

[no]libansi -qlibansi

[no]list -qlist

[no]longlong -qlonglong

[no]maxmem=number -qmaxmem

[no]mbcs -qmbcs, -qdbcs

[no]optimize
optimize=number

-O, -qoptimize

C++

priority=number

-qpriority (C++ only)

proclocal, procimported, procunknown -qprocimported, -qproclocal,

-qprocunknown

C

[no]proto

-qproto (C only)

[no]ro -qro

[no]roconst -qroconst

[no]showinc -qshowinc

[no]source -qsource

spill=number -qspill

[no]stdinc -qstdinc

276 XL C/C++ Compiler Reference

Valid settings for #pragma options

option_keyword

Compiler option equivalent

[no]strict -qstrict

tbtable=option -qtbtable

tune=option -qtune

[no]unroll
unroll=number

-qunroll

C

[no]upconv

-qupconv (C only)

[no]xref -qxref

Usage

Most #pragma options directives must come before any statements in your source

program; only comments, blank lines, and other pragma specifications can precede

them. For example, the first few lines of your program can be a comment followed

by the #pragma options directive:

/* The following is an example of a #pragma options directive: */

#pragma options langlvl=stdc89 halt=s spill=1024 source

/* The rest of the source follows ... */

To specify more than one compiler option with the #pragma options directive,

separate the options using a blank space. For example:

#pragma options langlvl=stdc89 halt=s spill=1024 source

#pragma option_override

Category

Optimization and tuning

Purpose

Allows you to specify optimization options at the subprogram level that override

optimization options given on the command line.

This enables finer control of program optimization, and can help debug errors that

occur only under optimization.

Syntax

�� # pragma option_override �

Chapter 4. Compiler pragmas reference 277

�

�

(

identifier

,

″

opt

(

size

)

″

)

, yes

, no

level

,

0

2

3

4

5

registerspillsize

,

size

strict

, no

��

Parameters

identifier

The name of a function for which optimization options are to be overridden.

 The following table shows the equivalent command line option for each pragma

suboption.

 #pragma option_override value Equivalent compiler option

level, 0 -O

level, 2 -O2

level, 3 -O3

level, 4 -O4

level, 5 -O5

registerspillsize, size -qspill=size

size -qcompact

size, yes

size, no -qnocompact

strict -qstrict

strict, no -qnostrict

Defaults

See the descriptions of the options listed in the table above for default settings.

Usage

The pragma takes effect only if optimization is already enabled by a command-line

option. You can only specify an optimization level in the pragma lower than the

level applied to the rest of the program being compiled.

The #pragma option_override directive only affects functions that are defined in

the same compilation unit. The pragma directive can appear anywhere in the

translation unit. That is, it can appear before or after the function definition, before

or after the function declaration, before or after the function has been referenced,

and inside or outside the function definition.

C++

This pragma cannot be used with overloaded member functions.

Examples

Suppose you compile the following code fragment containing the functions foo

and faa using -O2. Since it contains the #pragma option_override(faa,

"opt(level, 0)"), function faa will not be optimized.

278 XL C/C++ Compiler Reference

foo(){

 .

 .

 .

 }

#pragma option_override(faa, "opt(level, 0)")

faa(){

 .

 .

 .

 }

Related information

v “-O, -qoptimize” on page 169

v “-qcompact” on page 75

v “-qspill” on page 210

v “-qstrict” on page 215

#pragma pack

Category

Object code control

Purpose

Sets the alignment of all aggregate members to a specified byte boundary.

If the byte boundary number is smaller than the natural alignment of a member,

padding bytes are removed, thereby reducing the overall structure or union size.

The syntax and semantics of this pragma are different depending on the setting of

the -qpack_semantic option.

Syntax

Default #pragma pack syntax (-qpack_semantic=ibm in effect)

�� # pragma pack ()

nopack

number

pop

 ��

#pragma pack syntax with -qpack_semantic=gnu in effect

�� # pragma pack ()

number

push

,

number

pop

 ��

Defaults

Members of aggregates (structures, unions, and classes) are aligned on their natural

boundaries and a structure ends on its natural boundary. The alignment of an

aggregate is that of its strictest member (the member with the largest alignment

requirement).

Chapter 4. Compiler pragmas reference 279

Parameters

nopack

Disables packing. Note that this parameter is not recognized when

-qpack_semantic=gnu is in effect; a warning message is issued and the pragma

is ignored.

push

When specified without a number, pushes whatever value is currently in effect

to the top of the packing "stack". When used with a number, pushes that value

to the top of the packing stack, and sets the packing value to that of number for

structures that follow. Note that this parameter is not recognized when

-qpack_semantic=ibm is in effect; a warning message is issued and the

pragma is ignored.

number

is one of the following:

1 Aligns structure members on 1-byte boundaries, or on their natural

alignment boundary, whichever is less.

2 Aligns structure members on 2-byte boundaries, or on their natural

alignment boundary, whichever is less.

4 Aligns structure members on 4-byte boundaries, or on their natural

alignment boundary, whichever is less.

8 Aligns structure members on 8-byte boundaries, or on their natural

alignment boundary, whichever is less.

16 Aligns structure members on 16-byte boundaries, or on their natural

alignment boundary, whichever is less.

pop

When -qpack_semantic=ibm is in effect, sets the packing rule to that which

was in effect before the current setting. When -qpack_semantic=gnu is in

effect, pops the value specified in the last push statement off the stack and

resets the current packing value to the value on the top of the stack, overriding

any intervening value that may have been specified without a push statement.

 Specifying #pragma pack() with no parameters (that is, with empty parentheses)

has the following effect:

v Disables all packing (equivalent to specifying #pragma pack(nopack)), when

-qpack_semantic=ibm is in effect.

v Sets the current packing value to that which was in effect at the beginning of the

compilation unit, when -qpack_semantic=gnu is in effect.

Usage

The #pragma pack directive applies to the definition of an aggregate type, rather

than to the declaration of an instance of that type; it therefore automatically applies

to all variables declared of the specified type.

The #pragma pack directive modifies the current alignment rule for only the

members of structures whose declarations follow the directive. It does not affect

the alignment of the structure directly, but by affecting the alignment of the

members of the structure, it may affect the alignment of the overall structure.

The #pragma pack directive cannot increase the alignment of a member, but rather

can decrease the alignment. For example, for a member with data type of short, a

280 XL C/C++ Compiler Reference

#pragma pack(1) directive would cause that member to be packed in the structure

on a 1-byte boundary, while a #pragma pack(4) directive would have no effect.

The #pragma pack directive causes bit fields to cross bit field container boundaries.

#pragma pack(2)

struct A{

int a:31;

int b:2;

}x;

int main(){

printf("size of S = %d\n", sizeof(s));

}

When compiled and run, the output is:

size of S = 6

But if you remove the #pragma pack directive, you get this output:

size of S = 8

The #pragma pack directive applies only to complete declarations of structures or

unions; this excludes forward declarations, in which member lists are not specified.

For example, in the following code fragment, the alignment for struct S is 4, since

this is the rule in effect when the member list is declared:

#pragma pack(1)

struct S;

#pragma pack(4)

struct S { int i, j, k; };

A nested structure has the alignment that precedes its declaration, not the

alignment of the structure in which it is contained, as shown in the following

example:

#pragma pack (4) // 4-byte alignment

 struct nested {

 int x;

 char y;

 int z;

 };

 #pragma pack(1) // 1-byte alignment

 struct packedcxx{ char a;

 short b;

 struct nested s1; // 4-byte alignment

 };

If more than one #pragma pack directive appears in a structure defined in an

inlined function, the #pragma pack directive in effect at the beginning of the

structure takes precedence.

Examples

The following example shows how the #pragma pack directive can be used to set

the alignment of a structure definition:

// header file file.h

 #pragma pack(1)

 struct jeff{ // this structure is packed

 short bill; // along 1-byte boundaries

 int *chris;

 };

 #pragma pack(pop) // reset to previous alignment rule

Chapter 4. Compiler pragmas reference 281

// source file anyfile.c

 #include "file.h"

 struct jeff j; // uses the alignment specified

 // by the pragma pack directive

 // in the header file and is

 // packed along 1-byte boundaries

This example shows how a #pragma pack directive can affect the size and

mapping of a structure:

struct s_t {

 char a;

 int b;

 short c;

 int d;

}S;

 Default mapping: With #pragma pack(1):

size of s_t = 16 size of s_t = 11

offset of a = 0 offset of a = 0

offset of b = 4 offset of b = 1

offset of c = 8 offset of c = 5

offset of d = 12 offset of d = 7

alignment of a = 1 alignment of a = 1

alignment of b = 4 alignment of b = 1

alignment of c = 2 alignment of c = 1

alignment of d = 4 alignment of d = 1

The following example defines a union uu containing a structure as one of its

members, and declares an array of 2 unions of type uu:

 union uu {

 short a;

 struct {

 char x;

 char y;

 char z;

 } b;

 };

 union uu nonpacked[2];

Since the largest alignment requirement among the union members is that of short

a, namely, 2 bytes, one byte of padding is added at the end of each union in the

array to enforce this requirement:

 ┌───── nonpacked[0] ─────────── nonpacked[1] ───┐

 │ │ │

 │ a │ │ a │ │

 │ x │ y │ z │ │ x │ y │ z │ │

 └─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┘

 0 1 2 3 4 5 6 7 8

The next example uses #pragma pack(1) to set the alignment of unions of type uu

to 1 byte:

282 XL C/C++ Compiler Reference

#pragma pack(1)

 union uu {

 short a;

 struct {

 char x;

 char y;

 char z;

 } b;

 };

 union uu pack_array[2];

Now, each union in the array packed has a length of only 3 bytes, as opposed to

the 4 bytes of the previous case:

 ┌─── packed[0] ───┬─── packed[1] ───┐

 │ │ │

 │ a │ │ a │ │

 │ x │ y │ z │ x │ y │ z │

 └─────┴─────┴─────┴─────┴─────┴─────┘

 0 1 2 3 4 5 6

The following examples show the results of the differences in the semantics of this

pragma depending on whether -qpack_semantic=ibm or -qpack_semantic=ibm is

in effect.

This example shows the effect of specifying the push parameter:

#pragma pack(1)

#pragma pack(push) // ignored when -qpack_semantic=ibm is in effect

#pragma pack(push,2) // ignored when -qpack_semantic=ibm is in effect

struct s_t {

 char a;

 int b;

} S;

With -qpack_semantic=gnu in effect, the packing value in effect when the structure

S is declared is 2, and the structure is aligned on 2-byte boundaries. With

-qpack_semantic=ibm in effect, the second two directives are ignored, and the

packing value in effect for structure S is 1, and it is aligned on 1-byte boundaries.

This example shows the effect of specifying the push and pop parameters together:

#pragma pack(push,1) // ignored when -qpack_semantic=ibm is in effect

#pragma pack(push,4) // ignored when -qpack_semantic=ibm is in effect

#pragma pack(2)

#pragma pack(pop)

#pragma pack(pop)

#pragma pack(pop)

struct s_t {

 char a;

 int b;

} S;

With -qpack_semantic=gnu in effect, since pop only pops values that have been

pushed onto the stack with a push directive, the first pop directive pops 4 off the

stack, the second one pops 1 off the stack, and the alignment is the setting in effect

at the beginning of the compilation unit (the intervening #pragma pack(2) directive

is overridden). With -qpack_semantic=ibm in effect, the pop statement pops the

value 2 off the stack, and the alignment is the setting in effect at the beginning of

the compilation unit.

Chapter 4. Compiler pragmas reference 283

The following example shows the effect of specifying the directive inside a nested

structure:

struct s_t {

 char a;

 int b;

 #pragma pack(1)

 struct t_t {

 char x;

 int y;

 }T;

 char c;

 #pragma pack(2)

 #pragma pack(1)

 int d;

 #pragma align(natural) \\ this only affects u_t.

 #pragma pack(2) \\ this only affects u_t.

 struct u_t {

 char j;

 int k;

 }U;

}S;

When -qpack_semantic=gnu is in effect, the first #pragma pack(1) directive applies

to both structure t_t and s_t. With -qpack_semantic=ibm the first #pragma

pack(1) directive applies to structure t_t only.

Related information

v “-qalign” on page 55

v “-qpack_semantic” on page 175

v "Using alignment modifiers"in the XL C/C++ Programming Guide

#pragma priority (C++ only)

See “-qpriority (C++ only)” on page 186.

#pragma reachable

Category

Optimization and tuning

Purpose

Informs the compiler that the point in the program after a named function can be

the target of a branch from some unknown location.

By informing the compiler that the instruction after the specified function can be

reached from a point in your program other than the return statement in the

named function, the pragma allows for additional opportunities for optimization.

Note: The compiler automatically inserts #pragma reachable directives for the

setjmp family of functions (setjmp, _setjmp, sigsetjmp, and _sigsetjmp)

when you include the setjmp.h header file.

284 XL C/C++ Compiler Reference

Syntax

��

#

pragma

reachable

�

 ,

(

function_name

)

��

Parameters

function_name

The name of a function preceding the instruction which is reachable from a

point in the program other than the function's return statement.

Defaults

Not applicable.

Related information

v “#pragma leaves” on page 269

#pragma reg_killed_by

Category

Optimization and tuning

Purpose

Specifies registers that may be altered by functions specified by #pragma mc_func.

Ordinarily, code generated for functions specified by #pragma mc_func may alter

any or all volatile registers available on your system. You can use #pragma

reg_killed_by to explicitly list a specific set of volatile registers to be altered by

such functions. Registers not in this list will not be altered.

Syntax

��

�

 ,

#

pragma

reg_killed_by

function

register

-

register

��

Parameters

function

The name of a function previously defined using the #pragma mc_func

directive.

register

The symbolic name(s) of either a single register or a range of registers to be

altered by the named function. The symbolic name must be a valid register

name on the target platform. Valid registers are:

cr0, cr1, and cr5 to cr7

Condition registers

ctr Count register

gr0 and gr3 to gr12

General purpose registers

Chapter 4. Compiler pragmas reference 285

fp0 to fp13

Floating-point registers

fs Floating point and status control register

lr Link register

vr0 to vr31

Vector registers (on selected processors only)

xer Fixed-point exception register

You can identify a range of registers by providing the symbolic names of both

starting and ending registers, separated by a dash.

 If no register is specified, no volatile registers will be killed by the named

function.

Examples

The following example shows how to use #pragma reg_killed_by to list a specific

set of volatile registers to be used by the function defined by #pragma mc_func.

int add_logical(int, int);

#pragma mc_func add_logical {"7c632014" "7c630194"}

 /* addc r3 <- r3, r4 */

 /* addze r3 <- r3, carry bit */

#pragma reg_killed_by add_logical gr3, xer

 /* only gpr3 and the xer are altered by this function */

main() {

 int i,j,k;

 i = 4;

 k = -4;

 j = add_logical(i,k);

 printf("\n\nresult = %d\n\n",j);

}

Related information

v “#pragma mc_func” on page 273

#pragma report (C++ only)

Category

Listings, messages and compiler information

Purpose

Controls the generation of diagnostic messages.

The pragma allows you to specify a minimum severity level for a message for it to

display, or allows you to enable or disable a specific message regardless of the

prevailing report level.

Syntax

286 XL C/C++ Compiler Reference

��
 I

#

pragma

report

(

level

,

E

)

W

enable

,

message_number

disable

pop

��

Defaults

The default report level is Informational (I), which displays messages of all types.

Parameters

level

Indicates that the pragma is set according to the minimum severity level of

diagnostic messages to display.

