<|||I

Building AS/400 Internet-Based Applications
with Java

Bob Maatta, Markus Abegglen, Craig Pelkie, Brian Skaarup, Daniel Stucki

International Technical Support Organization

http://www.redbooks.ibm.com

SG24-5337-00

International Technical Support Organization S5624-5337-00

Building AS/400 Internet-Based Applications
with Java

January 1999

Take Note!

Before using this information and the product it supports, be sure to read the general information in Appendix C,
“Special Notices” on page 303.

First Edition (January 1999)
This edition applies to Version 3 Release 2 and later of 0S/400

Comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. JLU Building 107-2

3605 Highway 52N

Rochester, Minnesota 55901-7829

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1999. All rights reserved
Note to U.S Government Users - Documentation related to restricted rights - Use, duplication or disclosure is subject to restrictions
set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

© Copyright IBM Corp. 1999

FigUres . .. vii
Tables . .. Xili
Preface XV
The Team That Wrote This Redbook XV
Comments WeICOmMEe XVi
Chapter 1. AS/400 Internet Application Development Overview 1
1.1 From Server to Browser and Back—Fundamental Concepts. 1
1.1.1 The RequestingWeb Page 2
1.1.2 The Web Serving Application 2
1.2 AS/400 Internet Application Development Techniques 5
1.2.1 Other Approaches for Internet Applications. 5
1.2.2 Four Tools for Internet Development on the AS/400 System 6
1.3 NetData e 6
1.3.1 Why Use Net.Data. i 7
1.3.2 Net.Data Processingt 7
1.3.3 How Net.Data Macros are Invoked 9
1.3.4 A Sample Net.Data Macro. 10
1.3.5 Source Code for the Net.Data Sample Macro 12
1.3.6 WhentoUse Net.Data 14
1.4 Common Gateway Interface (CGI) Programming 15
1.4.1 Why Use CGI Programming 15
1.4.2 CGIProCessiNg. . . .ottt e e 16
1.4.3 APIs Used for CGI Programming.ottt 17
1.4.4 A Sample RPG-CGIl Program 20
1.4.5 Source Code for the CG_PARTS CGI Program. 21
1.4.6 Summary of the CGI Sample Program 28
1.4.7 Whento Use CGl Programs 28
1.5 Java Applets. . ..o 28
1.5.1 The Scripting Alternative. 29
1.5.2 How Applets are Different from Scripting. 30
1.5.3 Applet Processingo 31
1.5.4 How Applets are Different from Net.Data and CGI Programs. 32
1.55 ASample Applet 32
1.5.6 WhentoUse Applets. 34
1.5.7 Applet Development 34
1.6 Java Servlets 34
1.6.1 WhyUse Servlets e 34
1.6.2 Servlet Processing i e 35
1.6.3 ASample Servlet 37
1.6.4 WhentoUse Servlets i 39
1.6.5 Servlet Development. 40
Chapter 2. IBM HTTP Server for AS/400 41
2.1 Product Packaging e 41
2.2 HTTP 1.1 Protocol e 42
2.2.1 Persistent CONNECLIONSottt 42
222 Virtual HOSES 43
2.3 Proxy, Cache, and Local Memory Cache 43
iii

iv

2.3.1 Proxy Caching 43

2.3.2 Proxy Logging 44
2.3.3 LocalMemory Cache. 44
2.4 CGIProgrammingo ot e e 44
241 Javaand REXX CGIl ... e e 44
2.4.2 Non-parsed Headers CGl 45
2.4.3 QzhbCgiParse APIL. 45
2.5 Persistent CGl. 45
2.5.1 How Persistent CGIWOrKS i 46
2.5.2 Controlling Persistent CGIl i a7
2.6 Cryptographic Support, Certificates, and Digital ID a7
2.6.1 Cryptographic Access Provider 47
2.6.2 Digital Certificate Manager. 47
2.6.3 Digital ID 48
2.7 WebSphere Application Server for AS/400 48
2.7.1 What WebSphere Provides 48
2.7.2 Accessing the WebSphere Server 48
2.8 SUMMANY . . . o e e e e 49
Chapter 3. Introduction to AS/400 Applets L. 51
3.1 The PartsView Applet 51
3.1.1 Importing the Source Code for the Applet to the Workbench 52
3.1.2 Resolving Problems in the Imported Applet 57
3.1.3 Overview of Classes Used in the PartsView Applet 61
3.1.4 Working with the Applet in the Visual Composition Editor 62
3.1.5 Testing the Applet in the VisualAge for Java Applet Viewer 69
3.2 Detailed Review of Java Classes Used inthe Applet. 79
3.2.1 Designofthe Applet 79
3.2.2 Testing and Debugging Features in the PartsView Applet 80
3.2.3 The PartsView Classo e 81
3.2.4 The DataAccessor Interface. 89
3.2.5 The JDBCPartsCatalog Class 90
3.2.6 The TestPart Class i 94
3.2.7 The Part Class.o e 96
3.2.8 The PartsCatalog Class. 100
3.3 Running the AppletinaBrowser 105
3.3.1 TestEnvironment. 105
3.3.2 Serving the Appletfromthe PCDrive. 106
3.3.3 Creating a Signed Cabinet File for Microsoft Internet Explorer 4.01 114
3.3.4 Using the CLASSPATH Environment Variable. 125
3.3.5 Considerations for Using CLASSPATH 128
3.3.6 Serving Applets from the HTTP Server for AS/400. 129
3.4 Working with the Sun Java Plug-in 133
3.4.1 JavaPlug-in BasiCS 133
3.4.2 Working with the Java Plug-in—A Step-by-Step Approach. 134
3.4.3 Summary of the Java Plug-in., 156
3.5 CoNCluSION . ..o 156
Chapter 4. Introduction to AS/400 Servlets 159
4.1 Introduction to the Servlet Support 160
4.1.1 Why Use Servlets 161
4.1.2 Servletsversus CGLBIN 162
4.2 HowtoUse Servlets 163

Building AS/400 Internet-Based Applications with Java

4.2.1 Communication with an HTTP Server 164

4.2.2 Invokinga Servlet 165
4.3 ASimple Servlet 165
4.4 Developing the Servlet Application 166
4.5 Migrating the Applettoa Servlet. L. 169

4.5.1 Enhancingthe Servlet. 172
4.6 Executingthe Servlet 174

4.6.1 Running under the Domino Go Webserver 175

4.6.2 Running under the IBM HTTP Server for AS/400............... 177

4.6.3 Running Servlets on the AS/400 System. 177

4.6.4 Running the PartsServlet Servlet on the AS/400 System. 178
Chapter 5. Overview of the Order Entry Application 179
5.1 Overview of the Order Entry Application 179

5.1.1 The ABC CompPanyvvi ittt e 179

5.1.2 The ABC Company Database 179

5.1.3 A Customer Transactionttt 180

5.1.4 Application Flow 180

5.1.5 Customer Transaction Flow. 181

5.1.6 Database Table Structure 188

5.1.7 Order Entry Application Database Layout 188

5.1.8 Database Terminology 191
Chapter 6. Developing AS/400 Java Applets 193
6.1 Shopping Application User Interface 193
6.2 Shopping Application Objectsand Classes. 196
6.3 The Selectedltems Class 198

6.3.1 Writingthe Class. 199

6.3.2 Writingthe Methods 199
6.4 The temsDb Class o i e e e 200

6.4.1 Common Methods All Applets Use 202

6.4.2 Methods Used by the Toolbox Applet 204

6.4.3 Methods Used by CartApplet. 206

6.4.4 Methods Used by the StatusApplet 208
6.5 The Toolbox Applet. 209

6.5.1 The addAllRows Method 0 210

6.5.2 The getSelectedindexes Method 210

6.5.3 Checking the Connections. 210
6.6 The Cart Applet. 211

6.6.1 Writingthe Class. 212

6.6.2 Viewingthe Methods. 212
6.7 The Order Status Applet 215
6.8 Testingthe Applets. 217
6.9 Serving the Applets from the AS/400 System 219
Chapter 7. Developing AS/400 Java Servlets 221
7.1 Running the Application 222
7.2 Application Programs e 234

7.2.1 How the Application Works 235
7.3 The Java Application Programs. 242

7.3.1 System Performance Servlet. 242

7.3.2 Database QUEIY i e 243
7.4 Running the Application 257

7.4.1 Domino GO WEDSEIVer e 257

Vi

7.4.2 IBMHTTP Server for AS/400. i, 259

Chapter 8. Security Considerations, 261
8.1 Internet Security Elements. 261
8.1.1 Transaction Security and Secure Sockets Layer 262
8.1.2 HTTP Server Over SSL (HTTPS). 265
8.2 Digital Certificates and Certificate Authority. 267
8.3 AS/400 Implementation of Digital Certificate Management. 268
8.3.1 Configuring a Digital Certificate Environment. 269
8.4 Creating a Self-Signed Certificate 269
8.4.1 Creating an Intranet Certificate Authority 270
8.4.2 Creating a Server Certificate with Your Intranet CA 272
8.4.3 Configuring the Web Server to Use SSL with Server Authentication 275
8.5 Requesting a Server Certificate froman Internet CA 277
8.5.1 Requesting a Server Certificate from an Internet CA 278
8.5.2 Receiving a Server Certificate for this Server. 280
8.5.3 Configuring the HTTP ServertoUse SSL 281
8.6 Applying Security to the Applications. 281
8.6.1 Servlets 281
8.6.2 Additional ResSoUrces. i 285
Chapter 9. HTTP Server Configuration 287
9.1 Domino Go Webhserver 287
9.2 ServIetEXPressot 289
9.3 IBM HTTP Server for AS/400. 293
9.4 IBM WebSphere Application Server for AS/400. 296
Appendix A. Example Programs 299
A.1 Downloading the Files from the InternetWeb Site. 299
A.2 Settingup VisualAgeforJdava i 299
A.2.1 The AS/400 Toolbox forJava Classes. 300
A.2.2 IBM Enterprise Data Access Libraries. 300
A.2.3 SunJSDK Class Libraries 300
A.2.4 NetsSCape SECUNMLY . . ottt e e e e e e 300
Appendix B. IBM HTTP Server for AS400 Configuration — 301
Appendix C. Special Notices i 303
Appendix D. Related Publications 305
D.1 International Technical Support Organization Publications 305
D.2 Redbooks on CD-ROMS it 305
D.3 Other Publications 305
How to Get ITSO Redbooks 307
How IBM Employees Can Get ITSO Redbooks 307
How Customers Can Get ITSO Redbooks 308
IBM Redbook Order FOrm 309
List of Abbreviations 311
INAEX .o 313
ITSO Redbook Evaluation 317

Building AS/400 Internet-Based Applications with Java

Figures

© Copyright IBM Corp. 1999

©ONOTORrWNPE

B
[Ny

ODDRADADNDNDADRNDANADNWWWWWWWWWWNNRNNNNNNNNRRRPRRRERPRR
COOVOUNWOMNRPOOOVYNOUTRARRMNNRPLPOOONOUROYNNRPLPOOO~NOD U NWRN

How an HTTP Server Processes a Request for a Dynamic Web Page. 2
Form Data in HTTP Encoded Format, 3
How Net.Data Processes a Macro and Generates a Response 8
Prompting Page Displayed by the Net.DataMacro 11
Parts File Listing Generated by the Net.DataMacro 11
How CGI Processing Works. 16
HTML Code Used to Display the Prompting Page for the CGI Program 21
AppPlet ProCcessingo 31
PartsView Applet Running in the Netscape Browser.................... 33

. Java Security Message Displayed under Netscape. 33
L SerVIet ProCeSSING . . .o oo 36
. Servlet Example Prompting Page i 38
. Servlet Example OUtpUL. oo e 39
PartsView Applet . .. 52
. Starting the Import Process 53
Jdmport SmartGuide. 54
. Import from another Repository SmartGuide 55
. Projects ImportDialogo oo e 56
CAdd Project MenU.o e 56
. Add Projects SmartGuide. 57
. Problems Indicated in the Workbench 57
CAILProblems Tab ... e 58
CAdd ProjeCct MenU.o 59
. Add Project SmartGuide e 60
. Workbench with Added Projects i 61
. ServletExamples Project e 62
. PartsView Applet in the Visual Composition Editor 63
. Clickingthe Choose Beanlcon 64
.ChooseBean Dialog e 64
.Choose Class Dialogo oo 65
. Choose Bean Dialog with PartsCatalog Selected 66
. PartsCatalog Added to the PartsView Applet. 66
. VisualAge for Java IDE Options Menu. oot 67
. Design Time Options Dialog 68
LSaving aBean ... 69
. Checkingthe Class Path i, 70
. Setting the Width and Height Attributes 71
. Settingthe Class Path 72
. Select the Projects to be Included inthe ClassPath 73
. Project Path and Complete Class Path 74
. Running the PartsView Applet 75
. PartsView Applet in the Applet Viewer. 75
. Applet Viewer Properties Dialog 76
. Applet Viewer Properties 76
. Displaying the AS/400 Parts Data Using the PartsView Applet............ 77
. The Java Console MESSAgES. . . .« v vttt e e e 78
. The Applet/Servet Three-Tier Design, 79
. The Views Packageo 81
.The PartsView Classo 82
. The actionPerformed Method in the PartsViewClass 83
vii

