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Abstract—The widely used FreeBSD UNIX-like oper-
ating system provides a mature, stable and customisable
platform, suitable for many tasks including telecommu-
nications research. FreeBSD is being used as part of
CAIA’s NewTCP project [1] to evaluate up and coming
TCP congestion control algorithms. Part of this work
has involved the customisation of the FreeBSD kernel,
in the form of a loadable kernel module named SIFTR
(Statistical Information For TCP Research). This report
aims to capture the knowledge learnt during this process.
Whilst FreeBSD 6.2-RELEASE was used as the basis for
this development, most of the technical information in
this report will be applicable to all FreeBSD 6.x releases,
and possibly to earlier (5.x and 4.x to a lesser extent)
or up and coming (7.x and beyond) releases. Topics
covered include FreeBSD kernel module programming, the
sysctl interface, packet filtering, data structures, character
devices, threading, file writing and debugging. The report
draws together our personal experiences and sources of
further information to create a useful reference for those
that are new to FreeBSD kernel programming.

Index Terms—FreeBSD, Kernel, Hacking, Program-
ming, Module, NewTCP

I. INTRODUCTION

This technical report discusses many tips, tricks and
lessons learnt during the development of a FreeBSD
kernel module named SIFTR (Statistical Information For
TCP Research) [2] for the NewTCP [1] project at CAIA.
Whilst FreeBSD 6.2-RELEASE was used as the basis for
this development, most of the technical information in
this report will be applicable to all FreeBSD 6.x releases,
and possibly to earlier (5.x and 4.x to a lesser extent) or
up and coming (7.x and beyond) releases.

Over the course of developing the SIFTR kernel
module, a great deal of useful and in some cases hard
to find information was learnt about programming in the
FreeBSD kernel environment. This report should act as a
primer to understanding the FreeBSD kernel architecture,
environment and mechanisms useful in the development
of FreeBSD kernel code. We also try to provide many

useful avenues for finding further information about the
topics discussed in the report. We will be making specific
reference to code snippets taken from the SIFTR code,
which is available for download from [2] and should be
referred to whilst reading this report.

FreeBSD is a well known and widely used open source
UNIX-like operating system. It is known as an extremely
stable and mature platform that has been developed and
fine tuned over the past 15 years.

Modifications of kernel level functions, such as the
instrumentation we required for SIFTR, are often done
by creating a “patch” containing the required changes
against the kernel’s source code. Whilst relatively easy to
apply, such patches are irritating to develop and deploy
because of the need to modify kernel sources directly
and recompile the kernel each time the patch changes.
Thankfully, there are nicer ways of changing kernel
behaviour.

FreeBSD’s dynamic kernel linker (KLD) facility [3]
allows code modules to be dynamically loaded into and
unloaded from a running FreeBSD kernel. This allows
system users with appropriate privileges to modify the
kernel’s runtime behaviour very quickly and easily by
issuing a single line command to load the new module.
Kernel modules also make life easier for the developer,
as only the kernel module itself needs to be recompiled
each time a change is made.

II. ANATOMY OF A KERNEL MODULE

Every kernel module starts with a call to
the DECLARE MODULE() macro (defined in
/usr/src/sys/sys/module.h), which defines, in order,
the name, code execution entry point, category and
load order for the module. Listing 1 shows the call to
DECLARE MODULE() from the SIFTR code. The
siftr mod argument is a moduledata t struct, which
contains the pointer to the code execution entry point
(in our case a function named “load handler”).
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Listing 1
DECLARE MODULE(siftr, siftr mod, SI SUB KLD,
SI ORDER ANY);

The code execution entry point is called each time the
module is loaded and unloaded. This allows the module
to perform any necessary initialisation on start up and
cleanup on shutdown as required.

Listing 2 is a sample Makefile that simplifies the
building of a KLD. The bsd.kmod.mk file is provided
as part of the FreeBSD distribution and a significant
amount of work is saved by including it. Its behaviour is
controlled by a range of environment variables, three of
which are shown. A simple usage example is available
at [4].

