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Heuristic Search
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Heuristic Search Techniques

• Direct techniques (blind search) are not 
always possible (they require too much time 
or memory).

• Weak techniques can be effective if applied 
correctly on the right kinds of tasks.

– Typically require domain specific information.
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Example: 8 Puzzle
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8 Puzzle Heuristics

• Blind search techniques used an arbitrary 
ordering (priority) of operations.

• Heuristic search techniques make use of 
domain specific information - a heuristic.

• What heurisitic(s) can we use to decide 
which 8-puzzle move is “best” (worth 
considering first).
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8 Puzzle Heuristics

• For now - we just want to establish some 
ordering to the possible moves (the values 
of our heuristic does not matter as long as it 
ranks the moves).

• Later - we will worry about the actual 
values returned by the heuristic function.
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A Simple 8-puzzle heuristic

• Number of tiles in the correct position.
– The higher the number the better.
– Easy to compute (fast and takes little memory).
– Probably the simplest possible heuristic.



8

Another approach

• Number of tiles in the incorrect position.
– This can also be considered a lower bound on 

the number of moves from a solution!
– The “best” move is the one with the lowest 

number returned by the heuristic.
– Is this heuristic more than a heuristic (is it 

always correct?).
• Given any 2 states, does it always order them 

properly with respect to the minimum number of 
moves away from a solution?
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Another 8-puzzle heuristic

• Count how far away (how many tile 
movements) each tile is from it’s correct 
position.

• Sum up this count over all the tiles.
• This is another estimate on the number of 

moves away from a solution.
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Techniques

• There are a variety of search techniques that 
rely on the estimate provided by a heuristic 
function.

• In all cases - the quality (accuracy) of the 
heuristic is important in real-life application 
of the technique!
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Generate-and-test

• Very simple strategy - just keep guessing.

do while goal not accomplished
generate a possible solution
test solution to see if it is a goal

• Heuristics may be used to determine the 
specific rules for solution generation.
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Example - Traveling Salesman 
Problem (TSP)

• Traveler needs to visit n cities.
• Know the distance between each pair of 

cities.
• Want to know the shortest route that visits 

all the cities once.
• n=80 will take millions of years to solve 

exhaustively! 
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TSP Example
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• TSP - generation of 
possible solutions is done 
in lexicographical order 
of cities:
1. A - B - C - D
2. A - B - D - C
3. A - C - B - D
4. A - C - D - B
...

Generate-and-test Example

A B C D

B C D

C D C BB D

D C B CD B
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Hill Climbing

• Variation on generate-and-test:
– generation of next state depends on feedback 

from the test procedure.
– Test now includes a heuristic function that 

provides a guess as to how good each possible 
state is.

• There are a number of ways to use the 
information returned by the test procedure.
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Simple Hill Climbing

• Use heuristic to move only to states that are 
better than the current state.

• Always move to better state when possible.

• The process ends when all operators have 
been applied and none of the resulting states 
are better than the current state.
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Simple Hill Climbing 
Function Optimization

y = f(x)

x

y
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Potential Problems with
Simple Hill Climbing

• Will terminate when at local optimum.

• The order of application of operators can 
make a big difference.

• Can’t see past a single move in the state 
space.
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Simple Hill Climbing Example

• TSP - define state space as the set of all 
possible tours.

• Operators exchange the position of adjacent 
cities within the current tour.

• Heuristic function is the length of a tour.



22

TSP Hill Climb State Space

CABD ABCD ACDB DCBA

Initial State

Swap 1,2 Swap 2,3
Swap 3,4 Swap 4,1

Swap 1,2

Swap 2,3

Swap 3,4

Swap 4,1

ABCD

BACD ACBD ABDC DBCA
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Steepest-Ascent Hill Climbing

• A variation on simple hill climbing.
• Instead of moving to the first state that is 

better, move to the best possible state that is 
one move away.

• The order of operators does not matter.

• Not just climbing to a better state, climbing 
up the steepest slope.
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Hill Climbing Termination

• Local Optimum: all neighboring states are 
worse or the same.

• Plateau - all neighboring states are the same 
as the current state.

• Ridge - local optimum that is caused by 
inability to apply 2 operators at once.
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Heuristic Dependence

• Hill climbing is based on the value assigned 
to states by the heuristic function.

• The heuristic used by a hill climbing 
algorithm does not need to be a static 
function of a single state.

