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Duality and Sensitivity Analysis

4.1 INTRODUCTION

The optimal solution of a linear-programming problem represents a snapshot of the
conditions that prevail at the time the model is formulated. In the real world, deci-
sion environments rarely remain static, and it is essential to equip LP with the capa-
bility to determine changes in the optimal solution that result from making changes
in the parameters of the model. This is what sensitivity analysis does. It provides effi-
cient computational techniques that allow us to study the dynamic behavior of the
optimal solution. ' ,

We have already dealt with the topic of sensitivity analysis at an elementary
level in Section 2.4. In this chapter, we present an algebraic treatment of the topic
based on the use of duality theory.

Sensitivity analysis deals with making discrete changes in the parameters of the
model. A generalization of this situation is the case in which the parameters change
according to predetermined continuous functions. The technique, called parametric
programming, will be presented in Section 7.7.

4.2. DEFINITION OF THE DUAL PROBLEM

The LP model we develop for a situation is referred to as the primal problem. The
dual problem is a closely related mathematical definition that can be derived di-
rectly from the primal problem. This section provides the mathematical details of the
dual model.

In most LP treatments, the dual is defined for various forms of the primal de-
pending on the sense of optimization (maximization or minimization), the types of the
constraints (=, =, and =), and the sign of the variables (nonnegative or unrestricted).
This type of treatment may be confusing (see Problem 4.2a~7). In this book, we present
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a single definition that automatically subsumes all the forms of the primal. The defi-
nition assumes that the primal problem is expressed in the standard form (Section
3.2), which is defined as

n
Maximize or minimize z = >, ¢;x,

j=1
subject to
iaijxj =b, i=12,...,m:
=
x=0, j=12,...,n
The variables x;,j = 1,2,. . ., n, include the surplus and slacks, if any. The standard

form has three propermes

1. All the constraints are equations (with nonnegative right-hand side).
2. All the variables are nonnegative.
3. The sense of optimization may be maximization of minimization.

Remember that the standard form is always used to produce the starting
tableau of the simplex method and that the solution of the dual problem can be
obtained directly from the optimal primal simplex tableau, as will be shown in
Section 4.3. Thus, by defining the dual from the standard primal, we automati-
cally obtain a dual solution that is consistent with the simplex method compu-

tations.
The variables and constraints of the dual problem can be constructed symmet-

rically from the primal problem as follows: -

1. A dual variable is defined for each of the m primal constraint equations.
2. A dual constraint is defined for each primal of the n primal variables.

3. The left-hand-side coefficients of the dual constraint equal the constraint
(column) coefficients of the associated primal variable. Its right-hand side
- equals the objective coefficient of the same primal variable.

4. The objective coefficients of the dual equal the right-hand side of the primal
constraint equations.

Table 4-1 summarizes this information pictorially with yi, y,,. . . , and y,, represent-
ing the dual variables.

The rules for determining the sense of optimization, the type of the constraint,
and the sign of the variables in the dual problem are summarized in Table 4-2. The
following examples demonstrate the implementation of these rules.
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TABLE 4-1
Primal variables
X X, x; . X,
Dual variables | ¢, c, Cy
Vi a;, a,
¥ a,, a,,
Y m-" aml amZ b °
TABLE 4-2
Standard primal i Dual problem
problem objective Objective Constraints type Variables sign
Maximization Minimization = Unrestricted
Minimization Maximization = Unrestricted
Example 4.2-1.
Dual
Primal Standard primal variables
Maximize z = 5x; + 12x, + 4, | Maximize 7 = 5x, + 12x, + 4x, + Ox,
subject to subject to
X+ 2+ x,=10 X+ 20+ x3+ x,=10 N
26 - x, +3x,= 8 2% — X+ 3%, +0x,= 8 Vs
X1, X9, %3 = 0 X1, X0, X3, %, = 0
Dual Problem

Minimize w = 10y, + 8y,

subject to
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yit+2,=5
- =12

»n+3y,=4

Y+ 0y, =0

; = (y; = 0, y, unrestricted
Y1 Y2 UDIeStncted} o1 Y2 : )

Example 4.2-2.
; Dual
Primal Standard primal - variables
Minimize z =15x, + 12x, | Minimize z = 15x; + 12x, + Ox; + Ox,
subject to subject to
X +2x,=3 X +20-x+ =3 ' Vi
26 -dx, =5 o 2, - 4x, +tx =35 Y2
X, %, =0 ) X1, Xgy X3, %, = 0
Dual Problem
Maximize w = 3y, + 5y,
subject to
n+2,=15
2 4y, =12
-y = 0 (ory,=0)
»n=20
Y1, ¥, unrestricted (redundant)
Example 4.2-3.
) Dual
Primal _ Standard primal  variables
Maximize z = 5x; + 6x, | Substitite Xy = xf - X7, to get
subject to Maximize z = 5xf - 5x7 + 6x,
subject to
X+ 2% =5 xi— X7+ 2x, =5 Y
—-X + 5%, =3 =XT+ X7+ 5%, - x, =3 v,
dx, + Tx, < 8 dxt — 4x7 + Tx, +x,=8 Vs
X; unrestricted X, x, %, =0
5=0
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Dual Problem
Minimize z = 5y, + 3y, + 8y,
subject to

1= yytdy = 5}
—y, +4y, =5
__y1+ y2_4_)’3—>~*5 :(yl y2 y3 )

2y, + 5y, + Ty = 6
' 0 =(,=0)

v

- N
3= 0
y; unrestricted
Y2 ¥ unrestricted  (redundant)

The first and second constraints are replaced by an equation. The rule in this case

is that an unrestricted primal variable always corresponds to an equality dual con-
straint, and conversely, a primal equation produces an unrestricted dual variable.

