
Word Sense Disambiguation

First Stage Report

Submitted in partial fulfilment of the requirements
of the degree of

Master of Technology
by

Esha Palta
(Roll No. 05329017)

Under the guidance of
Prof. Om Damani

Kanwal Rekhi School of Information Technology

a
Kanwal Rekhi School of Information Technology
Indian Institute of Technology, Powai, Mumbai

2006-2007



Abstract

Word sense disambiguation (WSD) is the task of selecting the appropriate
senses of a word in a given context. It is essence of communication in a
natural language. It is motivated by its use in many crucial applications such
as Information retrieval, Information extraction, Machine Translation, Part-
of-Speech tagging, etc. Various issues like scalability, ambiguity, diversity (of
languages) and evaluation pose challenges to WSD solutions. The aim of this
project is to develop a WSD technique which can handle all these issues with
better accuracy and performance. This report presents our preliminary work
towards solving the problem.

1 Introduction

“When I use a word,” Humpty Dumpty said,...
“it means just what I choose it to mean – neither more nor less.”

-Lewis Carroll (1875) from [1]

Words can have different senses. Some words have multiple meanings. This is
called Polysemy. For example: bank can be a financial institute or a river shore.
Sometimes two completely different word are spelled the same. For example:
Can, can be used as model verb: You can do it, or as container: She brought
a can of soda. This is called Homonymy. Distinction between polysemy and
homonymy is not always clear. Word sense disambiguation (WSD) is the problem
of determining in which sense a word having a number of distinct senses is used
in a given sentence. Take another example, consider the word “bass”, with two
distinct senses:

1. a type of fish

2. tones of low frequency

and the sentences “The bass part of the song is very moving” and “I went fishing
for some sea bass”. To a human it is obvious the first sentence is using the word
“bass” in sense 2 above, and in the second sentence it is being used in sense 1.
But although this seems obvious to a human, developing algorithms to replicate
this human ability is a difficult task.

One problem with word sense disambiguation is deciding what are the senses.
In cases like the word “bass” above, at least some senses are obviously different.
In other cases, however, the different senses can be closely related (one meaning
being a metaphorical extension of another), and in such cases division of words
into senses becomes much more difficult. Consulting different dictionaries will find
many different divisions of words into senses. One solution some researchers have
used is to choose a particular dictionary, and just use its set of senses. There are
two main approaches to WSD – deep approaches and shallow approaches.

1



Deep approaches presume access to a comprehensive body of world knowledge.
Knowledge such as “you can go fishing for a type of fish, but not for low frequency
sounds” and “songs have low frequency sounds as parts, but not types of fish” is
then used to determine in which sense the word is used. These approaches are not
very successful in practice, mainly because we don’t have access to such a body of
knowledge, except in very limited domains. But if such knowledge did exist, they
would be much better than the shallow approaches.

Shallow approaches don’t try to understand the text. They just consider the
surrounding words, using information like “if ‘bass’ has words ‘sea’ or ‘fishing’
nearby, it probably is in the fish sense; if ‘bass’ has the words ‘music’ or ‘song’
nearby, it is probably in the music sense.” These rules can be automatically
derived by the computer, using a training corpus of words tagged with their word
senses. This approach, while theoretically not as powerful as deep approaches,
gives superior results in practice, due to our limited world knowledge. It can,
though, be confused by sentences like “The dog barked at the tree.”

This report highlights main issues in word sense disambiguation, various ap-
proaches and solutions proposed till date.

2 Motivation

Word sense disambiguation a task of removing the ambiguity of word in context,
is important for many NLP applications such as:

• Information Retrieval: As proposed by [2] WSD helps in improving term
indexing in information retrieval. [2] has proved that word senses improve
retrieval performance if the senses are included as index terms. Thus, docu-
ments should not be ranked based on words alone, the documents should be
ranked based on word senses, or based on a combination of word senses and
words. For example: Using different indexes for keyword “Java” as “pro-
gramming language”, as “type of coffee”, and as “location” will improve
accuracy of an IR system. Apart from indexing, WSD also helps in query
expansion. Short queries are expanded using words that belong to same
syn-sets. Retrieval using expanded queries gives better results than original
queries. Thus, WSD is crucial for improving accuracy of IR as it eliminates
irrelevant hits.

• Machine Translation: WSD is important for Machine translations. It helps
in better understanding of source language and generation of sentences in
target language. It also affects lexical choice depending upon the usage
context.

