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Abstract

We amgue that the apparentinconsisteng betweenpeo-
ple’s intuitions aboutchanceand the normative predic-
tions of probability theory as expressedin judgments
aboutrandomnessand coincidencescanbe resohed by

focussingon the evidenceobsenationsprovide aboutthe
processethatgeneratedhemratherthantheirlik elihood.
This argumentis supportedy probabilisticmodelingof

sequencand numberproduction,togetherwith two ex-

perimentghatexaminejudgmentsaboutcoincidences.

Peopleare notoriouslyinaccuratein their judgments
aboutrandomnesssuchaswhethera sequencef heads
and tails like HHTHTTTH is more randomthan the se-
guenceHHHHHHHH. Intuitively, the former sequence
seemsmore random, but both sequencesare equally
likely to be producedby a randomgeneratingprocess
thatchoosesli or T with equalprobability, suchasa fair
coin. Thiskind of questionis oftenusedto illustratehow
our intuitions aboutchancedeviate from the normatie
standardsetby probabilitytheory Our intuitions about
coincidentalevents, which seemto be definedby their
improbability, have facedsimilar criticism from statisti-
cians(eg. Diaconis& Mosteller 1989).

The apparentinconsisteng betweenour intuitions
aboutchanceandtheformal structureof probabilitythe-
ory hasprovokedattentionfrom philosophergndmathe-
maticiansaswell aspsychologistsAs aresult,anumber
of definitionsof randomnessxist in boththe mathemat-
ical (eg. Chaitin, 2001;Kac, 1983;Li & Vitanyi, 1997)
andthe psychologicaleg. Falk, 1981;Lopes,1982)lit-
erature. Thesedefinitionsvary in how well they satisfy
our intuitions, and canbe hardto reconcilewith proba-
bility theory In this paper we will arguethatthereis
a naturalrelationshipbetweenpeoples intuitions about
chanceandthenormative standardsf probabilitytheory
Traditionalcriticism of peoples intuitions aboutchance
hasfocusedon the fact that peopleare poor estimators
of thelikelihoodof eventsbeingproducedby a particu-
lar generatingprocess.The modelswe presenturn this
guestionaround,askinghow muchmorelikely a setof
eventsmakesa particulargeneratingprocessThis ques-
tion may be far more usefulin naturalinferencesitua-
tions,whereit is oftenmoreimportantto reasordiagnos-
tically thanpredictiely, attemptingto infer the structure
of ourworld from the datawe obsere.

Randomness

Reichenbach1934/1949)is creditedwith having first

suggestedhat mathematicahovices will be unableto

producerandomsequencesnsteadshaving atendeng

to overestimatehefrequeng with which outcomeslter

nate. Subsequentesearcthasprovided supportfor this

claim (reviewedin Bar-Hillel & Wagenaarl991;Tune,
1964;Wagenaarl972),with bothsequencesf numbers
(eg. Budescu1987;Rabinavitz, Dunlap,Grant,& Cam-
pione,1989)andtwo-dimensionablackandwhite grids
(Falk, 1981). In producingbinary sequencegeopleal-

ternatewith a probability of approximately0.6, rather
thanthe0.5thatis seenin sequenceproducedy aran-
domgeneratingprocess.This preferencdor alternation
resultsin subjectvely randomsequencesontainingless
runs— suchasaninterruptedseriesof headsin a setof

coin flips — than might be expectedby chance(Lopes,
1982).

Theoriesof subjective randomness

A numberof theorieshave beenproposedo accountor
the accurag of Reichenbacls conjecture. Thesetheo-
rieshave includedpostulatinghatpeopledevelopa con-
ceptof randomnesshat differs from the true definition
of the term (eg. Budescu,1987; Falk, 1981; Skinner
1942), and that limited short-termmemorymight con-
tribute to peoples response¢Baddely, 1966; Karee,
1992;1995;Wiegersma1982). Most recently Falk and
Konold(1997)suggestethattheconcepbf randomness
can be connectedo the subjectve compleity of a se-
quence,characterizedy the difficulty of specifyinga
rule by which a sequencecan be generated. This idea
is relatedto a notion of compleity basedon descrip-
tionlength(Li & Vitanyi, 1997),andhasbeenconsidered
elsavherein psychology(Chater 1996).

