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Abstract

We argue that the apparentinconsistency betweenpeo-
ple’s intuitions aboutchanceand the normative predic-
tions of probability theory, as expressedin judgments
aboutrandomnessandcoincidences,canbe resolved by
focussingon theevidenceobservationsprovide aboutthe
processesthatgeneratedthemratherthantheir likelihood.
This argumentis supportedby probabilisticmodelingof
sequenceandnumberproduction,togetherwith two ex-
perimentsthatexaminejudgmentsaboutcoincidences.

Peopleare notoriouslyinaccuratein their judgments
aboutrandomness,suchaswhethera sequenceof heads
and tails like ��������������� is more randomthan the se-
quence ��������������� . Intuitively, the former sequence
seemsmore random, but both sequencesare equally
likely to be producedby a randomgeneratingprocess
thatchooses� or � with equalprobability, suchasa fair
coin. Thiskind of questionis oftenusedto illustratehow
our intuitions aboutchancedeviate from the normative
standardssetby probability theory. Our intuitionsabout
coincidentalevents,which seemto be definedby their
improbability, have facedsimilar criticism from statisti-
cians(eg. Diaconis& Mosteller, 1989).

The apparentinconsistency betweenour intuitions
aboutchanceandtheformalstructureof probabilitythe-
ory hasprovokedattentionfrom philosophersandmathe-
maticians,aswell aspsychologists.As aresult,anumber
of definitionsof randomnessexist in boththemathemat-
ical (eg. Chaitin,2001;Kac, 1983;Li & Vitanyi, 1997)
andthepsychological(eg. Falk, 1981;Lopes,1982)lit-
erature.Thesedefinitionsvary in how well they satisfy
our intuitions,andcanbe hardto reconcilewith proba-
bility theory. In this paper, we will argue that thereis
a naturalrelationshipbetweenpeople’s intuitions about
chanceandthenormativestandardsof probabilitytheory.
Traditionalcriticism of people’s intuitionsaboutchance
hasfocusedon the fact that peoplearepoor estimators
of the likelihoodof eventsbeingproducedby a particu-
lar generatingprocess.Themodelswe presentturn this
questionaround,askinghow muchmorelikely a setof
eventsmakesa particulargeneratingprocess.This ques-
tion may be far more useful in naturalinferencesitua-
tions,whereit is oftenmoreimportantto reasondiagnos-
tically thanpredictively, attemptingto infer thestructure
of ourworld from thedataweobserve.

Randomness
Reichenbach(1934/1949)is creditedwith having first
suggestedthat mathematicalnovices will be unableto
producerandomsequences,insteadshowing a tendency
to overestimatethefrequency with whichoutcomesalter-
nate. Subsequentresearchhasprovidedsupportfor this
claim (reviewed in Bar-Hillel & Wagenaar, 1991;Tune,
1964;Wagenaar, 1972),with bothsequencesof numbers
(eg.Budescu,1987;Rabinowitz, Dunlap,Grant,& Cam-
pione,1989)andtwo-dimensionalblackandwhite grids
(Falk, 1981). In producingbinarysequences,peopleal-
ternatewith a probability of approximately0.6, rather
thanthe0.5 thatis seenin sequencesproducedby a ran-
domgeneratingprocess.This preferencefor alternation
resultsin subjectively randomsequencescontainingless
runs– suchasan interruptedseriesof headsin a setof
coin flips – than might be expectedby chance(Lopes,
1982).

Theoriesof subjective randomness
A numberof theorieshave beenproposedto accountfor
the accuracy of Reichenbach’s conjecture.Thesetheo-
rieshave includedpostulatingthatpeopledevelopacon-
ceptof randomnessthat differs from the true definition
of the term (eg. Budescu,1987; Falk, 1981; Skinner,
1942), and that limited short-termmemorymight con-
tribute to people’s responses(Baddeley, 1966; Kareev,
1992;1995;Wiegersma,1982).Most recently, Falk and
Konold(1997)suggestedthattheconceptof randomness
canbe connectedto the subjective complexity of a se-
quence,characterizedby the difficulty of specifyinga
rule by which a sequencecan be generated.This idea
is relatedto a notion of complexity basedon descrip-
tion length(Li & Vitanyi, 1997),andhasbeenconsidered
elsewherein psychology(Chater, 1996).