E Indicates that only error messages will display. Error messages are of the

highest severity. This is equivalent to the -qflag=e:e compiler option.

W Indicates that warning and error messages will display. This is equivalent to

the -qflag=w:w compiler option.

I Indicates that all diagnostic messages will display: warning, error and

informational messages. Informational messages are of the lowest severity. This

is equivalent to the -qflag=i:i compiler option.

enable

Enables the specified message_number.

disable

Disables the specified message_number.

message_number

Represents a message identifier, which consists of a prefix followed by the

message number; for example, CCN1004.

pop

Reverts the report level to that which was previously in effect. If no previous

report level has been specified, a warning is issued, and the report level

remains unchanged.

Usage

The pragma takes precedence over #pragma info and most compiler options. For

example, if you use #pragma report to disable a compiler message, that message

will not be displayed with any -qflag compiler option setting.

Related information

v “-qflag” on page 96

#pragma STDC cx_limited_range

Category

Optimization and tuning

Purpose

Instructs the compiler that complex division and absolute value are only invoked

with values such that intermediate calculation will not overflow or lose

significance.

Chapter 4. Compiler pragmas reference 287

Syntax

��
 off

#

pragma

STDC cx_limited_range

on

default

��

Usage

Using values outside the limited range may generate wrong results, where the

limited range is defined such that the "obvious symbolic definition" will not

overflow or run out of precision.

The pragma is effective from its first occurrence until another cx_limited_range

pragma is encountered, or until the end of the translation unit. When the pragma

occurs inside a compound statement (including within a nested compound

statement), it is effective from its first occurrence until another cx_limited_range

pragma is encountered, or until the end of the compound statement.

Examples

The following example shows the use of the pragma for complex division:

#include <complex.h>

_Complex double a, b, c, d;

void p() {

d = b/c;

{

#pragma STDC CX_LIMITED_RANGE ON

a = b / c;

}

}

The following example shows the use of the pragma for complex absolute value:

#include <complex.h>

_Complex double cd = 10.10 + 10.10*I;

int p() {

#pragma STDC CX_LIMITED_RANGE ON

double d = cabs(cd);

}

Related information

v "Standard pragmas" in the XL C/C++ Language Reference

#pragma stream_unroll

Category

Optimization and tuning

Purpose

When optimization is enabled, breaks a stream contained in a for loop into

multiple streams.

288 XL C/C++ Compiler Reference

Syntax

�� # pragma stream_unroll

(

number

)
 ��

Parameters

number

A loop unrolling factor.

C

The value of number is a positive integral

constant expression.

C++

The value of number is a positive scalar integer

or compile-time constant initialization expression.

 An unroll factor of 1 disables unrolling.

 If number is not specified, the optimizer determines an appropriate unrolling factor

for each nested loop.

Usage

To enable stream unrolling, you must specify -qhot and -qstrict, or -qsmp, or use

optimization level -O4 or higher. If -qstrict is in effect, no stream unrolling takes

place.

For stream unrolling to occur, the #pragma stream_unroll directive must be the

last pragma specified preceding a for loop.

C

Specifying #pragma

stream_unroll more than once for the same for loop or combining it with other

loop unrolling pragmas (#pragma unroll, #pragma nounroll, #pragma

unrollandfuse, #pragma nounrollandfuse) results in a warning.

C++

The

compiler silently ignores all but the last of multiple loop unrolling pragmas

specified on the same for loop.

Examples

The following is an example of how #pragma stream_unroll can increase

performance.

int i, m, n;

int a[1000][1000];

int b[1000][1000];

int c[1000][1000];

....

#pragma stream_unroll(4)

for (i=1; i<n; i++) {

 a[i] = b[i] * c[i];

}

The unroll factor of 4 reduces the number of iterations from n to n/4, as follows:

for (i=1; i<n/4; i++) {

 a[i] = b[i] + c[i];

 a[i+m] = b[i+m] + c[i+m];

 a[i+2*m] = b[i+2*m] + c[i+2*m];

 a[i+3*m] = b[i+3*m] + c[i+3*m];

}

Related information

v “-qunroll” on page 235

v “#pragma unrollandfuse” on page 290

Chapter 4. Compiler pragmas reference 289

#pragma strings

See “-qro” on page 196.

#pragma unroll

See “-qunroll” on page 235.

#pragma unrollandfuse

Category

Optimization and tuning

Purpose

Instructs the compiler to attempt an unroll and fuse operation on nested for loops.

Syntax

�� # pragma nounrollandfuse

unrollandfuse

(

number

)

 ��

Parameters

number

A loop unrolling factor.

C

The value of number is a positive integral

constant expression.

C++

The value of number is a positive scalar integer

or compile-time constant initialization expression.

 If number is not specified, the optimizer determines an appropriate unrolling factor

for each nested loop.

Usage

The #pragma unrollandfuse directive applies only to the outer loops of nested for

loops that meet the following conditions:

v There must be only one loop counter variable, one increment point for that

variable, and one termination variable. These cannot be altered at any point in

the loop nest.

v Loops cannot have multiple entry and exit points. The loop termination must be

the only means to exit the loop.

v Dependencies in the loop must not be ″backwards-looking″. For example, a

statement such as A[i][j] = A[i -1][j + 1] + 4) must not appear within the

loop.

For loop unrolling to occur, the #pragma unrollandfuse directive must precede a

for loop. You must not specify #pragma unrollandfuse for the innermost for loop.

You must not specify #pragma unrollandfuse more than once, or combine the

directive with #pragma nounrollandfuse, #pragma nounroll, #pragma unroll, or

#pragma stream_unroll directives for the same for loop.

Predefined macros

None.

290 XL C/C++ Compiler Reference

Examples

In the following example, a #pragma unrollandfuse directive replicates and fuses

the body of the loop. This reduces the number of cache misses for array b.

int i, j;

int a[1000][1000];

int b[1000][1000];

int c[1000][1000];

....

#pragma unrollandfuse(2)

for (i=1; i<1000; i++) {

 for (j=1; j<1000; j++) {

 a[j][i] = b[i][j] * c[j][i];

 }

}

The for loop below shows a possible result of applying the #pragma

unrollandfuse(2) directive to the loop shown above:

for (i=1; i<1000; i=i+2) {

 for (j=1; j<1000; j++) {

 a[j][i] = b[i][j] * c[j][i];

 a[j][i+1] = b[i+1][j] * c[j][i+1];

 }

}

You can also specify multiple #pragma unrollandfuse directives in a nested loop

structure.

int i, j, k;

int a[1000][1000];

int b[1000][1000];

int c[1000][1000];

int d[1000][1000];

int e[1000][1000];

....

#pragma unrollandfuse(4)

for (i=1; i<1000; i++) {

#pragma unrollandfuse(2)

 for (j=1; j<1000; j++) {

 for (k=1; k<1000; k++) {

 a[j][i] = b[i][j] * c[j][i] + d[j][k] * e[i][k];

 }

 }

}

Related information

v “-qunroll” on page 235

v “#pragma stream_unroll” on page 288

#pragma weak

Category

Object code control

Purpose

Prevents the linker from issuing error messages if it encounters a symbol

multiply-defined during linking, or if it does not find a definition for a symbol.

Chapter 4. Compiler pragmas reference 291

The pragma can be used to allow a program to call a user-defined function that

has the same name as a library function. By marking the library function definition

as "weak", the programmer can reference a "strong" version of the function and

cause the linker to accept multiple definitions of a global symbol in the object

code. While this pragma is intended for use primarily with functions, it will also

work for most data objects.

Syntax

�� # pragma weak name1

=

name2
 ��

Parameters

name1

A name of a data object or function with external linkage.

name2

A name of a data object or function with external linkage.

C++

name2 must not be a member function. If name2 is a template

function, you must explicitly instantiate the template function.

C++

Names must be specified using their mangled names. To obtain C++

mangled names, compile your source to object files only, using the -c compiler

option, and use the nm operating system command on the resulting object file.

(See also "Name mangling" in the XL C/C++ Language Reference for details on using

the extern "C" linkage specifier on declarations to prevent name mangling.)

Usage

There are two forms of the weak pragma:

#pragma weak name1

This form of the pragma marks the definition of the name1 as "weak" in a

given compilation unit. If name1 is referenced from anywhere in the

program, the linker will use the "strong" version of the definition (that is,

the definition not marked with #pragma weak), if there is one. If there is

no strong definition, the linker will use the weak definition; if there are

multiple weak definitions, it is unspecified which weak definition the

linker will select (typically, it uses the definition found in the first object

file specified on the command line during the link step). name1 must be

defined in the same compilation unit as #pragma weak. If name1 is

referenced, but no definition of it can be found, it is assigned a value of 0.

#pragma weak name1=name2

This form of the pragma creates a weak definition of the name1 for a given

compilation unit, and an alias for name2. If name1 is referenced from

anywhere in the program, the linker will use the "strong" version of the

definition (that is, the definition not marked with #pragma weak), if there

is one. If there is no strong definition, the linker will use the weak

definition, which resolves to the definition of name2. If there are multiple

weak definitions, it is unspecified which weak definition the linker will

select (typically, it uses the definition found in the first object file specified

on the command line during the link step).

 name2 must be defined in the same compilation unit as #pragma weak.

name1 may or may not be declared in the same compilation unit as the

#pragma weak, but must never be defined in the compilation unit. If

292 XL C/C++ Compiler Reference

name1 is declared in the compilation unit, name1’s declaration must be

compatible to that of name2. For example, if name2 is a function, name1

must have the same return and argument types as name2.

This pragma should not be used with uninitialized global data, or with shared

library data objects that are exported to executables.

Examples

The following is an example of the #pragma weak name1 form:

// Compilation unit 1:

#include <stdio.h>

void foo();

int main()

{

 foo();

}

// Compilation unit 2:

#include <stdio.h>

#if __cplusplus

#pragma weak _Z3foov

#else

#pragma weak foo

#endif

void foo()

{

 printf("Foo called from compilation unit 2\n");

}

// Compilation unit 3:

#include <stdio.h>

void foo()

{

 printf("Foo called from compilation unit 3\n");

}

If all three compilation units are compiled and linked together, the linker will use

the strong definition of foo in compilation unit 3 for the call to foo in compilation

unit 1, and the output will be:

Foo called from compilation unit 3

If only compilation unit 1 and 2 are compiled and linked together, the linker will

use the weak definition of foo in compilation unit 2, and the output will be:

Foo called from compilation unit 2

The following is an example of the #pragma weak name1=name2 form:

// Compilation unit 1:

#include <stdio.h>

void foo();

int main()

{

Chapter 4. Compiler pragmas reference 293

foo();

}

// Compilation unit 2:

#include <stdio.h>

void foo(); // optional

#if __cplusplus

#pragma weak _Z3foov = _Z4foo2v

#else

#pragma weak foo = foo2

#endif

void foo2()

{

printf("Hello from foo2!\n");

}

// Compilation unit 3:

#include <stdio.h>

void foo()

{

printf("Hello from foo!\n");

}

If all three compilation units are compiled and linked together, the linker will use

the strong definition of foo in compilation unit 3 for the call to foo from

compilation unit 1, and the output will be:

Hello from foo!

If only compilation unit 1 and 2 are compiled and linked together, the linker will

use the weak definition of foo in compilation unit 2, which is an alias for foo2, and

the output will be:

Hello from foo2!

Related information

v "The weak variable attribute" in the XL C/C++ Language Reference

v "The weak function attribute" in the XL C/C++ Language Reference

v “#pragma map” on page 271

Pragma directives for parallel processing

Parallel processing operations are controlled by pragma directives in your program

source. The pragmas have effect only when parallelization is enabled with the

-qsmp compiler option.

#pragma omp atomic

Description: The omp atomic directive identifies a specific memory location that

must be updated atomically and not be exposed to multiple, simultaneous writing

threads.

Syntax:

�� # pragma omp atomic

statement
 ��

294 XL C/C++ Compiler Reference

where statement is an expression statement of scalar type that takes one of the

forms that follow:

 statement Conditions

x bin_op = expr where:

bin_op is one of:

+ * - / & ^ | << >>

expr is an expression of scalar type that does not reference x.

x++

++x

x--

--x

Notes: Load and store operations are atomic only for object x. Evaluation of expr

is not atomic.

All atomic references to a given object in your program must have a compatible

type.

Objects that can be updated in parallel and may be subject to race conditions

should be protected with the omp atomic directive.

Examples:

extern float x[], *p = x, y;

/* Protect against race conditions among multiple updates. */

#pragma omp atomic

x[index[i]] += y;

/* Protect against races with updates through x. */

#pragma omp atomic

p[i] -= 1.0f;

#pragma omp parallel

Description: The omp parallel directive explicitly instructs the compiler to

parallelize the chosen block of code.

Syntax:

��

�

 ,

#

pragma

omp parallel

clause

��

where clause is any of the following:

 if (exp) When the if argument is specified, the program code executes in parallel

only if the scalar expression represented by exp evaluates to a non-zero

value at run time. Only one if clause can be specified.

private (list) Declares the scope of the data variables in list to be private to each thread.

Data variables in list are separated by commas.

Chapter 4. Compiler pragmas reference 295

firstprivate (list) Declares the scope of the data variables in list to be private to each thread.

Each new private object is initialized with the value of the original variable

as if there was an implied declaration within the statement block. Data

variables in list are separated by commas.

num_threads

(int_exp)

The value of int_exp is an integer expression that specifies the number of

threads to use for the parallel region. If dynamic adjustment of the number

of threads is also enabled, then int_exp specifies the maximum number of

threads to be used.

shared (list) Declares the scope of the comma-separated data variables in list to be

shared across all threads.

default (shared

| none)

Defines the default data scope of variables in each thread. Only one

default clause can be specified on an omp parallel directive.

Specifying default(shared) is equivalent to stating each variable in a

shared(list) clause.

Specifying default(none) requires that each data variable visible to the

parallelized statement block must be explcitly listed in a data scope clause,

with the exception of those variables that are:

v const-qualified,

v specified in an enclosed data scope attribute clause, or,

v used as a loop control variable referenced only by a corresponding omp

for or omp parallel for directive.

copyin (list) For each data variable specified in list, the value of the data variable in the

master thread is copied to the thread-private copies at the beginning of the

parallel region. Data variables in list are separated by commas.

Each data variable specified in the copyin clause must be a threadprivate

variable.

reduction

(operator: list)

Performs a reduction on all scalar variables in list using the specified

operator. Reduction variables in list are separated by commas.

A private copy of each variable in list is created for each thread. At the end

of the statement block, the final values of all private copies of the

reduction variable are combined in a manner appropriate to the operator,

and the result is placed back into the original value of the shared

reduction variable.

Variables specified in the reduction clause:

v must be of a type appropriate to the operator.

v must be shared in the enclosing context.

v must not be const-qualified.

v must not have pointer type.

Notes: When a parallel region is encountered, a logical team of threads is formed.

Each thread in the team executes all statements within a parallel region except for

work-sharing constructs. Work within work-sharing constructs is distributed

among the threads in a team.

Loop iterations must be independent before the loop can be parallelized. An

implied barrier exists at the end of a parallelized statement block.

Nested parallel regions are always serialized.

296 XL C/C++ Compiler Reference

#pragma omp for

Description: The omp for directive instructs the compiler to distribute loop

iterations within the team of threads that encounters this work-sharing construct.

Syntax:

��

�

 ,

#

pragma

omp for

clause

for-loop

��

where clause is any of the following:

 private (list) Declares the scope of the data variables in list to be private to

each thread. Data variables in list are separated by commas.

firstprivate (list) Declares the scope of the data variables in list to be private to

each thread. Each new private object is initialized as if there was

an implied declaration within the statement block. Data variables

in list are separated by commas.

lastprivate (list) Declares the scope of the data variables in list to be private to

each thread. The final value of each variable in list, if assigned,

will be the value assigned to that variable in the last iteration.