Theaccountof randomnesghathashadthe strongest
influenceuponthewider literatureof cognitive psychol-
ogy is Kahnemarand Tversly’s (1972) suggestiorthat
peoplemay be attemptingto producesequencethatare
“representatie” of the output of a randomgenerating
process.For sequenceghis meansthat the numberof
elementof eachtype appearingn the sequencehould
correspondo theoverall probabilitywith whichtheseel-
ementsoccur Randomsequenceshouldalsomaintain
local representafienesssuchthatsubsequencetemon-
stratethe appropriatgrobabilities.



Formalizing representativeness

A major challengefor a theory of randomnesdased
upon representatenessis to expressexactly what it
meansfor an outcometo be representatie of a random
generatingprocess.Oneinterpretationof this statement
is that the outcomeprovides evidencefor having been
producedby arandomgeneratingrocessThisinterpre-
tation hasthe advantageof submittingeasilyto formal-
izationin thelanguageof probabilitytheory

If we are consideringtwo candidateprocessedy
which an outcomecould be generated- one random,
andonecontainingsystematigegularities— thetotal ev-
idencein favor of the randomgeneratingprocescanbe
assessely thelogarithmof theratio of the probabilities
of theseprocesses

P(randonix)

P(regularx) ’ @
where P(randonix) and P(regulaix) are the probabili-
tiesof arandomandaregulargeneratingprocessespec-
tively, giventhe outcomex.

This quantitycanbe computedusingthe oddsform of
Bayes'rule

P(randonix)
P(regularx)

in whichthetermontheleft-handsideof theequationis
calledthe posteriorodds,andthefirst andseconderms
ontheright-handsidearecalledthelik elihoodratio and
prior odds,respectiely. Of thelattertwo terms,the spe-
cific outcomexinfluencesonly thelik elihoodratio. Thus
the contrikution of x to the evidencein favour of aran-
dom generatingprocesscan be measuredy the loga-
rithm of thelikelihoodratio,

_ P(x[random) P(randon) 5
~ P(x|regular) P(regular)’ @

P(x|random)

3)

This methodof assessinghe weight of evidencefor a
particularhypothesigprovidedby anobsenationis often
usedin Bayesianstatistics,andthe log likelihood-ratio
given above is called a Bayesfactor (Kass& Raftery

1995). The Bayesfactorfor a setof independenbbser

vationswill bethesumof theirindividual Bayesfactors,
andthe expressionhasa clearinformationtheoreticin-

terpretation(Good,1979). The above expressionis also
closelyconnectedo the notion of minimum description
length,connectinghis approacto randomnessiith the
ideasof Falk andKonold (1997)andChater(1996).

Defining regularity

Evaluatingthe evidencethat a particularoutcomepro-
vides for a random generatingprocessrequirescom-
puting two probabilities: P(x|randor) andP(x|regular).
The first of theseprobabilitiesfollows from the defi-
nition of the random generatingprocess. For exam-
ple, P(HHTHTTTH|randon) is (3)8, asit would be for

ary sequenceof the samelength. However, comput-
ing P(x|regular) requiresspecifying the probability of
the obsened outcomeresultingfrom a generatingpro-
cessthatinvolvesregularities. While this probability is
hardto define,it is in generaleasyto computeP(x|h;),
whereh; might be somehypothesisedegularity. In the
caseof sequence®f headsand tails, for instance,h;
might correspondo a particularprobability of observ-
ing heads,P(H) = p. In this caseP(HHTHTTTH|h;) is
p*(1— p)*. Usingthecalculusof probability, we canob-
tain P(x|regular) by summingover a setof hypothesized
regularities,#,

P(x|regulan = Z_{P(x|h0P(hﬂregular) (4)
hie

where P(h;|regular) is a prior probability on h;. In all

applicationgiscussedh this paper we make the simpli-

fying assumptiorthat P(hj|regular) is uniform over all

hi € #H. However, we stressthat this assumptioris not
necessaryor the modelswe create,and the prior may
in factdiffer from uniformity in somerealisticjudgment
contets.

Random sequences

Forthecaseof binarysequencesuchasthosethatmight
be producedy flipping a coin, possibleregularitiescan
bedividedinto two classesOneclassassumeshatflips
areindependeniandtheregularitiesit containsareasser
tionsaboutthevalueof P(H). Thesecondtlassincludes
regularitiesthat make referenceto propertiesof subse-
guencescontainingmore than a single element,such
asalternation,runs, and symmetries.Sincethis second
classis lesswell defined.,it is instructive to examinethe
accountthat canbe obtainedjust by usingthefirst class
of regularities.