• The heuristic can look ahead many states, or 
can use other means to arrive at a value for 
a state.
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Best-First Search

• Combines the advantages of Breadth-First 
and Depth-First searchs.
– DFS: follows a single path, don’t need to 

generate all competing paths.
– BFS: doesn’t get caught in loops or dead-end-

paths.

• Best First Search: explore the most 
promising path seen so far.
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Best-First Search (cont.)

While goal not reached:
1. Generate all potential successor states and 

add to a list of states.
2. Pick the best state in the list and go to it.

• Similar to steepest-ascent, but don’t throw 
away states that are not chosen. 
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Simulated Annealing

• Based on physical process of annealing a 
metal to get the best (minimal energy) state.

• Hill climbing with a twist:
– allow some moves downhill (to worse states)
– start out allowing large downhill moves (to 

much worse states) and gradually allow only 
small downhill moves.
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Simulated Annealing (cont.)

• The search initially jumps around a lot, 
exploring many regions of the state space.

• The jumping is gradually reduced and the 
search becomes a simple hill climb (search 
for local optimum).
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Simulated Annealing
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A* Algorithm (a sure test topic)

• The A* algorithm uses a modified 
evaluation function and a Best-First search.

• A* minimizes the total path cost.

• Under the right conditions A* provides the 
cheapest cost solution in the optimal time!
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A* evaluation function

• The evaluation function f is an estimate of 
the value of a node x given by:

f(x) = g(x) + h’(x)
• g(x) is the cost to get from the start state to 

state x.
• h’(x) is the estimated cost to get from state 

x to the goal state (the heuristic).
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Modified State Evaluation

• Value of each state is a combination of:
– the cost of the path to the state
– estimated cost of reaching a goal from the state.

• The idea is to use the path to a state to 
determine (partially) the rank of the state 
when compared to other states.

• This doesn’t make sense for DFS or BFS, 
but is useful for Best-First Search.
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Why we need modified 
evaluation 

• Consider a best-first search that generates the 
same state many times. 

• Which of the paths leading to the state is the 
best ?

• Recall that often the path to a goal is the 
answer (for example, the water jug problem)
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A* Algorithm

• The general idea is:
– Best First Search with the modified evaluation 

function.
– h’(x) is an estimate of the number of steps from 

state x to a goal state.
– loops are avoided - we don’t expand the same 

state twice.
– Information about the path to the goal state is 

retained.
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A* Algorithm

1. Create a priority queue of search nodes (initially the 
start state). Priority is determined by the function f )

2. While queue not empty and goal not found:
  get best state x from the queue.

      If x is not goal state:
          generate all possible children of x (and save 

 path information with each node).
          Apply f to each new node and add to queue.
          Remove duplicates from queue (using f to pick 

the best).
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Example - Maze

START GOAL
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Example - Maze

START GOAL
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A* Optimality and Completeness 

• If the heuristic function h’ is admissible the 
algorithm will find the optimal (shortest 
path) to the solution in the minimum 
number of steps possible (no optimal 
algorithm can do better given the same 
heuristic).

• An admissible heuristic is one that never 
overestimates the cost of getting from a 
state to the goal state (is optimistic).
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Admissible Heuristics

• Given an admissible heuristic h’, path 
length to each state given by g, and the 
actual path length from any state to the goal 
given by a function h.

• We can prove that the solution found by A* 
is the optimal solution.
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A* Optimality Proof

• Assume A* finds the (suboptimal) goal G2 
and the optimal goal is G.

• Since h’ is admissible: h’(G2)=h’(G)=0
• Since G2 is not optimal: f(G2) > f(G).
• At some point during the search, some node 

n on the optimal path to G is not expanded. 
We know:

f(n) f(G)
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G G2

n

root (start state)
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Proof (cont.)

• We also know node n is not expanded 
before G2, so: 

f(G2)   f(n)

• Combining these we know:

f(G2)    f(G)

• This is a contradiction ! (G2 can’t be 
suboptimal).
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Another view of A* Optimality
(with admissible heuristic)

• Call the optimal (minimum) length path C*
• A* will:

– expand all search nodes n such that f(n) < C*
– expand some nodes n such that f(n) = C*
– expand no nodes n such that f(n) > C*
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A* Example 
Towers of Hanoi

Big Disk

Little Disk Peg 1
Peg 2

Peg 3

• Move both disks on to Peg 3
• Never put the big disk on top the little disk