Variables not assigned a value will have an indeterminate value.

Data variables in list are separated by commas.

reduction (operator:list) Performs a reduction on all scalar variables in list using the

specified operator. Reduction variables in list are separated by

commas.

A private copy of each variable in list is created for each thread.

At the end of the statement block, the final values of all private

copies of the reduction variable are combined in a manner

appropriate to the operator, and the result is placed back into the

original value of the shared reduction variable.

Variables specified in the reduction clause:

v must be of a type appropriate to the operator.

v must be shared in the enclosing context.

v must not be const-qualified.

v must not have pointer type.

ordered Specify this clause if an ordered construct is present within the

dynamic extent of the omp for directive.

Chapter 4. Compiler pragmas reference 297

schedule (type) Specifies how iterations of the for loop are divided among

available threads. Acceptable values for type are:

dynamic

Iterations of a loop are divided into chunks of size

ceiling(number_of_iterations/number_of_threads).

 Chunks are dynamically assigned to threads on a

first-come, first-serve basis as threads become available.

This continues until all work is completed.

dynamic,n

As above, except chunks are set to size n. n must be an

integral assignment expression of value 1 or greater.

guided Chunks are made progressively smaller until the default

minimum chunk size is reached. The first chunk is of size

ceiling(number_of_iterations/number_of_threads).

Remaining chunks are of size

ceiling(number_of_iterations_left/number_of_threads).

 The minimum chunk size is 1.

 Chunks are assigned to threads on a first-come,

first-serve basis as threads become available. This

continues until all work is completed.

guided,n

As above, except the minimum chunk size is set to n. n

must be an integral assignment expression of value 1 or

greater.

runtime

Scheduling policy is determined at run time. Use the

OMP_SCHEDULE environment variable to set the

scheduling type and chunk size.

static Iterations of a loop are divided into chunks of size

ceiling(number_of_iterations/number_of_threads). Each

thread is assigned a separate chunk.

 This scheduling policy is also known as block scheduling.

static,n Iterations of a loop are divided into chunks of size n.

Each chunk is assigned to a thread in round-robin fashion.

 n must be an integral assignment expression of value 1

or greater.

 This scheduling policy is also known as block cyclic

scheduling.

Note: if n=1, iterations of a loop are divided into chunks

of size 1 and each chunk is assigned to a thread in

round-robin fashion. This scheduling policy is also known

as block cyclic scheduling

nowait Use this clause to avoid the implied barrier at the end of the for

directive. This is useful if you have multiple independent

work-sharing sections or iterative loops within a given parallel

region. Only one nowait clause can appear on a given for

directive.

and where for_loop is a for loop construct with the following canonical shape:

for (init_expr; exit_cond; incr_expr)

 statement

298 XL C/C++ Compiler Reference

where:

 init_expr takes form: iv = b

integer-type iv = b

exit_cond takes form: iv <= ub

iv < ub

iv >= ub

iv > ub

incr_expr takes form: ++iv

iv++

--iv

iv--

iv += incr

iv -= incr

iv = iv + incr

iv = incr + iv

iv = iv - incr

and where:

 iv Iteration variable. The iteration variable must be a signed integer not

modified anywhere within the for loop. It is implicitly made private for

the duration of the for operation. If not specified as lastprivate, the

iteration variable will have an indeterminate value after the operation

completes.

b, ub, incr Loop invariant signed integer expressions. No synchronization is

performed when evaluating these expressions and evaluated side effects

may result in indeterminate values.

Notes: This pragma must appear immediately before the loop or loop block

directive to be affected.

Program sections using the omp for pragma must be able to produce a correct

result regardless of which thread executes a particular iteration. Similarly, program

correctness must not rely on using a particular scheduling algorithm.

The for loop iteration variable is implicitly made private in scope for the duration

of loop execution. This variable must not be modified within the body of the for

loop. The value of the increment variable is indeterminate unless the variable is

specified as having a data scope of lastprivate.

An implicit barrier exists at the end of the for loop unless the nowait clause is

specified.

Restrictions are:

v The for loop must be a structured block, and must not be terminated by a break

statement.

v Values of the loop control expressions must be the same for all iterations of the

loop.

v An omp for directive can accept only one schedule clauses.

v The value of n (chunk size) must be the same for all threads of a parallel region.

#pragma omp ordered

Description: The omp ordered directive identifies a structured block of code that

must be executed in sequential order.

Syntax:

Chapter 4. Compiler pragmas reference 299

�� # pragma omp ordered ��

Notes: The omp ordered directive must be used as follows:

v It must appear within the extent of a omp for or omp parallel for construct

containing an ordered clause.

v It applies to the statement block immediately following it. Statements in that

block are executed in the same order in which iterations are executed in a

sequential loop.

v An iteration of a loop must not execute the same omp ordered directive more

than once.

v An iteration of a loop must not execute more than one distinct omp ordered

directive.

#pragma omp parallel for

Description: The omp parallel for directive effectively combines the omp parallel

and omp for directives. This directive lets you define a parallel region containing a

single for directive in one step.

Syntax:

��

�

,

#

pragma

omp for

clause

for-loop

��

Notes: With the exception of the nowait clause, clauses and restrictions described

in the omp parallel and omp for directives also apply to the omp parallel for

directive.

#pragma omp section, #pragma omp sections

Description: The omp sections directive distributes work among threads bound

to a defined parallel region.

Syntax:

��

�

 ,

#

pragma

omp sections

clause

��

where clause is any of the following:

 private (list) Declares the scope of the data variables in list to be private to each

thread. Data variables in list are separated by commas.

firstprivate (list) Declares the scope of the data variables in list to be private to each

thread. Each new private object is initialized as if there was an

implied declaration within the statement block. Data variables in

list are separated by commas.

300 XL C/C++ Compiler Reference

lastprivate (list) Declares the scope of the data variables in list to be private to each

thread. The final value of each variable in list, if assigned, will be

the value assigned to that variable in the last section. Variables not

assigned a value will have an indeterminate value. Data variables

in list are separated by commas.

reduction (operator: list) Performs a reduction on all scalar variables in list using the

specified operator. Reduction variables in list are separated by

commas.

A private copy of each variable in list is created for each thread. At

the end of the statement block, the final values of all private

copies of the reduction variable are combined in a manner

appropriate to the operator, and the result is placed back into the

original value of the shared reduction variable.

Variables specified in the reduction clause:

v must be of a type appropriate to the operator.

v must be shared in the enclosing context.

v must not be const-qualified.

v must not have pointer type.

nowait Use this clause to avoid the implied barrier at the end of the

sections directive. This is useful if you have multiple independent

work-sharing sections within a given parallel region. Only one

nowait clause can appear on a given sections directive.

Notes: The omp section directive is optional for the first program code segment

inside the omp sections directive. Following segments must be preceded by an

omp section directive. All omp section directives must appear within the lexical

construct of the program source code segment associated with the omp sections

directive.

When program execution reaches a omp sections directive, program segments

defined by the following omp section directive are distributed for parallel

execution among available threads. A barrier is implicitly defined at the end of the

larger program region associated with the omp sections directive unless the

nowait clause is specified.

#pragma omp parallel sections

Description: The omp parallel sections directive effectively combines the omp

parallel and omp sections directives. This directive lets you define a parallel

region containing a single sections directive in one step.

Syntax:

��

�

,

#

pragma

omp parallel sections

clause

��

Notes: All clauses and restrictions described in the omp parallel and omp

sections directives apply to the omp parallel sections directive.

Chapter 4. Compiler pragmas reference 301

#pragma omp single

Description: The omp single directive identifies a section of code that must be

run by a single available thread.

Syntax:

��

�

,

#

pragma

omp single

clause

��

where clause is any of the following:

 private (list) Declares the scope of the data variables in list to be private to each

thread. Data variables in list are separated by commas.

A variable in the private clause must not also appear in a copyprivate

clause for the same omp single directive.

copyprivate (list) Broadcasts the values of variables specified in list from one member of

the team to other members. This occurs after the execution of the

structured block associated with the omp single directive, and before

any of the threads leave the barrier at the end of the construct. For all

other threads in the team, each variable in the list becomes defined with

the value of the corresponding variable in the thread that executed the

structured block. Data variables in list are separated by commas. Usage

restrictions for this clause are:

v A variable in the copyprivate clause must not also appear in a private

or firstprivate clause for the same omp single directive.

v If an omp single directive with a copyprivate clause is encountered in

the dynamic extent of a parallel region, all variables specified in the

copyprivate clause must be private in the enclosing context.

v Variables specified in copyprivate clause within dynamic extent of a

parallel region must be private in the enclosing context.

v A variable that is specified in the copyprivate clause must have an

accessible and unambiguous copy assignment operator.

v The copyprivate clause must not be used together with the nowait

clause.

firstprivate (list) Declares the scope of the data variables in list to be private to each

thread. Each new private object is initialized as if there was an implied

declaration within the statement block. Data variables in list are

separated by commas.

A variable in the firstprivate clause must not also appear in a

copyprivate clause for the same omp single directive.

nowait Use this clause to avoid the implied barrier at the end of the single

directive. Only one nowait clause can appear on a given single directive.

The nowait clause must not be used together with the copyprivate

clause.

Notes: An implied barrier exists at the end of a parallelized statement block

unless the nowait clause is specified.

302 XL C/C++ Compiler Reference

#pragma omp master

Description: The omp master directive identifies a section of code that must be

run only by the master thread.

Syntax:

�� # pragma omp master ��

Notes: Threads other than the master thread will not execute the statement block

associated with this construct.

No implied barrier exists on either entry to or exit from the master section.

#pragma omp critical

Description: The omp critical directive identifies a section of code that must be

executed by a single thread at a time.

Syntax:

��

�

 ,

#

pragma

omp critical

(name)

��

where name can optionally be used to identify the critical region. Identifiers

naming a critical region have external linkage and occupy a namespace distinct

from that used by ordinary identifiers.

Notes: A thread waits at the start of a critical region identified by a given name

until no other thread in the program is executing a critical region with that same

name. Critical sections not specifically named by omp critical directive invocation

are mapped to the same unspecified name.

#pragma omp barrier

Description: The omp barrier directive identifies a synchronization point at

which threads in a parallel region will wait until all other threads in that section

reach the same point. Statement execution past the omp barrier point then

continues in parallel.

Syntax:

�� # pragma omp barrier ��

Notes: The omp barrier directive must appear within a block or compound

statement. For example:

if (x!=0) {

 #pragma omp barrier /* valid usage */

}

if (x!=0)

 #pragma omp barrier /* invalid usage */

Chapter 4. Compiler pragmas reference 303

#pragma omp flush

Description: The omp flush directive identifies a point at which the compiler

ensures that all threads in a parallel region have the same view of specified objects

in memory.

Syntax:

��

�

,

#

pragma

omp flush

list

��

where list is a comma-separated list of variables that will be synchronized.

Notes: If list includes a pointer, the pointer is flushed, not the object being

referred to by the pointer. If list is not specified, all shared objects are synchronized

except those inaccessible with automatic storage duration.

An implied flush directive appears in conjunction with the following directives:

v omp barrier

v Entry to and exit from omp critical.

v Exit from omp parallel.

v Exit from omp for.

v Exit from omp sections.

v Exit from omp single.

The omp flush directive must appear within a block or compound statement. For

example:

if (x!=0) {

 #pragma omp flush /* valid usage */

}

if (x!=0)

 #pragma omp flush /* invalid usage */

#pragma omp threadprivate

Description: The omp threadprivate directive makes the named file-scope,

namespace-scope, or static block-scope variables private to a thread.

Syntax:

��

�

 ,

#

pragma

omp threadprivate

(identifier)

��

where identifier is a file-scope, name space-scope or static block-scope variable.

Notes: Each copy of an omp threadprivate data variable is initialized once prior

to first use of that copy. If an object is changed before being used to initialize a

threadprivate data variable, behavior is unspecified.

304 XL C/C++ Compiler Reference

A thread must not reference another thread’s copy of an omp threadprivate data

variable. References will always be to the master thread’s copy of the data variable

when executing serial and master regions of the program.

Use of the omp threadprivate directive is governed by the following points:

v An omp threadprivate directive must appear at file scope outside of any

definition or declaration.

v The omp threadprivate directive is applicable to static-block scope variables and

may appear in lexical blocks to reference those block-scope variables. The

directive must appear in the scope of the variable and not in a nested scope, and

must precede all references to variables in its list.

v A data variable must be declared with file scope prior to inclusion in an omp

threadprivate directive list.

v An omp threadprivate directive and its list must lexically precede any reference

to a data variable found in that list.

v A data variable specified in an omp threadprivate directive in one translation

unit must also be specified as such in all other translation units in which it is

declared.

v Data variables specified in an omp threadprivate list must not appear in any

clause other than the copyin, copyprivate, if, num_threads, and schedule

clauses.

v The address of a data variable in an omp threadprivate list is not an address

constant.

v A data variable specified in an omp threadprivate list must not have an

incomplete or reference type.

Chapter 4. Compiler pragmas reference 305

306 XL C/C++ Compiler Reference

Chapter 5. Compiler predefined macros

Predefined macros can be used to conditionally compile code for specific

compilers, specific versions of compilers, specific environments and/or specific

language features.

Predefined macros fall into several categories:

v “General macros”

v “Macros related to the platform” on page 308

v “Macros related to compiler features” on page 309

“Examples of predefined macros” on page 316 show how you can use compiler

macros in your code.

General macros

The following predefined macros are always predefined by the compiler. Unless

noted otherwise, all the following macros are protected, which means that the

compiler will issue a warning if you try to undefine or redefine them.

 Table 36. General predefined macros

Predefined macro name Description Predefined value

__BASE_FILE__ Indicates the name of the primary

source file.

The fully qualified file name of the primary

source file.

__FUNCTION__ Indicates the name of the function

currently being compiled.

A character string containing the name of

the function currently being compiled.

__SIZE_TYPE__ Indicates the underlying type of

size_t on the current platform. Not

protected.

unsigned int in 32-bit compilation mode.

unsigned long in 64-bit compilation mode.

__TIMESTAMP__ Indicates the date and time when the

source file was last modified. The

value changes as the compiler

processes any include files that are

part of your source program.

A character string literal in the form ″Day

Mmm dd hh:mm:ss yyyy″, where::

Day Represents the day of the week

(Mon, Tue, Wed, Thu, Fri, Sat, or Sun).

Mmm Represents the month in an

abbreviated form (Jan, Feb, Mar,

Apr, May, Jun, Jul, Aug, Sep, Oct, Nov,

or Dec).

dd Represents the day. If the day is

less than 10, the first d is a blank

character.

hh Represents the hour.

mm Represents the minutes.

ss Represents the seconds.

yyyy Represents the year.

© Copyright IBM Corp. 1998, 2007 307

Macros indicating the XL C/C++ compiler product

Macros related to the XL C/C++ compiler are always predefined, and are protected

(the compiler will issue a warning if you try to undefine or redefine them).

 Table 37. Compiler product predefined macros

Predefined macro

name

Description Predefined value

C

__IBMC__

Indicates the level of the XL C

compiler.

An integer in the format VRM, where :

V Represents the version number

R Represents the release number

M Represents the modification number

In XL C/C++ V9.0, the value of the macro is 900.

C++

__IBMCPP__

Indicates the level of the XL C++

compiler.