Listing 2
SRCS=vnode if.h subr kernio.c siftr.c
KMOD=siftr
CFLAGS=-g -O3
.include <bsd.kmod.mk>

Having created your Makefile and source code, you
can simply run “make” from the command line and then
“kldload ./siftr.ko” to load your module into the running
kernel. The “./” infront of your module name is important
as by default, kldload will look for kernel modules in
/boot/kernel and /boot/modules, and will not find your
kernel module in the local directory.

III. SYSCTL VARIABLES

The sysctl system interface [5] provides a means for
user-space processes to query and manipulate kernel-
space state information. It therefore provides an ideal
way to communicate with our kernel module to change
its configuration parameters.

Sysctl variables are arranged in a tree like hierarchy,
with variables hanging off branches of the tree e.g.
net.inet.ip.ttl, where net.inet.ip represents the branch of
the sysctl tree and ttl is the actual variable. Sysctl vari-
ables are always found as leaves on the tree, and a branch
cannot also be used as a variable e.g. in the previous
example, net.inet.ip could not refer to a variable, but
can have other branches and variables hanging off it.
This structure provides a very simple way to organise
and group system variables.

The SIFTR module exports 3 configuration paramaters
as read/write sysctl variables (you can make variables

read-only or write-only). These variables reside under
the net.inet.siftr sysctl branch.

Listing 3 is used to declare the net.inet.siftr sysctl
container struct.

Listing 3
SYSCTL DECL( net inet siftr);

Listing 4 declares a sysctl node “siftr” which will hang
off the net.inet branch of the sysctl tree. Node’s act as
branches within the sysctl tree, and cannot be used as
variables in their own right.

Listing 4
SYSCTL NODE( net inet, OID AUTO, siftr,
CTLFLAG RW, NULL, “siftr related settings”);

Listing 5 declares a read/write sysctl variable named
“enabled” of type unsigned int, which will hang off the
net.inet.siftr branch of the sysctl tree. This variable is
used to control whether the module’s functionality is
switched on or off when loaded. The initial value of the
variable is set to 0, and when the variable is changed,
the function siftr sysctl enabled handler() will be called
to handle the change. The variable’s data storage is
provided by the variable named “siftr enabled”.

Listing 5
SYSCTL OID( net inet siftr, OID AUTO, enabled,
CTLTYPE UINT|CTLFLAG RW, &siftr enabled, 0,
&siftr sysctl enabled handler, “IU”, “switch siftr mod-
ule operations on/off”);

Listing 6 declares a read/write sysctl variable named
“ppl” of type unsigned int, which will hang off the
net.inet.siftr branch of the sysctl tree. This variable
is used to control how many observed packets for a
particular TCP connection will trigger a log message
to be written. The initial value of the variable is set
to 1 i.e. write a log message for every packet per
connection. When the variable is changed, the function
siftr sysctl pkts per log handler() will be called to han-
dle the change. The variable’s data storage is provided
by the variable named “siftr pkts per log”.

Finally, listing 7 declares a read/write sysctl variable
named “logfile” of type string, which will hang off the
net.inet.siftr branch of the sysctl tree. This variable is
used to specify the path to the file that SIFTR log mes-
sages will be written to. When the variable is changed,
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Listing 6
SYSCTL OID( net inet siftr, OID AUTO, ppl, CTL-
TYPE UINT|CTLFLAG RW, &siftr pkts per log, 1,
&siftr sysctl pkts per log handler, “IU”, “number of
packets between generating a log message”);

the function siftr sysctl logfile name handler() will be
called to handle the change. The variable’s data storage
is provided by the variable named “siftr logfile”.

Listing 7
SYSCTL PROC( net inet siftr, OID AUTO, logfile,
CTLTYPE STRING|CTLFLAG RW, &siftr logfile,
sizeof(siftr logfile), &siftr sysctl logfile name handler,
“A”, “file to save siftr log messages to”);

The end result of including the above code snippets in
the module is that net.inet.siftr.enabled, net.inet.siftr.ppl
and net.inet.siftr.logfile will be made available as soon
as the module is loaded, and removed when the module
is unloaded.

There is an alternate technique for registering sysctl
variables that works dynamically at runtime, allowing
them to be added and removed as required while the
module is running. Although we didn’t require this
functionality for SIFTR, it may be useful in certain
cases. Refer to “man 9 sysctl ctx init” and “man 9
sysctl add oid” for information on how to dynamically
create and destroy sysctl nodes and variables.