• Speech Processing and Part of Speech tagging1: Speech recognition i.e, when
1POS is the process of marking up the words in a text as corresponding to a particular part

of speech, based on both its definition, as well as its context.

2



processing homophones words which are spelled differently but pronounced
the same way. For example: “base” and “bass” or “sealing” and “ceiling”.

• Text Processing: Text to Speech translation i.e, when words are pronounced
in more than one way depending on their meaning. For example: “lead” can
be “in front of” or “type of metal”.

3 Problem Definition

Word sense disambiguation (WSD) involves the association of a given word in a
text or discourse with a definition or meaning which is distinguishable from other
meanings potentially attributable to that word. The task therefore necessarily
involves two steps according to Ide and Veronis (1998). The first step is to deter-
mine all the different senses for every word relevant to the text or discourse under
consideration, i.e., to choose a sense inventory, e.g., from the lists of senses in
everyday dictionaries, from the synonyms in a thesaurus, or from the translations
in a translation dictionary.

The second step involves a means to assign the appropriate sense to each oc-
currence of a word in context. All disambiguation work involves matching the
context of an instance of the word to be disambiguated either with information
from external knowledge sources or with contexts of previously disambiguated in-
stances of the word. For both of these sources we need preprocessing or knowledge-
extraction procedures representing the information as context features. For some
disambiguation tasks, there are already well-known procedures such as morpho-
syntactic disambiguation and therefore WSD has largely focused on distinguishing
senses among homographs belonging to the same syntactic category.

Finally a third step is also involved: the computer needs to learn how to
associate a word sense with a word in context using either machine learning or
manual creation of rules or metrics. Main focus of this report is the use of machine
learning approaches for WSD. In these approaches, systems are trained to perform
the task of word sense disambiguation. In these approaches first a classifier is
learned from the training examples, which is later used to assign senses to unseen
examples.

4 Literature Survey

A survey of learning methodologies that have been used for WSD is presented in
Section 4.1. Following these the studies of works based on some of these method-
ologies is presented in Section 4.2.

4.1 Learning Methodologies

WSD methods can be classified into two types: Machine learning approaches and
Dictionary based approaches. WSD that use information gathered from training

3



on a corpus is based on machine learning approaches. WSD that make use of the
information provided by Machine readable dictionaries (MRD) is based on dictio-
nary based approaches. Section 4.1.1 discuss basic Machine learning approaches
and section 4.1.2 discusses basic Dictionary based approaches.

4.1.1 Machine Learning approaches

Machine learning approaches systems are trained to perform task of word sense
disambiguation. In this method a classifier is learned which is then used to assign
senses to unseen examples. In these approaches, the initial input consist of the
word to be disambiguated (target) word, along with text in which it is embedded
which is called as context. This initial input is processed using part-of-speech
tagging or any morphological processing. After this initial processing, fixed set of
linguistic features are extracted relevant to learning task. These features are of
two classes: collocation and co-occurrence features. Collocation features encode
information about words of specific positions that are located to left or right of
target word. Typical features include the word, the root form of word, and the
word’s part-of-speech. Consider an example:
An electric guitar and bass player stand off to one side, not really part of scene.
Here we need to disambiguate word bass, so its our target word. Collocation
feature vector considering two words to right and two words to left of target
words is:

guitar,NN12, and,CJC3, player, NN1, stand, V V B

Co-occurrence features consist of data about neighboring words. In this approach
words themselves serve as features. The value of feature is the number of times
the word occurs in the region surrounding the target word. The region is often a
fixed window with target word as center. For the earlier example, a co-occurrence
vector consisting of 12 most frequent words from a collection of bass sentences
drawn from WSJ corpus has following features: fishing, big, sound, player, fly,
rod, pound, double, runs, playing, guitar, band. Using these words as features with
a window size of 10, earlier example would be represented as following vector:

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0

Most of the approaches to sense disambiguation make use of both of these features.

• Supervised Techniques: Words can be labeled with their senses

– She pays 3% interest/INTEREST-MONEY on the loan.

– He showed a lot of interest/INTEREST-CURIOSITY in the painting.