An integer in the format VRM, where :

V Represents the version number

R Represents the release number

M Represents the modification number

In XL C/C++ V9.0, the value of the macro is 900.

C

__xlc__

Indicates the level of the XL C

compiler.

A string in the format "V.R.M.F", where:

V Represents the version number

R Represents the release number

M Represents the modification number

F Represents the fix level

In XL C/C++ V9.0, the value of the macro is "9.0.0.0".

__xlC__ Indicates the level of the XL C++

compiler. Using the XL C

compiler also automatically

defines this macro.

A four-digit hexadecimal integer in the format 0xVVRM,

where:

V Represents the version number

R Represents the release number

M Represents the modification number

In XL C/C++ V9.0, the value of the macro is 0x0900.

Macros related to the platform

The following predefined macros are provided to facilitate porting applications

between platforms. All platform-related predefined macros are unprotected and

may be undefined or redefined without warning unless otherwise specified.

 Table 38. Platform-related predefined macros

Predefined macro

name Description Predefined value

Predefined under the

following conditions

_BIG_ENDIAN,

__BIG_ENDIAN__

Indicates that the platform is big-endian

(that is, the most significant byte is stored

at the memory location with the lowest

address).

1 Always predefined.

308 XL C/C++ Compiler Reference

Table 38. Platform-related predefined macros (continued)

Predefined macro

name Description Predefined value

Predefined under the

following conditions

__ELF__ Indicates that the ELF object model is in

effect.

1 Always predefined for the

Linux platform.

C++

__GXX_WEAK__

Indicates that weak symbols are

supported (used for template

instantiation by the linker).

1 Always predefined.

__HOS_LINUX__ Indicates that the host operating system

is Linux. Protected.

1 Always predefined for all

Linux platforms.

__linux, __linux__ Indicates that the platform is Linux. 1 Always predefined for all

Linux platforms.

__powerpc,

__powerpc__

Indicates that the target architecture is

PowerPC.

1 Predefined when the target

architecture is PowerPC.

__powerpc64__ Indicates that the target architecture is

PowerPC and that 64-bit compilation

mode is enabled.

1 Predefined when the target

architecture is PowerPC and

-q64 is in effect.

__PPC, __PPC__ Indicates that the target architecture is

PowerPC.

1 Predefined when the target

architecture is PowerPC.

__PPC64__ Indicates that the target architecture is

PowerPC and that 64-bit compilation

mode is enabled.

1 Predefined when the target

architecture is PowerPC and

-q64 is in effect.

__THW_PPC__ Indicates that the target architecture is

PowerPC.

1 Predefined when the target

architecture is PowerPC.

__TOS_LINUX__ Indicates that the target operating system

is Linux.

1 Predefined when the target

architecture is PowerPC.

__unix, __unix__ Indicates that the operating system is a

variety of UNIX.

1 Always predefined.

Macros related to compiler features

Feature-related macros are predefined according to the setting of specific compiler

options or pragmas. Unless noted otherwise, all feature-related macros are

protected (the compiler will issue a warning if you try to undefine or redefine

them).

Feature-related macros are discussed in the following sections:

v “Macros related to compiler option settings”

v “Macros related to architecture settings” on page 311

v “Macros related to language levels” on page 312

Macros related to compiler option settings

The following macros can be tested for various features, including source input

characteristics, output file characteristics, optimization, and so on. All of these

macros are predefined by a specific compiler option or suboption, or any

invocation or pragma that implies that suboption. If the suboption enabling the

feature is not in effect, then the macro is undefined.

Chapter 5. Compiler predefined macros 309

Table 39. General option-related predefined macros

Predefined macro name Description Predefined

value

Predefined when the

following compiler

option or equivalent

pragma is in effect:

__ALTIVEC__ Indicates support for vector

data types. (unprotected)

1 -qaltivec

__64BIT__ Indicates that 64-bit

compilation mode is in

effect.

1 -q64

_CHAR_SIGNED, __CHAR_SIGNED__ Indicates that the default

character type is signed

char.

1 -qchars=signed

_CHAR_UNSIGNED,

__CHAR_UNSIGNED__

Indicates that the default

character type is unsigned

char.

1 -qchars=unsigned

C++

__EXCEPTIONS

Indicates that C++ exception

handling is enabled.

1 -qeh

__IBM_GCC_ASM Indicates support for GCC

inline asm statements.

1 C

-qasm=gcc

and -qlanglvl=extc99 |

extc89 | extended

or-qkeyword=asm

C++

-qasm=gcc

and-qlanglvl=extended

0 C

-qnoasm

and -qlanglvl=extc99 |

extc89 | extended

or-qkeyword=asm

C++

-qnoasm

and-qlanglvl=extended

C++

__IBM_STDCPP_ASM

Indicates that support for

GCC inline asm statements

is disabled.

0 -qnoasm=stdcpp

__IBM_UTF_LITERAL Indicates support for

UTF-16 and UTF-32 string

literals.

1 -qutf

C++

__IGNERRNO__

Indicates that system calls

do not modify errno,

thereby enabling certain

compiler optimizations.

1 -qignerrno

C++

__INITAUTO__

Indicates the value to which

automatic variables which

are not explicitly initialized

in the source program are to

be initialized.

The two-digit

hexadecimal

value specified

in the

-qinitauto

compiler

option.

-qinitauto=hex value

310 XL C/C++ Compiler Reference

Table 39. General option-related predefined macros (continued)

Predefined macro name Description Predefined

value

Predefined when the

following compiler

option or equivalent

pragma is in effect:

C++

__INITAUTO_W__

Indicates the value to which

automatic variables which

are not explicitly initialized

in the source program are to

be initialized.

An eight-digit

hexadecimal

corresponding

to the value

specified in

the -qinitauto

compiler

option

repeated 4

times.

-qinitauto=hex value

C++

__LIBANSI__

Indicates that calls to

functions whose names

match those in the C

Standard Library are in fact

the C library functions,

enabling certain compiler

optimizations.

1 -qlibansi

__LONGDOUBLE64 Indicates that the size of a

long double type is 64 bits.

1 -qnoldbl128

__LONGDOUBLE128,

__LONG_DOUBLE_128__

Indicates that the size of a

long double type is 128 bits.

1 -qldbl128

__OPTIMIZE__ Indicates the level of

optimization in effect.

2 -O | -O2

3 -O3 | -O4 | -O5

__OPTIMIZE_SIZE__ Indicates that optimization

for code size is in effect.

1 -O | -O2 | -O3 | -O4 |

-O5 and -qcompact

C++

__RTTI_DYNAMIC_CAST__

Indicates that runtime type

identification information

for the dynamic_cast

operator is generated.

1 -qrtti

C++

__RTTI_TYPE_INFO__

Indicates that runtime type

identification information

for the typeid operator is

generated.

1 -qrtti

C++

__NO_RTTI__

Indicates that runtime type

identification information is

disabled.

1 -qnortti

C++

__TEMPINC__

Indicates that the compiler

is using the

template-implementation

file method of resolving

template functions.

1 -qtempinc

__VEC__ Indicates support for vector

data types.

10205 -qaltivec

Macros related to architecture settings

The following macros can be tested for target architecture settings. All of these

macros are predefined to a value of 1 by a -qarch compiler option setting, or any

Chapter 5. Compiler predefined macros 311

other compiler option that implies that setting. If the -qarch suboption enabling the

feature is not in effect, then the macro is undefined.

 Table 40. -qarch-related macros

Macro name Description

Predefined by the following -qarch

suboptions

_ARCH_COM Indicates that the application is targeted

to run on any PowerPC processor.

Defined for all -qarch suboptions except

auto.

_ARCH_PPC Indicates that the application is targeted

to run on any PowerPC processor.

Defined for all -qarch suboptions except

auto.

_ARCH_PPC64 Indicates that the application is targeted

to run on PowerPC processors with

64-bit support.

ppc64 | pwr3 | rs64b | rs64c | ppc64gr

| ppc64grsq | ppc64v | pwr4 | pwr5 |

pwr5x | pwr6 | pwr6e | ppc970

_ARCH_PPCGR Indicates that the application is targeted

to run on PowerPC processors with

graphics support.

ppcgr | pwr3 | rs64b | rs64c | ppc64gr

| ppc64grsq | ppc64v | pwr4 | pwr5 |

pwr5x | pwr6 | pwr6e | ppc970

_ARCH_PPC64GR Indicates that the application is targeted

to run on PowerPC processors with

64-bit and graphics support.

pwr3 | rs64b | rs64c | ppc64gr |

ppc64v | pwr4 | pwr5 | pwr5x | pwr6

| pwr6e | ppc970

_ARCH_PPC64GRSQ Indicates that the application is targeted

to run on PowerPC processors with

64-bit, graphics, and square root

support.

pwr3 | rs64b | rs64c | ppc64grsq |

ppc64v | pwr4 | pwr5 | pwr5x | pwr6

| pwr6e | ppc970

_ARCH_PPC64V Indicates that the application is targeted

to run on PowerPC processors with

64-bit and vector processing support.

ppc64v | ppc970 | pwr6 | pwr6e

_ARCH_PPC970 Indicates that the application is targeted

to run on the PowerPC 970 processor.

ppc970

_ARCH_PWR3 Indicates that the application is targeted

to run on POWER3 processors.

pwr3 | pwr4 | pwr5 | pwr5x | pwr6 |

pwr6e | ppc970

_ARCH_PWR4 Indicates that the application is targeted

to run on POWER4 processors.

pwr4 | pwr5 | pwr5x | pwr6 | pwr6e

| ppc970

_ARCH_PWR5 Indicates that the application is targeted

to run on POWER5 processors.

pwr5 | pwr5x | pwr6 | pwr6e

_ARCH_PWR5X Indicates that the application is targeted

to run on POWER5+ processors.

pwr5x | pwr6 | pwr6e

_ARCH_PWR6 Indicates that the application is targeted

to run on POWER6 processors.

pwr6 | pwr6e

_ARCH_PWR6E Indicates that the application is targeted

to run on POWER6 processors running

in POWER6 raw mode.

pwr6e

_ARCH_RS64B Indicates that the application is targeted

to run on the RS64II processor.

rs64b

_ARCH_RS64C Indicates that the application is targeted

to run on the RS64III processor.

rs64c

Macros related to language levels

The following macros can be tested for C99 features, features related to GNU C or

C++, and other IBM language extensions. All of these macros are predefined to a

value of 1 by a specific language level, represented by a suboption of the -qlanglvl

compiler option, or any invocation or pragma that implies that suboption. If the

312 XL C/C++ Compiler Reference

suboption enabling the feature is not in effect, then the macro is undefined. For

descriptions of the features related to these macros, see the XL C/C++ Language

Reference.

 Table 41. Predefined macros for language features

Predefined macro name Description Predefined when the

following language level is in

effect

C++

__BOOL__

Indicates that the bool

keyword is accepted.

Always defined except when

-qnokeyword=bool is in effect.

C

__C99_BOOL

Indicates support for the _Bool

data type.

stdc99 | extc99 | extc89 |

extended

C

__C99_COMPLEX

Indicates support for complex

data types.

stdc99 | extc99 | extc89 |

extended

C++

__C99_COMPLEX_HEADER__

Indicates support for C99-style

complex headers.

c99complexheader

C

__C99_CPLUSCMT

Indicates support for C++ style

comments

stdc99 | extc99 (also

-qcpluscmt)

C

__C99_COMPOUND_LITERAL

Indicates support for

compound literals.

stdc99 | extc99 | extc89 |

extended

C

__C99_DESIGNATED_INITIALIZER

Indicates support for

designated initialization.

stdc99 | extc99 | extc89 |

extended

C

__C99_DUP_TYPE_QUALIFIER

Indicates support for

duplicated type qualifiers.

stdc99 | extc99 | extc89 |

extended

__C99_EMPTY_MACRO_ARGUMENTS Indicates support for empty

macro arguments.

C

stdc99 | extc99 |

extc89 | extended

C++

extended

C

__C99_FLEXIBLE_ARRAY_MEMBER

Indicates support for flexible

array members.

stdc99 | extc99 | extc89 |

extended

__C99__FUNC__ Indicates support for the

 __func__ predefined identifier.

C

stdc99 | extc99 |

extc89 | extended

C++

extended |

c99__func__

__C99_HEX_FLOAT_CONST Indicates support for

hexadecimal floating constants.

C

stdc99 | extc99 |

extc89 | extended

C++

extended |

c99hexfloat

C

__C99_INLINE

Indicates support for the

inline function specifier.

stdc99 | extc99 (also

-qkeyword=inline)

C

__C99_LLONG

Indicates support for C99-style

long long data types.

stdc99 | extc99

__C99_MACRO_WITH_VA_ARGS Indicates support for

function-like macros with

variable arguments.

C

stdc99 | extc99 |

extc89 | extended

C++

extended |

varargmacros

C

__C99_MAX_LINE_NUMBER

Indicates that the maximum

line number is 2147483647.

stdc99 | extc99 | extc89 |

extended

Chapter 5. Compiler predefined macros 313

Table 41. Predefined macros for language features (continued)

Predefined macro name Description Predefined when the

following language level is in

effect

C

__C99_MIXED_DECL_AND_CODE

Indicates support for mixed

declaration and code.

stdc99 | extc99 | extc89 |

extended

C

__C99_MIXED_STRING_CONCAT

Indicates support for

concatenation of wide string

and non-wide string literals.

stdc99 | extc99 | extc89 |

extended

C

__C99_NON_LVALUE_ARRAY_SUB

Indicates support for

non-lvalue subscripts for

arrays.

stdc99 | extc99 | extc89 |

extended

C

__C99_NON_CONST_AGGR_INITIALIZER

Indicates support for

non-constant aggregate

initializers.

stdc99 | extc99 | extc89 |

extended

__C99_PRAGMA_OPERATOR Indicates support for the

_Pragma operator.

C

stdc99 | extc99 |

extc89 | extended

C++

extended

C

__C99_REQUIRE_FUNC_DECL

Indicates that implicit function

declaration is not supported.

stdc99

__C99_RESTRICT Indicates support for the C99

restrict qualifier.

C

stdc99 | extc99 (also

-qkeyword=restrict)

C++

extended (also

-qkeyword=restrict)

C

__C99_STATIC_ARRAY_SIZE

Indicates support for the

static keyword in array

parameters to functions.

stdc99 | extc99 | extc89 |

extended

C

__C99_STD_PRAGMAS

Indicates support for standard

pragmas.

stdc99 | extc99 | extc89 |

extended

C

__C99_TGMATH

Indicates support for

type-generic macros in

tgmath.h

stdc99 | extc99 | extc89 |

extended

__C99_UCN Indicates support for universal

character names.

C

stdc99 | extc99 |

ucs

C++

ucs

C

__C99_VAR_LEN_ARRAY

Indicates support for variable

length arrays.

stdc99 | extc99 | extc89 |

extended

C++

__C99_VARIABLE_LENGTH_ARRAY

Indicates support for variable

length arrays.

extended | c99vla

__DIGRAPHS__ Indicates support for digraphs. C

stdc99 | extc99 |

extc89 | extended (also

-qdigraph)

C++

extended (also

-qdigraph)

C

__EXTENDED__

Indicates that language

extensions are supported.

extended

314 XL C/C++ Compiler Reference

Table 41. Predefined macros for language features (continued)

Predefined macro name Description Predefined when the

following language level is in

effect

__IBM__ALIGN Indicates support for the

__align specifier.

C++

Always defined

except when

-qnokeyword=__alignof is

specified

__IBM_ALIGNOF__ Indicates support for the

__alignof__ operator.

C

extc99 | extc89 |

extended

C++

extended

__IBM_ALLOW_OVERRIDE_PLACEMENT_NEW Indicates support for pre-V9

default behavior.