More information regarding sysctl can be found by
reading the various sysctl man pages, namely “man 8
sysctl”, “man 9 sysctl” and “man 9 sysctl add oid”. The
sysctl C header file, located at /usr/src/sys/sys/sysctl.h,
is also a useful reference.

IV. PFIL HOOKS

The PFIL [6] [7] kernel programming interface (KPI)
provides a way of accessing packets entering and leaving
the network stack. It allows a developer to insert their
own functions (which is known as “hooking”) into the
network stack at appropriate points to intercept packets.
Depending on the return value of the function, the packet
can be allowed to continue through the stack, or denied
and dropped. PFIL is obviously very well suited to tasks
like firewalling and packet manipulation. It also provides
an ideal way for SIFTR to access TCP packets traversing
the network stack and collect statistics about them and
the connections they belong to.

The siftr hook pfil() function performs all the neces-
sary actions to install and remove PFIL hooks. Listing 8
gets the head of the linked list of PFIL hooks currently
installed for AF INET (IPv4) packets.

Listing 8
pfh inet = pfil head get(PFIL TYPE AF, AF INET);

Then, depending on whether we are hooking in or un-
hooking, a call to pfil add hook() or pfil remove hook()
respectively is made. These functions allow us to install
or remove our custom hook function siftr chkpkt() for
both inbound and outbound IPv4 packets. Listing 9
shows how to install the siftr chkpkt() hook function
for both inbound and outbound packets. The second
parameter to these functions can be used to pass an
arbitrary pointer to the hook function each time it is
invoked, but we did not require it and so left it as NULL.

Listing 9
pfil add hook(siftr chkpkt, NULL, PFIL IN |
PFIL OUT | PFIL WAITOK, pfh inet);

Hook functions suitable for use with PFIL must have
a prototype as defined in the PFIL man page [6]. At the
time of writing, the prototype is as shown in Listing 10.
The function must return an int (0 indicating the packet
is allowed to continue through the network stack, non-
zero indicating the packet is to be blocked). It must take
5 arguments of the same type and in the same order as
defined in Listing 10. The “void *arg” parameter will
be populated with the value passed in as the second
argument to the pfil add hook() function.

Listing 10
int (*func)(void *arg, struct mbuf **mp, struct ifnet *,
int dir, struct inpcb *);

There are alternative ways to hook into the network
stack e.g. by manipulating the protocol switch structure
that defines the packet handling functions for each layer
in the stack. Some examples are explored in the follow-
ing references [8] [9].

V. DATA STRUCTURES

Data structures are an integral part of any software,
and knowing which ones to use and how to use them
properly is a key part of writing high quality code. User-
space programming has the advantage of vast libraries
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of data structures that are freely available to pick and
choose from. Kernel-space programming on the other
hand mandates the use of kernel-space data structures
and if you don’t like the ones provided, you have to
write your own.

Lists, queues and hash tables are 3 of the most com-
monly used data structures, and fortunately, the kernel
provides simplified functions to create and use all of
them.

A. Lists and Queues

We will discuss lists and queues together, because a
queue is simply implemented as a list that you insert
elements at the back of and pull elements from the front
of.

The list/queue KPI [10] defines a set of C macros
used for simplifying the creation and manipulation of
list/queue data structures. Although the code listings
used here show the macros for working with tail queues,
the macros for working with other types of queues and
lists are very similar. SIFTR utilises a queue as a means
of passing packets between the thread that runs the PFIL
hook function and the packet manager thread.

Listing 11 defines a new struct named pkt node, which
acts as the fundamental unit of data stored in our queue.
Each pkt node in the queue will contain statistics and
information relevant to the packet being processed, and
a link to the next node in the list. The list is constructed
by linking pkt node structs together by pointing the
pkt node pointer of one pkt node at the next pkt node
in the list.

Listing 12 defines a struct named pkt queue which
will act as the head of our queue. It contains a
pointer to the first and last node in the list, which
can be accessed using the STAILQ FIRST() and
STAILQ LAST() macros respectively.