Theaccountof randomnessthathashadthestrongest
influenceuponthewider literatureof cognitive psychol-
ogy is KahnemanandTversky’s (1972)suggestionthat
peoplemaybeattemptingto producesequencesthatare
“representative” of the output of a randomgenerating
process.For sequences,this meansthat the numberof
elementsof eachtypeappearingin thesequenceshould
correspondto theoverallprobabilitywith whichtheseel-
ementsoccur. Randomsequencesshouldalsomaintain
local representativeness,suchthatsubsequencesdemon-
stratetheappropriateprobabilities.



Formalizing representativeness
A major challengefor a theory of randomnessbased
upon representativenessis to expressexactly what it
meansfor an outcometo be representative of a random
generatingprocess.Oneinterpretationof this statement
is that the outcomeprovides evidencefor having been
producedby arandomgeneratingprocess.This interpre-
tation hasthe advantageof submittingeasilyto formal-
izationin thelanguageof probabilitytheory.

If we are consideringtwo candidateprocessesby
which an outcomecould be generated– one random,
andonecontainingsystematicregularities– thetotal ev-
idencein favor of therandomgeneratingprocesscanbe
assessedby thelogarithmof theratioof theprobabilities
of theseprocesses

log
P � random� x �
P � regular� x �
	 (1)

whereP � random� x � and P � regular� x � are the probabili-
tiesof arandomandaregulargeneratingprocessrespec-
tively, giventheoutcomex.

Thisquantitycanbecomputedusingtheoddsform of
Bayes’rule

P � random� x �
P � regular� x ���

P � x� random�
P� x � regular�

P � random�
P � regular�
	 (2)

in which thetermon theleft-handsideof theequationis
calledtheposteriorodds,andthefirst andsecondterms
on theright-handsidearecalledthelikelihoodratio and
prior odds,respectively. Of thelattertwo terms,thespe-
cific outcomex influencesonly thelikelihoodratio. Thus
the contribution of x to the evidencein favour of a ran-
dom generatingprocesscan be measuredby the loga-
rithm of thelikelihoodratio,

random(x) � log
P � x � random�
P � x� regular��
 (3)

This methodof assessingthe weight of evidencefor a
particularhypothesisprovidedby anobservationis often
usedin Bayesianstatistics,and the log likelihood-ratio
given above is called a Bayesfactor (Kass& Raftery,
1995). TheBayesfactorfor a setof independentobser-
vationswill bethesumof their individualBayesfactors,
andthe expressionhasa clear informationtheoreticin-
terpretation(Good,1979). Theabove expressionis also
closelyconnectedto thenotionof minimumdescription
length,connectingthis approachto randomnesswith the
ideasof Falk andKonold(1997)andChater(1996).

Defining regularity
Evaluatingthe evidencethat a particularoutcomepro-
vides for a randomgeneratingprocessrequirescom-
putingtwo probabilities:P � x� random� andP � x� regular� .
The first of theseprobabilities follows from the defi-
nition of the randomgeneratingprocess. For exam-
ple, P ������������������� random� is � 1

2 � 8, as it would be for

any sequenceof the samelength. However, comput-
ing P� x� regular� requiresspecifying the probability of
the observed outcomeresultingfrom a generatingpro-
cessthat involvesregularities. While this probability is
hardto define,it is in generaleasyto computeP � x� hi � ,
wherehi might be somehypothesisedregularity. In the
caseof sequencesof headsand tails, for instance,hi
might correspondto a particularprobability of observ-
ing heads,P ����� � p. In this caseP������������������� hi � is
p4 � 1 � p � 4. Usingthecalculusof probability, wecanob-
tain P � x� regular� by summingover a setof hypothesized
regularities,� ,