51. The connEtoC1 Method in the PartsViewClass. 83
52. The getAppletinfo Method in the PartsView Class 84
53. The getbtnGetParts Method in the PartsView Class. 84
54. The getData Method in the PartsView Class 85
55. The getIMulticolumnListbox Method in the PartsView Class 86
56. The getPartsCatalog method in the PartsView Class. 87
57. The handleException Method in the PartsView Class 87
58. The init Method in the PartsView Class 88
59. The initConnections Method in the PartsViewClass 88
60. The dataAccess Packageo 89
61. The DataAccessor Interface in the dataAccess Package. 90
62. The JDBCPartsCatalog Class.o 91
63. The connectToDB Method in the JDBCPartsCatalogClass. 92
64. The getAll Method in the JDBCPartsCatalogClass 94
65. The TestPart Classt e 95
66. The connectToDB Method in the TestPartClass 95
67. The getAll Method inthe TestPartClass. 96
68. The Domain Package e 97
B9. The Part Classt e e 98
70. The Part Constructorinthe Part Class, 98
71. The getAttributeString Method inthe PartClass. 99
72. The get Methods inthe PartClass 99
73. The set Methods inthe PartClass 100
74. The PartsCatalog Classot e 101
75. The connectToDB Method in the PartsCatalog Class. 101
76. The defaultDataAccessor Method in the PartsCatalogClass. 102
77. The getAll Method in the PartsCatalogClass 103
78. The getDataAccessor Method in the PartsCatalog Class. 104
79. The getParts Method in the PartsCatalog Class. 104
80. The set Methods in the PartsCatalogClass 105
81. Exporting the Applet Packages. i 107
82. Export SmartGuide 108
83. The ExporttoaJdarFileDialogt 109
84. Opening the Netscape JavaConsole 110
85. Netscape Java Console when the PartsView Appletis Running 111
86. Opening the PartsView.html File inthe Browser. 111
87. Java Security Dialog 112
88. PartsView Applet in the Netscape Browser., 113
89. Microsoft Internet Explorer List of Certificate Authorities 115
90. Enable Tracing of the Appletat Runtime 117
91. Exportto a Directory Dialogot 118
92. The chkjava Command Security Warning Panel. 119
93. Java Console with the Trace Messagesot 121
94. Selecting the Missing Classes in the .class Export Dialog 123
95. Removing Unwanted Entries from the Export List 124
96. Resource ExportDialogot 124
97. Setting the Windows NT 4.0 CLASSPATH Environment Variable 127
98. Setting the Name ofthejarFile. i 131
99. PartsView.html Code before Conversion for the Java Plug-in 134
100.PartsView.html File after Conversion for Use with the Java Plug-in. 135
101.Java Plug-in HTML Converter Options.ottt 137
102.Java Plug-in HTML ConverterDialog. 138
103.Sample Output of the Generate Log File 139

viii Building AS/400 Internet-Based Applications with Java

104.Advanced Options Dialogo ot 140

105.Microsoft Internet Explorer Security Warning 141
106.Code inthe Converted HTML File. i 141
107.Select Java Plug-in Installation Dialog. 142
108.Code in the Converted HTML File that is Processed by Netscape Navigator 143
109.Netscape Navigator Plug-in Not Loaded Panel. 143
110.Java Plug-in Download Page.ot 144
111.Revised Advanced Options Settings for the HTML Converter. 146
112.Netscape Plug-in HTML File e 147
113.Java Plug-in Software License Agreement 148
114.Java Plug-in Choose Destination Location Dialog. 149
115.Java Console. e 149
116.Windows 95/NT Add/Remove Programs Dialog 150
117.Plug-in Not Loaded Panel e 151
118.Netscape Plug-in.html File. 152
119.About:plugins Feature e 153
120.Basic Tab of the Java Plug-in Control Panel. 154
121.Advanced Tab in the Java Plug-in Control Panel 155
122.Proxies Tab in the Java Plug-in Control Panel 155
123.Servlet Application. 159
124.Servlet Architectureo 160
125.Servlet Hierarchy 161
126.Servlets versus CGLBIN 163
127.Calling a ServletDirectlyo 165
128.Calling a Servlet Using HTML Files. it 165
129.Calling a Servlet Using SHTML Files. o .. 165
130.HelloWorldServlet 166
131.ServletExamples Project 167
132.Java Applet/Serviet Designo e 168
133.PartsServlet Classo 169
134.Servletinit Method. 169
135.The doGet Method. 170
136.The outputHeader Method. 170
137.The outputPartsIinformation Method 171
138.The doGet Method Output.t e 171
139.Enhanced Serviet 172
140.The doPost Method 173
141.Servlet HTML File (Parts.html) 174
142.Three-Tier Servlet Architecture e 175
143.Enhanced Serviet 177
144 Two-Tier Servlet Architecture i, 177
145.The Company StrUCLUre.t e e e 179
146.RPG Application FIow o 181
147.Parts Order Entry.ot 182
148.Select CUSIOMETo 183
149.Parts Order Entry.ot 184
150.Select Part. 185
151.Parts Order Entry.o 185
152.Parts Order ENntry.o 186
153.Change Selected Order. 186
154.Completed Order. e 187
155.Printed Order. . ..ot 187
156.Table Relationships. 188

X

157.T00lboX Appleto 194

158.Cart Applet . . . 194
159.Placing an Order.t e 195
160.0rder Confirmation.t 195
161.Status Applet 196
162.Shopping Application Designttt e 197
163.ToolboxApplet Package 198
164.Selecteditems Class Definition. i 199
165.The getVector Method 199
166.The clear Method e e e 200
167.The addSelectedRow Method 200
168.The ItemsDb Class Definition. i 201
169.The connect Method. i e 203
170.The disconnect Method e 203
171.The finalize Method 204
172.The fetchNextltem Method 205
173.The getitem Method 205
174.The getitems Method e 206
175.The quantityinHand Method 207
176.The verifyCustomer Method 207
177.The checkOrderStatus Method. i 209
178.ToolboxAppletExample Class Definition. 209
179.The AddAIIRows Method e 210
180.The getSelectedindexes Method 210
181.Toolbox Appletinthe VCE e 211
182.CartApplet Class Definition. 212
183.The showCart Method s 213
184.The Cart Appletinthe VCE e 214
185.0rderStatus Class Definition e 215
186.The fillListbox Method. 216
187.0rder Status Appleto 216
188.The apptest\ToolboxApplet Directoryot 217
189.The apptest DIFeCIOrY oot e e 218
190.0rder.htm . ..o e 219
100.0rderl ntm . .o e 219
192.Status. htm ... 219
193.Shopping Applet Running under Netscape Navigator 220
194.Servlet Sign ON WINdOW.t e 222
195.Servlet Application Menu Window i 223
196.Query Recall Window e 224
197.Query Builder Window o 224
198.Query ResUlts. 225
199.Query Wizard Table Prompt. 226
200.Select Fields Prompt Window. ot e 226
201.Select Conditions Prompt Window i 227
202.Select Order Prompt Windowottt e 228
203.QuUery ReSUIS.ot 229
204.User ID Prompt. 230
205.Print Jobs By USero e 230
206.0utput Queues Display 231
207.Print Jobs By OUtput QUEUE.t e 231
208.AS/400 Integrated File System Directories. 232
209.Directory LiSting oottt e 232

Building AS/400 Internet-Based Applications with Java

210.AS/400 Performance Informationt 233

211.AS/400 CommaNdot 233
212.AS/400 Command OULPUL oot 234
213.Change Password 234
214.SignOn doGet Method. 236
215.SignOn genSignonForm Method 237
216.Generated Sign ON HTML. e 238
217.SignOndoPost Method 239
218.SignOn genMain Method. i 240
219.Application Menu HTML o e 240
220.Application MenU 241
221.The PerfMon Class doGet Method 242
222.System Performance Information o . 243
223.HTML Generated by the getSavedQueries Method 244
224.Saved Queries WIindow 245
225.HTML Generated by the queryPrompt Method 246
226.Query Statement Window 247
227.Query ResuUltso 248
228.HTML File Generated by the wizPrompt Method. 249
229.Enter Table Name Prompt. 249
230.HTML Generated By the wizColInfo Method 250
231.SQLWizard Applet. 251
232.HTML File Generated by the wizWhere Method 252
233.SQLWhere Applet 253
234.HTML File Generated by the wizOrder Method. 254
235.5ql0rder Applet. . ..o 254
236.HTML File for the queryPrompt Method 255
237.Query AS/400 Database 256
238.SQL ReSUIt 257
239.ServletExpress\servlets Directory 258
240.ApPIEt DIFECIONY v et e 258
241.apptesSt DIrECIOTY . . . oot 258
242 \QIBM\ProdData\IBMWebAS\servlets Directory 259
243 ApPIEt DIFECIONY . . o . et e 260
244.The apptest DIreCtOry oo 260
245.Internet Security Elements. 262
246.Transaction SECUNLYottt e 262
247 Verifying ldentity—Digital Certificates and Digital Signatures............ 264
248 HTTP Server UsSiNg SSL oot e 266
249.Accessing a Secure HTTP Session.ottt 267
250.AS/400 Tasks Page.ot 270
251.Create an Intranet Certificate Authority 271
252.CA Certificate Created Successfully i ... 271
253.Certificate Authority Policy. 272
254.Create a Server Certificate Page. i 273
255.Server Certificate Created Successfully Page. 273
256.Create a Server Certificate with an Existing Intranet CA. 274
257.HTTP Server Configuration i 275
258.Security Configuration Page 276
259.Work with Server InStances.t 277
260.Requesting a Certificate from VeriSign or other Internet Certificate Authority278
261.Request a Server Certificate froman Internet CA. 279
262.Server Certificate Request Generated by DCM. 279

Xi

263.Receiving a Server Certificate Issued by an Internet CA 280

264.Key Management Page 281
265.New Site Certificate 282
266.New Site Certificate Information. i 282
267.Viewa Certificate 283
268.New Site Certificate Acceptance Dialog. 283
269.Netscape Certificate Warning Dialog 284
270.Netscape Security Information Dialog 284
271.PartsServlet Runningunder SSLo 285
272.Domino Go Webserver Initial Screen. i 287
273.Configuration and Administration Window 288
274.Domino Go Routing Table 289
275.ServletExpress Services Dialog 290
276.ServletExpress Setup Windowttt 291
277.ServletExpress Add ServletDialog. 292
278.ServletExpress Servlet Configuration Dialog 293
279.Browser-based HTTP Server Configuration Program 295
280.HTTP Server Directives to Enable WebSphere 296
281.IVM Properties File 297
282.WebSphere Sign On Screeno 298

Xii Building AS/400 Internet-Based Applications with Java

Tables

© Copyright IBM Corp. 1999

©ONOTORrWNPE

el
= o

NNNRPRPRRRRRRER
NP OWOWWOW~NOOUNWRN

Parameters Used with the QzhbCgiParse API. 18
The CGII0200 Formatt e e e e 19
Parameters Used with the QtmhWrStout APl 20
Summary of OS/400 Pre-V4R3 and V4AR3 HTTP Server Components 42
ServletExamples Packages, Classes, and Interfaces 62
Methods Used inthe PartsView Class. 82
Methods Defined in the DataAccessor Interface 89
Methods Used in the JDBCPartsCatalog Class. 90
Methods Used inthe TestPart Classt 95
. Methods Used inthe Part Class. i 97
. Methods Used in the PartsCatalog Class 100

. Operating Systems and Browser Versions Supported by the Java Plug-in . . 134
. Summary of Packages, Classes, and Interfaces Used for the PartsServlet . 167

. District Table Layout (DStrct)t e 189
. Customer Table Layout (CSTMR) e 189
. Order Table Layout (ORDERS) i 190
. Order Line Table Layout (ORDLIN)r 190
. Item Table Layout (ITEM) e 191
. Stock Table Layout (Stock) 191
. Database Terminology.t 192
. ltemsDb Class Variables 202
CApPPlet HTML Files . ..o 218

Xiii

Xiv Building AS/400 Internet-Based Applications with Java

Preface

The AS/400 system, the Internet, and Java. What a powerful combination! If you
are interested in enabling your company for the world of e-business, this redbook
is for you. It is intended for anyone who wants to design and build AS/400
Internet- or intranet-based applications using Java.

This redbook focuses on building applets and servlets that access AS/400
resources. It provides many practical programming examples with detailed
explanations of how they work. These examples are also available for you to
download from our Internet site. This redbook gives you a fast start on your way
to using Java, the Internet, and the AS/400 system.