Taking # to be all valuesof p = P(H) € [0,1], we
have P(H, T |random = (3)"*T andP(H, T|regular) =
Jo-pH (21— p)Tdp, whereH, T arethesuficient statistics
of a particularsequenceontainingH headsandT tails.
Completingtheintegral, it follows from (3) that

randontH, T) =log("};T) + f(H +T), (5)

wheref(H +T) is —log2"*T —log(H + T + 1), afixed
functionof thetotalnumberof flips in thesequenceThis

resulthasa numberof appealingoroperties.Firstly, it is

maximizedwhenH = T, which is consistenivith Kah-

nemanand Tversky’s (1972) original descriptionof the
representatienessof randomsequencesSecondly the
ratio involved essentiallyneasureshe size of the setof

sequencesharingthe samenumberof headsandtails.

A sequencéik e HHHHHHHH is uniguein its composition,
whereasiHTHTTTH hasa compositionmuchmorecom-
monly obtainedby flipping a coin eighttimes.

The Zenith radio data

Having defineda framework for analyzingthe subjectie
randomnessf sequencesye have theopportunityto de-
velop a specificmodel. Oneclassicdatasetconcerning



the productionof randomsequencess the Zenith radio
data. Thesedatawereobtainedasa resultof anattempt
by the Zenith corporatiorto testthe hypothesighatpeo-
ple are sensitve to psychictransmissions.On several
occasionsn 1937, a radio programtook place during
which a group of psychicswould transmita randomly
generatedbinarysequenceo thereceptve mindsof their
listeners.Thelistenerswereasledto write down the se-
guencethat they recevved, one elementat a time. The
binary choicesincludedheadsandtails, light anddark,
blackandwhite, andseveral symbolscommonlyusedin

testsof psychicabilities, andall sequencesontaineda
total of five symbols. Listenersthenmailedin their re-
sponseswhich wereanalyzed.Theseresponsesemon-
stratedstrongpreferencedor particularsequenceshut
therewasno systemati@ffect of theactualsequencéhat
wastransmitted Goodfellav, 1938). Thedataarethusa
rich sourceof informationaboutrespons@referencefor

randomsequenceslherelative frequencie®f thediffer-

entsequencegollapsedover choiceof first symbol,are
shavn in theupperpanelof Figurel.

Zenith Radio Data
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Figure1l: The upperpanelshaws the original Zenith radio
data, representinghe response®f 20,099 participants,from
Goodfellav (1938). The lower panelshows the predictionsof
therandomnesmodel. Sequencearecollapsedvertheinitial
choice representedyy 0.

Modeling random sequenceproduction

Oneof the mostimportantcharacteristic®f the Zenith
radio datais that peoples responsesvere producedse-
guentially In producingeachelementof the sequence,
peoplehad knowledge of the previous elements. Kah-
nemanand Tversky (1972)suggestedhatin producing
suchsequencegeoplepay attentionto the local repre-
sentatvenesof their choices- therepresentatienesof
eachsubsequence.

To capturethis idea,we defineLy to be thelocal rep-
resentatienessof choosingH asthe kth response- the

extentto which H resultsin amorerandomoutcomethan
T, assessedver thesubsequencesartingonestepback,
two stepsback,andsoforth,

k-1
Ly = Z randon{H; +1,T;) —randon{H;, T; + 1), (6)

wheretheH;, T; arethetalliesof headsandtails counting
backi stepsin the sequence We canthen convert this
quantity into a probability using a logistic function, to
give a probability distribution for the kth responseRy:

1
PR=H) = 1+ ek
1
= - 7
el ()
_ M (T + ) @

M T+ DM+ S (H -+ 10

The A parametescalesthe effect thatLi hason there-
sulting probability The probability of the sequencasa
whole is thenthe productof the probabilitiesof the Ry,
andthe resultdefinesa probability distribution over the
setof binary sequencesf lengthk. This distribution is
shawn in thelower panelof Figurel for k = 5.