P � x� regular� � ∑
hi � H

P � x� hi � P � hi � regular� (4)

whereP � hi � regular� is a prior probability on hi . In all
applicationsdiscussedin thispaper, wemakethesimpli-
fying assumptionthat P � hi � regular� is uniform over all
hi � � . However, we stressthat this assumptionis not
necessaryfor the modelswe create,and the prior may
in factdiffer from uniformity in somerealisticjudgment
contexts.

Randomsequences
For thecaseof binarysequences,suchasthosethatmight
beproducedby flipping a coin, possibleregularitiescan
bedividedinto two classes.Oneclassassumesthatflips
areindependent,andtheregularitiesit containsareasser-
tionsaboutthevalueof P ����� . Thesecondclassincludes
regularitiesthat make referenceto propertiesof subse-
quencescontainingmore than a single element,such
asalternation,runs,andsymmetries.Sincethis second
classis lesswell defined,it is instructive to examinethe
accountthatcanbeobtainedjust by usingthefirst class
of regularities.

Taking � to be all valuesof p � P ����� ��� 0	 1� , we
have P� H 	 T � random� � � 1

2 � H � T andP � H 	 T � regular� �1
0 pH � 1 � p � Tdp, whereH 	 T arethesufficient statistics

of a particularsequencecontainingH headsandT tails.
Completingtheintegral, it follows from (3) that

random� H 	 T � � log � H � T
H ��� f � H � T � 	 (5)

where f � H � T � is � log2H � T � log � H � T � 1 � , afixed
functionof thetotalnumberof flips in thesequence.This
resulthasa numberof appealingproperties.Firstly, it is
maximizedwhenH � T, which is consistentwith Kah-
nemanandTversky’s (1972)original descriptionof the
representativenessof randomsequences.Secondly, the
ratio involvedessentiallymeasuresthesizeof thesetof
sequencessharingthe samenumberof headsandtails.
A sequencelike ��������������� is uniquein its composition,
whereas��������������� hasa compositionmuchmorecom-
monlyobtainedby flipping acoineighttimes.

The Zenith radio data
Having definedaframework for analyzingthesubjective
randomnessof sequences,wehavetheopportunityto de-
velopa specificmodel. Oneclassicdatasetconcerning



the productionof randomsequencesis the Zenith radio
data.Thesedatawereobtainedasa resultof anattempt
by theZenithcorporationto testthehypothesisthatpeo-
ple are sensitive to psychic transmissions.On several
occasionsin 1937, a radio programtook placeduring
which a group of psychicswould transmita randomly
generatedbinarysequenceto thereceptivemindsof their
listeners.Thelistenerswereaskedto write down these-
quencethat they received, one elementat a time. The
binary choicesincludedheadsandtails, light anddark,
blackandwhite,andseveralsymbolscommonlyusedin
testsof psychicabilities, andall sequencescontaineda
total of five symbols. Listenersthenmailedin their re-
sponses,which wereanalyzed.Theseresponsesdemon-
stratedstrongpreferencesfor particularsequences,but
therewasnosystematiceffectof theactualsequencethat
wastransmitted(Goodfellow, 1938).Thedataarethusa
rich sourceof informationaboutresponsepreferencesfor
randomsequences.Therelativefrequenciesof thediffer-
entsequences,collapsedover choiceof first symbol,are
shown in theupperpanelof Figure1.
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Figure1: The upperpanelshows the original Zenith radio
data,representingthe responsesof 20,099participants,from
Goodfellow (1938). The lower panelshows thepredictionsof
therandomnessmodel.Sequencesarecollapsedovertheinitial
choice,representedby 0.