Listing 11
struct pkt node
{
struct timeval tval;
u char direction;
u int ip localaddr;
u int ip foreignaddr;
u short tcp localport;
u short tcp foreignport;
u long snd cwnd;
u long snd wnd;
u long snd ssthresh;
int conn state;
u int max seg size;
u char in fast recovery;
u char was in fast recovery;
int smoothed rtt;
u char sack enabled;
u char in slow start;
STAILQ ENTRY(pkt node) nodes;
};

Listing 12
STAILQ HEAD(pkthead, pkt node) pkt queue =
STAILQ HEAD INITIALIZER(pkt queue);

Listing 13 initialises the previously declared
pkt queue struct so that it is ready to be used as a
list. The STAILQ INIT() macro can also be used to
completely obliterate an existing list. Be aware though
that any dynamically allocated memory associated
with the nodes in the list will not be freed by calling
STAILQ INIT() on an existing list head. Therefore,
before obliterating an existing list, make sure you iterate
through the list and free all dynamically allocated
memory first.

Listing 13
STAILQ INIT(&pkt queue);

Listing 14 appends a newly created pkt node struct
named pkt node at the end of our queue.

Listing 14
STAILQ INSERT TAIL(&pkt queue, pkt node,
nodes);

Listing 15 grabs the node at the head of the list, storing
the pointer to the node in pkt node. The node is still left
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in the list. If the list is empty, pkt node will be assigned
NULL.

Listing 15
pkt node = STAILQ FIRST(&pkt queue)

Listing 16 removes the node at the head of the list.
Removing the node simply disentangles it from the list
structure, and does not free any dynamically allocated
memory associated with the node.

Listing 16
STAILQ REMOVE HEAD(&pkt queue, nodes);

B. Hash Tables

Hash tables are the other data structure we will discuss
in detail. Hash tables are used when very fast, constant
time lookups are required in time sensitive code. SIFTR
uses a hash table to store the TCP connection packet
counters. Hash tables are essentially an array, with the
index of elements stored in the array calculated by
“hashing” a key value. Ideally, 2 different keys should
never hash to the same index. In practice, there is a very
small probability of this occurring, and is referred to as
a collision.

There are many different flavours of hash table and
collision resolution. The FreeBSD hash table imple-
mentation [11] is known as a chaining hash, and is
essentially an array of lists. If hashing a key causes a
collision (an index containing a non-empty list), you
simply append the node to the list located at the hashed
index. Retrieving an element from the hash table requires
the key to be hashed, and then searching the list found
at the hash index to extract the correct element.

Listing 17 defines a new struct named
flow hash node, which acts as the fundamental
unit of data stored in our hash table. Each node in the
table will contain an unsigned short counter for the
number of flow packets observed, an unsigned char
buffer holding the flow’s hash key, and a link to the
next node in the list. Each list in the hash table array is
constructed in the same manner as previously described
for lists/queues, except that FreeBSD hash tables use
lists instead of tail queues. This means the LIST *
macros need to be used to operate on the lists.

Listing 17
struct flow hash node
{
u short counter;
u char key[12];
LIST ENTRY(flow hash node) nodes;
};

Listing 18 defines a pointer to a struct named
counter hash which is the global reference to our hash
table. This may look odd at first, as it appears to have
nothing to do with an array and is simply a pointer to
the head of a list. Remember though that arrays in C are
simply a pointer to the beginning of a chunk of memory
designated to hold some number of a particular type
of object. We can therefore initialise our counter hash
pointer to point to any number of lists i.e. an array.

Listing 18
LIST HEAD(counterhead, flow hash node)
*counter hash;

Listing 19 initialises the previously declared
counter hash pointer to be an array of size
SIFTR EXPECTED MAX TCP FLOWS.
Each position in the array will contain a
LIST HEAD(counterhead, flow hash node) struct,
which forms the head of the list at each array index.
The M TEMP parameter simply specifies a textual
name to be passed to the malloc() system call within
the hashinit() function for debugging purposes. Finally,
siftr hashmask is an unsigned long which gets populated
by hashinit() with a bitmask used to round hash indexes
produced by the hash function down to be within the
range of available array indexes.