C++

extended

__IBM_ATTRIBUTES Indicates support for type,

variable, and function

attributes.

C

extc99 | extc89 |

extended

C++

extended

__IBM_COMPUTED_GOTO Indicates support for computed

goto statements.

C

extc99 | extc89 |

extended

C++

extended |

gnu_computedgoto

__IBM_EXTENSION_KEYWORD Indicates support for the

 __extension__ keyword.

C

extc99 | extc89 |

extended

C++

extended

__IBM_GCC__INLINE__ Indicates support for the GCC

__inline__ specifier.

C

extc99 | extc89 |

extended

C++

extended

C

__IBM_DOLLAR_IN_ID

Indicates support for dollar

signs in identifiers.

extc99 | extc89 | extended

C

__IBM_GENERALIZED_LVALUE

Indicates support for

generalized lvalues.

extc99 | extc89 | extended

__IBM_INCLUDE_NEXT Indicates support for the

#include_next preprocessing

directive.

C

Always defined

C++

Always defined

except when

-qlanglvl=nognu_include_next

is in effect.

__IBM_LABEL_VALUE Indicates support for labels as

values.

C

extc99 | extc89 |

extended

C++

extended |

gnu_labelvalue

Chapter 5. Compiler predefined macros 315

Table 41. Predefined macros for language features (continued)

Predefined macro name Description Predefined when the

following language level is in

effect

__IBM_LOCAL_LABEL Indicates support for local

labels.

C

extc99 | extc89 |

extended

C++

extended |

gnu_locallabel

__IBM_MACRO_WITH_VA_ARGS Indicates support for variadic

macro extensions.

C

extc99 | extc89 |

extended

C++

extended |

gnu_varargmacros

C

_IBM_NESTED_FUNCTION

Indicates support for nested

functions.

extc99 | extc89 | extended

C

__IBM_PP_PREDICATE

Indicates support for #assert,

#unassert, #cpu, #machine, and

#system preprocessing

directives.

extc99 | extc89 | extended

C

__IBM_PP_WARNING

Indicates support for the

#warning preprocessing

directive.

extc99 | extc89 | extended

C

__IBM_REGISTER_VARS

Indicates support for variables

in specified registers.

Always defined.

C++

__IBM_REGISTER_VARIABLES

Indicates support for variables

in specified registers.

Always defined.

__IBM__TYPEOF__ Indicates support for the

__typeof__ or typeof

keyword.

C

always defined

C++

extended (Also

-qkeyword=typeof)

_LONG_LONG Indicates support for IBM long

long data types.

C

extended | extc89

(also -qlonglong)

C++

extended (also

-qlonglong)

Examples of predefined macros

This example illustrates use of the __FUNCTION__ and the __C99__FUNC__

macros to test for the availability of the C99 __func__ identifier to return the

current function name:

#include <stdio.h>

#if defined(__C99__FUNC__)

#define PRINT_FUNC_NAME() printf (" In function %s \n", __func__);

#elif defined(__FUNCTION__)

#define PRINT_FUNC_NAME() printf (" In function %s \n", __FUNCTION__);

#else

#define PRINT_FUNC_NAME() printf (" Function name unavailable\n");

#endif

void foo(void);

316 XL C/C++ Compiler Reference

int main(int argc, char **argv)

{

 int k = 1;

 PRINT_FUNC_NAME();

 foo();

 return 0;

}

void foo (void)

{

 PRINT_FUNC_NAME();

 return;

}

The output of this example is:

In function main

In function foo

C++

This example illustrates use of the __FUNCTION__ macro in a C++

program with virtual functions.

#include <stdio.h>

class X { public: virtual void func() = 0;};

class Y : public X {

 public: void func() { printf("In function %s \n", __FUNCTION__);}

};

int main() {

 Y aaa;

 aaa.func();

}

The output of this example is:

In function Y::func()

Chapter 5. Compiler predefined macros 317

318 XL C/C++ Compiler Reference

Chapter 6. Compiler built-in functions

A built-in function is a coding extension to C and C++ that allows a programmer

to use the syntax of C function calls and C variables to access the instruction set of

the processor of the compiling machine. IBM PowerPC architectures have special

instructions that enable the development of highly optimized applications. Access

to some PowerPC instructions cannot be generated using the standard constructs

of the C and C++ languages. Other instructions can be generated through standard

constructs, but using built-in functions allows exact control of the generated code.

Inline assembly language programming, which uses these instructions directly, is

not fully supported by XL C/C++ and other compilers. Furthermore, the technique

can be time-consuming to implement.

As an alternative to managing hardware registers through assembly language, XL

C/C++ built-in functions provide access to the optimized PowerPC instruction set

and allow the compiler to optimize the instruction scheduling.

C++

To call any of the XL C/C++ built-in functions in C++, you must include

the header file builtins.h in your source code.

The following tables describe the available built-in functions for the Linux

platform.

v “Fixed-point built-in functions”

v “Binary floating-point built-in functions” on page 324

v “Synchronization and atomic built-in functions” on page 332

v “Cache-related built-in functions” on page 339

v “Block-related built-in functions” on page 343

v “Miscellaneous built-in functions” on page 343

v “Built-in functions for parallel processing” on page 346

The compiler supports all vector processing functions defined by the AltiVec

specification. For detailed descriptions of all of these built-in functions, see the

AltiVec Technology Programming Interface Manual, available at http://
www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf.

Fixed-point built-in functions

Fixed-point built-in functions are grouped into the following categories:

v Absolute value functions

v Assert functions

v Count zero functions

v Load functions

v Multiply functions

v Population count functions

v Rotate functions

v Store functions

v Trap functions

© Copyright IBM Corp. 1998, 2007 319

http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf
http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf

Absolute value functions

__labs, __llabs

Purpose: Absolute Value Long, Absolute Value Long Long

Returns the absolute value of the argument.

Prototype:

signed long __labs (signed long);

signed long long __llabs (signed long long);

Assert functions

__assert1, __assert2

Purpose: Generates trap instructions.

Prototype:

int __assert1 (int, int, int);

void __assert2 (int);

Count zero functions

__cntlz4, __cntlz8

Purpose: Count Leading Zeros, 4/8-byte integer

Prototype:

unsigned int __cntlz4 (unsigned int);

unsigned int __cntlz8 (unsigned long long);

__cnttz4, __cnttz8

Purpose: Count Trailing Zeros, 4/8-byte integer

Prototype:

unsigned int __cnttz4 (unsigned int);

unsigned int __cnttz8 (unsigned long long);

Load functions

__load2r, __load4r

Purpose: Load Halfword Byte Reversed, Load Word Byte Reversed

Prototype:

unsigned short __load2r (unsigned short*);

320 XL C/C++ Compiler Reference

unsigned int __load4r (unsigned int*);

Multiply functions

__mulhd, __mulhdu

Purpose: Multiply High Doubleword Signed, Multiply High Doubleword

Unsigned

Returns the highorder 64 bits of the 128bit product of the two parameters.

Prototype:

long long int __mulhd (long int, long int);

unsigned long long int __mulhdu (unsigned long int, unsigned long int);

Usage: Valid only in 64-bit mode.

__mulhw, __mulhwu

Purpose: Multiply High Word Signed, Multiply High Word Unsigned

Returns the highorder 32 bits of the 64bit product of the two parameters.

Prototype:

int __mulhw (int, int);

unsigned int __mulhwu (unsigned int, unsigned int);

Population count functions

__popcnt4, __popcnt8

Purpose: Population Count, 4/8-byte integer

Returns the number of bits set for a 32/64-bit integer.

Prototype:

int __popcnt4 (unsigned int);

int __popcnt8 (unsigned long long);

__popcntb

Purpose: Population Count Byte

Counts the 1 bits in each byte of the parameter and places that count into the

corresponding byte of the result.

Prototype:

unsigned long __popcntb(unsigned long);

Chapter 6. Compiler built-in functions 321

__poppar4, __poppar8

Purpose: Population Parity, 4/8-byte integer

Checks whether the number of bits set in a 32/64-bit integer is an even or odd

number.

Prototype:

int __poppar4(unsigned int);

int __poppar8(unsigned long long);

Return value: Returns 1 if the number of bits set in the input parameter is odd.

Returns 0 otherwise.

Rotate functions

__rdlam

Purpose: Rotate Double Left and AND with Mask

Rotates the contents of rs left shift bits, and ANDs the rotated data with the mask.

Prototype:

unsigned long long __rdlam (unsigned long long rs, unsigned int shift,

unsigned long long mask);

Parameters:

mask

Must be a constant that represents a contiguous bit field.

__rldimi, __rlwimi

Purpose: Rotate Left Doubleword Immediate then Mask Insert, Rotate Left Word

Immediate then Mask Insert

Rotates rs left shift bits then inserts rs into is under bit mask mask.

Prototype:

unsigned long long __rldimi (unsigned long long rs, unsigned long long is,

unsigned int shift, unsigned long long mask);

unsigned int __rlwimi (unsigned int rs, unsigned int is, unsigned int shift,

unsigned int mask);

Parameters:

shift

A constant value 0 to 63 (__rldimi) or 31 (__rlwimi).

mask

Must be a constant that represents a contiguous bit field.

322 XL C/C++ Compiler Reference

__rlwnm

Purpose: Rotate Left Word then AND with Mask

Rotates rs left shift bits, then ANDs rs with bit mask mask.

Prototype:

unsigned int __rlwnm (unsigned int rs, unsigned int shift, unsigned int mask);

Parameters:

mask

Must be a constant that represents a contiguous bit field.

__rotatel4, __rotatel8

Purpose: Rotate Left Word, Rotate Left Doubleword

Rotates rs left shift bits.

Prototype:

unsigned int __rotatel4 (unsigned int rs, unsigned int shift);

unsigned long long __rotatel8 (unsigned long long rs, unsigned long long

shift);

Store functions

__store2r, __store4r

Purpose: Store 2/4-byte Register

Prototype:

void __store2r (unsigned short, unsigned short*);

void __store4r (unsigned int, unsigned int*);

Trap functions

__tdw, __tw

Purpose: Trap Doubleword, Trap Word

Compares parameter a with parameter b. This comparison results in five conditions

which are ANDed with a 5-bit constant TO. If the result is not 0 the system trap

handler is invoked.

Prototype:

void __tdw (long a, long b, unsigned int TO);

void __tw (int a, int b, unsigned int TO);

Parameters:

Chapter 6. Compiler built-in functions 323

TO

A value of 0 to 31 inclusive. Each bit position, if set, indicates one or more of

the following possible conditions:

0 (high-order bit)

a is less than b, using signed comparison.

1 a is greater than b, using signed comparison.

2 a is equal to b

3 a is less than b, using unsigned comparison.

4 (low-order bit)

a is greater than b, using unsigned comparison.

Usage: __tdw is valid only in 64-bit mode.

__trap, __trapd

Purpose: Trap if the Parameter is not Zero, Trap if the Parameter is not Zero

Doubleword

Prototype:

void __trap (int);

void __trapd (long);

Usage: __trapd is valid only in 64-bit mode.

Binary floating-point built-in functions

Floating-point built-in functions are grouped into the following categories:

v Absolute value functions

v Conversion functions

v FPSCR functions

v Multiply-add/subtract functions

v Reciprocal estimate functions

v Rounding functions

v Select functions

v Square root functions

v Software division functions

Absolute value functions

__fabss

Purpose: Floating Absolute Value Single

Returns the absolute value of the argument.

Prototype:

float __fabss (float);

324 XL C/C++ Compiler Reference

__fnabs

Purpose: Floating Negative Absolute Value, Floating Negative Absolute Value

Single

Returns the negative absolute value of the argument.

Prototype:

double __fnabs (double);

float __fnabss (float);

Conversion functions

__cmplx, __cmplxf, __cmplxl

Purpose: Converts two real parameters into a single complex value.

Prototype:

double _Complex __cmplx (double, double);

float _Complex __cmplxf (float, float);

long double _Complex __cmplxl (long double, long double);

__fcfid

Purpose: Floating Convert from Integer Doubleword

Converts a 64-bit signed integer stored in a double to a double-precision

floating-point value.

Prototype:

double __fcfid (double);

__fctid

Purpose: Floating Convert to Integer Doubleword

Converts a double-precision argument to a 64-bit signed integer, using the current

rounding mode, and returns the result in a double.

Prototype:

double __fctid (double);

__fctidz

Purpose: Floating Convert to Integer Doubleword with Rounding towards Zero

Converts a double-precision argument to a 64-bit signed integer, using the

rounding mode round-toward-zero, and returns the result in a double.

Prototype:

Chapter 6. Compiler built-in functions 325

double __fctidz (double);

__fctiw

Purpose: Floating Convert to Integer Word

Converts a double-precision argument to a 32-bit signed integer, using the current

rounding mode, and returns the result in a double.

Prototype:

double __fctiw (double);

__fctiwz

Purpose: Floating Convert to Integer Word with Rounding towards Zero

Converts a double-precision argument to a 32-bit signed integer, using the

rounding mode round-toward-zero, and returns the result in a double.

Prototype:

double __fctiwz (double);

__ibm2gccldbl, __ibm2gccldbl_cmplx

Purpose: Converts IBM-style long double data types to GCC long doubles.

Prototype:

long double __ibm2gccldbl (long double);

_Complex long double __ibm2gccldbl_cmplx (_Complex long double);

Return value: The translated result conforms to GCC requirements for long

doubles. However, long double computations performed in IBM-compiled code

may not produce bitwise identical results to those obtained purely by GCC.

FPSCR functions

__mtfsb0

Purpose: Move to Floating Point Status/Control Register (FPSCR) Bit 0

Sets bit bt of the FPSCR to 0.

Prototype:

void __mtfsb0 (unsigned int bt);

Parameters:

bt Must be a constant with a value of 0 to 31.

326 XL C/C++ Compiler Reference

__mtfsb1

Purpose: Move to FPSCR Bit 1

Sets bit bt of the FPSCR to 1.

Prototype:

void __mtfsb1 (unsigned int bt);

Parameters:

bt Must be a constant with a value of 0 to 31.

__mtfsf

Purpose: Move to FPSCR Fields

Places the contents of frb into the FPSCR under control of the field mask specified

by flm. The field mask flm identifies the 4bit fields of the FPSCR affected.

Prototype:

void __mtfsf (unsigned int flm, unsigned int frb);

Parameters:

flm

Must be a constant 8-bit mask.

__mtfsfi

Purpose: Move to FPSCR Field Immediate

Places the value of u into the FPSCR field specified by bf.

Prototype:

void __mtfsfi (unsigned int bf, unsigned int u);

Parameters:

bf Must be a constant with a value of 0 to 7.

u Must be a constant with a value of 0 to 15.

__readflm

Purpose: Returns a 64-bit double precision floating point, whose 32 low order bits

contain the contents of the FPSCR. The 32 low order bits are bits 32 - 63 counting

from the highest order bit.

Prototype:

double __readflm (void);

Chapter 6. Compiler built-in functions 327

__setflm

Purpose: Takes a double precision floating point number and places the lower 32

bits in the FPSCR. The 32 low order bits are bits 32 - 63 counting from the highest

order bit. Returns the previous contents of the FPSCR.

Prototype:

double __setflm (double);

__setrnd

Purpose: Sets the rounding mode.