Modeling random sequenceproduction
Oneof the most importantcharacteristicsof the Zenith
radio datais that people’s responseswereproducedse-
quentially. In producingeachelementof the sequence,
peoplehad knowledgeof the previous elements.Kah-
nemanandTversky (1972)suggestedthat in producing
suchsequences,peoplepay attentionto the local repre-
sentativenessof their choices– therepresentativenessof
eachsubsequence.

To capturethis idea,we defineLk to be the local rep-
resentativenessof choosing� asthe kth response– the

extentto which � resultsin amorerandomoutcomethan
� , assessedover thesubsequencesstartingonestepback,
two stepsback,andsoforth,

Lk �
k � 1

∑
i � 1

random� Hi � 1	 Ti ��� random� Hi 	 Ti � 1 � 	 (6)

wheretheHi 	 Ti arethetalliesof headsandtailscounting
back i stepsin the sequence.We canthenconvert this
quantity into a probability using a logistic function, to
give aprobabilitydistribution for thekth response,Rk:

P � Rk � ��� �
1

1 � e� λLk

�
1

1 � ∏k � 1
i � 1

Ti � 1
Hi � 1

� λ (7)

�
∏k � 1

i � 1 � Ti � 1 � λ
∏k � 1

i � 1 � Ti � 1 � λ � ∏k � 1
i � 1 � Hi � 1 � λ 
 (8)

The λ parameterscalesthe effect that Lk hason the re-
sultingprobability. Theprobabilityof thesequenceasa
whole is thenthe productof the probabilitiesof the Rk,
andthe resultdefinesa probability distribution over the
setof binary sequencesof lengthk. This distribution is
shown in thelowerpanelof Figure1 for k � 5.

This simple model provides a remarkablygood ac-
countof the responsepreferencespeopledemonstrated
in the Zenith radio experiment. Thereis onecleardis-
crepancy: the modelpredictsthat the sequence�� !�� "� ,
equivalentto ��������� or ��������� , shouldoccurfarmoreof-
ten thanin thedata.We canexplain people’s avoidance
of thissequenceby thefactthatalternationitself formsa
regularity, which couldeasilybeintroducedinto thehy-
pothesisspace.More striking is the accountthe model
givesof thedifferentfrequenciesof sequenceswith less
apparentregularities, suchas �������
 and ������ !� . Ex-
cluding the discrepantdata point, the model gives a
parameter-free ordinal correlationrs � 0
 97, and with
λ � 0
 6 hasa linear correlationr � 0
 95. Interestingly,
the model predictsalternation,for sequencesthat are
otherwiseequally representative, with a probability of

1
1� 2# λ . With thevalueof λ usedin fitting theZenithradio
data,theresultingpredictedprobabilityof alternationis
0.6,consistentwith previousfindings(eg. Falk, 1981).

Pick a number
Researchon subjective randomnesshasfocusedalmost
exclusively onsequences,but sequencesarenot theonly
stimuli thatexcite our intuitionsaboutchance.In partic-
ular, randomnumbersloom larger in life thanin the lit-
erature,althoughtherehave beena few studiesthathave
investigatedresponsepreferencesfor numbersbetween
0 and 9. Kubovy and Psotka(1976) reportedthe fre-
quency with which peopleproducenumbersbetween0
and9 whenasked to pick a number, aggregatedacross
several studies. Theseresultsare shown in the upper
panelof Figure2. Peopleshoweda clearpreferencefor



thenumber7, which Kubovy andPsotka(1976,p. 294)
explainedwith referenceto the propertiesof the num-
bersinvolved – for example,6 is even, and a multiple
of 3, but it is harderto find propertiesof 7. This ex-
planationis suggestive of the kinds of regular generat-
ing processesthat couldbe involved in producingnum-
bers. Shepardand Arabie (1979) found that similarity
judgmentsaboutnumberscould be capturedby proper-
ties like thosedescribedby Kubovy andPsotka(1976),
suchasbeingevennumbers,powersof 2, or occupying
specialpositionssuchasendpoints.