Listing 19
counter hash = hashinit(
SIFTR EXPECTED MAX TCP FLOWS, M TEMP,
&siftr hashmask);

Listing 20 obtains a pointer to the list head struct
stored in the hash table at the index that “key”
hashed to. The hash32 buf() function takes the key,
key size and an initialisation vector as arguments, and
returns the hashed value for the key as an unsigned
int. Being an unsigned int, the value can be greater
than the size of our hash table, which was initialised
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to hold SIFTR EXPECTED MAX TCP FLOWS ele-
ments. We have to bitwise AND the hash value with
the siftr hashmask to ensure the hash value is within
the range of the array dimensions i.e. between 0 and
SIFTR EXPECTED MAX TCP FLOWS.

Some pointer arithmetic is then used on our hash table
array pointer “counter hash” to access the calculated
hash index and assign it to counter list. The counter list
variable can now be used as a normal list head struct
pointer, and can be operated on using the LIST *
macros.

Listing 20
counter list = (counter hash+(hash32 buf(key,
sizeof(key), 0) & siftr hashmask));

Listing 21 destroys the previously initialised
counter hash hash table. It frees all memory dynamically
allocated by hashinit(), but expects all lists within the
hash table to be empty BEFORE calling it, and will
cause a system panic if this is not the case i.e. you must
loop through the hash table and empty every list before
calling hashdestroy().

Listing 21
hashdestroy(counter hash, M TEMP, siftr hashmask);

VI. CHARACTER DEVICES

One technique for transferring data from the kernel to
user-space is to create a character device under the /dev
device filesystem. Although we didn’t end up using this
in SIFTR, it may be useful in other instances.

As the final version of SIFTR doesn’t create a char-
acter device, this section of the report refers to code
snippets taken from an early prototype of SIFTR named
siftrdev, which we have made available for download
from [2].

Listing 22 declares a cdevsw struct (defined in
/usr/src/sys/sys/conf.h) named tcpstats cdevsw that de-
fines the basic properties of our character device. Setting
the .d open .d close and .d read struct members to
the locally defined dev open dev close and dev read
functions respectively sets up the 3 basic operations sup-
ported by our device i.e. opening, closing and reading.
The dev open() dev close() and dev read() functions
will be called when the corresponding action is per-
formed on the device.

Listing 22
static struct cdevsw tcpstats cdevsw = {
.d version = D VERSION,
.d open = dev open,
.d close = dev close,
.d read = dev read,
.d name = ”tcpstats”,
.d flags = D TTY,
};

The device is actually created during module initiali-
sation using the make dev() function, as shown in list-
ing 23. The first argument is the tcpstats cdevsw struct
discussed previously. The second argument provides the
dev t device number identifier for the new device. The
third and fourth arguments define the owner of the
device, while the fifth defines the permissions. The final
argument gives the device a name.

Listing 23
sdev = make dev(&tcpstats cdevsw,
FLWACCT MINOR, UID ROOT, GID WHEEL,
0600, “tcpstats”);

Listings 24, 25 and 27 show the function prototypes
required for a basic character device. It’s possible to
define other functions to customise behaviour by adding
them to the cdevsw struct that is used to create the
device.

The dev open function will be called when a user
opens the device to begin reading, and can be used to
perform any initialisation in preparation for their read.
In our prototype it just ensures no more than one user
can open the device at a time.

Listing 24
int dev open(struct cdev *dev, int oflags, int devtype,
struct thread *td)

The dev read function should copy any necessary data
from the kernel into user-space using the uiomove()
function as shown in listing 26. uiomove takes three
arguments: the buffer to copy from, the number of bytes
to copy and a uio struct that defines the properties of the
copy. For more information on uiomove, refer to its man
page [12].
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Listing 25
int dev read(struct cdev *dev, struct uio *uio, int ioflag)

Listing 26
return uiomove(flwbuf, MIN(uio->uio resid,
strlen(flwbuf)), uio);

The dev close function is called when a user that
has the device open no longer needs it. It can perform
any necessary cleanup, although in our prototype it just
releases a lock, allowing other users to open the device.