Prototype:

double __setrnd (int mode);

Parameters: The allowable values for mode are:

v 0 — round to nearest

v 1 — round to zero

v 2 — round to +infinity

v 3 — round to -infinity

Multiply-add/subtract functions

__fmadd, __fmadds

Purpose: Floating Multiply-Add, Floating Multiply-Add Single

Multiplies the first two arguments, adds the third argument, and returns the result.

Prototype:

double __fmadd (double, double, double);

float __fmadds (float, float, float);

__fmsub, __fmsubs

Purpose: Floating Multiply-Subtract, Floating Multiply-Subtract Single

Multiplies the first two arguments, subtracts the third argument and returns the

result.

Prototype:

double __fmsub (double, double, double);

float __fmsubs (float, float, float);

__fnmadd, __fnmadds

Purpose: Floating Negative Multiply-Add, Floating Negative Multiply-Add Single

328 XL C/C++ Compiler Reference

Multiplies the first two arguments, adds the third argument, and negates the

result.

Prototype:

double __fnmadd (double, double, double);

float __fnmadds (float, float, float);

__fnmsub, __fnmsubs

Purpose: Floating Negative Multiply-Subtract

Multiplies the first two arguments, subtracts the third argument, and negates the

result.

Prototype:

double __fnmsub (double, double, double);

float __fnmsubs (float, float, float);

Reciprocal estimate functions

See also “Square root functions” on page 331.

__fre, __fres

Purpose: Floating Reciprocal Estimate, Floating Reciprocal Estimate Single

Prototype:

float __fre (double);

float __fres (float);

Usage: __fre is valid only when -qarch is set to target POWER5 or later

processors.

Rounding functions

__frim, __frims

Purpose: Floating Round to Integer Minus

Rounds the floating-point argument to an integer using round-to-minus-infinity

mode, and returns the value as a floating-point value.

Prototype:

double __frim (double);

float __frims (float);

Usage: Valid only when -qarch is set to target POWER5+ or later processors.

Chapter 6. Compiler built-in functions 329

__frin, __frins

Purpose: Floating Round to Integer Nearest

Rounds the floating-point argument to an integer using round-to-nearest mode,

and returns the value as a floating-point value.

Prototype:

double __frin (double);

float __frins (float);

Usage: Valid only when -qarch is set to target POWER5+ or later processors.

__frip, __frips

Purpose: Floating Round to Integer Plus

Rounds the floating-point argument to an integer using round-to-plus-infinity

mode, and returns the value as a floating-point value.

Prototype:

double __frip (double);

float __frips (float);

Usage: Valid only when -qarch is set to target POWER5+ or later processors.

__friz, __frizs

Purpose: Floating Round to Integer Zero

Rounds the floating-point argument to an integer using round-to-zero mode, and

returns the value as a floating-point value.

Prototype:

double __friz (double);

float __frizs (float);

Usage: Valid only when -qarch is set to target POWER5+ or later processors.

Select functions

__fsel, __fsels

Purpose: Floating Select, Floating Select Single

Returns the second argument if the first argument is greater than or equal to zero;

returns the third argument otherwise.

Prototype:

double __fsel (double, double, double);

330 XL C/C++ Compiler Reference

float __fsels (float, float, float);

Square root functions

__frsqrte, __frsqrtes

Purpose: Floating Reciprocal Square Root Estimate, Floating Reciprocal Square

Root Estimate Single

Prototype:

double __frsqrte (double);

float __frsqrtes (float);

Usage: __frsqrtes is valid only when -qarch is set to target POWER5+ or later

processors.

__fsqrt, __fsqrts

Purpose: Floating Square Root, Floating Square Root Single

Prototype:

double __fsqrt (double);

float __fsqrts (float);

Software division functions

__swdiv, __swdivs

Purpose: Software Divide, Software Divide Single

Divides the first argument by the second argument and returns the result.

Prototype:

double __swdiv (double, double);

float __swdivs (float, float);

__swdiv_nochk, __swdivs_nochk

Purpose: Software Divide No Check, Software Divide No Check Single

Divides the first argument by the second argument, without performing range

checking, and returns the result.

Prototype:

double __swdiv_nochk (double a, double b);

float __swdivs_nochk (float a, float b);

Parameters:

Chapter 6. Compiler built-in functions 331

a Must not equal infinity. When -qstrict is in effect, a must have an absolute

value greater than 2-970 and less than infinity.

b Must not equal infinity, zero, or denormalized values. When -qstrict is in

effect, b must have an absolute value greater than 2-1022 and less than 21021.

Return value: The result must not be equal to positive or negative infinity. When

-qstrict in effect, the result must have an absolute value greater than 2-1021 and less

than 21023.

Usage: This function can provide better performance than the normal divide

operator or the __swdiv built-in function in situations where division is performed

repeatedly in a loop and when arguments are within the permitted ranges.

Store functions

__stfiw

Purpose: Store Floating Point as Integer Word

Stores the contents of the loworder 32 bits of value, without conversion, into the

word in storage addressed by addr.

Prototype:

void __stfiw (const int* addr, double value);

Synchronization and atomic built-in functions

Synchronization and atomic built-in functions are grouped into the following

categories:

v Check lock functions

v Clear lock functions

v Compare and swap functions

v Fetch functions

v Load functions

v Store functions

v Synchronization functions

Check lock functions

__check_lock_mp, __check_lockd_mp

Purpose: Check Lock on Multiprocessor Systems, Check Lock Doubleword on

Multiprocessor Systems

Conditionally updates a single word or doubleword variable atomically.

Prototype:

unsigned int __check_lock_mp (const int* addr, int old_value, int new_value);

unsigned int __check_lockd_mp (const long* addr, long old_value, long

new_value);

332 XL C/C++ Compiler Reference

Parameters:

addr

The address of the variable to be updated. Must be aligned on a 4-byte

boundary for a single word or on an 8-byte boundary for a doubleword.

old_value

The old value to be checked against the current value in addr.

new_value

The new value to be conditionally assigned to the variable in addr,

Return value: Returns false (0) if the value in addr was equal to old_value and has

been set to the new_value. Returns true (1) if the value in addr was not equal to

old_value and has been left unchanged.

Usage: __check_lockd_mp is valid only in 64-bit mode.

__check_lock_up, __check_lockd_up

Purpose: Check Lock on Uniprocessor Systems, Check Lock Doubleword on

Uniprocessor Systems

Conditionally updates a single word or doubleword variable atomically.

Prototype:

unsigned int __check_lock_up (const int* addr, int old_value, int new_value);

unsigned int __check_lockd_up (const long* addr, long old_value, long

new_value);

Parameters:

addr

The address of the variable to be updated. Must be aligned on a 4-byte

boundary for a single word and on an 8-byte boundary for a doubleword.

old_value

The old value to be checked against the current value in addr.

new_value

The new value to be conditionally assigned to the variable in addr,

Return value: Returns false (0) if the value in addr was equal to old_value and has

been set to the new value. Returns true (1) if the value in addr was not equal to

old_value and has been left unchanged.

Usage: __check_lockd_up is valid only in 64-bit mode.

Clear lock functions

__clear_lock_mp, __clear_lockd_mp

Purpose: Clear Lock on Multiprocessor Systems, Clear Lock Doubleword on

Multiprocessor Systems

Atomic store of the value into the variable at the address addr.

Prototype:

Chapter 6. Compiler built-in functions 333

void __clear_lock_mp (const int* addr, int value);

void __clear_lockd_mp (const long* addr, long value);

Parameters:

addr

The address of the variable to be updated. Must be aligned on a 4-byte

boundary for a single word and on an 8-byte boundary for a doubleword.

value

The new value to be assigned to the variable in addr,

Usage: __clear_lockd_mp is only valid in 64-bit mode.

__clear_lock_up, __clear_lockd_up

Purpose: Clear Lock on Uniprocessor Systems, Clear Lock Doubleword on

Uniprocessor Systems

Atomic store of the value into the variable at the address addr.

Prototype:

void __clear_lock_up (const int* addr, int value);

void __clear_lockd_up (const long* addr, long value);

Parameters:

addr

The address of the variable to be updated. Must be aligned on a 4-byte

boundary for a single word and on an 8-byte boundary for a doubleword.

value

The new value to be assigned to the variable in addr.

Usage: __clear_lockd_up is only valid in 64-bit mode.

Compare and swap functions

__compare_and_swap, __compare_and_swaplp

Purpose: Conditionally updates a single word or doubleword variable atomically.

Prototype:

int __compare_and_swap (volatile int* addr, int* old_val_addr, int new_val);

int __compare_and_swaplp (volatile long* addr, long* old_val_addr, long

new_val);

Parameters:

addr

The address of the variable to be copied. Must be aligned on a 4-byte

boundary for a single word and on an 8-byte boundary for a doubleword.

old_val_addr

The memory location into which the value in addr is to be copied.

334 XL C/C++ Compiler Reference

new_val

The value to be conditionally assigned to the variable in addr,

Return value: Returns true (1) if the value in addr was equal to old_value and has

been set to the new value. Returns false (0) if the value in addr was not equal to

old_value and has been left unchanged. In either case, the contents of the memory

location specified by addr are copied into the memory location specified by

old_val_addr.

Usage: The __compare_and_swap function is useful when a single word value must

be updated only if it has not been changed since it was last read. If you use

__compare_and_swap as a locking primitive, insert a call to the __isync built-in

function at the start of any critical sections.

__compare_and_swaplp is valid only in 64-bit mode.

Fetch functions

__fetch_and_and, __fetch_and_andlp

Purpose: Clears bits in the word or doubleword specified byaddr by AND-ing that

value with the value specified by val, in a single atomic operation, and returns the

original value of addr.

Prototype:

unsigned int __fetch_and_and (volatile unsigned int* addr, unsigned int val);

unsigned long __fetch_and_andlp (volatile unsigned long* addr, unsigned

long val);

Parameters:

addr

The address of the variable to be ANDed. Must be aligned on a 4-byte

boundary for a single word and on an 8-byte boundary for a doubleword.

value

The value by which the value in addr is to be ANDed.

Usage: This operation is useful when a variable containing bit flags is shared

between several threads or processes.

__fetch_and_andlp is valid only in 64-bit mode.

__fetch_and_or, __fetch_and_orlp

Purpose: Sets bits in the word or doubleword specified by addr by OR-ing that

value with the value specified val, in a single atomic operation, and returns the

original value of addr.

Prototype:

unsigned int __fetch_and_or (volatile unsigned int* addr, unsigned int val);

unsigned long __fetch_and_orlp (volatile unsigned long* addr, unsigned long

val);

Chapter 6. Compiler built-in functions 335

Parameters:

addr

The address of the variable to be ORed. Must be aligned on a 4-byte boundary

for a single word and on an 8-byte boundary for a doubleword.

value

The value by which the value in addr is to be ORed.

Usage: This operation is useful when a variable containing bit flags is shared

between several threads or processes.

__fetch_and_orlp is valid only in 64-bit mode.

__fetch_and_swap, __fetch_and_swaplp

Purpose: Sets the word or doubleword specified by addr to the value of val and

returns the original value of addr, in a single atomic operation.

Prototype:

unsigned int __fetch_and_swap (volatile unsigned int* addr, unsigned int val);

unsigned long __fetch_and_swaplp (volatile unsigned long* addr, unsigned

long val);

Parameters:

addr

The address of the variable to be updated. Must be aligned on a 4-byte

boundary for a single word and on an 8-byte boundary for a doubleword.

value

The value which is to be assigned to addr.

Usage: This operation is useful when a variable is shared between several threads

or processes, and one thread needs to update the value of the variable without

losing the value that was originally stored in the location.

__fetch_and_swaplp is valid only in 64-bit mode.

Load functions

__ldarx, __lwarx

Purpose: Load Doubleword and Reserve Indexed, Load Word and Reserve

Indexed

Loads the value from the memory location specified by addr and returns the result.

For __lwarx, in 64-bit mode, the compiler returns the sign-extended result.

Prototype:

long __ldarx (volatile long* addr);

int __lwarx (volatile int* addr);

Parameters:

336 XL C/C++ Compiler Reference

addr

The address of the value to be loaded. Must be aligned on a 4-byte boundary

for a single word and on an 8-byte boundary for a doubleword.

Usage: This function can be used with a subsequent __stdcx (or __stwcx) built-in

function to implement a read-modify-write on a specified memory location. The

two built-in functions work together to ensure that if the store is successfully

performed, no other processor or mechanism can modify the target doubleword

between the time the __ldarx function is executed and the time the __stdcx

function completes. This has the same effect as inserting __fence built-in functions

before and after the __ldarx built-in function and can inhibit compiler optimization

of surrounding code (see “Miscellaneous built-in functions” on page 343 for a

description of the __fence built-in function).

__ldarx is valid only in 64-bit mode.

Store functions

__stdcx, __stwcx

Purpose: Store Doubleword Conditional Indexed, Store Word Conditional Indexed

Stores the value specified by val into the memory location specified by addr.

Prototype:

int __stdcx(volatile long* addr, long val);

int __stwcx(volatile int* addr, int val);

Parameters:

addr

The address of the variable to be updated. Must be aligned on a 4-byte

boundary for a single word and on an 8-byte boundary for a doubleword.

value

The value which is to be assigned to addr.

Return value: Returns 1 if the update of addr is successful and 0 if it is

unsuccessful.

Usage: This function can be used with a preceding __ldarx (or __lwarx) built-in

function to implement a read-modify-write on a specified memory location. The

two built-in functions work together to ensure that if the store is successfully

performed, no other processor or mechanism can modify the target doubleword

between the time the __ldarx function is executed and the time the __stdcx

function completes. This has the same effect as inserting __fence built-in functions

before and after the __stdcx built-in function and can inhibit compiler optimization

of surrounding code.

__stdcx is valid only in 64-bit mode.

Chapter 6. Compiler built-in functions 337

Synchronization functions

__eieio, __iospace_eioio

Purpose: Enforce In-order Execution of Input/Output

Ensures that all I/O storage access instructions preceding the call to __eioeio

complete in main memory before I/O storage access instructions following the

function call can execute.

Prototype:

void __eieio (void);

void __iospace_eieio (void);

Usage: This function is useful for managing shared data instructions where the

execution order of load/store access is significant. The function can provide the

necessary functionality for controlling I/O stores without the cost to performance

that can occur with other synchronization instructions.

__isync, __iospace_sync

Purpose: Instruction Synchronize

Waits for all previous instructions to complete and then discards any prefetched

instructions, causing subsequent instructions to be fetched (or refetched) and

executed in the context established by previous instructions.

Prototype:

void __isync (void);

void __iospace_sync (void);

__lwsync, __iospace_lwsync

Purpose: Load Word Synchronize

Ensures that all store instructions preceding the call to __lwsync complete before

any new instructions can be executed on the processor that executed the function.

This allows you to synchronize between multiple processors with minimal

performance impact, as __lwsync does not wait for confirmation from each

processor.

Prototype:

void __lwsync (void);

void __iospace_lwsync (void);

__sync

Purpose: Synchronize

Ensures that all instructions preceding the function the call to __sync complete

before any instructions following the function call can execute.

338 XL C/C++ Compiler Reference

Prototype:

void __sync (void);

Cache-related built-in functions

Cache-related built-in functions are grouped into the following categories:

v Data cache functions

v Prefetch functions

v Protected stream functions

Data cache functions

__dcbf

Purpose: Data Cache Block Flush

Copies the contents of a modified block from the data cache to main memory and

flushes the copy from the data cache.

Prototype: void __dcbf(const void* addr);

__dcbfl

Purpose: Data Cache Block Flush Line

Flushes the cache line at the specified address from the L1 data cache.

Prototype: void __dcbfl (const void* addr);

Usage: The target storage block is preserved in the L2 cache.