The Team That Wrote This Redbook

© Copyright IBM Corp. 1999

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization Rochester Center.

Bob Maatta is a Senior Software Engineer from the United States at the
International Technical Support Organization, Rochester Location. He writes
extensively and teaches IBM classes worldwide on all areas of AS/400
client/server and application development. Before joining the ITSO in 1995, he
worked in the U.S. AS/400 National Technical Support Center as a Consulting
Market Support Specialist. He has over 20 years of experience in the computer
field and has worked with all aspects of personal computers since 1983. He is a
Sun Certified Java Programmer and a Sun Certified Java Developer.

Markus Abe gglen is a Project Leader at DV Bern AG, an IBM Business Partner
in Switzerland. He has eight years of experience in the AS/400 area, as well in
object technology. He holds a higher national degree in Economics and Computer
Science. He has worked on several projects that are based on VisualAge for
Java.

Craig Pelkie is a consultant based in Southern California. He is the editor of the
NEWS/400 newsletter Client Access & Windows Solutions, and the past editor of
Midrange Computing’s Client Access Expert. He frequently leads seminars on
Client Access, AS/400 web-enablement techniques and AS/400 client/server
programming using Visual Basic. He is the author of the training manual Using
Microsoft Visual Basic with the AS/400 (http://www.vb400.com) which was used
in labs at IBM Rochester Partners In Development.

Brian Skaarup is a software developer for EDB Gruppen Systems A/S, a Danish
business partner. He has worked in the R&D department for the last eight years.
His areas of expertise include client/server application design and development

using C, C++, and Java.

Daniel Stucki is a Systems Engineer at DV Bern AG, an IBM Business Partner in
Switzerland. He has nine years of experience in the AS/400 area as well in object
technology. He also holds a degree in Computer Science from the Berne Institute
of Technology. He has worked on several projects that are based on VisualAge
for Smalltalk and VisualAge for Java.

XV

Thanks to the following people for their invaluable contributions to this project:

Marcela Adan
ITSO Rochester

Chi Lam
IBM Rochester Laboratory

Gary Mullen-Schultz
IBM Rochester - Partners in Development

Schuman Shao
IBM Rochester Laboratory

Comments Welcome

XVi

Your comments are important to us!
We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

» Fax the evaluation form found in “ITSO Redbook Evaluation” on page 317 to
the fax number shown on the form.

* Use the electronic evaluation form found on the Redbooks Web sites:

For Internet users http:/Amvww.redbooks.ibm.com
For IBM Intranet users http:/w3.itso.ibm.com

» Send us a note at the following address:

redbook@us.ibm.com

Building AS/400 Internet-Based Applications with Java

Chapter 1. AS/400 Internet Application Development Overview

Let’'s put our business on the Internet! Those words, spoken by the company
president to the chief information officer (ClO), the CIO to the systems analysts,
and the analysts to the programmers, are sure to cause a great deal of
excitement, concern, confusion, and doubt. After all, it is one thing to surf the
Web and find many examples of good and not-so-good sites to emulate. It is quite
another issue to know where to start with your Internet development project and
how to proceed.

There are many technical problems that must be resolved to reach the point
where your customers can successfully use your corporate Web site to interact
with your company. Some of the issues you need to address are:

* What hardware and software do you need on your AS/400 system so that it
can be connected to the Internet and function as a Web server?

* What do you need to know about securing your AS/400 system, given that you
need to allow access to data stored on the system?

* What skills are required to create dynamic Web pages that work with the
AS/400 system? If you do not have the skills, what direction should you take to
learn what you need to know?

* Where does Java fit into all of this? How does Java make it easier to work with
Internet applications?

Although the answers to all of those questions are not in this redbook, this
document shows you how Java can be used with the AS/400 system to create
highly functional, dynamic Web pages. You learn how you can use Java in
client-side applets and how Java servlets can be used on the AS/400 system to
access the database and send responses to the client.

In this chapter, you explore four Internet application development approaches to
use with the AS/400 system:

* Net.Data

« Common Gateway Interface (CGI) programming
« Java applets

« Java servlets

Upon finishing this chapter, you gain a better idea of which technique to use when
you develop your Internet application.

1.1 From Server to Browser and Back—Fundamental Concepts

© Copyright IBM Corp. 1999

Before you can start coding an Internet application for the AS/400 system, you
need to clearly understand how a request is sent from the browser to the IBM
HTTP Server for AS/400, how the server invokes a program to process the
request, and how the response from the program is returned to the browser.
Although there are hundreds of configuration decisions that must be addressed,
we assume that you already have the IBM HTTP Server for AS/400 connected to
the Internet and configured to serve Web pages.

See how a Web serving request is processed. Figure 1 on page 2 shows how the
request flows from the browser to the server, where the Web serving application
accesses the database, prepares the response, and sends it back to the browser.

IBM HTTP Server
for AS/400

“Show me X>
<"‘Here‘s X"

| Some Process |

DB2/400

H B

Figure 1. How an HTTP Server Processes a Request for a Dynamic Web Page

1.1.1 The Requesting Web Page

The user starts at the requesting Web page. The page appears when a user
enters a URL in the browser’s location or address field, or clicks a link on another
Web page.

Web pages that allow user input are called forms. A form contains one or more
elements that the user interacts with, for example, text fields, list boxes, check
boxes, and buttons. When the user clicks a submit button, the browser formats a
stream of data that contains the data the user entered or selected on the form.
The stream of data is sent to the IBM HTTP Server for AS/400.

1.1.2 The Web Serving Application

2

Along with the data, the browser sends the name of the application that is to be
invoked on the AS/400 system to process the data. The application name is
included in the Hypertext Markup Language (HTML) code that was originally sent
to the browser to display the Web page. The IBM HTTP Server for AS/400
invokes the application.

1.1.2.1 Input Data from the Form

There are two different methods used to make input data from the form available
to the Web serving application program. The HTML form is coded to indicate
which method to use.

Building AS/400 Internet-Based Applications with Java

The first method is the Get method. All of the data from the form is available to
the Web serving application program in an environment variable called
QUERY_STRINGThe Web serving application program retrieves the contents of the
environment variable so that it has access to the data. The Get method is limited
to return 1024 bytes of data from the browser to the Web serving application
program. Because the data also contains field names to identify each data
element, the actual length of the data that can be entered by the user is less than
1024.

The second method is the Post method. With this method, data from the browser
is available to the Web serving application program in a stream file called
Standard Input (STDIN). Because the data is in a file, there is no limit to the
length of the data that can sent from the browser. The Post method is the
preferred method for returning form data from the browser.

Regardless of the method used, the data is HTTP encoded. Figure 2 shows a
sample of data returned from a hame and address Web form.

= [Session A - [24 x 80] H[=] 3
File Edit Transfer Appearance Communication Azzigt Window Help
JEBl| 5B or (M| || =f| %% || E
PrtScin| Copy | Paste Send | Fecy | Display | Color M ap Record| Stop Play Buit_| Clipl
Evaluate Expression
Previous debug expressions
» EVAL StinLen
STIMLEN = QOREAOD1G3.
> EWAL StinIn
STIMIN =
1 R P D« TR) TN LT 1 R 2 TR 1 IR T TR]
1 ' DBMAME=Arnold+Schwarzenegger&DBCOMP=Planet+Hol lywood&DBADDR="
61 'Hollywood+and+Yine&DBCITY=Hol lywood&DEZIP=9201080BSTRAT=CA&DE"
121 'PHOM=%4D213%50+555-121285ubmitButton=5Submit !
181 ! !
241 ! !
o !
361 ¢ !
421 ! !
451 ! !
More...
Debug . .
F3=Exit F9=Retrieve Fl2=Cancel Fl6=Repeat find F19=Left F20=Right
F21=Command entry F23=Display output
207016

Figure 2. Form Data in HTTP Encoded Format

There are a few points to notice about the data in HTTP encoded format:

e The IBM HTTP Server for AS/400 takes care of the required ASCII to EBCDIC
translation. Data that the user enters in the browser is sent to the server using
the ASCII character set. Because the AS/400 works with the EBCDIC
character set, there needs to be a translation between the two.

AS/400 Internet Application Development Overview 3

4

« The field names used on the form are included in the data and precede the
value that the user entered. The field name and value are separated by an
equals sign.

» Blank spaces that the user entered are replaced with plus signs (+).
« The end of each data field is delimited by the ampersand (&) character.

» Special characters are encoded with hexadecimal values. For example, the
area code in the telephone number (line beginning 121 in Figure 2) has
hexadecimal values for the parentheses:

— 9%4Dis used for the (character
— %5Dis used for the) character

One of the main jobs of the Web serving application program is to make sense of
the HTTP encoded data. Because all AS/400 Web programmers have to deal with
this requirement, Web programming tools that are available with the IBM HTTP
Server for AS/400 include functions to interpret the HTTP encoded data and
return it to the Web serving application program in data fields with which the
program can work.

1.1.2.2 Processing the Request

Once the data is parsed into fields, the program can begin working on the
request. At this point, conventional AS/400 programming techniques can be used.
For example, the Web serving application program can:

« Use native database access techniques to retrieve records from the database.
« Use SQL statements to query the database or perform database updates.

 Call other programs on the AS/400 system to perform additional functions
required to construct the response.

 Issue communications requests to other AS/400 systems or other database
platforms to get additional data.

The Web serving application program has complete access to all of the AS/400
system facilities to which it is authorized.

1.1.2.3 Returning a Response to the Browser
Assume that the user’s request to the IBM HTTP Server for AS/400 was accepted
by the server and that the server did not send an error response to the browser. It
is now up to the Web serving application program to prepare a response that the
browser understands and send it to the browser.

The response is HTML code. HTML is simply text that includes tags to identify
elements on a Web page, such as the title, headers, tables, and graphics, and the
data that is displayed on the page. Although most Web pages that you view when
Web surfing are made up of static HTML, it is entirely possible and quite feasible
to generate HTML on an "as-requested"” basis, as in the example described in this
chapter. It is a relatively easy programming job to construct HTML since it only
requires simple string handling operations to put together the combination of
HTML tags and data.

The response HTML and data can be as simple or as complex as required. For
example, a simple listing of items can be done using the monospacing HTML
tags. Or, you may choose to present the list in a nicely formatted table. The

Building AS/400 Internet-Based Applications with Java

response may be another form to prompt the user for additional information. You
can also include graphics, scripting, or applets in the response.

As each line of HTML code is constructed, it is written to the Standard Output
(STDOUT) file. The STDOUT file is used by the Web serving application program
as a conduit back to the browser, which is waiting for the response from the
program. The IBM HTTP Server for AS/400 translates the response HTML in
STDOUT from EBCDIC to ASCII and sends it back to the browser.

At this point, the cycle is complete. The user sent their request, which was
successfully interpreted and responded to. The Web serving application program
retrieved and formatted the requested data. The IBM HTTP Server for AS/400
sent the response back to the browser. The user is now free to review the
response and make additional requests with their browser.

1.2 AS/400 Internet Application Development Techniques

Before you start working on your Internet application, you need to be clear about
what your options are. If you are somewhat uncertain about what the best option
is, you are not alone. Many developers are in the same position, trying to assess
what is the best technique to use.

As with any other programming job, there is no definitive "best" technique, but
rather a series of trade-offs. The technique you choose should be based on:

* Your understanding of the trade-offs

The ability of the selected technique to let you accomplish what must be done
* The amount of effort it will take to develop the application

* The anticipated usage of the application

The availability of other approaches that may be used to develop the
application

We address the last point first, so that it is no longer a factor in your decision.

1.2.1 Other Approaches for Internet Applications

In addition to directly programming the AS/400 system for Web serving, which is
the focus of this redbook, there are two other approaches to consider:

» Locating the application on a different server
» Using the Lotus Domino server available for the AS/400 system

1.2.1.1 Locating the Application on a Different Server

It is not unusual for a company to place their Web serving application on an
entirely different host from the production database. For example, many
companies use Windows NT Server or UNIX servers for Web applications. It is
also possible to use another AS/400 system as the Web serving host. Since you
are then developing the application on an AS/400 system, we consider that
solution to be the same as developing the application on the AS/400 system that
hosts the database.

When you introduce an entirely different type of server, you need to resolve the
problem of making your production database available to that server. For
real-time access, your application may use ODBC or communications
programming to retrieve data from the AS/400 system database to the Web

AS/400 Internet Application Development Overview 5

serving application. For applications that do not require real-time access to the
database, you can replicate the database from the AS/400 system to the Web
serving host as required.

If you adopt this approach, your programming tasks are simply relocated to the
other server. Also, you probably need to perform more programming and certainly
more management of the servers to coordinate access to the database.
Nevertheless, you may choose to implement your Web serving application on
another type of server because of capacity, availability of programming skills, or
for security reasons.