Listing 27
int dev close(struct cdev *dev, int fflag, int devtype,
struct thread *td)

Finally, when the module is unloaded the device
needs to be unregistered and removed from the system.
Listing 28 destroys the tcpstats character device. It takes
a single argument, being the pointer to the cdev struct
returned by the make dev function during the module’s
initialisation.

Listing 28
destroy dev(sdev);

The easiest way to test the new device is to “cat” it
e.g. “cat /dev/tcpstats”. For more advanced access and
logging, the standard C library can be used to write an
application that reads data from the device. An example
of a user-space C logging app has also been provided in
the siftrdev code available from [2].

Another useful character device coding example can
be found here [4].

VII. THREADING AND ASSOCIATED ISSUES

Being a multi-threaded operating system, the FreeBSD
kernel makes extensive use of threads to parallelise tasks
where possible. Threaded programming is difficult at the
best of times, and doing it in the kernel is certainly not
for the feint-hearted.

A. Kernel Threads

Thread creation is performed using the kthread
KPI [13]. Listing 29 creates a new kernel thread that
will execute the function siftr log writer thread() as its
main. The second argument can be used to pass an
arbitrary pointer to the new thread, but is not used in

our case. The third argument can be used by the caller
to obtain a proc struct containing information about the
newly created thread. The RFNOWAIT flag, described in
the rfork [14] documentation, specifies that the thread’s
parent process should not wait for the thread to return to
it. The fifth parameter specifies the number of pages to
make the new thread’s stack, with 0 meaning use the
system default. Finally, the sixth parameter gives the
thread a name to identify it by in utilities such as “top
-S”.

The curthread thread struct pointer, defined in
/usr/src/sys/sys/pcpu.h, can be used to obtain the details
of the currently executing thread from within the thread
itself.

Listing 29
kthread create((void *)&siftr log writer thread, NULL,
NULL, RFNOWAIT, 0, “siftr log writer thread”);

Listing 30 terminates a kernel thread, returning 0 to
the system indicating that the thread terminated without
encountering any errors. Functions executing as the
entry point (main) of a kernel thread should always use
kthread exit() to terminate instead of returning to their
caller.

Listing 30
kthread exit(0);

B. Glorious Sleep

Typically when writing a function that will execute as
the entry point (main) of a kernel thread, an (almost)
endless loop will be created to perform the required
processing until some condition terminates the thread.
If the loop was allowed to run at full speed, it would
completely use all of the available processing resources
and bring the system to a halt. Generally, you only need
the thread to run every now and again, either based on
some event occurring e.g. a new packet is ready for
processing, or based on some required interval at which
a task must be periodically performed.

The sleep [15] KPI provides the functions required to
put a thread to sleep and to wake it up again.

Listing 31 puts the calling thread to sleep
until it is explicitly woken up or until
siftr pkt manager thread sleep ticks/HZ amount
of time has elapsed. The first parameter to tsleep() is an
arbitrary pointer, used as an identifier for the subsequent
call to wakeup() to know which thread to wake up.
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The second parameter specifies the priority with which
the sleeping thread should be checking for wake up
calls. The third parameter specifies a string detailing the
reason for the sleep, and is displayed by utilities like
“top -S”. The final parameter specifies the maximum
sleep time before the thread is woken up.

By setting the maximum sleep time to 0, the thread
will not wake up until a call to wakeup(&wait for pkt)
is made. Setting it to a value greater than 0, for example
50, would cause the thread to wake up after 50/HZ
seconds had elapsed if no call to wakeup() had been
made since the thread went to sleep.

The HZ parameter refers to the kernel’s tick rate,
which can be obtained from the “kern.clockrate” syctl
variable in user-space, or the “hz” variable in kernel
space as defined in /usr/src/sys/sys/kernel.h. For exam-
ple, if the tick rate was set to 1000HZ, then calling
tsleep() with a sleep time of 50 would cause the thread to
wakeup after 50/1000 i.e. 50ms had elapsed (assuming
a call to wakeup() was not made).