Valid only when -qarch is set to target POWER6 processors

__dcbst

Purpose: Data Cache Block Store

Copies the contents of a modified block from the data cache to main memory.

Prototype: void __dcbst(const void* addr);

__dcbt

Purpose: Data Cache Block Touch

Loads the block of memory containing the specified address into the L1 data cache.

Prototype:

void __dcbt (void* addr);

__dcbtst

Purpose: Data Cache Block Touch for Store

Fetches the block of memory containing the specified address into the data cache.

Chapter 6. Compiler built-in functions 339

Prototype: void __dcbtst(void* addr);

__dcbz

Purpose: Data Cache Block set to Zero

Sets a cache line containing the specified address in the data cache to zero (0).

Prototype:

void __dcbz (void* addr);

Prefetch functions

__prefetch_by_load

Purpose: Touches a memory location by using an explicit load.

Prototype:

void __prefetch_by_load (const void*);

__prefetch_by_stream

Purpose: Touches a memory location by using an explicit stream.

Prototype:

void __prefetch_by_stream (const int, const void*);

Protected stream functions

__protected_store_stream_set,

__protected_unlimited_store_stream_set

Purpose: Establishes a limited- or unlimited-length protected store stream which

fetches from either incremental (forward) or decremental (backward) memory

addresses. The stream is protected from being replaced by any hardware detected

streams.

Prototype: void _protected_store_stream_set (unsigned int direction, const void*

addr, unsigned int stream_ID);

void _protected_unlimited_store_stream_set (unsigned int direction, const void*

addr, unsigned int stream_ID);

Parameters:

direction

An integer with a value of 1 (forward) or 3 (backward).

addr

The beginning of the cache line.

stream_ID

An integer with a value 0 to 15.

Usage: Valid only when -qarch is set to target POWER6 processors.

340 XL C/C++ Compiler Reference

__protected_stream_count

Purpose: Sets the number of cache lines for a specific limited-length protected

stream.

Prototype:

void __protected_stream_count (unsigned int unit_cnt, unsigned int

stream_ID);

Parameters:

unit_cnt

The number of cache lines. Must be an integer with a value of 0 to 1023.

stream_ID

An integer value of 0 to 15.

Usage: Valid only when -qarch is set to target POWER5 or POWER6 processors.

__protected_stream_count_depth

Purpose: Sets the number of cache lines and the prefetch depth for a specific

limited-length protected stream.

Prototype: void _protected_stream_count_depth (unsigned int unit_cnt, unsigned

int prefetch_depth, unsigned int stream_ ID);

Parameters:

unit_cnt

The number of cache lines. Must be an integer with a value of 0 to 1023.

prefetch_depth

A relative, qualitative value which sets the steady-state fetch-ahead distance of

the prefetches for a stream. The fetch-ahead distance is the number of lines

being prefetched in advance of the line from which data is currently being

loaded, or to which data is currently being stored. Valid values are as follows:

0 The default defined in the Data Stream Control Register.

1 None.

2 Shallowest.

3 Shallow.

4 Medium.

5 Deep.

6 Deeper.

7 Deepest.

stream_ID

An integer value of 0 to 15.

Usage: Valid only when -qarch is set to target POWER6 processors.

Chapter 6. Compiler built-in functions 341

__protected_stream_go

Purpose: Starts prefetching all limited-length protected streams.

Prototype:

void __protected_stream_go (void);

Usage: Valid only when -qarch is set to target POWER5 or POWER6 processors.

__protected_stream_set, __protected_unlimited_stream_set,

__protected_unlimited_stream_set_go

Purpose: Establishes a limited- or unlimited-length protected stream which fetches

from either incremental (forward) or decremental (backward) memory addresses.

The stream is protected from being replaced by any hardware detected streams.

Prototype:

void __protected_stream_set (unsigned int direction, const void* addr,

unsigned int stream_ID);

void _protected_unlimited_stream_set (unsigned int direction, const void* addr,

unsigned int ID);

void __protected_unlimited_stream_set_go (unsigned int direction, const void*

addr, unsigned int stream_ID);

Parameters:

direction

An integer with a value of 1 (forward) or 3 (backward).

addr

The beginning of the cache line.

stream_ID

An integer with a value 0 to 15.

Usage: __protected_stream_set and __protected_unlimited_stream_set_go are

valid only when -qarch is set to target POWER5 processors.

_protected_unlimited_stream_set is valid only when -qarch is set to target

POWER5 or POWER6 processors

__protected_stream_stop

Purpose: Stops prefetching a protected stream.

Prototype:

void __protected_stream_stop (unsigned int stream ID);

Usage: Valid only when -qarch is set to target POWER5 or POWER6 processors.

__protected_stream_stop_all

Purpose: Stops prefetching all protected streams.

Prototype:

342 XL C/C++ Compiler Reference

void __protected_stream_stop_all (void);

Usage: Valid only when -qarch is set to target POWER5 or POWER6 processors.

Block-related built-in functions

__bcopy

Purpose

Block copy

Prototype

void __bcopy (char*, char*, size_t);

Miscellaneous built-in functions

Miscellaneous functions are grouped into the following categories:

v Optimization-related functions

v Move to/from register functions

v Memory-related functions

Optimization-related functions

__alignx

Purpose: Allows for optimizations such as automatic vectorization by informing

the compiler that the data pointed to by pointer is aligned at a known compile-time

offset.

Prototype:

void __alignx (int alignment, const void* pointer);

Parameters:

alignment

Must be a constant integer with a value greater than zero and of a power of

two.

__builtin_expect

Purpose: Indicates that an expression is likely to evaluate to a specified value.

The compiler may use this knowledge to direct optimizations.

Prototype:

long __builtin_expect (long expression, long value);

Parameters:

expression

Should be an integral-type expression.

value

Must be a constant literal.

Chapter 6. Compiler built-in functions 343

Usage: If the expression does not actually evaluate at run time to the predicted

value, performance may suffer. Therefore, this built-in function should be used

with caution.

__fence

Purpose: Acts as a barrier to compiler optimizations that involve code motion, or

reordering of machine instructions. Compiler optimizations will not move machine

instructions past the location of the __fence call.

Prototype:

void __fence (void);

Examples: This function is useful to guarantee the ordering of instructions in the

object code generated by the compiler when optimization is enabled.

Move to/from register functions

__mftb

Purpose: Move from Time Base

In 32-bit compilation mode, returns the lower word of the time base register. In

64-bit mode, returns the entire doubleword of the time base register.

Prototype:

unsigned long __mftb (void);

Usage: In 32-bit mode, this function can be used in conjunction with the__mftbu

built-in function to read the entire time base register. In 64-bit mode, the entire

doubleword of the time base register is returned, so separate use of __mftbu is

unnecessary

It is recommended that you insert the __fence built-in function before and after the

__mftb built-in function.

__mftbu

Purpose: Move from Time Base Upper

Returns the upper word of the time base register.

Prototype:

unsigned int __mftbu (void);

Usage: In 32-bit mode you can use this function in conjunction with the __mftb

built-in function to read the entire time base register

It is recommended that you insert the __fence built-in function before and after the

__mftbu built-in function.

__mfmsr

Purpose: Move from Machine State Register

344 XL C/C++ Compiler Reference

Moves the contents of the machine state register (MSR) into bits 32 to 63 of the

designated general-purpose register.

Prototype:

unsigned long __mfmsr (void);

Usage: Execution of this instruction is privileged and restricted to supervisor

mode only.

__mfspr

Purpose: Move from Special-Purpose Register

Returns the value of given special purpose register.

Prototype:

unsigned long __mfspr (const int registerNumber);

Parameters:

registerNumber

The number of the special purpose register whose value is to be returned. The

registerNumber must be known at compile time.

__mtmsr

Purpose: Move to Machine State Register

Moves the contents of bits 32 to 63 of the designated GPR into the MSR.

Prototype:

void __mtmsr (unsigned long);

Usage: Execution of this instruction is privileged and restricted to supervisor

mode only.

__mtspr

Purpose: Move to Special-Purpose Register

Sets the value of a special purpose register.

Prototype:

void __mtspr (const int registerNumber, unsigned long value);

Parameters:

registerNumber

The number of the special purpose register whose value is to be set. The

registerNumber must be known at compile time.

value

Must be known at compile time.

Chapter 6. Compiler built-in functions 345

Memory-related functions

__alloca

Purpose: Allocates space for an object. The allocated space is put on the stack and

freed when the calling function returns.

Prototype:

void* __alloca (size_t size)

Parameters:

size

An integer representing the amount of space to be allocated, measured in

bytes.

__builtin_frame_address, __builtin_return_address

Purpose: Returns the address of the stack frame, or return address, of the current

function, or of one of its callers.

Prototype:

void* __builtin_frame_address (unsigned int level);

void* __builtin_return_address (unsigned int level);

Parameters:

level

A constant literal indicating the number of frames to scan up the call stack.

The level must range from 0 to 63. A value of 0 returns the frame or return

address of the current function, a value of 1 returns the frame or return

address of the caller of the current function and so on.

Return value: Returns 0 when the top of the stack is reached. Optimizations such

as inlining may affect the expected return value by introducing extra stack frames

or fewer stack frames than expected. If a function is inlined, the frame or return

address corresponds to that of the function that is returned to.

Built-in functions for parallel processing

Use these built-in functions to obtain information about the parallel environment:

v “OpenMP built-in functions”

OpenMP built-in functions

Function definitions for the omp_ functions can be found in the omp.h header file.

For complete information about OpenMP runtime library functions, refer to the

OpenMP C/C++ Application Program Interface specification in www.openmp.org.

Related information

v “Environment variables for parallel processing” on page 23

346 XL C/C++ Compiler Reference

http://www.openmp.org

omp_get_num_threads

Purpose: Returns the number of threads currently in the team executing the

parallel region from which it is called.

Prototype: int omp_get_num_threads (void);

omp_set_num_threads

Purpose: Overrides the setting of the OMP_NUM_THREADS environment

variable, and specifies the number of threads to use in parallel regions following

this directive.

Prototype: void omp_set_num_threads (int num_threads);

Parameters:

num_threads

Must be a positive integer.

Usage: If the num_threads clause is present, then for the parallel region it is

applied to, it supersedes the number of threads requested by this function or the

OMP_NUM_THREADS environment variable. Subsequent parallel regions are not

affected by it.

omp_get_max_threads

Purpose: Returns the maximum value that can be returned by calls to

omp_get_num_threads.

Prototype: int omp_get_max_threads (void);

omp_get_thread_num

Purpose: Returns the thread number, within its team, of the thread executing the

function.

Prototype: int omp_get_thread_num (void);

Return value: The thread number lies between 0 and omp_get_num_threads()-1,

inclusive. The master thread of the team is thread 0.

omp_get_num_procs

Purpose: Returns the maximum number of processors that could be assigned to

the program.

Prototype: int omp_get_num_procs (void);

omp_in_parallel

Purpose: Returns non-zero if it is called within the dynamic extent of a parallel

region executing in parallel; otherwise, returns 0.

Prototype: int omp_in_parallel (void);

Chapter 6. Compiler built-in functions 347

omp_in_parallel

Purpose: Returns non-zero if it is called within the dynamic extent of a parallel

region executing in parallel; otherwise, returns 0.

Prototype: int omp_in_parallel (void);

omp_set_dynamic

Purpose: Enables or disables dynamic adjustment of the number of threads

available for execution of parallel regions.

Prototype: void omp_set_dynamic (int dynamic_threads);

omp_get_dynamic

Purpose: Returns non-zero if dynamic thread adjustments enabled and returns 0

otherwise.

Prototype: int omp_get_dynamic (void);

omp_set_nested

Purpose: Enables or disables nested parallelism.

Prototype: void omp_set_nested (int);

Return value: In the current implementation, nested parallel regions are always

serialized. As a result, has no effect.

omp_get_nested

Purpose: Returns non-zero if nested parallelism is enabled and 0 if it is disabled.

Prototype: int omp_get_nested (void);

Return value: In the current implementation, nested parallel regions are always

serialized. As a result, always returns 0.

omp_init_lock, omp_init_nest_lock

Purpose: Initializes the lock associated with the parameter lock for use in

subsequent calls.

Prototype:

void omp_init_lock (omp_lock_t *lock);

void omp_init_nest_lock (omp_nest_lock_t *lock);

omp_destroy_lock, omp_destroy_nest_lock

Purpose: Ensures that the specified lock variable lock is uninitialized.

Prototype:

void omp_destroy_lock (omp_lock_t *lock);

void omp_destroy_nest_lock (omp_nest_lock_t *lock);

348 XL C/C++ Compiler Reference

omp_set_lock, omp_set_nest_lock

Purpose: Blocks the thread executing the function until the specified lock is

available and then sets the lock.

Prototype:

void omp_set_lock (omp_lock_t * lock);

void omp_set_nest_lock (omp_nest_lock_t * lock);

Usage: A simple lock is available if it is unlocked. A nestable lock is available if it

is unlocked or if it is already owned by the thread executing the function.

omp_unset_lock, omp_unset_nest_lock

Purpose: Releases ownership of a lock.

Prototype:

void omp_unset_lock (omp_lock_t * lock);

void omp_unset_nest_lock (omp_nest_lock_t * lock);

omp_test_lock, omp_test_nest_lock

Purpose: Attempts to set a lock but does not block execution of the thread.

Prototype:

int omp_test_lock (omp_lock_t * lock);

int omp_test_nest_lock (omp_nest_lock_t * lock);

omp_get_wtime

Purpose: Returns the time elapsed from a fixed starting time.

Prototype: double omp_get_wtime (void);

Usage: The value of the fixed starting time is determined at the start of the

current program, and remains constant throughout program execution.

omp_get_wtick

Purpose: Returns the number of seconds between clock ticks.

Prototype: double omp_get_wtick (void);

Usage: The value of the fixed starting time is determined at the start of the

current program, and remains constant throughout program execution.

Chapter 6. Compiler built-in functions 349

350 XL C/C++ Compiler Reference

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1998, 2007 351

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

Lab Director

IBM Canada Ltd. Laboratory

8200 Warden Avenue

Markham, Ontario L6G 1C7

Canada

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

352 XL C/C++ Compiler Reference

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. 1998, 2007. All rights reserved.

Trademarks and service marks

Company, product, or service names identified in the text may be trademarks or

service marks of IBM or other companies. Information on the trademarks of

International Business Machines Corporation in the United States, other countries,

or both is located at http://www.ibm.com/legal/copytrade.shtml.

Microsoft and Windows are trademarks of Microsoft Corporation in the United

States, other countries, or both.

Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries

in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

Other company, product, and service names may be trademarks or service marks

of others.

Industry standards

The following standards are supported:

v The C language is consistent with the International Standard for Information

Systems-Programming Language C (ISO/IEC 9899-1990).

v The C language is also consistent with the International Standard for

Information Systems-Programming Language C (ISO/IEC 9899-1999 (E)).

v The C++ language is consistent with the International Standard for Information

Systems-Programming Language C++ (ISO/IEC 14882:1998).

v The C++ language is also consistent with the International Standard for

Information Systems-Programming Language C++ (ISO/IEC 14882:2003 (E)).

v The C and C++ languages are consistent with the OpenMP C and C++

Application Programming Interface Version 2.5.