1.2.1.2 Using the Lotus Domino Server for the AS/400 System

The AS/400 system now supports a native implementation of the Lotus Domino
server. This provides a very attractive option. This is because performance and
the ability to access the AS/400 system database is much enhanced compared to
the implementation of Domino on the Integrated PC Server (IPCS).

Domino includes a full-featured application development environment, in addition
to the rich functionality provided in the product itself. For many AS/400 system
Web applications, Domino is the best choice.

An important point to note is that Domino and other AS/400 system Web
development techniques are not mutually exclusive. If you choose to implement
Domino for AS/400 system Web serving applications, you may still find the
material in this redbook useful for applications that run outside of the Domino
environment.

1.2.2 Four Tools for Internet Development on the AS/400 System

At this point, you can consider the tools that are available for developing an
Internet application on the AS/400 system, using the IBM HTTP Server for
AS/400. The tools that are examined include:

* Net.Data, included with the IBM HTTP Server for AS/400

» CGI programs, which can be written in traditional AS/400 system programming
languages such as RPG and COBOL

« Java applets, which can use the AS/400 Toolbox for Java to communicate from
an applet running in a browser to the AS/400 system

» Java servlets, which are available with 0S/400 V4R3
Each of these tools require programming skills. In addition, you need to know

enough HTML to achieve the effect you want, since you will use a tool to generate
HTML to present the data retrieved from the AS/400 system.

1.3 Net.Data

Net.Data is a Common Gateway Interface (CGI) program provided with the
AS/400 TCP/IP Connectivity Utilities (5769-TC1). Net.Data uses macros that you
develop as input to the CGI program. The CGI program uses the macro to:

* Send HTML to your browser
¢ Run SQL commands
» Call system services such as programs compiled in other languages

Building AS/400 Internet-Based Applications with Java

Net.Data is the follow-on product to what was originally known as DB2WWW. The
Net.Data CGI program itself is named DB2WWW. You occasionally see
references to the DB2WWW product in the Net.Data documentation.

— Note

The primary documentation for working with Net.Data on the AS/400 system is
available at the AS/400 Net.Data Web site located at:
http://www.as400.ibm.com/netdata

The following manuals are available at that site:

e Net.Data Administration and Programming Guide
e Net.Data Language Environment Reference
» Net.Data Reference

1.3.1 Why Use Net.Data

If you already know RPG, COBOL, C, or Java, you may wonder why you would
use Net.Data, since you can develop AS/400 CGI programs using traditional
AS/400 programming languages. However, when you use those languages, you
are responsible for programming some of the low-level details required by the
HTTP protocol. For example, you need to parse the input data that is sent to the
server from an HTML form. You also need to take special care to send any
required HTML headers back to the browser along with your application HTML
and data, so that the browser knows how to work with the server response.

For RPG, COBOL, and C, you need to compile the programs before you can test
them. If you need to make even minor changes, you need to repeat the edit,
compile, and test cycle.

You may find that Net.Data provides a more simple alternative to working with
AS/400 languages, especially if you simply want to retrieve and display data from
the AS/400 database. Some of the characteristics of Net.Data that make it easier
to use are:

* Net.Data is interpreted, not compiled. You can develop a Net.Data macro more
rapidly than the equivalent compiled program. You can also make changes
much more quickly. For example, adding or changing HTML statements in a
Net.Data macro is trivial, and you can test the change immediately.

« Net.Data provides tremendous built-in support for working with the results of
SQL queries. For example, Net.Data can automatically format the results of an
SQL SELECT statement into an HTML table. You do not have to code the
HTML for the table. You simply code the SELECT statement.

* Net.Data takes care of getting and parsing requests from the browser and
preparing output to return to the browser. You simply code the HTML that you
want sent to the browser and indicate what data is to be displayed. You do not
have to code the lower-level HTML to deal with headers.

1.3.2 Net.Data Processing

To work with Net.Data effectively, you must understand how the CGI program
DB2WWW interacts with:

AS/400 Internet Application Development Overview 7

8

* Your incoming request from the browser

e The IBM HTTP Server for AS/400

Net.Data INI file

* The macro itself

The DB2/400 database and other system services

Net.Data Processin g

3. Retrieve
INI settin gs
4. Maaro/Section
hello.mbr/input
Browser hitp/myASA00netdatalhello.nr/input 5 Retieve Mado
1. Request URL
2. DR2WWW @ Macro
invoked source
DEAWW 6. Goto INPUT
edion, dart
processn g
/ @ 7. Getrequedted data
10. Retumsto Browser
9. Generated HTML ———
IBMHTTP Server for AS/400 Other 8. Other AS/400
Services snices asrequesed

Figure 3. How Net.Data Processes a Macro and Generates a Response

Assuming that Net.Data is properly configured and you have a macro that you
want to run, here is the process that occurs when you invoke a Net.Data macro.
The following numbers correspond to the steps shown in Figure 3:

1. A Net.Data macro is requested on an incoming URL.

You start a Net.Data macro by entering the URL containing the request in your
browser's address entry area or you click on a link on a Web page that
contains the request. The request is sent to the IBM HTTP Server for AS/400
the same as any other request.

2. The DB2WWW CGI program is invoked.

The IBM HTTP Server for AS/400 determines from the incoming URL that the
request is for Net.Data. At this point, the IBM HTTP Server for AS/400 invokes
the DB2WWW CGI program.

As with other requests to the IBM HTTP Server for AS/400, you need HTTP
Server configuration directives so that the IBM HTTP Server for AS/400 knows
how to handle the incoming request. To process Net.Data macros, you need at
least one EXECdirective and you usually have at least one MAPdirective.

3. Net.Data configuration options are retrieved from the INI file.

Upon starting, the DB2WWW CGI program retrieves initialization options from
the optional INI file, which is located in the same library as the DB2WWW

Building AS/400 Internet-Based Applications with Java

program. If you do not create an INI file, the URLs that you use to invoke a
Net.Data macro are considerably more complicated.

4. The macro and start-at section within the macro are identified.

When the IBM HTTP Server for AS/400 invokes the DB2WWW CGI program, it
passes the part of the incoming URL that identifies the macro to be invoked
and the start-at section within the macro to the program. At this point, the
DB2WWW program determines where on the system the macro source file is
located. If you are using an INI file, the DB2WWW program uses the
MACRO_PATHefinition within the INI file to resolve the location of the macro.

5. The macro is retrieved.

The DB2WWW CGI program now retrieves the macro. All Net.Data macros are
stored in text format.

6. DB2WWW starts the execution of the macro at the start-at section.

The DB2WWW CGI program parses the macro. Any global function calls and
definitions in the macro are processed. Next, the DB2WWW CGI program
goes to the start-at section that was specified on the incoming URL and starts
processing the directives that are in that section.

The start-at section is typically an HTML block that contains statements
describing the initial page to be sent to the browser. For example, for a
database query application, the start-at section may contain HTML that
prompts the user for selection criteria.

7. DB2/400 data is processed with SQL statements.

If there are any SQL statements or Net.Data function calls to other AS/400
system services, those statements or function calls are now processed.

8. Other system services are invoked.

In a typical Net.Data macro, you embed SQL statements or function calls
within HTML statements. Net.Data runs the SQL statement or function call at
the point where it is encountered. The resulting HTML sent to the browser can
include your headings and footings with the merged output of an SQL
statement or function call.

9. The resulting HTML is returned to the IBM HTTP Server for AS/400.

After processing the section and running SQL statements or other functions,
the resulting HTML is returned from the DB2WWW CGI program to the IBM
HTTP Server for AS/400.

10.The resulting HTML is sent back to the browser.

The IBM HTTP Server for AS/400 sends the completed HTML page back to
the browser. At this point, the process is complete. The user can request
another Net.Data macro invocation, which starts the process over again.

1.3.3 How Net.Data Macros are Invoked

Net.Data macros are invoked from conventional URLs. The URL can be entered
directly into the browser's address entry area or can be provided in the form of a
link on an HTML page.

Here is a sample URL used to invoke the Net.Data sample application:
http://myAS400/netdata/nd_parts.mbr/input

AS/400 Internet Application Development Overview 9

There are three parts of the URL that are particularly important for Net.Data:

e Location of DB2WWW CGI program —In the sample URL, the Inetdata part
points to the location of the DB2WWW CGI program. The IBM HTTP Server
for AS/400 expands this part of the URL using the MAPdirective in the HTTP
Server configuration file:

Map /netdata/* IQSYS.LIBINETDATA.LIBIDB2WWW.PGM/*

The final asterisk character for both the source and replacement strings
indicates that any input on the incoming URL following the /netdata/ string is
to be appended to the end of the expanded directory string. The expanded
URL now looks like this:

http:/myAS400/QSYS.LIBNETDATA.LIB/DB2WWW.PGM/nd_parts.mbr/input

* Name of macro to invoke —The string /nd patsmbr identifies the name of
the macro file that the DB2WWW CGI program is to load and process. Since
the Net.Data macro is stored in an AS/400 source file in the AS/400 library file
system, the .MBR suffix is required. If you request a macro that is stored in an
AS/400 IFS directory, the suffix is the file extension. For example, if you store
your Net.Data macros as .TXT files, include the .TXT suffix in the URL you use
to invoke the macro.

« Start-at section in macro —Because a Net.Data macro can be quite long and
include several different sections, you need to indicate to the DB2WWW CGl
program where it is to start processing. In the sample URL, this is indicated
with the /input string. It is conventional, although not required, that you start
processing a Net.Data macro at a section labeled INPUT.

1.3.4 A Sample Net.Data Macro

10

The following sample Net.Data macro shows how you can use Net.Data to
present a prompting page to the requester. Then, you can use input from the
page to retrieve and display database records from the AS/400 system.

Figure 4 on page 11 shows the prompting page that is displayed when the user
initially enters the URL.

Building AS/400 Internet-Based Applications with Java

¥ Parts Retrieval - Netscape
File Edit “iew Go Comrmunicatar Help

| 4 @2 A 4 2 £ S & @
Back Fomward Reload Home Search Guide Print Securty Stop
§ Bookmarks A Goto |http:Nmyas*lﬂDfnetdata,fnd_parts.mbr;’input 'l
I RlnstantMessage [Intermet 0 Lookup [Mew&Cool

Enter *ALL to get all parts from the catalog
or
Enter the part number to get only one part from the catalog

Press the Button to retrieve the parts

Part Number or *ALL |*ALL

Get Parts Information %

This file uses the Net.Data macro ND_PARTS to retrieve data from the AS/400.

E| |Document Dane

Figure 4. Prompting Page Displayed by the Net.Data Macro

The user can accept the default of *ALL for the part number selection or enter a
specific part number and then the Get Parts Information button. The Net.Data
macro responds by querying the database and displaying the page shown in
Figure 5.

File Edit %iew Go Communicator Help
| 4 2 3 4 2 £ o & @
Back Fomvard Reload Home Search Guide Print Securty Stop
| W# Bookmaks & Goto[nttp: fmyasdi0/netdeta/nd_pars.mbr/GETDATA 7]
7| A lnstant Message Internet - Lookup [MewsCoal
Parts File Listing

[PARTNO | PARTDS [PARTQY [PARTPR | PARTDT

[12301 |Quad speed CD ROM Crive [14 [151.38 [1996-01-12

[12302 [SCSIII Cable [25 [30.00 [1995-11-13

[12303 17 inch S¥GA Monitar l6 [1100.75 [1996-03-04

[12304 |Ethernet PCMCIA card [30 [35.30 [1995-12-17

[12305 |Home mouse [47 [25.50 [1996-02-13

[12306 |Gender-bender [75 550 [1951-08-27

[12307 800 dpi flatbed scanner |12 [575.33 [1996-03-01

[12308 100 MHZ Pentium PC |4 [1875.20 [1996-02-24

[12309 |Leserlet Tomer [12 [35.45 [1995-12-17

[12310 [Logo mouse mat [376 [7.25 [1594-11-24

[12311 [Screen wipes [4750 |1.50 [1596-01-1D

[12312 |v34 Modem 58 [120.45 [1996-03-06 i
=] |Document Dane ERT 4

Figure 5. Parts File Listing Generated by the Net.Data Macro

AS/400 Internet Application Development Overview 11

1.3.5 Source Code for the Net.Data Sample Macro

12

The following source code is the complete Net.Data macro used to generate the
prompting page and the parts list shown in Figure 4 and Figure 5 on page 11. If
this is your first look at Net.Data, you probably think this is a strange language.
However, if you glance through the code, you can start identifying different types
of language elements and constructs:

« Comment lines start with the %{ characters and end with the %} characters.
« Code blocks begin with %define , %messagg %functon , and %html.

* SQL statements are embedded in the macro and can include substitution
variables (for example, $(partno)).

« HTML statements are embedded in the macro. Net.Data function calls can
also be included with the HTML to generate additional HTML as the macro is
processed.