Listing 31
tsleep(&wait for pkt, PWAIT, “pktwait”,
siftr pkt manager thread sleep ticks);

Listing 32 informs any sleeping threads waiting on the
wait for pkt identifier to wakeup. Using a combination
of tsleep() with the timeout argument set to 0 and
wakeup() is an efficient means of implementing an event
based processing chain. The processing thread can be
put to sleep, and the data collection thread can wake
the processing thread up as soon as data is available
for processing. This technique is also preferable for
power saving reasons. Every time the thread wakes up,
regardless of whether there is work to do, the CPU is
prevented from entering into a low power state.

However, event based processing performed in this
way can be higher overhead than using a poll based
mechanism if the events occur within a short period
of one another. For SIFTR, it was found that a poll
based mechanism produced significantly lower load on
the system than an event based mechanism when high
packet rates are passing through the network stack.

Listing 32
wakeup(&wait for pkt);

C. Mutexes

One of the major difficulties with threaded program-
ming is shared resources. When two threads can perform
their functions completely independent of one another,
and with completely independent data stores, everything
will behave itself. However, problems arise if the two
threads need to share information between them. Con-
current access to the same portion of memory causes
systems to crash, and so access to shared memory has to
be controlled so that only one thread can have exclusive
access at any one time.

Mutexes [16] are the standard way of controlling
access to shared resources in a threaded environment.
The basic idea is that before running portions of code that
access shared resources, the code must first “acquire” or
“lock” the mutex. Once the mutex is acquired, the thread
that has acquired the mutex can be sure that it is the only
one that will be accessing the shared resource until it
releases the mutex. If another thread attempts to acquire
the mutex whilst the mutex is locked by another thread,
the acquiring thread will wait until the mutex is released
before it continues executing code.

The SIFTR code uses mutexes to control access to the
data structures that are used to pass messages between
the various threads in operation. When a thread is adding,
reading or removing data from a shared data structure,
a mutex is acquired prior to the operation, and released
afterwards.

Listing 33 declares a new mutex struct named
siftr pkt queue mtx. You must declare a mutex before
you initialise it, and must initialise it before you use it.

Listing 33
static struct mtx siftr pkt queue mtx;

Listing 34 initialises our previously declared
siftr pkt queue mtx mutex struct with name set to
siftr pkt queue mtx. Setting the third parameter to
NULL causes kernel debugging code to identify the
mutex by its name. MTX DEF mutexes are the most
typical type of mutex, and should be used in most
instances over MTX SPIN mutexes (unless you know
what you are doing and know you require a spin mutex).

Listing 34
mtx init(&siftr pkt queue mtx, “siftr pkt queue mtx”,
NULL, MTX DEF);

Listing 35 lists the three functions related to mutex
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locking. mtx lock() will not return until it has managed
to successfully lock the siftr pkt queue mtx mutex. This
means that if the mutex is already locked by another
thread for example, the call the mtx lock() will block
(cause the thread to sleep) until the mutex becomes
available. If your code is not time critical and can afford
to block waiting for the mutex, mtx lock() is the function
for you.

mtx trylock() will also attempt to acquire the
siftr pkt queue mtx, but will return immediately if the
mutex is already locked. It returns 0 to indicate failure
to acquire the mutex, and non-zero if it successfully
acquired the mutex. This provides an appropriate way
of acquiring a mutex only if it is available, in code
that cannot afford to block. In SIFTR for example, the
PFIL hook function we install to intercept packets cannot
block at all, because the PFIL code in the kernel holds a
non-sleepable mutex. We use mtx trylock() in the hook
function to ensure we never block waiting for the mutex
to become available.

mtx unlock() is called if a successful call to
mtx lock() or mtx trylock() was made previously.

Listing 35
mtx lock(&siftr pkt queue mtx);
mtx trylock(&siftr pkt queue mtx)
mtx unlock(&siftr pkt queue mtx);

Finally, listing 36 destroys the previously initialised
siftr pkt queue mtx mutex.

Listing 36
mtx destroy(&siftr pkt queue mtx);

VIII. FILE WRITING

File writing is something that is very commonly
performed and easily achieved in user-space applications.
However, manipulating files in kernel space turned out
to be far more complicated than we expected it to be.
Our initial attempt lead us down the path of attempting
to open a file descriptor from within the kernel. After
finally figuring out how this was done, we learnt that
file descriptors are a per kernel thread entity, and cannot
be used between different kernel threads i.e. opening the
file descriptor in the module’s init() function, writing to
the descriptor in the PFIL hook and closing the descriptor
in the module’s deinit() function does not work, as each
function is run by a different kernel thread.