Takingthearithmeticpropertiesof numbersto consti-
tute hypotheticalregularities,we canspecify the quan-
tities necessaryto computerandom� x � . Our hi aresets
of numbersthat sharesomeproperty, suchasthe setof
even numbersbetween0 and9. For any hi , we define
P � x� hi � �

1$
hi
$ for x � hi and0 otherwise,where � hi � is the

sizeof the set. This meansthat observationsgenerated
from a regularity areuniformly sampledfrom that regu-
larity. SettingP � hi � regular� to giveequalweightto all hi ,
wecancomputeP � x� regular� .

This model can be applied to the data of Kubovy
and Psotka(1976). Since there are ten possiblere-
sponses,we have P � x� random� �

1
10. Taking hypothet-

ical regularitiesof multiplesof 2 (
�
0	 2	 4	 6	 8� ), multi-

plesof 3 (
�
3	 6	 9� ), multiplesof 5 (

�
0	 5� ), powersof 2

(
�
2	 4	 8� ), andendpoints(

�
0� 	

�
1� 	

�
9� ), we obtainthe

valuesof random� x � shown in thelower panelof Figure
2. Randomnessalsoneedsto be includedin � so that
random� x � is definedwhen x is not in any other regu-
larity. Its inclusionis analogousto the incorporationof
a noiseprocess,andis in fact formally identical in this
case.Theorderof themodelpredictionsis a parameter
free result, andgives the ordinal correlationrs � 0
 99.
Applying asingleparameterpower transformationto the
predictions,y% � � y � min � y �&� 0 ' 98, givesr � 0
 95.

Coincidences
The surprising frequency with which unlikely events
tend to occur has drawn attention from a numberof
psychologistsandstatisticians.DiaconisandMosteller
(1989),in theiranalysisof suchphenomena,defineaco-
incidenceas‘ 
(
&
 a surprisingconcurrenceof events,per-
ceived asmeaningfullyrelated,with no apparentcausal
connection’(p. 853). They go on to suggestthat the
“surprising” frequency of theseeventsis dueto theflex-
ibility that we allow in identifying meaningfulrelation-
ships.Togetherwith thefact thateverydaylife provides
a vast numberof opportunitiesfor coincidencesto oc-
cur, our willingnessto toleratenearmissesandto con-
sidereachof a numberof possibleconcurrencesmean-
ingful contributestoexplainingthefrequency with which
coincidencesoccur. Diaconisand Mosteller suggested
that the surprisethat peopleshow at the solutionto the
Birthday Problem– the fact that only 23 peoplearere-
quiredto give a 50% chanceof two peoplesharingthe
samebirthday– suggeststhat similar neglect of combi-
natorialgrowth contributesto theunderestimationof the
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Figure 2: The upperpanelshows numberproductiondata
from Kubovy andPsotka(1976),takenfrom 1,770participants
choosingnumbersbetween0 and9. Thelowerpanelshowsthe
transformedpredictionsof therandomnessmodel.

likelihoodof coincidences.Psychologicalresearchad-
dressingcoincidencesseemsconsistentwith this view,
suggestingthat selective memory(Hintzman,Asher, &
Stern,1978)andpreferentialweightingof first-handex-
periences(Falk & MacGregor, 1983)might facilitatethe
under-estimationof theprobabilityof events.

Not just lik elihood)*)+)
The above analysesreflect the samebias that madeit
difficult to constructa probabilisticaccountof random-
ness:thenotionthatpeople’sjudgmentsreflectthelikeli-
hoodof particularoutcomes.Subjectively, coincidences
areeventsthat seemunlikely, andarehencesurprising
when they occur. However, just as with randomse-
quences,setsof eventsthatareequallylikely to bepro-
ducedby a randomgeneratingprocessdiffer in the de-
gree to which they seemto be coincidences.Follow-
ing DiaconisandMosteller’s suggestionthat the Birth-
day Problemprovidesa domainfor the investigation of
coincidences,considerthekindsof coincidencesformed
by setsof birthdays.If we meetfour peopleandfind out
thattheir birthdaysareOctober4, October4, October4,
and October4, this is a much bigger coincidencethan
if the samepeoplehave birthdaysMay 14, July 8, Au-
gust21,andDecember25,despitethefactthatthesesets
of birthdaysareequallylikely to beobservedby chance.
Theway that thesesetsof birthdaysdiffer is thatoneof
themcontainsan obvious regularity: all four birthdays
occuron thesameday.