Although we do not explain every detail of the macro in this redbook, we look at
some of the sections of the macro so that you have an understanding of how it
works.

0p{. 0,
8

0}
%({ Net.Data macro ND_PARTS -- display Parts in HTML table %}
% %}
Y%define{
DATABASE ="LOCAL"
DTW_HTML_TABLE ="YES"
96}

%message {
-204 :"Error -204: Table not found"
100 :"Warning 100: Record not found" : Continue
+default : "Warning $(RETURN_CODE)" : Continue
-default : "Unexpected SQL error $(RETURN_CODE)" : Exit
9%}

04 /. 0,

of 6}
%{ Function RUNSQL - Called from GETDATA, get a part %}
OU[[)u}

18
%function(DTW_SQL) RUNSQL() {

select * from apilib.parts where partno = $(partno)
9%}

0, 0,

{ }
of ()
%({ Function RUNSQLALL - Called from GETDATA, get all parts %}
(/N8 0, }

of)

%function(DTW_SQL) RUNSQLALL() {

select * from apilib.parts order by partno

9%}

(/N8 0, }

of ()
%({ HTML section INPUT - loaded by initial URL %}
(/N8 0, }

o{ ()

%html (INPUT) {

<HTML>
<HEAD>

<TITLE>Parts Retrieval</TITLE>
</HEAD>

<BODY BGCOLOR="lightgrey">
<FORM action="GETDATA" method="POST">

<CENTER>
Enter *ALL to get all parts from the catalog

Building AS/400 Internet-Based Applications with Java

or

Enter the part number to get only one part from the catalog

Press the Button to retrieve the parts
</CENTER>

Part Number or *ALL

<INPUT TYPE="text' NAME="partno" VALUE="*ALL" SIZE=10>

<INPUT TYPE="submit" NAME="Submit" VALUE="Get Parts Information">
<p>

<HR SIZE="5">

This file uses the Net.Data macro <I>ND_PARTS</I>
to retrieve data from the AS/400.
<p>

<HR SIZE=5>
</FORM>
</BODY>
</HTML>

%%}

o/, 0,
U

6}
%{ HTML section GETDATA - called when Submit button is clicked. %}
0, u{ 0, u}

%html (GETDATA) {

<html>
<center>
<h1>
Parts File Listing
</h1>

%if ($(partno) == "*ALL")
@RUNSQLALL()
Yelse
@RUNSQL()
Y%endif
</center>
</html>

9%}

1.3.5.1 The HTML INPUT Section

Macro processing starts at the INPUT section. This is because the requesting URL
identified the INPUT section as the start-at section (see the URL in Figure 4 on
page 11).

Because this section is an HTML section (indicated by the %html block type
identifier), the macro includes HTML statements that are sent to the browser. The
HTML in the INPUT section is used to format the prompting Web page.

The INPUT section includes three statements that are used to process the
prompting form:

* <FORM action="GETDATA" method="POST">

* <INPUT TYPE="text' NAME="partno" VALUE="*ALL" SIZE=10>

* <INPUT TYPE="submit" NAME="Submit' VALUE="Get Parts Information">
The FORMstatement indicates two operations to the browser:

« Data entered on the prompting Web page is to be sent to the server using the
POSTmethod. The data is available to the server in the STDIN file.

AS/400 Internet Application Development Overview 13

1.3.6 When to Use

* Processing the macro is to continue at the GETDATAsection when the submit
button is clicked.

The INPUT TYPE="text” statement is used to define the input field where the user
requests all parts or a specific part. Note that the name of this field is partno .

The INPUT TYPE="submit' statement is used to define the button that the user
clicks to submit the form for processing. When the submit button is clicked, the
browser refers to the FORMstatement to determine what it should do next.

1.3.5.2 The HTML GETDATA Section

The GETDATAsection is used to retrieve the requested part data and format it for
display. The section includes a mixture of HTML statements and Net.Data
functions.

Because the user can request a listing of all parts or an individual part, the
Net.Data %if construct is used to determine which to use. The value that was
entered by the user is available in the $(partno) variable, which was defined in the
INPUT section on the INPUT TYPE="text" statement.

Depending on the value of the $(parno) variable, the RUNSQLALIor RUNSQIfunction
is invoked. The functions are defined near the beginning of the Net.Data macro.
The important point to note here is that you can mix function calls with the HTML.
The function call can generate additional HTML, which is substituted at the point
of the function call.

1.3.5.3 The RUNSQL and RUNSQLALL Functions

The macro uses two SQL function blocks to process the user request. The
function blocks start with the %functionDTW_SQL) identifier, which means that the
function can contain only SQL statements and Net.Data functions.

The RUNSQIfunction is called if the user requests a particular part. The SQL SELECT
statement uses the $(partno) variable to limit the query to the requested part. If
the user requests a part that is not in the database, the resulting SQL error
message is trapped by the %message block near the beginning of the macro. You
can use the %message block to format your own messages to display to the user,
rather than use the default error messages generated by Net.Data.

The RUNSQLALIfunction is called if the user requests a listing of all parts. In this
function, there is no WHERElause, so there is no limitation on the parts that are
retrieved.

If you examine the code in these sections and the GETDATAsection, look at the
generated Web page shown in Figure 5 on page 11. You see that there are no
HTML statements that define the table. This clearly illustrates one of Net.Data’s
strengths, which is its ability to automatically format queried data into a usable
Web page.

Net.Data

Now that you have seen how Net.Data works on the AS/400 system and reviewed
a sample Net.Data macro, you may wonder when you should consider using
Net.Data. Here are some general guidelines about selecting Net.Data for your
Web application.

14 Building AS/400 Internet-Based Applications with Java

1.3.6.1 You Need a Query Front-End to Run SQL Statements

Net.Data is a superb tool for creating simple HTML forms that act as front-ends to
database queries. Using HTML in which you hand-code the Net.Data macro or
HTML code that you include from an HTML editor of your choice, you can have a
complete macro by simply adding an SQL section to run your query and
automatically display tabular results.

In addition to the default behavior of Net.Data (display SQL results in an HTML
table), you can customize the resulting table or use Net.Data functions to add
other HTML options to the table, such as listbox fields and checkbox fields.

1.3.6.2 You Have Limited or No CGI Programming Support

If you do not have AS/400 programming skills (usually RPG, COBOL or C) or if
you are uncomfortable with using the CGI APIs required to get, parse, and return
data to the browser, you may find Net.Data easier to work with. Net.Data provides
support for retrieving input from the browser and sending generated HTML back
to the browser. You can concentrate on the application, rather than the mechanics
of communicating with the browser.

1.3.6.3 One-Time or Short-Term Need

If the Web page that you need is not expected to have a long useful life, it does
not make any sense to devote the effort required to create a CGI program or
servlet. In this case, you may be willing to trade performance (generally better
with CGI programs and servlets) for ease of creation and implementation
(generally better with Net.Data).

1.4 Common Gateway Interface (CGI) Programming

On most non-AS/400 system Web serving platforms, CGI programming implies
working with scripts written in the PERL language. Although there is an
unsupported version of PERL available for the AS/400 system, most AS/400 CGl
programs are created using ILE RPG, ILE COBOL, or ILE C. Because AS/400
CGI programs are compiled, they typically performs better than interpreted CGI
programs such as Net.Data or PERL scripts.

All compiled AS/400 CGI programs must be invoked from the AS/400 library file
system. CGI programs are created with traditional CRTxcxPGMcommands using the
AS/400 command line.

1.4.1 Why Use CGI Programming

The primary reason to use CGI programming on the AS/400 system is that you or
your staff may already be familiar with one of the AS/400 system programming
languages. For example, if you already know RPG, it is relatively simple to learn
how to incorporate CGI processing techniques into an RPG program, compared
with learning Net.Data or Java.

When you write a CGI program, you have access to all of the AS/400 system
programming tools and constructs with which you are used to working. For
example, you can use native database operations in your CGI programs. You can
also use string handling operations in the language to create the exact HTML
statements that you need. Finally, you can use the same debugging tools that you
work with for other types of application programs to help you quickly put your CGI
program into production.

AS/400 Internet Application Development Overview 15

1.4.2 CGI Processing

16

To work with CGI programs effectively, you must understand the following:

« How a CGI program is invoked in response to a request in the browser
* How form data is sent from the browser to the CGI program

The IBM HTTP Server for AS/400

* How form data is made available to the CGI program while it is running
How HTML generated in the CGI program is returned to the browser

CGil Processin g

Browser http://myAS400/cgibin/hello.pgm

3. Get requested data

1. Request URL

2. CGl program
invoked @
s
CGI-RPG
i—) Sy

4. Other AS/400
services as
requested
6. Returns to Browser
5. Generated HTML Other
Services

IBM HTTP Server for AS/400

g
‘é'

Figure 6. How CGI Processing Works

Assuming that your IBM HTTP Server for AS/400 is properly configured with the
required MAPPASS and EXECdirectives, here is the process that occurs when you
invoke a CGI program. The step numbers correspond to the steps shown in
Figure 6.

1. A CGI program is requested on an incoming URL.

You start a CGI program by entering a URL containing the request in your
browser’s address entry area or you click on a link on a Web page that
contains the request. The request is sent to the IBM HTTP Server for AS/400
along with any form data that was entered on the Web page.

. The CGI program is invoked.

The IBM HTTP Server for AS/400 uses the path on the incoming URL to locate
the CGI program. The program is located based on a MAPPASS or EXECdirective
that matches the /cgibin ~ part of the URL.

Note: You need at least one EXECdirective in your HTTP Server configuration
file to enable CGI programs to be invoked. The EXECdirective may contain the
replacement URL string that points to the library where the CGI program is
located, or a MAPor PASSdirective may contain the replacement URL.

Building AS/400 Internet-Based Applications with Java

For example, the following two directives in the HTTP Server configuration file
may be used to allow the HELLOCGI program to be invoked:

Pass /cgibin/ /QSYS.LIB/CGIPGMS.LIB/*
Exec /QSYS.LIB/CGIPGMS.LIB/

3. The CGI program gets requested data.

Now that the CGI program is invoked, it runs like any other AS/400 program. It
can open files, work with the DB2/400 database, run SQL statements, or call
other AS/400 system services such as other programs, commands or APIs.

At this point, the CGI program is conceptually similar to an AS/400 system
workstation program in that it has received input from the browser form and is
preparing a response to be sent back to the browser.

4. The resulting HTML is returned to the IBM HTTP Server for AS/400.

After constructing the response HTML, the CGI program uses API calls to
send the resulting HTML to the IBM HTTP Server for AS/400.

5. The resulting HTML is sent back to the browser.

The IBM HTTP Server for AS/400 sends the completed HTML page back to
the browser. At this point, the process is complete. The user can request
another CGI program which starts the process over again.

1.4.3 APIs Used for CGI Programming

Section 1.1.2.1, “Input Data from the Form” on page 2 and Section 1.1.2.3,
“Returning a Response to the Browser” on page 4 describe two files, STDIN and
STDOUT,which are used with CGI programs. To review, remember these points:

« Form data sent from the browser is available to the CGI program in the STDIN
file.

* Generated HTML to be sent from the CGI program back to the browser is
written to the STDOUTfile.

If you create an ILE C CGI program, you can work directly with the STDIN and
STDOUTfiles. You do not need to work with the APIs described in this section.

However, if you use ILE RPG or ILE COBOL for your CGI programs, you cannot
directly open files STDIN and STDOUTYou need to use APIs provided with the IBM
HTTP Server for AS/400 to allow your CGI program to have access to the form
data and to send its response.

1.4.3.1 The QHTTPSVR/QZHBCGI Service Program

Starting with 0S/400 V4R3, the IBM HTTP Server for AS/400 product
(5769-DG1) provides a Service Program (*SRVPGN, which includes several APIs
that you use for CGI programming. The service program is QHTTPSVR/QZHBCGIT his
is a complete replacement for the previously available service program
QTCP/QTMHCGI

The QHTTPSVR/IQZHBCGservice program includes the following APIs:

¢ QmhGetEnv—Get Environment Variable
* QmhPutEnv —Put Environment Variable
* QmhRdStin —Read from Stdin

e QmhwrStout —Write to Stdout

* QtmhCviDb—Convert using DB format

AS/400 Internet Application Development Overview 17

* QzhbCgiParse —Parse QUERY_STRIN@nvironment variable or POSTdata
e QzhbCgiltls —Produce Full HTTP Response

If you create new CGI programs on a V4R3 AS/400 system, use service program
QHTTPSVR/QZHBCGIT hat service program includes all of the APIs that were
previously available in QTCPIQTMHCGIplus the new QzhbCgiParse API described in
the following section.

1.4.3.2 The QzhbCgiParse API

Figure 2 on page 3 shows a sample of the form data that is available to your CGI
program. The form data is in file STDIN and is in HTTP encoded format. To work
with the form data, your CGI program needs to perform two tasks:

1. Read the data from the STDIN file.

2. Parse the data so that it can be used in the program. As you can see in the
figure, the form field names are included with the data. Special characters are
encoded using hexadecimal values.