Supervised approaches are therefore similar to tagging:
2noun
3conjunction

4



– given a corpus tagged with senses

– define features that indicate one sense over another

– learn a model that predicts the correct sense given the features

In supervised approaches, a sense disambiguation system is learned from a
representative set of labeled instances drawn from same distribution as test
set to be used. Input instances to these approaches are feature encoded
along with their appropriate labels. The output of the system is a classifier
system capable of assigning labels to new feature encoded inputs. Following
are some of supervised techniques:

– Naive Bayes Classifier: It is based on the premise that choosing the best
sense for input vector amounts to choosing the most probable sense.

ŝ = argmaxs∈SP (s|V ) (1)

S denotes set of senses appropriate for the target associated with this
vector, s denotes each of possible sense in S, and V stands for the vector
representation of the input context. Now applying bayes rule we get,

ŝ = argmaxs∈S
P (s|V )P (s)

P (V )
(2)

Considering the earlier “bass” example, individual statistics needed for
this example might include the probability of the word “player” coming
to the immediate right of a use of each of bass senses.

– Decision Lists: These classifiers are equivalent to simple case statements
in most programming languages. In decision list classifier a sequence of
tests is applied to each vector encoded input. If test succeeds then the
sense associated with that test is returned. If test fails then next test
in the sequence is applied. This continues until the end of list, where a
default test simply returns majority sense. Decision Lists have,

∗ two senses per word
∗ rules of the form: collocation −→ sense

∗ example: manufacturing plant −→ PLANT − FACTORY

∗ rules are ordered, most reliable rules first
∗ when classifying a test example, step through the list, make deci-

sion on first rule that applies

Learning: rules are ordered by,

log(
P (senseA|collocationi)
P (senseB|collocationi)

) (3)

5



• Semi-Supervised Techniques: The semi-supervised or minimally supervised
methods are gaining popularity because of their ability to get by with only a
small amount of annotated reference data while often outperforming totally
unsupervised methods on large data sets. There are a host of diverse meth-
ods and approaches, which learn important characteristics from auxiliary
data and cluster or annotate data using the acquired information.

• Unsupervised Techniques: Unsupervised approaches to sense disambiguation
eschew the use of sense tagged data of any kind during the training. In this
technique, feature vector representations of unlabeled instances are taken as
input and are then grouped into clusters according to a similarity metric.
These clusters are then labeled by hand with known word senses. Main
disadvantage is that senses are not well defined.

4.1.2 Dictionary Based Approaches

In this style of approach the dictionary provides both the means of constructing
a sense tagger and target senses to be used. Attempts to perform large scale
disambiguation has lead to the use of Machine Readable Dictionaries (MRD). In
this approach, all the senses of a word to be disambiguated are retrieved from the
dictionary. Each of these senses is then compared to the dictionary definitions
of all the remaining words in context. The sense with highest overlap with these
context words is chosen as the correct sense. For example: consider the phrase
pine cone for selecting the correct sense of word cone and following definitions for
pine and cone:
pine:

1. kinds of evergreen tree with needle-shaped leaves

2. waste away through sorrow or illness

cone:

1. solid body which narrows to a point

2. something of this shape whether solid or hollow

3. fruit of certain evergreen trees

In this example, Lesk’s method would select cone3 as the correct sense since two
of the words in its entry, evergreen and tree, overlap with words in the entry for
pine. A major drawback of Dictionary based approaches is the problem of scale.

4.2 Related Work

This section gives brief description of the various solutions proposed for word sense
disambiguation problem. Most of the algorithms makes use of the specific proper-
ties of word co-occurrence graphs. Unlike earlier dictionary-free methods based on

6



word vectors, it can isolate highly infrequent uses (as rare as 1% of all occurrences)
by detecting ”hubs” and high-density components in the co-occurrence graphs.

4.2.1 HyperLex

The HyperLex algorithm presented in [3] (Veronis, 2004) is entirely corpus-based.
It builds a co occurrence graph for all pairs of words concurring in the context
of the target word. Veronis shows that this kind of graph fulfills the properties
of small world graphs, and thus possesses highly connected components (hubs)
in the graph. These hubs eventually identify the main word uses (senses) of the
target word, and can be used to perform word sense disambiguation. These hubs
are used as a representation of the senses induced by the system. The basic steps
for implementation of HyperLex are: We first build the co occurrence graph,
then we select the hubs that are going to represent the senses using two different
strategies inspired by HyperLex. We are then ready to use the induced senses to
do word sense disambiguation. Consider as an example a french word barrage, on
which a query may return pages on dams, play-offs, barriers, roadblocks, police
cordons, barricades, etc. Main steps of algorithm are explained using this example
as follows:

• Building Co-occurrences graphs: For each word to be disambiguated, a text
corpus is collected, consisting of the paragraphs where the word occurs.
From this corpus, a co-occurrence graph for the target word is built. Ver-
texes in the graph correspond to words4 in the text (except the target word
itself). Two words appearing in the same paragraph are said to coccus,
and are connected with edges. Each edge is assigned a weight which mea-
sures the relative frequency of the two words co-occurring. [3] has pro-
posed wij to be the weight of the edge5 connecting nodes i and j, then
wij = 1−max[P (i|j), P (j|i)]; where P (i|j) = freqij

freqj
and P (j|i) = freqij

freqi
.

The weight of an edge measures how tightly connected the two words are.
Words which always occur together receive a weight of 0. Words rarely co
occurring receive weights close to 1. Consider the following context with
target word as barrage:
Outre la production d’électricité, le BARRAGE permettra de réguler le
cours du fleuve... (In addition to the production of electricity, the DAM
will help regulate the river flow ...)
Co-occurrence graph of target word in figure 1 barrage shows that nodes

corresponding to production and électricité are connected to each other as
they occur together in this context. The basic assumption underlying the
method proposed here is that the different uses of a target word form highly
interconnected “bundles” in a small world of co-occurrences, or in terms of
graph theory, high density components. Accordingly, barrage (in the sense

4only nouns.
5The co-occurrence graph is undirected, i.e. wij = wji

7



Figure 1: Graph of the cooccurrents of the French word barrage from [3]

of a hydraulic dam) must co-occur frequently with eau, ouvrage, riviére,
crue, irrigation, production, électricité (water, work, river, flood, irrigation,
production, electricity), etc., and these words themselves are likely to be
interconnected as shown in figure 1. Similarly, in the play-off use, barrage
must cooccur frequently with match, quipe, coupe, monde, football, victoire
(match, team, cup, world, soccer, victory), etc., which again are highly
interconnected.

• Selecting Hubs: Once the co-occurrence graph is built, Veronis proposes a
simple iterative algorithm to obtain its hubs. At each step, the algorithm
finds the vertex with highest relative frequency6 in the graph, and, if it
meets some criteria, it is selected as a hub. For example, for the most
frequent use of barrage (hydraulic dam), the root hub is the word eau (water).
After a vertex is selected to be a hub, its neighbors are no longer eligible
as hub candidates. At any time, if the next vertex candidate has a relative
frequency below a certain threshold, the algorithm stops. In barrage example
once again, the four components can be characterized as follows: EAU,

6In co-occurrence graphs, the relative frequency of a vertex and its degree are linearly related,
and it is therefore possible to avoid the costly computation of the degree.

8



ROUTIER, FRONTIERE, MATCH.

• Using Hubs for WSD: Once the hubs that represent the senses of the word are
selected (following any of the methods presented in the last section), each of
them is linked to the target word with edges weighting 0, and the Minimum
Spanning Tree (MST) of the whole graph is calculated and stored. Final
MST for our example is figure 2. The minimum spanning tree can be used

Figure 2: Minimum spanning tree and high-density components from [3]

to easily construct a disambiguation for tagging target word occurrences in
the corpus. Each tree node v is assigned a score vector s with as many
dimensions as there are components:

si =
1

1 + d(hi, v)
if v belongs to component i (4)

si = 0 otherwise. (5)

This formula (from [3]) assigns a score of 1 to root hubs, whose distance from
themselves is 0. The score gradually approaches 0 as the nodes move away
from their root hub. For example, pluie (rain) belongs to the component
EAU (water) and d(eau, pluie) = 0.82; its score vector is (0.55 0 0 0).
Likewise, saison (season) belongs to the component MATCH and d(match,
saison) = 1.54; its score vector is (0 0 0 0.39).

For a given occurrence of the target word, the score vectors of all the words
in the context are added, and the hub that receives the maximum score is
chosen.