Problem set 4.2a

1.

2.

In Example 4.2-1, derive the associated dual problem if the sense of opti-
mization in the primal problem is changed to minimization.

Consider Example 4.2-1. The application of the simplex method to the pri-
mal requires the use of an’artificial variable in the second constraint of the
standard primal to secure a starting basic solution. Show that the presence
of an artificial primal variable does not affect the definition of the dual be-
cause it leads to a redundant dual constraint. S

- In'Example 4.2-2, derive the associated dual problem given that the primal

problem is augmented with the third constraint 3x; + x, = 4.

. In'Example 4.2-3, show that even if the sense of optimization in the primal

is changed to minimization, an unrestricted primal variable always corre-
sponds to an equality dual constraint.

- Write the dual for each of the following primal problems:

(a) Maximize = =5 + 2x,
subject to

—-xy + x, = =2
20, +3x,= 5
X,% =0

(b) Minimize z = 6x; + 3x,

subject to
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Maximization Minimization
Problem Problem
Constraints Variables
= = =0
= S =0
= = Unrestricted
Variables Constraints
=0 = =
=0 = =
Unrestricted <« =

4,3 RELATIONSHIP BETWEEN THE OPTIMAL PRIMAL
AND DUAL SOLUTIONS
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The primal and dual problems are so closely related that the optimal solution of
one problem can be secured directly (without further computations) from the opti-
mal simplex tableau of the other problem. This result is based on the following

property:

Property I. At any simplex iteration of the primal or the dual,

Left-hand side minus

Objective coefficient
of variable j in =
one problem

right-hand side
of constraint j in
the other problem

The property is symmetrical with respect to both the primal and the dual problems.

Property I can be used to determine the optimal solution of one problem (di-
rectly) from the optimal simplex tableau of the other. This result could be advanta-
geous computationally if the computations associated with the solved problem is
considerably less than those associated with the other problem. For example, if a
model has 100 variables and 500 constraints, it is advantageous computationally to

solve the dual because it has only 100 constraints.

Example 4.3-1.

Consider the primal and dual problems of Example 4.2-1, which are repeated here for

convenience.
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Primal Dual
Maximize z = 5x, + 12x, + 4x, Minimize w = 10y, + 8y,
subject to subject to
X+ 2%+ x=10 nW+2y,= 5
26— x,+3x; = 8 2y, - =12
Xy, Xp, X3 = 0 yi+3,z= 4
y1 = 0, y, unrestricted

The following tableaux provide the simplex iterations for the primal problem.

Iteration | Basic X X, X Solution

z ~5-2 -12+M —4-—3M
0 x, 1 2 1
R 2 -1 3
z -3 f? 0
1 X, % % 0
X, % __:1; 1
- 0 0
2 %, 1 1 0
x, 2 0 1
z 0 0 2
3 x, 0 1 -3
x 1 0 Z

Applying Property I to the starting solution variables x, and R in optimal itera-
tion 3, we obtain the following information:

Starting primal variables X, R
z-Equation coefficient (iteration 3) % ~§ +M
Associated dual constraint =0 = -M

Equation resulting from Property I y,-0= 2 V- (M) = —% + M
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The solution of the given equations yields y, = 23—9 and y, = —»%. If you solve the
dual problem independently, you will obtain the same solution. Also, because of the
symmetry of Property I with respect to the primal and the dual problem,.a similar
application to the starting variables in the optimal dual tableau will automatically
yield the optimal primal solution x; = %,xz = 15—2, and x; = 0 (use TORA to solve the
dual and verify that the given assertion is true).

The application of Property I to the starting variables always results in easy-to-
solve equations because each equation involves exacty one variable. Nothing, however,
should prevent us from using any two of the other (primal) variables (that is, x;, x,, and
X3) to generate the desired equations. For example, at the optimal tableau, Property I
equations associated with x, and x; are, respectively,

yit2,—-5=0

3
+3y,—4=1
Y1 3y2 5

The solution of these two equations still yields the same optimal dual values y, = £

and y, = —% . However, the equations are not as simple as those associated with x, and

R (convince yourself that any two of the variables xy, x,, x5, x,, and R will produce the
dual variables).

We present next a relationship between the primal and the dual, which, to-
gether with Property I, can be used to provide interesting economic interpretations
of the linear programming problem.

Property II.  For any pair of feasible primal and dual solutions,

(Objective value in the) - <Objective value in the)

maximization problem minimization problem

At the optimum, the relationship holds as a strict equation.

Example 4.3-2.
In Example 4.2-1, the primal and dual problems can be shown (by inspection of the
constraints) to have the feasible solutions (x; = 0,x, = 0,X3 = 3) and (y; = 6,y, = 0). The -
- associated values of the objective functions are then given as z = 10% and w = 60. Con-
versely, the optimum solution for the two problems (x, = %, x, = %2,x, = 0) and
(; =%,y,= —3%) yield z =w =54.8. Both calculations demonstrate the property.

Property 11 reveals that for all feasible solutions of the primal and the dual, the
objective value in the minimization problem always provides an upper bound on the
objective value of the maximization problem. Given that the successive iterations of
the maximization problem will result in increasing the value of the objective func-
tion, and those of the minimization problem will result in decreasing the value of the
objective function. Eventually, in the course of the successive iterations, an equilib-
rium point will be reached where the maximization and the minimization objective
values must be equal.