Even though service program QHTTPSVR/QZHBCG@Ncludes an API called QtmhRdStin
to read from STDIN, you no longer need to use that API. Instead, you can use the
new QzhbCgiParse API which both reads from STDIN and parses the data into field
name and field value pairs.

The QzhbCgiParse API uses the six parameters, which are described in Table 1.

Table 1. Parameters Used with the QzhbCgiParse API

Parameter Usage Type Description

Command string Input CHAR(20) A list of flags and modifiers
used to indicate the operation
to be performed by the API. For
example, to read form data
from STDIN, the -POST flag is
used.

Output format Input CHAR(8) Specifies the format of the data
to be returned to the target
buffer. Must be one of these
values:

CGII0100 Free-form format
(not parsed)

CGII0200 CGI form variable
output. Must be used with the
-POST command string.

Target Buffer Output CHAR(*) The output buffer that contains
the POSTdata.

Length of Target Buffer | Input BINARY(4) Length of target buffer.

Length of Response Output BINARY(4) The actual length of the POST

data in the target buffer.

18 Building AS/400 Internet-Based Applications with Java

Parameter Usage Type Description

Error Code Input/Output CHAR(*) The standard AS/400 system
API error structure. See "Error
Code Parameter" in the
System API Reference
manual for additional
information about this
parameter.

1.4.3.3 How the QzhbCgiParse APl Makes Form Data Available

The QzhbCgiParse APl is similar to other OS/400 list APIs. With a list API, the data
is written to a buffer along with information about where the data is located in the
buffer. Using the location information, your program can iterate through the buffer
and retrieve the data.

The advantage of the list processing technique is that variable length data can be
easily accommodated. You do not have to know in advance how long a particular
data element is, which is especially useful for character string data. The location
information in the list not only indicates where each data element begins, but also
how long the data element is. After extracting the data element from the list, it is
available for use in your program.

The API retrieves both the field names and field values. The field names are
based on the field names used on the HTML form. By default, the field names are
returned to your program with the prefix FORM. By appending the prefix, the field
values do not replace current values in your program for fields that have the same
name.

When you use the QzhbCgiParse API, the CGII0200 format is "overlaid" on top of the
target buffer. Your program works with the information available in the CGII0200
format to determine where data elements can be located in the target buffer.

Table 2 shows the contents of the CGII0200 format.
Table 2. The CGII0200 Format

Offset Offset Type Description

Decimal Hexadecimal

0 0 BINARY (4) Bytes returned

4 4 BINARY (4) Bytes available

8 8 CHAR(20) Continuation handle

28 1C BINARY(4) Offset to first variable entry

32 20 BINARY (4) Number of variable entries returned

36 24 CHAR(%) Reserved
BINARY(4) Length of variable entry (see note)
BINARY(4) Length of variable name (see note)
CHAR(*) Variable name (see note)
BINARY (4) Length of variable value (see note)
CHAR(%) Variable value (see note)

AS/400 Internet Application Development Overview 19

Offset Offset Type Description
Decimal Hexadecimal

CHAR(%) Reserved (see note)

Note: These fields are repeated for each variable returned.

1.4.3.4 The QtmhWrStout API

After retrieving form data with the QzhbCgiParse API, your CGI program prepares
its response. The response typically includes many lines of HTML code that must
be sent from the CGI program back to the browser. You need to send a response
since the browser is locked, waiting for the response. If your CGI program does

not respond, the browser eventually times-out so that the user can continue with
other work.

Response HTML is sent from your CGI program to the browser in the STDOUTfile.
Because an ILE RPG or ILE COBOL program cannot directly open and write to
STDOUTCGI programs written in those languages must use the system API
QtmhwrStout to send the response HTML back to the browser.

You can call the QtmhwiStout API as many times as needed to send a buffer of
HTML to the browser.

Table 3 shows the parameter list used with the QmhwrStout API.
Table 3. Parameters Used with the QtmhWrStout API

Parameter Usage Type Description

Data variable Input CHAR(*) Variable containing the data to
write to STDOUT

Length of data variable | Input BINARY(4) Length of the data to be written
to STDOUTMust be greater than
1.

Error Code Input/Output CHAR(*) The standard AS/400 system

API error structure. See "Error
Code Parameter" in the
System API Reference
manual for additional
information about this
parameter.

1.4.4 A Sample RPG-CGI Program

20

To help you compare using CGI programming with the other techniques described
in this manual (Net.Data, Java Servlets), the sample RPG-CGI program uses the
same prompting form and queries the same database as the Net.Data macro.
The user initially requests an HTML file that loads the prompting form, similar to
Figure 4 on page 11. After selecting a part and clicking the submit button, the CGlI
program is invoked. The response sent back to the browser from the CGI program
appears as shown in Figure 5 on page 11.

1.4.4.1 The Initial HTML File

Unlike the Net.Data macro sample, which includes the initial prompting page as
part of the macro, the prompting page for the RPG-CGI program is a separate
HTML file. The HTML code is shown in Figure 7.

Building AS/400 Internet-Based Applications with Java

1.4.5 Source Code

<HTML>
<HEAD>

<TITLE>Parts Retrieval</TITLE>
</HEAD>

<BODY BGCOLOR="lightgrey">
<FORM action="http://myas400/cgibin/cg_parts.pgm" method="POST">

<CENTER>
Enter *ALL to get all parts from the catalog

or

Enter the part number to get only one part from the catalog

Press the Button to retrieve the parts
</CENTER>

Part Number or *ALL

<INPUT TYPE="text" NAME="partno" VALUE="*ALL" SIZE=10>

<INPUT TYPE="submit' NAME="Submit" VALUE="Get Parts Information">
<p>

<HR SIZE="5">

This file uses the CGI-RPG program <I>CG_PARTS</I>
to retrieve data from the AS/400.
<p>

<HR SIZE=5>
</FORM>
</BODY>
</HTML>

Figure 7. HTML Code Used to Display the Prompting Page for the CGI Program

There are three HTML statements used to process the form:
<FORM action="http://myas400/cgibin/cg_parts.pgm" method="POST">

<INPUT TYPE="text' NAME="partno" VALUE="*ALL" SIZE=10>
<INPUT TYPE="submit" NAME="Submit" VALUE="Get Parts Information">

The form statement indicates the following information to the browser:

» Data entered on the prompting Web page is sent to the server using the POST
method. The data is available to the server in the STDIN file.

* The program CG_PARTSs to be invoked. The IBM HTTP Server for AS/400
locates the program using the /cgibin part of the ACTIONURL.

The INPUTTYPE="text' statement is used to define the input field where the user
requests all parts or a specific part. Note that the name of this field is partno .

The INPUT TYPE="submit' statement is used to define the button that the user
clicks to submit the form for processing. When the submit button is clicked, the
browser refers to the FORMstatement to determine what it should do next.

for the CG_PARTS CGI Program

The following source code is the complete ILE RPG program that is used to work
with the input from the HTML prompting page and return the part data as shown
in Figure 5 on page 11.

AS/400 Internet Application Development Overview 21

* CGI-RPG program CG_PARTS -- display Parts in HTML table

* Use externally described data structure for field names

D parts eds

* CGI APIs - from *SRVPGM QHTTPSVR/QZHBCGI

D CGlParse c '‘QzhbCgiParse’
D CGIWrite c '‘QtmhWrStout'

* Parameter values for QzhbCgiParse API

D zhbBuffer s 1024

D zhbCommand s 20 inz(-POST)

D zhbFormat s 8 inz('CGlI0200)

D zhbLen s 9b 0 inz(%len(zhbBuffer))
D zhbRspLen s 9b 0 inz(0)

* CGIl10200 format

*

* d2ybtrtn - bytes returned

* d2bytavl - bytes available

* d2conhnd - continuation handle

* d2offset - offset to first variable entry
* d2count - number of variable entries returned
D ds0200 ds based(ptr)
D d2bytrtn 90

D d2bytavl 9b 0

D d2conhnd 20

D d2offset 9b 0

D d2count 9b 0

D ptr s *

* Parameter values for QtmhWrStout API

D tmhOut s 256
D tmhOutLen s 9b 0 inz(%len(tmhOut))

* API error structure

D QUSEC ds

D qusbprv 9b 0
D qusbavl 90
D qusmsg 7
D qusrsvd 200

* Other constants/variables

D aFtrsize c 4

D aHdrsize c 16

D crif c x'15'

D aHdr s 80 dim(aHdrsize) perrcd(1) ctdata
D aFtr s 80 dim(aFtrsize) perrcd(1) ctdata
D getAllParts s like(partno) inz(-1)

D PartRequest s like(partno)

* HTML constants

D htTdB c ‘<td>'
D htTdE c '<ftd>'
D htTrB c <tr>'
D htTrE c <ftr>'

22 Building AS/400 Internet-Based Applications with Java

* Prototype for INitQUSEC procedure

D InitQUSEC pr

* Prototype for MakeFooter procedure

D MakeFooter pr

* Prototype for MakeHeader procedure

D MakeHeader pr

* Prototype for MakeHTML procedure

D MakeHTML pr
D Stringin 254 value

* Prototype for MakeThIDta procedure

D MakeTbIDta pr
D Stringln 80 value

* Prototype for ParseForm procedure

D ParseForm pr like(partno)

* Prototype for RunSQL procedure

D RunSQL pr
D sqPartno like(partno) value

* Program mainline routine

C callp MakeHeader

C eval PartRequest = ParseForm
C callp RunSQL(PartRequest)

C callp MakeFooter

C movel *on *inlr

* Procedure InitQUSEC
*

* Initialize bytes provided/available for QUSEC

P InitQUSEC b

C eval qusbprv = %len(QUSEC)
C eval qusbavl=0

P InitQUSEC e

* Procedure MakeFooter
*

* Write HTML for the page footer

P MakeFooter b

D N s 50

C do aFtrsize N

C callp MakeHTML(%trim(aFtr(N)))
C enddo

P MakeFooter e

* Procedure MakeHeader

*

* Write HTML for the page header. First line output is

AS/400 Internet Application Development Overview

23

* the Content-Type header, which must be followed by the
* newline character.

P MakeHeader b

D N s 50

C do aHdrsize N

C if N=1

C callp MakeHtml(%trim(aHdr(N)) + crif + crlf)
Cc else

C callp MakeHTML(%trim(aHdr(N)))

C endif

C enddo

P MakeHeader e

* Procedure MakeHTML

*

* Write the generated HTML string to STDOUT

P MakeHTML b

D MakeHTML pi
D Stringln 254 value

*

* Calculate length of HTML string

C eval tmhOut = %trim(Stringln)
C eval tmhOutLen = %len(tmhOut)

* Use system API to write to STDOUT, send HTML to browser

*

C callp InitQUSEC

C callb CGIWrite 99
C parm tmhOut

C parm tmhOutLen

C parm QUSEC

P MakeHTML e

* Procedure MakeThIDta

*

* Make a table data element, write HTML string to STDOUT.