4.2.2 PageRank

PageRank algorithm (Brin and Page, 1998) is similar in all aspects to HyperLex
algorithm explained in section 4.2.1 except in process of finding hubs in the co

9



occurrence graph. PageRank is an iterative algorithm that ranks all the vertexes
according to their relative importance within the graph following a random-walk
model. In this model, a link between vertices’s v1 and v2 means that v1 recom-
mends v2. The more vertices’s recommend v2, the higher the rank of v2 will be.
Furthermore, the rank of a vertex depends not only on how many vertices point to
it, but on the rank of these vertices as well. Although PageRank was initially de-
signed to work with directed graphs, and with no weights in links, the algorithm
can be easily extended to model undirected graphs whose edges are weighted.
Specifically, let G = (V,E) be an undirected graph with the set of vertices V and
set of edges E. For a given vertex vi, let In(vi) be the set of vertices pointing to
it5. The rank (from [4]) of vi is defined as:

P (vi) = (1− d) + d
∑

j∈ln(vi)

wji∑
k∈ln(vj) wjk

P (vj) (6)

where wij is the weight of the link between vertices vi and vj , and 0 ≤ d ≤ 1. d is
called the damping factor and models the probability of a web surfer standing at
a vertex to follow a link from this vertex (probability d) or to jump to a random
vertex in the graph (probability 1 - d). The factor is usually set at 0:85. The
algorithm initializes the ranks of the vertices with a fixed value and iterates until
convergence below a given threshold is achieved, or, more typically, until a fixed
number of iterations are executed. Note that the convergence of the algorithms
doesn’t depend on the initial value of the ranks. After running the algorithm, the
vertices of the graph are ordered in decreasing order according to its rank, and a
number of them are chosen as the main hubs of the word.

The performance of PageRank is statistically the same as that of HyperLex,
with the advantage of PageRank of using less parameters.

4.2.3 Random Walk Algorithm

Many natural language processing tasks consist of labeling sequences of words
with linguistic annotations, e.g. word sense disambiguation, part-of-speech tag-
ging, named entity recognition, and others. A graph-based sequence data labeling
algorithm is presented in [5] as solution for such natural language annotation tasks.
The algorithm simultaneously annotates all the words in a sequence by exploiting
relations identified among word labels, using random walks on graphs encoding
label dependencies.

The basic idea implemented by an iterative graph based ranking algorithm is
that of “voting” or “recommendation”. When one vertex links to another one, it is
basically casting a vote for that other vertex. The higher the number of votes that
are cast for a vertex, the higher the importance of the vertex. Given a graph G =
(V, E), let In(Va) be set of incoming vertices and Out(Va) be the set of vertices
the vertex Va points to. Page Rank (from [5]) is given by:

P (Va) = 1− d + d ∗
∑

Vb∈In(Va)

P (Vb)
|Out(Vb)|

(7)

10



where d is a parameter that is set between 0 and 1.
Algorithm for Sequence Data Labeling has following steps:

• Construction of label dependencies graph

• Label scoring using graph-based ranking algorithms

• Label assignment

Figure 3: Senses of words from WordNet (from [5])

Consider an example for explaining this algorithm. Consider the task of assigning
senses to the words in the text “The church bells no longer rung on Sundays.”
Assume at most three senses for each word as shown in Figure 3. All word senses
are added as vertices in the label graph, and weighted edges are drawn as depen-
dencies among word senses, derived using the definition-based similarity measure.
The resulting label graph is an undirected weighted graph, as shown in Figure 4.
After running the ranking algorithm, scores7 are identified for each word-sense in
the graph, indicated between brackets next to each node. Selecting for each word
the sense with the largest score results in the following sense assignment: The
church#2 bells#1 no longer rung#3 on Sundays#1, which is correct.

7Edge weights and vertex scores are computed in same way as done for HyperLex algorithm
explained in section 4.2.1.

11



Figure 4: The label graph for assigning senses to words in the sentence The church
bells no longer rung on Sundays.(from [5])

4.2.4 Non-ambiguous words

Many of the supervised techniques require annotated data as input. [6] has ad-
dressed this problem of obtaining annotated data required by some of the super-
vised algorithms. This method takes as input the raw textual corpus, generate
lexical knowledge from non-ambiguous words via classes of equivalence8 and en-
ables automatic generation of annotated corpora. An ambiguous word is one which
has more than one possible tag, for example “work” can be either a noun or verb,
while a non-ambiguous word carry only one tag.