Modeling coincidences
Justassequencesdiffer in the amountof evidencethey
provide for having beenproducedby a randomgener-
ating process,setsof birthdaysdiffer in how muchevi-



dencethey provide for having beenproducedby a pro-
cessthatcontainsregularities.We arguethattheamount
of evidencethataneventprovidesfor a regulargenerat-
ing processwill correspondto how big a coincidenceit
seems,andthatthiscanbecomputedin thesamewayas
for randomness,

coincidence(x) � log
P � x� regular�
P � x� random�,
 (9)

To apply this model we have to define the regulari-
ties � . For birthdays,theseregularitiesshouldcorre-
spondto relationshipsthat canexist amongdates. Our
modelof coincidencesuseda setof regularitiesthat re-
flectedproximity in date(from 1 to 30 days),belonging
to the samecalendarmonth, and having the samecal-
endardate(eg. January17, March 17, September17,
December17). We also assumedthat eachyear con-
sistsof 12 monthsof 30 dayseach. Thus, for a setof
n birthdays,X �

�
x1 	(
&
(
(	 xn � , we have P� X � random� �� 1

360 � n. In defining P � X � regular� , we want to respect
the fact that regularitiesamongbirthdaysarestill strik-
ing even when they are embeddedin noise – for in-
stance,February2, March 26, April 3, June12, June
12, June12, June12, November22 still providesstrong
evidencefor a regularity in the generatingprocess.To
allow the model to toleratenoisy regularities, we can
introducea noise term α into P � X � hi � . The probabil-
ity calculuslets us integrateout unwantedparameters,
so the introduction of a noise processneednot result
in addinga numericalfree parameterto the model. In
particular, P � X � hi � �

1
0 P � X � α 	 hi � P� α � hi � dα. Assum-

ing that the dateswe observe areindependent,we have
P � X � α 	 hi � � ∏x j � X P � x j � α 	 hi � , and, taking a uniform

prior on α, P � X � hi � is simply 1
0 ∏x j � X P � x j � α 	 hi � dα,

where

P� x j � α 	 hi � �
α

360 �-� 1 � α � 1$
hi
$ x j � hi

α
360 x j .� hi 
 (10)

Thiscorrespondsto datesbeingsampleduniformly from
the entireyearwith probability α, anduniformly from
the regularity with probability � 1 � α � . The resulting
P � X � hi � canthenbesubstitutedinto (4),andtakingauni-
form distribution for P � hi � regular� givesP � X � regular� .
How big a coincidence?
The model outlined above makes strong predictions
about the degree to which different sets of birthdays
shouldbe judgedto constitutecoincidences.We con-
ductedasimpleexperimentto examinethesepredictions.
The participantswere93 undergraduatesfrom Stanford
University, participatingfor partial coursecredit. Four-
teenpotentialrelationshipsbetweenbirthdayswereex-
amined,using two setsof dates. Eachparticipantsaw
onesetof dates,in a randomorder. Thedatesreflected:
2, 4, 6, and8 apparentlyunrelatedbirthdays,2 birthdays
on the sameday, 2 birthdaysin 2 daysacrossa month
boundary, 4 birthdayson the sameday, 4 birthdaysin

one week acrossa month boundary, 4 birthdaysin the
samecalendarmonth,4 birthdayswith thesamecalendar
dates,and2 sameday, 4 sameday, and4 samedatewith
an additional4 unrelatedbirthdays,as well as 4 same
week with an additional2 unrelatedbirthdays. These
datesweredeliveredin aquestionnaire.Eachparticipant
wasinstructedto ratehow big a coincidenceeachsetof
dateswas,usinga scalein which 1 denotedno coinci-
denceand10denotedaverybig coincidence.