Notices 353

http://www.ibm.com/legal/copytrade.shtml

354 XL C/C++ Compiler Reference

Index

Special characters
-qfdpr compiler option 95

-qreport compiler option 193

-qsmp compiler option 204

A
alias 53

-qalias compiler option 53

pragma disjoint 261

alignment 55

-qalign compiler option 55

pragma align 55

pragma pack 279

architecture 9, 58

-q32 compiler option 51

-q64 compiler option 51

-qarch compiler option 58

-qcache compiler option 68

-qtune compiler option 232

architecture combination 233

macros 311

arrays
padding 112

B
built-in functions 319

block-related 343

cache-related 339

fixed-point 319

floating-point 324

for parallel processing 346

miscellaneous 343

synchronization and atomic 332

C
cleanpdf command 179

compatibility
-qabi_version compiler option 51

options for compatibility 47

compiler options 5

architecture-specific 9

performance optimization 43

resolving conflicts 8

specifying compiler options 5

command line 5

configuration file 7

source files 7

summary of command line

options 35

configuration 29

custom configuration files 29

gxlc and gxlc++ options 32

specifying compiler options 7

configuration file 94

D
data types 57

-qaltivec compiler option 57

E
environment variable 21

algorithm environment variable 28

environment variables 22

parallel environment variables 28

XLSMPOPTS environment

variable 23

environment variables
runtime

XLSMPOPTS 23

error checking and debugging 41

-g compiler option 107

-qcheck compiler option 72

-qlinedebug compiler option 156

exception handling
for floating point 102

F
floating-point

exceptions 102

G
GCC options 10

gxlc and gxlc++ utilities 10

H
high order transformation 112

I
inlining 190

interprocedural analysis (IPA) 128

invocations 1

compiler or components 1

preprocessor 12

selecting 1

syntax 2

L
language standards 143

-qlanglvl compiler option 143

lib*.a library files 141

lib*.so library files 141

libraries
redistributable 14

XL C/C++ 14

linker 13

invoking 13

linking 13

linking (continued)
options that control linking 46

order of linking 14

listing 18

-qattr compiler option 64

-qlist compiler option 157

-qlistopt compiler option 158

-qsource compiler option 208

-qxref compiler option 247

options that control listings and

messages 42

M
machines, compiling for different

types 58

macros 307

related to architecture 311

related to compiler options 309

related to language features 312

related to the compiler 308

related to the platform 308

mergepdf 179

O
OpenMP 27

OpenMP environment variables 27

optimization 43

-O compiler option 169

-qalias compiler option 53

-qoptimize compiler option 169

controlling, using option_override

pragma 277

loop optimization 43

-qhot compiler option 112

-qstrict_induction compiler

option 216

options for performance

optimization 43

P
parallel processing 27

built-in functions 346

OpenMP environment variables 27

parallel processing pragmas 294

pragma directives 294

setting parallel processing

environment variables 23

performance 43

-O compiler option 169

-qalias compiler option 53

-qoptimize compiler option 169

platform, compiling for a specific

type 58

pragmas
priority 186

report 286

priority pragma 186

© Copyright IBM Corp. 1998, 2007 355

profile-directed feedback (PDF) 178

-qpdf1 compiler option 178

-qpdf2 compiler option 178

profiling 173

-qpdf1 compiler option 178

-qpdf2 compiler option 178

-qshowpdf compiler option 203

environment variable 29

R
report

pragma 286

resetpdf command 179

S
shared objects 167

-qmkshrobj 167

shared-memory parallelism (SMP) 23

-qsmp compiler option 204

environment variables 23

showpdf 179

SIGTRAP signal 102

T
target machine, compiling for 58

templates 223

-qtempinc compiler option 223

-qtemplaterecompile compiler

option 225

-qtemplateregistry compiler

option 226

-qtempmax compiler option 227

-qtmplinst compiler option 230

-qtmplparse compiler option 231

pragma define 261

pragma do_not_instantiate 263

pragma implementation 268

pragma instantiate 261

tuning 232

-qarch compiler option 232

-qtune compiler option 232

V
vector data types 57

-qaltivec compiler option 57

vector processing 94

-qaltivec compiler option 57

virtual function table (VFT) 86

-qdump_class_hierarchy 86

pragma hashome 266, 269

X
XLSMPOPTS environment variable 23

356 XL C/C++ Compiler Reference

���

Program Number: 5724-S73

SC23-5889-00

	Contents
	About this document
	Who should read this document
	How to use this document
	How this document is organized
	Conventions used in this document
	Related information
	IBM XL C/C++ publications
	Standards and specifications documents
	Other IBM publications
	Other publications

	Technical support
	How to send your comments

	Chapter 1. Compiling and linking applications
	Invoking the compiler
	Command-line syntax

	Types of input files
	Types of output files
	Specifying compiler options
	Specifying compiler options on the command line
	Specifying compiler options in a configuration file
	Specifying compiler options in program source files
	Resolving conflicting compiler options
	Specifying compiler options for architecture-specific, 32-bit or 64-bit compilation

	Reusing GNU C/C++ compiler options with gxlc and gxlc++
	gxlc and gxlc++ syntax

	Preprocessing
	Directory search sequence for include files

	Linking
	Order of linking
	Redistributable libraries

	Compiler messages and listings
	Compiler messages
	Compiler message format
	Message severity levels and compiler response

	Compiler return codes
	gxlc and gxlc++ return codes

	Compiler listings
	Message catalog errors
	Paging space errors during compilation

	Chapter 2. Configuring compiler defaults
	Setting environment variables
	Compile-time and link-time environment variables
	Runtime environment variables
	Environment variables for parallel processing

	Using custom compiler configuration files
	Creating custom configuration files
	Overriding the default order of attribute values
	Examples of stanzas in custom configuration files

	Configuring the gxlc and gxlc++ option mapping

	Chapter 3. Compiler options reference
	Summary of compiler options by functional category
	Output control
	Input control
	Language element control
	Template control (C++ only)
	Floating-point and integer control
	Object code control
	Error checking and debugging
	Listings, messages, and compiler information
	Optimization and tuning
	Linking
	Portability and migration
	Compiler customization
	Deprecated options

	Individual option descriptions
	-+ (plus sign) (C++ only)
	-# (pound sign)
	-q32, -q64
	-qabi_version (C++ only)
	-qaggrcopy
	-qalias
	-qalign
	-qalloca, -ma (C only)
	-qaltivec
	-qarch
	-qasm
	-qasm_as
	-qattr
	-B
	-qbigdata
	-qbitfields
	-c
	-C, -C!
	-qcache
	-qchars
	-qcheck
	-qcinc (C++ only)
	-qcommon
	-qcompact
	-qcomplexgccincl
	-qcpluscmt (C only)
	-qcrt
	-qc_stdinc (C only)
	-qcpp_stdinc (C++ only)
	-D
	-qdataimported, -qdatalocal, -qtocdata
	-qdbxextra (C only)
	-qdigraph
	-qdirectstorage
	-qdollar
	-qdump_class_hierarchy (C++ only)
	-e
	-E
	-qeh (C++ only)
	-qenum
	-qenablevmx
	-F
	-qfdpr
	-qflag
	-qfloat
	-qflttrap
	-qformat
	-qfullpath
	-g
	-qgcc_c_stdinc (C only)
	-qgcc_cpp_stdinc (C++ only)
	-qgenproto (C only)
	-qhalt
	-qhaltonmsg (C++ only)
	-qhot
	-I
	-qidirfirst
	-qignerrno
	-qignprag
	-qinclude
	-qinfo
	-qinitauto
	-qinlglue
	-qinline
	-qipa
	-qisolated_call
	-qkeepinlines (C++ only)
	-qkeepparm
	-qkeyword
	-l
	-L
	-qlanglvl
	-qldbl128
	-qlib
	-qlibansi
	-qlinedebug
	-qlist
	-qlistopt
	-qlonglit
	-qlonglong
	-ma (C only)
	-qmakedep, -M
	-qmaxerr
	-qmaxmem
	-qmbcs, -qdbcs
	-MF
	-qminimaltoc
	-qmkshrobj
	-o
	-O, -qoptimize
	-qoptdebug
	-p, -pg, -qprofile
	-P
	-qpack_semantic
	-qpath
	-qpdf1, -qpdf2
	-qphsinfo
	-qpic
	-qppline
	-qprefetch
	-qprint
	-qpriority (C++ only)
	-qprocimported, -qproclocal, -qprocunknown
	-qproto (C only)
	-Q, -qinline
	-r
	-R
	-qreport
	-qreserved_reg
	-qro
	-qroconst
	-qrtti (C++ only)
	-s
	-S
	-qsaveopt
	-qshowinc
	-qshowpdf
	-qsmallstack
	-qsmp
	-qsource
	-qsourcetype
	-qspill
	-qsrcmsg (C only)
	-qstaticinline (C++ only)
	-qstaticlink
	-qstatsym
	-qstdinc
	-qstrict
	-qstrict_induction
	-qsuppress
	-qsymtab (C only)
	-qsyntaxonly (C only)
	-t
	-qtabsize
	-qtbtable
	-qtempinc (C++ only)
	-qtemplatedepth (C++ only)
	-qtemplaterecompile (C++ only)
	-qtemplateregistry (C++ only)
	-qtempmax (C++ only)
	-qthreaded
	-qtls
	-qtmplinst (C++ only)
	-qtmplparse (C++ only)
	-qtocdata
	-qtrigraph
	-qtune
	-U
	-qunroll
	-qunwind
	-qupconv (C only)
	-qutf
	-v, -V
	-qversion
	-qvrsave
	-w
	-W
	-qwarn64
	-qxcall
	-qxref
	-y

	Chapter 4. Compiler pragmas reference
	Pragma directive syntax
	Scope of pragma directives
	Summary of compiler pragmas by functional category
	Language element control
	C++ template pragmas
	Floating-point and integer control
	Error checking and debugging
	Listings, messages and compiler information
	Optimization and tuning
	Object code control
	Portability and migration
	Compiler customization

	Individual pragma descriptions
	#pragma align
	#pragma alloca (C only)
	#pragma altivec_vr_save
	#pragma block_loop
	#pragma chars
	#pragma comment
	#pragma complexgcc
	#pragma define, #pragma instantiate (C++ only)
	#pragma disjoint
	#pragma do_not_instantiate (C++ only)
	#pragma enum
	#pragma execution_frequency
	#pragma expected_value
	#pragma hashome (C++ only)
	#pragma ibm snapshot
	#pragma implementation (C++ only)
	#pragma info
	#pragma ishome (C++ only)
	#pragma isolated_call
	#pragma langlvl (C only)
	#pragma leaves
	#pragma loopid
	#pragma map
	#pragma mc_func
	#pragma nosimd
	#pragma novector
	#pragma options
	#pragma option_override
	#pragma pack
	#pragma priority (C++ only)
	#pragma reachable
	#pragma reg_killed_by
	#pragma report (C++ only)
	#pragma STDC cx_limited_range
	#pragma stream_unroll
	#pragma strings
	#pragma unroll
	#pragma unrollandfuse
	#pragma weak
	Pragma directives for parallel processing
	#pragma omp atomic
	#pragma omp parallel
	#pragma omp for
	#pragma omp ordered
	#pragma omp parallel for
	#pragma omp section, #pragma omp sections
	#pragma omp parallel sections
	#pragma omp single
	#pragma omp master
	#pragma omp critical
	#pragma omp barrier
	#pragma omp flush
	#pragma omp threadprivate

	Chapter 5. Compiler predefined macros
	General macros
	Macros indicating the XL C/C++ compiler product
	Macros related to the platform
	Macros related to compiler features
	Macros related to compiler option settings
	Macros related to architecture settings
	Macros related to language levels

	Chapter 6. Compiler built-in functions
	Fixed-point built-in functions
	Absolute value functions
	__labs, __llabs

	Assert functions
	__assert1, __assert2

	Count zero functions
	__cntlz4, __cntlz8
	__cnttz4, __cnttz8

	Load functions
	__load2r, __load4r

	Multiply functions
	__mulhd, __mulhdu
	__mulhw, __mulhwu

	Population count functions
	__popcnt4, __popcnt8
	__popcntb
	__poppar4, __poppar8

	Rotate functions
	__rdlam
	__rldimi, __rlwimi
	__rlwnm
	__rotatel4, __rotatel8

	Store functions
	__store2r, __store4r

	Trap functions
	__tdw, __tw
	__trap, __trapd

	Binary floating-point built-in functions
	Absolute value functions
	__fabss
	__fnabs

	Conversion functions
	__cmplx, __cmplxf, __cmplxl
	__fcfid
	__fctid
	__fctidz
	__fctiw
	__fctiwz
	__ibm2gccldbl, __ibm2gccldbl_cmplx

	FPSCR functions
	__mtfsb0
	__mtfsb1
	__mtfsf
	__mtfsfi
	__readflm
	__setflm
	__setrnd

	Multiply-add/subtract functions
	__fmadd, __fmadds
	__fmsub, __fmsubs
	__fnmadd, __fnmadds
	__fnmsub, __fnmsubs

	Reciprocal estimate functions
	__fre, __fres

	Rounding functions
	__frim, __frims
	__frin, __frins
	__frip, __frips
	__friz, __frizs

	Select functions
	__fsel, __fsels

	Square root functions
	__frsqrte, __frsqrtes
	__fsqrt, __fsqrts

	Software division functions
	__swdiv, __swdivs
	__swdiv_nochk, __swdivs_nochk

	Store functions
	__stfiw

	Synchronization and atomic built-in functions
	Check lock functions
	__check_lock_mp, __check_lockd_mp
	__check_lock_up, __check_lockd_up

	Clear lock functions
	__clear_lock_mp, __clear_lockd_mp
	__clear_lock_up, __clear_lockd_up

	Compare and swap functions
	__compare_and_swap, __compare_and_swaplp

	Fetch functions
	__fetch_and_and, __fetch_and_andlp
	__fetch_and_or, __fetch_and_orlp
	__fetch_and_swap, __fetch_and_swaplp

	Load functions
	__ldarx, __lwarx

	Store functions
	__stdcx, __stwcx

	Synchronization functions
	__eieio, __iospace_eioio
	__isync, __iospace_sync
	__lwsync, __iospace_lwsync
	__sync

	Cache-related built-in functions
	Data cache functions
	__dcbf
	__dcbfl
	__dcbst
	__dcbt
	__dcbtst
	__dcbz

	Prefetch functions
	__prefetch_by_load
	__prefetch_by_stream

	Protected stream functions
	__protected_store_stream_set, __protected_unlimited_store_stream_set
	__protected_stream_count
	__protected_stream_count_depth
	__protected_stream_go
	__protected_stream_set, __protected_unlimited_stream_set, __protected_unlimited_stream_set_go
	__protected_stream_stop
	__protected_stream_stop_all

	Block-related built-in functions
	__bcopy

	Miscellaneous built-in functions
	Optimization-related functions
	__alignx
	__builtin_expect
	__fence

	Move to/from register functions
	__mftb
	__mftbu
	__mfmsr
	__mfspr
	__mtmsr
	__mtspr

	Memory-related functions
	__alloca
	__builtin_frame_address, __builtin_return_address

	Built-in functions for parallel processing
	OpenMP built-in functions
	omp_get_num_threads
	omp_set_num_threads
	omp_get_max_threads
	omp_get_thread_num
	omp_get_num_procs
	omp_in_parallel
	omp_in_parallel
	omp_set_dynamic
	omp_get_dynamic
	omp_set_nested
	omp_get_nested
	omp_init_lock, omp_init_nest_lock
	omp_destroy_lock, omp_destroy_nest_lock
	omp_set_lock, omp_set_nest_lock
	omp_unset_lock, omp_unset_nest_lock
	omp_test_lock, omp_test_nest_lock
	omp_get_wtime
	omp_get_wtick

	Notices
	Trademarks and service marks
	Industry standards

	Index