The basic idea is that for an ambiguous word W, an attempt is made to
identify one or more non-ambiguous words W’ in the same class of equivalence,
so that W’ can be annotated in the automatic fashion. Next, lexical knowledge is
induced from the non-ambiguous words W’ to ambiguous words W using classes
of equivalence. The knowledge step is performed using learning mechanism, where
the automatically partially tagged corpus is used for training to annotate new raw
texts including instances of the ambiguous word W.

For an illustration, consider the process of assigning a part of speech label to
the word “work” which can have label NN (noun) or VB (verb). We identify in
the corpus all instances of words that were already annotated with one of these

8Equivalence class can be represented by set of words that have same functionality (e.g. noun
or same meaning)

12



two labels. These instances constitute training examples, annotated with one of
the classes NN or VB. A classifier is then trained on these examples using features
extracted from these instances, and used to automatically assign a label to the
current ambiguous word “work”.

This algorithm basically generate annotated data from raw text corpus and
uses the idea that a classifier learned from non-ambiguous words can be used to
annotate ambiguous words correctly.

4.2.5 Word-word dependency approach

The approach presented in [7] takes advantage of the sentence context. The words
are paired and an attempt is made to disambiguate one word within the context
of other word. This is done by searching on Internet with queries formed using
different senses of one word, while keeping another one fixed. The senses are
simply ranked by the order provided by the number of hits. Thus all the words
are processed and senses are ranked. The next step is to refine the ordering of
senses using a semantic density. This is measured by the number of common
words that are within a semantic distance of two or more words.

This work has addressed a problem of determining the exact sense of words
when present in combination. Except from determining the exact senses it also
provide the ranking of different senses which is useful for many applications such
as Information extraction.

5 Future Work

We’ve surveyed various supervised, unsupervised, dictionary based approaches
as a solution for WSD. We also come to know about many related problems
such as annotating the untagged raw corpus, exact sense of words when present
in combinations such as noun-noun, verb-noun, verb-verb and ranking different
senses. After survey or initial overview we would like to do the following:

• We would like to analyse and evaluate existing supervised, unsuper-
vised and dictionary based approaches to know about the strengths and
shortcomings of the existing systems.

• Improvement in earlier proposed solutions, if possible.

• We would also like to investigate deep approaches in detail and
integrate different kinds of information, i.e. integeration of the local
or syntactic features (used successfully by supervised systems) alongwith
heterogeneous information from knowledge bases.

• Explore other approaches.

13



The final aim of this project is to develop a solution for word sense disambigua-
tion problem that is fast, scalable, efficient in terms of performance and accuracy
and more useful for various applications such as Information retrieval, Machine
Translation, etc.

References

[1] Krister LINDEN. Word sense discovery and disambiguation.

[2] Robert Krovetz and W. Bruce Croft. Lexical ambiguity and information
retrieval. Information Systems, 10(2):115–141, 1992.

[3] Jean Veronis. Hyperlex: lexical cartography for information retrieval. Com-
puter Speech & Language, 18(3):223–252, 2004.

[4] Oier Lopez de Lacalle Eneko Agirre, David Martinez and Aitor Soroa. Two
graph-based algorithms for state -of-the-art wsd. NLP Group, University of
the Basque Country, Donostia, Basque Contry, 2006.

[5] Rada Mihalcea. Unsupervised large-vocabulary word sense disambiguation
with graph-based algorithms for sequence data labeling. In Proceedings
of Human Language Technology Conference and Conference on Empirical
Methods in Natural Language Processing, pages 411–418, Vancouver, British
Columbia, Canada, October 2005. Association for Computational Linguistics.

[6] M. Rada. The role of non-ambiguous words in natural language disambigua-
tion, 2003.

[7] R. Mihalcea and D. Moldovan. A method for word sense disambiguation of
unrestricted text, 1999.

[8] G. Ramakrishnan and B. Prithviraj. Soft word sense disambiguation, 2004.

[9] Amruta Purandare and Ted Pedersen. Word sense discrimination by cluster-
ing contexts in vector and similarity spaces.

[10] R. Philip and D. Yarowsky. Distinguishing systems and distinguishing senses:
new evaluation methods for word sense disambiguation, 1999.

[11] Prabhakar Pande Lakshmi Kashyap Manish Sinha, Mahesh Kumar and Push-
pak Bhattacharyya. Hindi word sense disambiguation. In International Sym-
posium on Machine Translation, Natural Language Processing and Transla-
tion Support Systems, Delhi, India, November 2004.

14