P MakeTblDta b

D MakeThIDta pi

D StringIn 80 value

C callp MakeHTML(htTdB +
C Stringln +

C htTdE)

P MakeTblDta e

* Procedure ParseForm

*

* Get data from incoming request and parse

P ParseForm b

D ParseForm pi like(partno)
D p1 s *

D p2 s *

D lenVE s 9b 0

D lenVN s 90

D lenvVv s 9b 0

24 Building AS/400 Internet-Based Applications with Java

D lenWork s 9b 0 based(p2)

D rtnVar s like(partno)

D varName s 50

D varvalue s 50

D work s 1024 based(p2)

C callb CGlParse 99
C parm zhbCommand
C parm zhbFormat

C parm zhbBuffer

C parm zhbLen

C parm zhbRspLen
C parm QUSEC

C if (qusmsg = *blanks) and
C (*in99 = *off)

* store offset to first variable (part request)

C eval ptr = %addr(zhbBuffer)
C eval pl =ptr+ d2offset

* get length of variable entry

eval p2=pl
eval lenVE =lenWork

[eNe]

* get variable name

eval p2=p2+4

eval lenVN = lenWork

eval p2=p2+4

eval varName = %str(p2 : lenVN)

o000

* get variable value

eval p2=p2+lenVN

eval lenVV =lenWork

eval p2=p2+4

eval varValue = %str(p2 : lenVV)

[eXeNeXe]

* if variable entered on Web page is blank or *ALL,
* setvalue to -1 to request *ALL parts

C if (varValue = *blanks) or

C (varValue = *ALL") or

C (varValue = *all')

C eval rtnVar = getAllParts

C else

C eval varValue = %trim(varValue)
C movel varValue rnVar

C endif

Cc return rtnVar

C endif

P ParseForm e

* Procedure RunSQL

*

* Run SQL for requested part(s)

P RunSQL b

D RunSQL pi

D sgPartno like(partno) value
C if (sgPartno = getAllParts)
Clexec sql

C+ declare c1 cursor for

C+ select * from apilib/parts order by partno

Clend-exec

C else

Clexec sql

C+ declare c2 cursor for

C+ select * from apilib/parts where PARTNO = :sgpartno

AS/400 Internet Application Development Overview

25

Clend-exec
C endif

C if (sgPartno = getAllParts)
Clexec sgl open cl1

Clend-exec

C else

Clexec sql open c2

Clend-exec

C endif

Clexec sqgl whenever not found goto EndOfFile
Clend-exec

*

* Create HTML table rows for part data

*

C dow sglcod =0

C if (sgPartno = getAllParts)

Clexec sql

C+ fetch cl into :partno, :partds, :partqy, :partpr, :partdt
Clend-exec

C else

Clexec sql

C+ fetch c2 into :partno, :partds, :partqy, :partpr, :partdt
Clend-exec

C endif

C callp MakeHTML(htTrB)

C callp MakeTblIDta(%trim(%editc(partno : 'X’)))
C callp MakeThIDta(partds)

C callp MakeTblIDta(%trim(%editc(partqy : ‘Z')))
C callp MakeTblIDta(%trim(%editc(partpr : J)))

C callp MakeTbIDta(%char(partdt)

callp MakeHTML(htTrE)
enddo

C EndOfFile tag

C if (sgPartno = getAllParts)
Clexec sql close c1

Clend-exec

C else

Clexec sql close c2

Clend-exec

C endif

P RunSQL e
** CTDATA aHdr
Content-Type: text/html
<html>
<head>
<title>Query response from CG_PARTS</title>
</head>
<body>
<center>
<h1>Parts File Listing</h1>
<table border cellpadding=2>
<tr>
<th>PARTNO</th>
<th>PARTDS</th>
<th>PARTQY</th>
<th>PARTPR</th>
<th>PARTDT</th>
<ftr>
** CTDATA aFtr
</table>
</center>
</body>
</html>

26 Building AS/400 Internet-Based Applications with Java

1.4.5.1 Understanding the Program Flow
When the program is invoked, it starts in the mainline routine:

* Program mainline routine

C callp MakeHeader

C eval PartRequest = ParseForm
C callp RunSQL(PartRequest)

C callp MakeFooter

C movel *on *inlr

The MakeHeader and MakeFooter routines write the contents of the aHdr and aFtr
arrays to STDOUTBecause the response Web page header and footer contain
HTML that does not change, that HTML can be coded as array elements and
output without further processing.

The ParseForm procedure is invoked to parse data from file STDIN. The part number
that the user entered on the prompting Web page is passed to the RunSQL
procedure.

1.4.5.2 The ParseForm Procedure

The ParseForm procedure calls the QzhbCgiParse API to retrieve the input stream
from file STDIN. After retrieving the input stream, the procedure works through the
returned buffer to extract the value for the first field. That field contains the part
number that the user wants to review or the special value *ALL to review all parts.

In this example, there is only one input field used on the prompting form. The field
is named partno on the prompting form (see the HTML used for the prompting
form in Figure 7 on page 21). The field name in the buffer is FORM_partno, since the
default field name prefix is used when the QzhbCgiParse API is called.

Because the part number is defined as a numeric field in the program, the value
-1 is used to indicate that the user entered the special value *ALL .

Since there is only one field on the prompting form, the code does not iterate
through the buffer. When you work with a form that has multiple input fields, you
can use a program loop to parse all of the fields in the buffer. The CGII0200 format
includes a count field that indicates how many fields are available in the buffer.

1.4.5.3 The RunSQL Procedure

After parsing the input buffer, the program knows which part the user wants to
review. When this procedure is called, the part number is either a specific part
number or the special value -1 to indicate that the user wants to review all parts.

Based on the part selection, one of the SQL declare cursor statements is used.
After opening the selected cursor, the procedure loops and fetches one row at a
time from the result set. As each row is retrieved, the procedures MakeHTMLand
MakeThiDta are called:

* Procedure MakeHTMLis used to write the HTML tags <TR>and </TR> to delimit
the beginning and end of the table row.

* Procedure MakeThiData is used to write the HTML tags <TD>and </TD> and the
actual field values from the row.

AS/400 Internet Application Development Overview 27

The result of using those two procedures is that a complete HTML table row is
written to STDOUTor each of the data rows fetched from the result set.

1.4.6 Summary of the CGI Sample Program

1.4.7 When to Use

As you can see, there is considerably more code required for an RPG CGl
program as compared to the Net.Data sample. As with any programming project,
once you create a working RPG CGI program, you can easily copy code from one
program to another.

The most difficult part of the RPG CGI program is the code that parses the buffer
returned from the QzhbCgiParse API. You may find that after you develop several
programs using this API, you can extract the routines and create your own service
program to generalize and encapsulate the processing required for the API.

CGI Programs

CGI programming, using either ILE RPG or ILE COBOL, is a natural fit for many
enterprises that have AS/400 systems. If you are familiar with ILE RPG or ILE
COBOL, you can easily see how you can substitute HTML forms processing for
traditional green-screen display file applications. The advantage of using HTML
forms is that your application can be run in a browser on any number of client
workstations without needing 5250 emulation support.

CGI programs typically have better performance than equivalent Net.Data
macros. The overhead of invoking the CGI program is less than Net.Data. Also,
because the CGI program is a compiled program, it runs faster than the
interpreted Net.Data macro.

In short, CGI programming is a way to Web-enable your AS/400 system
applications using existing programming skills. You need to learn only a few
additional skills (HTML and the use of the APIs) to create CGI programs.

1.5 Java Applets

Java applets are programs that run inside a Java-capable browser. Browsers that
provide support for applets include:

* Netscape Navigator version 4.04 or later
* Microsoft Internet Explorer version 4.01
e Sun Microsystems HotJava

Because an applet is an executable program, the interaction between the browser
and the server is quite different from the Net.Data and CGI programming
techniques. With Net.Data and CGI programming, the program running on the
server is responsible for generating and sending HTML code to the browser. The
browser simply displays the HTML.

Java applets are delivered to the browser in HTML files that contain a reference
to the applet. Upon arriving in the browser, the applet begins execution. The
applet usually displays what appears to the user as a Web page. However, all of
the user interface elements are contained within the applet itself and are not
rendered by HTML.

28 Building AS/400 Internet-Based Applications with Java

Most importantly, the applet can communicate directly back to the server. When
the server responds, it is up to the applet to display the response. Because the
appletis in control of its user interface elements, it can update them to display the
server response, again without requiring HTML.

1.5.1 The Scripting Alternative

You may have heard of scripting languages that can be used for Web pages. The
two most popular scripting languages are:

« JavaScript, which is syntactically similar to Java but does not provide as many
features as Java

» VBScript, which is a subset of Microsoft Visual Basic

Scripting languages were introduced into browsers by Netscape and Microsoft as
a method of providing more capabilities to Web pages displayed with HTML. The
HTML on a Web page can include several user-interface components, such as
push buttons, check boxes, lists, and clickable links. Scripting can be used to
control animation effects on the page and also to provide edits of user-entered
data.

1.5.1.1 JavaScript

JavaScript can have only limited interaction with the browser host or the server.
For example, JavaScript is limited to storing only small amounts of information in
"cookie" files on the browser host; JavaScript cannot store information in a text
file for example. JavaScript also cannot access any files other than cookies on the
browser host. These limitations are obviously required because of the risk
inherent in running JavaScript code from unknown or untrusted Web servers.

Although JavaScript is generally regarded as "safe", it is possible to disable it in
the browsers that support it. For example, both Netscape Navigator and Microsoft
Internet Explorer let you disable JavaScript.

1.5.1.2 VBScript and ActiveX

Microsoft initially pushed a technology called ActiveX when they introduced
VBScript with their Internet Explorer browser. The idea is that ActiveX
components can be delivered to a Windows PC as part of the Web content
associated with a page. ActiveX components are essentially the same as and
extend other Windows components that are already present on a Windows PC.
By having these additional components in place or delivered as part of the Web
page when required, the VBScript on the Web page can present the viewer with a
more Windows-like page, as opposed to the relatively less active HTML page.

However, the capabilities that give ActiveX its power also make it undesirable for
most Web users. There is nothing to prevent an ActiveX component from
accessing all areas of a user’'s PC. The ActiveX component can possibly damage
files or transmit data from a file to the server without the user’s consent. Microsoft
tried to make ActiveX more acceptable by introducing a concept of digitally
sighed components. When you go to a Web site that tries to download an ActiveX
component along with the HTML, the Internet Explorer browser prompts you to
ask if you want to accept the component. Netscape browsers, which need a
plug-in to provide ActiveX support, simply ignore ActiveX components. Part of the
prompt includes information about the originator of the ActiveX component and
whether the component possesses a signed digital certificate. At that point, you

AS/400 Internet Application Development Overview 29

can accept or reject the component, based on the information that it presents to
you.

Although it is possible to see how ActiveX components can provide you with
greater Web interaction possibilities, ActiveX has not and most likely will not
become a favored technique on the Internet for these reasons:

 ActiveX is currently only supported natively in the Microsoft Internet Explorer
series of browsers. Users of other browsers, such as Netscape Navigator,
cannot use ActiveX at all or need to install a plug-in to provide ActiveX
support.

» ActiveX is a Microsoft Windows-based technology. Web users on other
platforms cannot benefit from ActiveX components.

* Most people are leery of allowing unrequested components to install
themselves on their PCs when they access the Internet.

1.5.2 How Applets are Different from Scripting

30

Java applets are delivered to your browser when you request an HTML file that
includes the APPLETtag. The Web server sends the applet to your browser, which
starts the applet. At that point, the browser acts as a container for the applet,
which has control of the Web page.

There are two important concepts about browsers and applets that you should
understand:

» Because an applet is written in Java, it requires the supporting Java runtime
environment. That environment is provided by the browsers. Because the Java
runtime environment is already on the browser host, the only code that needs
to be transmitted from the server to the browser host is the code required for
the application.

» Within the browser, the applet is constrained to run in the sandbox. The
sandbox is an environment that limits what the applet can do. For example, the
applet cannot access files on the browser host other than cookies. It cannot
start network connections to hosts other than the server from which it was
loaded. And, it cannot examine or change any configuration options on the
browser host. The applet is limited to user-interaction within the browser and
communication with the server.

Because applets are Java programs, they have the benefit of transportability.
Since there is a base Java runtime environment that all browser vendors are
required to implement to claim Java compliance, the applet can be served to Web
users on completely different platforms. In all cases, the applet should appear the
same to the user and should have the same interactions with the user and the
server.

Both Netscape Navigator and Microsoft Internet Explorer provide browser
configuration options to let the user loosen the restrictions imposed by the
sandbox. However, it is up to the user to change the default configuration. Applets
themselves cannot override the security that is imposed by the sandbox.

Building AS/400 Internet-Based Applications with Java

1.5.3 Applet Processing

One of the most important features of applets for AS/400 system developers is
the capability of the applet to interact with the AS/400 system. When you create
an applet, you can include Java classes from the AS/400 Toolbox for Java that let
you access objects on the AS/400 system. For example, you can:

« Get records from the AS/400 system database using SQL statements or
record-level access techniques.

« Call programs or invoke commands on the AS/400 system.

« Send and receive entries from data queues on the AS/400 system.

Applet Processin ¢

Browser http://myAS400/applet/Parts.html
p/fmy appie m -

Other
Servlces
4. Database, other AS/400

services asre quested

3. Applet requests
o) 1. Request URL AAS/400 data/services

=

2. HTML with APPLET
tag sent to browser

P ———

5. Response sent
back to A pplet

6. Applet dis plays res ponse,
handles user interaction

IBMHTTP Server for AS/400

Figure 8. Applet Processing

Assume that your IBM HTTP Server for AS/400 is properly configured with the
required MAPand PASSdirectives and that your browser has Java support enabled.
Here is the process that occurs when you invoke an applet. The step numbers
correspond to the steps shown in Figure 8.

1. An HTML page that contains an APPLET tag is requested on an incoming
URL and returned to the browser.

You start an applet by requesting an HTML file that contains an APPLETtag. As
the page is sent to your browser, the Java classes that are used in the applet
are also sent to the browser. After receiving the applet, the browser starts it
and passes control to the applet.

2. Arequest is sent from the applet to the AS/400 system.

Once the applet has started, you interact with it as you would with other forms
displayed in the browser. The applet may require that you enter data or make
selections. You usually have one or more buttons in the applet that you can
click. The buttons are not associated with a FORMstatement in an HTML form,
but rather are used to invoke methods in the applet’'s Java code. It is up to the
Java code in the applet to use methods to send requests to the AS/400
system.