The resultsof the experimentand the modelpredic-
tionsareshown in thetop andmiddlepanelsof Figure3
respectively . Again,theordinalpredictionsof themodel
areparameterfree,with rs � 0
 94. Applying thetransfor-
mationy% � � y � min � y �(� 0 ' 48, givesr � 0
 95. The main
discrepanciesbetweenthe model and the data are the
four birthdaysthatoccurin thesamecalendarmonth,and
the orderingof the randomdates.The former could be
addressedby increasingtheprior probabilitygivento the
regularity of beingin thesamecalendarmonth– clearly
this wasgivengreaterweightby theparticipantsthanby
the model. Explainingthe increasein the judgedcoin-
cidencewith largersetsof unrelateddatesis morediffi-
cult, but may be a resultof opportunisticcoincidences:
asmoredatesareprovided, participantshave moreop-
portunitiesto identify complex regularitiesor find dates
of personalrelevance.This processcanbe incorporated
into themodel,at thecostof greatercomplexity.
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Figure3: The top panelshows the judgedextent of coinci-
dencefor eachsetof dates.Themiddlepanelis thepredictions
of the coincidencesmodel, subjectedto a transformationde-
scribedin thetext. Thebottompanelshows randomnessjudg-
mentsfor thesamestimuli.

Relating randomnessand coincidences
Judgmentsof randomnessandcoincidencesboth reflect
theevidencethata setof observationsprovidesfor hav-
ing beenproducedby a particular generatingprocess.
Eventsthat provide goodevidencefor a randomgener-
ating processare viewed as random,while eventsthat
provide evidencefor a generatingprocessincorporating
someregularity seemlike coincidences.By examining



(3) and (9), we seethat thesephenomenaare formally
identified as inverselyrelated: coincidencesare events
thatdeviatefrom ournotionsof randomness.

We conducteda further experimentto seeif this re-
lationshipwasborneout in people’s judgments.Partici-
pantswere120undergraduatesfrom StanfordUniversity,
participatingfor partialcoursecredit.Thedateswerethe
sameasthoseusedpreviously, anddeliveredin similar
format. Eachparticipantwasinstructedto ratehow ran-
domeachsetof dateswas,usinga scalein which 1 de-
notednotatall randomand10denotedvery random.

The resultsof this experimentareshown in the bot-
tom panelof Figure3. Thecorrelationbetweentheran-
domnessjudgmentsand the coincidencejudgmentsis
r � � 0
 94, consistentwith the hypothesisthat random-
nessandcoincidencesareinverselylinearly related.The
main discrepancy betweenthe two datasetsis that the
additionof unrelateddatesseemsto affect randomness
judgmentsmorethancoincidencejudgments.

Conclusion
The models we have discussedin this paper provide
a connectionbetweenpeople’s intuitions aboutchance,
expressedin judgmentsabout randomnessand coinci-
dences,and the formal structureof probability theory.
This connectiondependsupon changingthe way we
modelquestionsaboutprobability. Ratherthanconsider-
ing the likelihoodof eventsbeingproducedby a partic-
ulargeneratingprocess,ourmodelsaddressthequestion
of how much more likely a set of eventsmakes a par-
ticular generatingprocess.This is a structuralinference,
drawing conclusionsabouttheworld from observeddata.
Framedin this way, people’s judgmentsarerevealedto
accuratelyapproximatethe statisticalevidencethat ob-
servationsprovide for having beenproducedby apartic-
ular generatingprocess.Theapparentinaccuracy of our
intuitionsmaythusbea resultof consideringnormative
theoriesbaseduponthe likelihoodof eventsratherthan
theevidencethey provide for astructuralinference.
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