Semantic Analysis:
Scope

CS 471
October 1, 2007

The Compiler So Far

s,

Lexical analysis

* Detects inputs with illegal tokens
- e.g.: main$ ();

Parsing

* Detects inputs with ill-formed parse trees
- e.g.: missing semicolons

Semantic analysis
¢ Last “front end” analysis phase
* Catches all remaining errors

s 471 - Fall 2007

Semantic Analysis

\k’_

Source code

= = lexical
I Lexical Analysis errors
tokens
syntax
I Syntactic Analysis I_'leors
AST
- - semantic
| Semantic Analysis errors

AST’ 1

I Intermediate Code Gen I

1 €S 471 - Fall 2007

-

~

Goals of a Semantic Analyzer 4
/
r

Compiler must do more than recognize whethe
a sentence belongs to the language...

e Find all possible remaining errors that would make
program invalid

- undefined variables, types
- type errors that can be caught statically

Terminology
Static checks - done by the compiler
Dynamic checks - done at run time

~

Last Time #

* We can build an interpreter and/or typechecker,
code generator directly into our YACC specification
* Why and how we generate Abstract Syntax Trees
- In theory and in YACC
- We now have a head start on PA4

A_SeqExp(2,
A_ExpList(A_AssignExp(4,
A_Simplevar(2,
S_Symbol(“a”)), A_IntExp(7,5)),
A_ExpList((A_OpExp(11,A_plusOp,
A_VarExp(A_Simplevar(10,
S_Symbol(“a”))),A_IntExp(12,1))), NULL)))

(a:=5; a+1)

* Now we can really move on to Semantic Analysis

s 471 - Fall 2007

€S 471 - Fall 2007 Hili

The Varargs Bug

\k’_

o A few things still slip by!
e Try compiling this code:

void main()

{
inti=21, j=42;
printf(“Hello World\n");
printf(“Hello World, N=%d\n");
printf(“Hello World\n", i, j);
printf(“Hello World, N=%d\n");
printf(“Hello World, N=%d\n");

s s 471 - Fall 2007 .lﬁ

~
Why Separate Semantic Analysis? %

Parsing cannot catch some errors
Why?

Some language constructs are not context-free

e Example: All used variables must have been
declared (scoping)

* Example: A method must be invoked with
arguments of proper type (typing)

6 €S 471 - Fall 2007

-

Typical Semantic Errors

eMultiple declarations: a variable should be
declared (in the same scope) at most once
eUndeclared variable: a variable should not be
used before being declared

*Type mismatch: type of the left-hand side of an
assignment should match the type of the right-hand
side

*Wrong arguments: methods should be called with
the right number and types of arguments

s 471 - Fall 2007

What Does Semantic Analysis Do?

Checks of many kinds:

. All identifiers are declared

. Types

. Inheritance relationships

. Classes defined only once

. Methods in a class defined only once
. Reserved identifiers are not misused
And others . ..

OUTPAhWNH

The requirements depend on the language

7 €S 471 - Fall 2007

£

-

A Sample Semantic Analyzer #

Works in two phases
* traverses the AST created by the parser

1. For each scope in the program

* process the declarations
- add new entries to the symbol table and
- report any variables that are multiply declared

* process the statements
- find uses of undeclared variables, and
- update the "ID" nodes of the AST to point to the

appropriate symbol-table entry.

2. Process all of the statements in the program
again
* use the symbol-table information to determine the type
of each expression, and to find type errors.

s 471 - Fall 2007

7

Scoping

In most languages, the same name can be
declared multiple times

e if its declarations occur in different scopes, and/or
¢ involve different kinds of names

Java: can use same name for

* aclass

¢ field of the class

* a method of the class

¢ a local variable of the method

class Test {

int Test;

void Test() { double Test; }
}

10 €S 471 - Fall 2007 Hili

Scoping: Overloading

Java and C++ (but not in Pascal or C):
* can use the same name for more than one method

¢ as long as the number and/or types of parameters
are unique

int add(int a, int b);
float add(float a, float b);

11 €S 471 - Fall 2007

7

~
Scoping: General Rules 4
/

The scope rules of a language:

* Determine which declaration of a named object
corresponds to each use of the object