This simple model provides a remarkablygood ac-
countof the responsereferencepeopledemonstrated
in the Zenith radio experiment. Thereis one cleardis-
crepang: the modelpredictsthat the sequence1010,
equialentto HTHTH or THTHT, shouldoccurfar moreof-
tenthanin the data. We canexplain peoples avoidance
of this sequencéy thefactthatalternationitself formsa
regularity, which could easilybe introducedinto the hy-
pothesisspace. More striking is the accountthe model
givesof the differentfrequencieof sequencewith less
apparentregularities, suchas 00001 and 00010. Ex-
cluding the discrepantdata point, the model gives a
parametefree ordinal correlationrs = 0.97, and with
A = 0.6 hasa linear correlationr = 0.95. Interestingly
the model predicts alternation,for sequenceshat are
otherwiseequally representate, with a probability of
;A . With thevalueof A usedin fitting theZenithradio

data,the resultingpredictedprobability of alternationis
0.6, consistentvith previousfindings(eg. Falk, 1981).

Pick a number

Researclon subjectve randomnessasfocusedalmost
exclusively on sequencedyut sequencearenottheonly
stimuli thatexcite our intuitionsaboutchance In partic-
ular, randomnumberdoom largerin life thanin thelit-
erature althoughtherehave beena few studieshathave
investicated responsereferencegor numbersbetween
0 and 9. Kubovy and Psotka(1976) reportedthe fre-
queny with which peopleproducenumbersbetween0
and 9 whenasled to pick a number aggrgatedacross
several studies. Theseresultsare shovn in the upper
panelof Figure2. Peopleshaoved a clearpreferenceor



the number7, which Kubovy andPsotka(1976,p. 294)
explainedwith referenceto the propertiesof the num-
bersinvolved — for example, 6 is even, and a multiple
of 3, but it is harderto find propertiesof 7. This ex-
planationis suggestie of the kinds of regular generat-
ing processeshat could be involved in producingnum-
bers. Shepardand Arabie (1979) found that similarity
judgmentsaboutnumberscould be capturedby propek
tieslike thosedescribedby Kubovy and Psotka(1976),
suchasbeingeven numbers powersof 2, or occupying
specialpositionssuchasendpoints.

Takingthearithmeticpropertiesof numbergo consti-
tute hypotheticalregularities, we can specify the quan-
tities necessaryo computerandon{x). Our h; are sets
of numbersthat sharesomeproperty suchasthe setof
even numbersbetween0 and9. For ary h;, we define
P(x/hy) = ﬁ for x € hj and0 otherwisewhere|h;| is the
size of the set. This meansthat obserationsgenerated
from a regularity areuniformly sampledrom thatregu-
larity. SettingP(h;|regular) to give equalweightto all h;,
we cancomputeP(x|regular).

This model can be applied to the data of Kubovy
and Psotka (1976). Since there are ten possiblere-
sponsesye have P(x|randomn) = 1—10. Taking hypothet-
ical regularitiesof multiplesof 2 ({0,2,4,6,8}), multi-
plesof 3 ({3,6,9}), multiplesof 5 ({0,5}), powersof 2
({2,4,8}), andendpoints({0}, {1}, {9}), we obtainthe
valuesof randonfx) shavn in the lower panelof Figure
2. Randomnesalsoneedsto be includedin # sothat
randon{x) is definedwhenx is notin ary otherregu-
larity. Its inclusionis analogougo the incorporationof
a noiseprocessandis in factformally identicalin this
case.The orderof the modelpredictionsis a parameter
free result, and gives the ordinal correlationrs = 0.99.
Applying asingleparametepower transformatiorto the
predictionsy = (y— min(y))%%, givesr = 0.95.

Coincidences

The surprising frequeng with which unlikely events
tend to occur has dravn attentionfrom a number of
psychologistsand statisticians. Diaconisand Mosteller
(1989),in their analysisof suchphenomenagefinea co-
incidenceas’...a surprisingconcurrencef events,per
ceived asmeaningfullyrelated,with no apparentausal
connection’(p. 853). They go on to suggestthat the
“surprising” frequeng of theseeventsis dueto theflex-
ibility thatwe allow in identifying meaningfulrelation-
ships. Togetherwith thefactthateverydaylife provides
a vastnumberof opportunitiesfor coincidencedo oc-
cur, our willingnessto toleratenearmissesandto con-
sidereachof a numberof possibleconcurrencesnean-
ingful contritutesto explainingthefrequeng with which
coincidencesoccut Diaconisand Mosteller suggested
that the surprisethat peopleshav at the solutionto the
Birthday Problem- the factthat only 23 peoplearere-
quiredto give a 50% chanceof two peoplesharingthe
samebirthday— suggestghat similar ngglect of combi-
natorialgrowth contritutesto the underestimatiorwf the
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Figure 2: The upperpanelshovs numberproductiondata
from Kubovy andPsotka(1976),takenfrom 1,770participants
choosinghumberdetweerD and9. Thelower panelshavsthe
transformecdpredictionsof therandomnesmodel.

likelihood of coincidences.Psychologicaresearchad-
dressingcoincidencesseemsconsistentwith this view,
suggestinghat selectve memory(Hintzman,Asher &
Stern,1978)andpreferentialveightingof first-handex-
periencegFalk & MacGraor, 1983)mightfacilitatethe
underestimationof the probability of events.