We finally stumbled upon some code written by a
FreeBSD kernel hacker that provided the functionality
we required. The kernio [17] functions written by Pawel
Jakub Dawidek allow us to open, write and close files
from within the kernel, and work across different kernel
threads. The kio interface is almost identical to the
open(), write() and close() syscall functions available in
user-space, except that vnode structures are used instead
of file descriptors.

On a side note, Pawel informed us that the
kernio code will be available in the upcoming
FreeBSD 7.x series kernel source in the file
sys/compat/opensolaris/kern/opensolaris kobj.c.

Listing 37 opens the file located at the path stored in
the siftr logfile string for writing, creating it with mode
0644 if it does not exist already. If the file does exist,
all writes to the file will be appended. A vnode that
references the requested file is returned and stored as
siftr vnode for later use.

Listing 37
siftr vnode = kio open(siftr logfile, O CREAT |
O WRONLY | O APPEND, 0644);

Listing 38 writes index bytes from the
log writer msg buf pointer into the file referenced by
siftr vnode.

Listing 38
kio write(siftr vnode, log writer msg buf, index);

Finally, listing 39 closes the vnode previously opened
with kio open().

Listing 39
kio close(siftr vnode);

An example kernel module named filewriter that
shows off multi-threaded log file writing can be found
here [2].

IX. DEBUGGING

Things will inevitably go wrong, and you are often
going to have to go to some lengths to figure out why
before you can fix them for anything but the most trivial
of bugs.

Debugging applications in user-space has gradually
become easier with the availability of powerful graphical
debugging tools e.g. DDD [18]. Kernel-space debugging
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is regarded as something of a black art, and we hope
to provide some basic pointers to get you started on the
road to kernel debugging enlightenment.

For logic bugs, there are kernel versions of the user-
space family of printf() style functions. Strings passed
into printf() will be written to syslog, while uprintf()
will write to the user’s current terminal. Liberal (and
temporary) use of these functions can be useful to track
the value of key variables. However they will provide
little help tracking down more serious errors.

Bugs that would cause a segfault in a user-space
application (such as attempting to de-reference a NULL
pointer) will often cause a kernel panic when they occur
in kernel code. When a panic occurs an error message
will briefly appear on tty0 before the machine resets
itself.

Although difficult, tracking down the cause of the
panic can be aided by configuring the kernel to dump
a copy of the kernel state to disk before the reboot. This
allows detailed analysis of the crash data to be performed
after the reboot has occured.

Figure 40 contains the two lines that should be added
to /etc/rc.conf to enable kernel dumping. The dumpdev
option indicates the drive the state should be saved to
before the reboot, which should generally be set to the
partition that is used as a swap drive.

Listing 40
dumpdev=/dev/ad0s2b
dumpdir=/var/crash

As FreeBSD boots after the panic, it will save any
dump data it detects on the dump device to the directory
specified by the dumpdir option.

A short text log file will be saved along with the dump
file with some basic information on the panic. Detailed
information (such as the stacktrace leading up to the
panic) can be obtained by opening the dump file with
kgdb, as shown in listing 41. Note that the KERNCONF
directory should be replaced with the name of the kernel
that was running at the time, as indicated by “uname -i”.

Listing 41
kgdb /usr/obj/usr/src/sys/KERNCONF/kernel.debug
/var/crash/vmcore.1

The Debugging Kernel Problems tutorial by Greg
Lehey [19] provides a comprehensive guide to debugging
issues in the FreeBSD kernel.

X. WHERE CAN I GET HELP?

The FreeBSD hackers mailing list was an invaluable
source of information for us. FreeBSD runs a large
number of mailing lists [20], many being related to a
specific aspect of FreeBSD which may be more suited
to your problem. Anyone can subscribe and there are
many knowledgeable people reading the lists.

When asking kernel related questions, keep them
specific and provide plenty of supporting information
and code. The people with the experience to answer your
questions are more likely to help out if they can see
you’ve tried a few things and aren’t expecting to have
the solution created for you.
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