* Scoping rules map uses of objects to their declarations

C++ and Java use static scoping:
* Mapping from uses to declarations at compile time
* C++ uses the "most closely nested" rule
- a use of variable x matches the declaration in the
most closely enclosing scope
- such that the declaration precedes the use

€S 471 - Fall 2007

-

o
POP QUIZ #

* Match each use to its declaration, or say why
it is a use of an undeclared variable.

int k=10, x=20;
void foo(int k) {
int a = x; int x = k; int b = x;
while (...) {
int x;
if (x == k) {
int k, y;
k =y =x;
}
if (x == k) { int x = y; }

s 471 - Fall 2007

13 €S 471 - Fall 2007

~
Scope levels 4
/

Each function has two or more scopes:

* One for the function body
- Sometimes parameters are separate scope!
- (Not true in C)

void f(int k) { // k is a parameter

intk =0; // also a local variable
while (k) {
intk=1; // another local variable, in a loop
>
>

¢ Additional scopes in the function
- for each for loop and
- each nested block (delimited by curly braces)

-

~
Example 4
/
For example, consider the following code:
inti =1;
void func() {
cout << i << endl; \
o If C++ used
int main () { dynamic scoping,
inti=2; this would print
func(); out 2, not 1
return O;
¥
€5 471 - Fall 2007 .“Iﬁ

Dynamic scoping #

Not all languages use static scoping
Lisp, APL, and Snobol use dynamic scoping

Dynamic scoping:

¢ A use of a variable that has no corresponding
declaration in the same function corresponds to the
declaration in the most-recently-called still
active function

s 471 - Fall 2007

N
Pop Quiz #2 /.4

* Assuming that dynamic scoping is used, what is
output by the following program?

void main() { int x = 0; £1(); g(); £2(); }

void £1() { int x = 10; g(); }

void £2() { int x = 20; £1(); g(); }

void g() { print(x); }

€S 471 - Fall 2007 Hili

~ ~
Variables/Identifiers 4 Symbol Tables /4
Need an environment that keeps track of types purpose:
of all identifiers in scope * keep track of names declared in the program
* names of

{ — - variables, classes, fields, methods

inti,n=..; In—::?rft symbol table entry:

for (i=0; i <M * associates a name with a set of attributes, e.g.:

boolean b= ... — - kind of name (variable, class, field, method, etc)
—————|i—>int - type (int, float, etc)
n —int - nesting level

by b — boolean - memory location (i.e., where will it be found at
ﬁ runtime)

e
Symbol Tables # Environments
e Symbol table (also called environments) Represents a set of mappings in the symbol table
e Can be represented as set of name — type pairs c0
(bindings) {a — string, b — int} function f(a:int, b:int, c:int) = 6l =00+ a—int
(print_int(a+c); Lookup))
Functions: let var j := a+: | inol | 02=ocl+j—int
i i var a := “hello”
Type Lookup(String id) in print(a); print_int(j)
Void Add(String id, Type binding) end;
print_int(b) ol
)
c0

s 471 - Fall 2007 s 471 - Fall 2007

h S h S
Imperative vs. Functional Environments 4 Implementation options 4
/
Functional style - keep all copies of 60 61 62 ... e Hash tables (pointing to linked lists)
Imperative style - modify o1 until it becomes 62 ¢ Binary search trees

- “destroys” o1

- can “undo” o2 to get back to ¢1 again

- single environment ¢ that becomes o1 62 ¢3

- latest bindings destroyed, old bindings restored

e We'll talk more about the implementation (in
theory and in your Tiger compiler) next week

e For now, we'll continue with a theoretical view of

. . . . the second task of semantic analysis: typing
NOTE: Functional/imperative environment management c d ly indi tly in the book!
can be used regardless of whether the language is - (Covered only indirectly in the book!)
“functional” “imperative” or “object-oriented”

How would you implement an imperative
environment?

22 €5 471 - Fall 2007 .“lll 23 €5 471 - Fall 2007 .“lll

Summary

e Semantic analysis
- last analysis of “front end”

- Checks for “context-sensitive errors”
e Scoping

- Static or dynamic

€S 471 - Fall 2007

\k’_

-