Not just lik elihood. ..

The above analyseseflect the samebias that madeit
difficult to constructa probabilisticaccountof random-
nessithenotionthatpeoplesjudgmentgeflectthelik eli-
hoodof particularoutcomes.Subjectvely, coincidences
are eventsthat seemunlikely, and are hencesurprising
when they occur However, just as with randomse-
quencessetsof eventsthatareequallylikely to be pro-
ducedby a randomgeneratingorocesdiffer in the de-
greeto which they seemto be coincidences. Follow-
ing Diaconisand Mostellers suggestiorthat the Birth-
day Problemprovidesa domainfor the investigation of
coincidencesgonsiderthekinds of coincidencesormed
by setsof birthdays.If we meetfour peopleandfind out
thattheir birthdaysare October4, October4, October4,
and October4, this is a much bigger coincidencethan
if the samepeoplehave birthdaysMay 14, July 8, Au-
gust21,andDecembef5, despitehefactthatthesesets
of birthdaysareequallylikely to be obseredby chance.
The way thatthesesetsof birthdaysdiffer is thatone of
them containsan obvious regularity: all four birthdays
occuronthesameday

Modeling coincidences

Justas sequencedliffer in the amountof evidencethey
provide for having beenproducedby a randomgener
ating processsetsof birthdaysdiffer in how muchevi-



dencethey provide for having beenproducedby a pro-

cesshatcontainsregularities.We arguethattheamount
of evidencethatan eventprovidesfor a regulargenerat-
ing processwill correspondo how big a coincidencat

seemsandthatthis canbe computedn the sameway as
for randomness,

P(x|regular)

coincidencef) = log W.

(9)

To apply this model we have to define the regulari-
ties H. For birthdays,theseregularities should corre-
spondto relationshipghat can exist amongdates. Our
modelof coincidencesiseda setof regularitiesthatre-
flectedproximity in date(from 1 to 30 days),belonging
to the samecalendarmonth, and having the samecal-
endardate (eg. Januaryl7, March 17, Septembet?,
Decemberl?7). We also assumedhat eachyear con-
sistsof 12 monthsof 30 dayseach. Thus, for a setof
n birthdays,X = {x1,..., %}, we have P(X|randomn) =
(3—%0)”. In defining P(X|regular), we want to respect
the fact that regularitiesamongbirthdaysare still strik-
ing even when they are embeddedn noise — for in-
stance,February2, March 26, April 3, Junel2, June
12,Junel2, Junel2, November22 still providesstrong
evidencefor a regularity in the generatingorocess. To
allow the model to toleratenoisy regularities, we can
introducea noiseterm a into P(X|h;). The probabil-
ity calculuslets us integrate out unwantedparameters,
so the introduction of a noise processneednot result
in addinga numericalfree parametetto the model. In
particular P(X|h) = [o-P(X|a,h)P(a|h)da. Assum-
ing that the dateswe obsere areindependentwe have
P(X|a,hi) = Mxex P(Xjla, hi), and, taking a uniform

prior on a, P(X|h;) is simply fol My ex P(Xj[a, hi)da,
where

P(xjla,h;) :{

1
360+ (1= 0) g
a

360

Xthi
KA

This correspondso datesbeingsampleduniformly from
the entire yearwith probability a, and uniformly from
the regularity with probability (1 —a). The resulting
P(X|h;i) canthenbesubstitutednto (4), andtakingauni-
form distribution for P(h;|regular) givesP(X|regular).

(10)

How big a coincidence?

The model outlined above makes strong predictions
aboutthe degree to which different setsof birthdays
shouldbe judgedto constitutecoincidences.We con-
ductedasimpleexperimento examinethesepredictions.
The participantswere 93 undegraduategrom Stanford
University, participatingfor partial coursecredit. Four
teenpotentialrelationshipsbetweenbirthdayswere ex-
amined,using two setsof dates. Eachparticipantsav
onesetof dates,jn arandomorder The datesreflected:
2,4, 6, and8 apparentlyunrelatedbirthdays,2 birthdays
on the sameday, 2 birthdaysin 2 daysacrossa month
boundary 4 birthdayson the sameday, 4 birthdaysin

one week acrossa month boundary 4 birthdaysin the
samecalendamonth,4 birthdayswith thesamecalendar
datesand?2 sameday, 4 sameday, and4 samedatewith

an additional4 unrelatedbirthdays,aswell as4 same
week with an additional 2 unrelatedbirthdays. These
datesweredeliveredin a questionnaireEachparticipant
wasinstructedto ratehow big a coincidencesachsetof

dateswas, using a scalein which 1 denotedno coinci-

denceand10denoteda very big coincidence.

The resultsof the experimentand the model predic-
tionsareshawvn in thetop andmiddle panelsof Figure3
respectiely . Again,theordinalpredictionsof themodel
areparametefree,with rs = 0.94. Applying thetransfor
mationy = (y — min(y))%48, givesr = 0.95. The main
discrepanciedbetweenthe model and the data are the
four birthdaysthatoccurin thesamecalendamonth,and
the orderingof the randomdates. The former could be
addressebly increasinghe prior probabilitygivento the
regularity of beingin the samecalendamonth— clearly
thiswasgivengreatemweightby the participantshanby
the model. Explainingthe increasein the judgedcoin-
cidencewith larger setsof unrelateddatesis morediffi-
cult, but may be a resultof opportunisticcoincidences:
asmore datesare provided, participantshave more op-
portunitiesto identify comple regularitiesor find dates
of personakelevance. This processcanbe incorporated
into themodel,atthe costof greatercomplexity.

How big a coincidence?
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Figure3: Thetop panelshavs the judgedextent of coinci-
dencefor eachsetof dates. Themiddlepanelis the predictions
of the coincidencesnodel, subjectedto a transformationde-
scribedin thetext. The bottompanelshavs randomnesgudg-
mentsfor the samestimuli.

Relating randomnessand coincidences

Judgment®f randomnesand coincidencedoth reflect
the evidencethata setof obsenationsprovidesfor hav-

ing beenproducedby a particular generatingprocess.
Eventsthat provide good evidencefor a randomgener

ating processare viewed as random, while eventsthat
provide evidencefor a generatingorocessncorporating
someregularity seemlike coincidences.By examining



(3) and (9), we seethat thesephenomenare formally
identified as inverselyrelated: coincidencesare events
thatdeviate from our notionsof randomness.

We conducteda further experimentto seeif this re-
lationshipwasborneoutin peoples judgments.Partici-
pantswerel20undegraduatefrom StanfordUniversity,
participatingfor partialcoursecredit. Thedateswerethe
sameasthoseusedpreviously, anddeliveredin similar
format. Eachparticipantwasinstructedto ratehow ran-
dom eachsetof dateswas,usinga scalein which 1 de-
notednotatall randomand10 denotedvery random.

The resultsof this experimentare shovn in the bot-
tom panelof Figure3. The correlationbetweerntheran-
domnessudgmentsand the coincidencejudgmentsis
r = —0.94, consistenwith the hypothesisthat random-
nessandcoincidencesreinverselylinearly related.The
main discrepang betweenthe two datasetsis that the
addition of unrelateddatesseemso affect randomness
judgmentsmorethancoincidencgudgments.

Conclusion

The modelswe have discussedn this paper provide

a connectionbetweenpeoples intuitions aboutchance,
expressedn judgmentsaboutrandomnessnd coinci-

dences,and the formal structureof probability theory

This connectiondependsupon changingthe way we

modelquestionsaboutprobability Ratherthanconsider

ing thelikelihood of eventsbeingproducedby a partic-
ular generatingprocesspur modelsaddresshe question
of how muchmorelikely a setof eventsmakes a par

ticular generatingorocessThisis a structuralinference,
drawing conclusiongbouttheworld from obsereddata.
Framedin this way, peoples judgmentsarerevealedto

accuratelyapproximatethe statisticalevidencethat ob-

senationsprovide for having beenproducecdby a partic-
ular generatingprocess.The apparentnaccurag of our

intuitions may thusbe a resultof consideringhormatve

theorieshaseduponthe likelihood of eventsratherthan
theevidencethey provide for a structuralinference.
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