AS/400 Internet Application Development Overview 31

3. The AS/400 system services the request from the applet.

The request from the applet is serviced the same as other types of program
requests running on the AS/400 system. For example, if the request was to
create an SQL result set, the SQL processor is invoked to query the AS/400
system database.

4. The response is sent back to the applet.

After the AS/400 system processes the request, the results of servicing the
request are sent back to the applet. The results are in the format that pertains
to the request. For example, an SQL request generates a result set. A data
gueue read operation generates a packet of bytes that contains the data
gueue entry. The applet receives the results using the Java class and methods
appropriate to the request.

5. The applet displays the response data.

Once the results are available to the applet, it can display those results using
any of the user interface components that were included in the applet when it
was designed. The display is not limited to HTML only. After formatting and
displaying the results, the applet is available for additional user interaction,
which may include additional requests to the applet for more data from the
AS/400 system.

1.5.4 How Applets are Different from Net.Data and CGI Programs

Earlier in this chapter, you learned how Net.Data and CGI programs can be used
with the AS/400 system. The examples used SQL statements to query the
AS/400 system database and return results to the browser in HTML forms. In
each case, you worked with an initial HTML page that prompted you for the query
to run, invoked the query on the AS/400 system, and received an HTML page in
response to the query.

With applets, you do not need to invoke a program on the AS/400 system.
Instead, the Java classes in the applet go more directly to the AS/400 system
resource with which you want to work. The results of your request return directly
to the applet, rather than returning as an HTML page. Because the applet is not
limited to working with HTML as the browser is, the applet can display the results
using any number of visual components, not only those supported by the browser
in HTML.

An applet can also be used for the initial editing of user input before sending a
request to the AS/400 system. If you wanted to edit user input when using
Net.Data or CGl, you need to include scripting (JavaScript or VBScript) on your
Web page. The alternative is to send the user input to the Net.Data macro or CGI
program, which then performs edits and returns error notifications as required.

1.5.5 A Sample Applet

32

Figure 9 on page 33 shows a sample applet in the Netscape Navigator browser.
At this point, the applet has sent a query request to the AS/400 system for the list
of parts and formatted the returned part data into a multicolumn listbox.

When the applet starts, the Netscape Navigator browser displays the Java
Security message box shown in Figure 10 on page 33. Even with the sandbox in
place, the browser gives you the chance to deny the applet from starting on your
computer.

Building AS/400 Internet-Based Applications with Java

PartsVYiew - Netscape
File Edit %iew Go Communicator Helg

-

e @ ‘a 4} 2 =5 & m
Back Reload Horme Search MNetscape Frint Securty
¢ Bookmarks £ Location: |ﬁ|e;;;;C|;tegﬂ 1 /PartsWiew html vl &7 What's Related

e

22 Instant Message Internet 7 Lookup [MNew&Cool

PartsView

-

Description Cluantity
12301 |Quad speed CD ROM Drive 14 151.38 |1998-09-01 | =~
12302 [SCEII Cahle 25 30,00 1895-11-13
12303 (17 inch SWGA Monitor B 1100.75 |1996-03-04
12304 |(Ethernet PCMCIA card 30 85.30 1895-12-17
12305 |Home mouse 47 24.40 1996-02-18
12306 |Gender-hender 75 8.a0 1851-08-27
12307 |600 dpiflathed scanner 12 8Y5.33 |[1996-03-01
12308 (100 MHZ Fentium PC 4 18745.20 (1996-02-24
12309 |LaserJet Toner 12 89.45 1895-12-17
12310 [Logo moudse mat 3T7h 7.28 1994-11-24
12311 |[Screenwipes 4740 1.50 1996-01-10
12312 |34 Modem a8 120.45 [1996-03-06 ﬂ

Get all parts

b

Applet views PartsWiew running i e D L

Figure 9. PartsView Applet Running in the Netscape Browser

M. Java Security =] 3

E Eg JawaSecript or a Java applet from Unsigned classes from local hard
disk' is requesting additional privileges.

Granting the following is high risk:

Contacting and connecting with other cotnputers over a network 3

[Remember this decision

Identity werified by

Certificate GrantN Drenry | Help |

Figure 10. Java Security Message Displayed under Netscape

AS/400 Internet Application Development Overview 33

1.5.6 When to Use Applets

Applets are useful when you need to work with AS/400 system resources and you
do not want to create Net.Data or CGI programs on the AS/400 system. You can
also choose to work with applets because of the greater control you have in
designing the user interface and interacting with the user at runtime.

Another reason to use applets is because you can use the industry-standard Java
language, rather than the proprietary AS/400 system Net.Data or CGl
programming languages. Although the Java classes to access the AS/400 system
are proprietary, the classes are readily usable by any Java programmer with basic
knowledge of the AS/400 system.

1.5.7 Applet Development

Rather than review the applet code and development process at this point, read
Chapter 3, “Introduction to AS/400 Applets” on page 51 in this redbook. That
chapter presents a complete overview of the applet development process and
describes different options you have for hosting and deploying applets.

1.6 Java Servlets

Starting with 0S/400 V4R3, an exciting new technique is available for AS/400
system Web serving—Java servlets. Based on specifications and Java classes
developed by Sun Microsystems, Inc., Java servlets provide an alternative to
Net.Data, CGI programming, and applets. Using servlets, you can parse requests
from HTML forms and use simple print and printn methods to send response
HTML back to the browser.

Servlets run entirely on the AS/400 system as part of the IBM HTTP Server for
AS/400. Because servlets run on the AS/400 system, they have ready access to
the AS/400 system database and other system resources.

1.6.1 Why Use Servlets

34

There are several reasons why you should consider using servlets for your
AS/400 system Web applications:

* Few browser dependencies

One of the problems that is described in Section 1.5, “Java Applets” on page
28, is the differences between browsers. This includes differences in versions
from the same companies. Since Java servlets are primarily tasked with
generating and returning HTML as their output, servlets can be used with
"least common denominator” browsers. With applets, you need several
prerequisites in place in the browser to ensure that your applet runs correctly.

« Uses industry-standard Java

The AS/400 system has traditionally been perceived as a proprietary platform,
which limited its appeal as a choice for Web serving. Although using Net.Data
and CGI programming techniques for Web serving is fine for AS/400 system
users who have those skills, there was little to attract Java programmers to the
AS/400 system as a Web serving platform. With Java servlet support, the
AS/400 system is now in the mainstream as a powerful Web serving system. It
is far easier to present the traditional AS/400 system strengths, such as its

Building AS/400 Internet-Based Applications with Java

integrated database and security when there is a widely accepted
programming language available for working with the system.

« Handles form parsing, GET/POST processing, and STDOUT processing

In comparison to CGI programming, Java servlets are much easier to work
with. Most of the work in CGI programming is concerned with getting the input
data from the Web form, parsing the data into discrete field name and value
pairs, and writing response HTML back to STDOUT. In contrast, Java servlets
provide two simple input/output stream objects to get the data and write the
response, and two simple methods to parse field name/value pairs.

* Runs in a multi-threaded pool as a prestarted thread

One side effect of having a popular Web site is that the response time of your
AS/400 system may be adversely affected. When a request for Net.Data or
CGl processing is received at the AS/400 system, a new job is started.
Because Net.Data and CGI programs are typically short-lived, there is little
that can be done to optimize their performance, since most of the work
associated with the programs is in job initiation and termination. In contrast,
Java servlets take advantage of the multi-threaded job capability available with
the V4R3 version of the IBM HTTP Server for AS/400. In fact, your servlets
can optionally be started when the IBM HTTP Server for AS/400 is started, so
that they are available and waiting for incoming requests. Servlets also do not
necessarily end when they are done servicing a request. They remain active
and can service additional requests as they arrive at the AS/400 system. If you
create an equivalent Net.Data or CGI application and a Java servlet, you
typically see much better response time with the Java servlet.

1.6.2 Servlet Processing

Servlet processing is similar to CGI processing. The primary difference is that the
servlet can be prestarted in the multi-threaded job pool so that there is no
start-up overhead when it is invoked.

If a servlet is not currently active when it is invoked, you incur the start-up
overhead on its first usage. After that point, the servlet is available for subsequent
invocations.

AS/400 Internet Application Development Overview 35

36

Senvlet Processin g

3. getParameterNames, getParameterValues
methods used to parse forminput

http://myASA400/senviet/Parts.html

2. doGet or doPost
method used -
1. Serviet invoked from request DB2/400

URL or FORM staterrent
Other
Services

N

4. Senvet performs
Deatabase, other AS/400
services as requested
7. Browser displays resuiin - g h
HTMLweb page 5. Response HTML generated
with HitpServietResponse
6. Response sent
back to browser

IBM HTTP Server for AS/400

Figure 11. Servlet Processing

The following steps describe how a servlet is invoked, how it services an
incoming request, and how it returns results to the browser. The numbers
correspond to the steps shown in Figure 11.

1. The Servlet is invoked from a URL or FORM statement.

The servlet is identified either in a URL that you type into the browser or click
as a link. Or, it can be specified on an HTML FORMstatement that is used when
a SUBMITbutton is clicked. The request is sent using the HTTP protocol to the
IBM HTTP Server for AS/400, which identifies the servlet to invoke. If the
servlet is not currently active, the IBM HTTP Server for AS/400 starts an
instance of the servlet in the multi-threaded job pool reserved for Java
servlets. If the servlet is currently active, the IBM HTTP Server for AS/400
passes control to the servlet.

2. The Servlet uses the doGet or doPost method to read form data.

The Java servlet APl includes the doGet and doPost methods that correspond
to the HTML METHOD="GET'and METHOD="POSTtechniques of sending data from
the browser to the IBM HTTP Server for AS/400. You do not have to do
anything in your servlet program to determine which method to use. The
servlet chooses the correct method (doGet or doPost) depending on the METHOD
used in the form.

Regardless of the method used, the input data is available to the servlet in the
HitpServietRequest input stream.

3. The getParameter methods are used to parse field name/value pairs.

Now that the form data is available in the HitpServietRequest stream, it can be
parsed into field name/value pairs that correspond to the data fields used on
the HTML form. The Java servlets API includes the getParameterNames and
getParameterValues methods to retrieve the list of field names and values from
the input stream. After retrieving the name/value pairs, the values are
available in enumerations within the servlet.

Building AS/400 Internet-Based Applications with Java

4. The Servlet processes database and other requests

At this point, all of the data from the form is available to the servlet. The
servlet can now run the functions that are required to service the request. For
example, the servlet may run an SQL query against the AS/400 database, or
use other Java classes in the AS/400 Toolkit for Java to work with other
AS/400 system resources.

5. The response HTML is generated.

The servlet can start generating response HTML to send to the browser at any
point. Typically, the servilet generates HTML headers, followed by the actual
form heading, then one or more lines of data, and finally a page footer.

The Java servlets API provides the HitpServietResponse output stream to
transport generated HTML statements from the servlet back to the browser.
You create well-formed HTML statements as simple strings, using
concatenation as necessary to build a string of HTML tags and the response
data. To actually send the HTML, you simply use the print or printn ~ methods
on the HitpServietResponse stream object.

6. The IBM HTTP Server for AS/400 sends the response HTML to the
browser.

As the HTML is written in the servlet, it is sent from the IBM HTTP Server for
AS/400 to the browser. The STDOUT file is used, as is common for all server
to browser communication.

7. The resulting Web page is displayed in the browser.

The browser now displays the resulting Web page. Because the page is
composed of standard HTML elements, there are no special requirements or
security considerations for the browser.

1.6.3 A Sample Servlet

The servlet sample developed for this redbook performs the same function as the
Net.Data macro described in Section 1.3, “Net.Data” on page 6 and the RPG-CGlI
program described in Section 1.4, “Common Gateway Interface (CGl)
Programming” on page 15.

Figure 12 on page 38 shows the initial prompting form that is displayed when you
start the servlet application. You enter the part number selection and click the Get
Parts Information button. When you click the button, the FORMstatement in the
HTML form invokes the servlet on the AS/400 system.

AS/400 Internet Application Development Overview 37

38

. Parts Retrieval - Netscape
File Edit Yiew Go Comrmunicator Help

<« » A &4 = <+ & @

Back Forward Reload Home Search Netscape Print Security St

¢ Bookmarks & GDtD'Ihnp {¢myas400/zample/Parts.html -| 7 What's Related

5 & Instant Message Intermet 5 Lookup [Mew&Cool

Enter *ALL to get all parts from the catalog
or
Enter the part number to get only one part from the
catalog
Press the Button to retrieve the parts

Part Mumber or *ALL

I*J\.LL

Get Parts Information NJ
Loy

This file uses the servlet PartsServiet to retrieve information from the AS/400

=l |Docurment Done

Figure 12. Servlet Example Prompting Page

The servlet uses your part number selection to run an SQL query on the Parts
database. After running the SQL statement, the servlet iterates through the result
set. For each part retrieved, the servlet generates the HTML to display the part
data in an HTML table. Figure 13 on page 39 shows the resulting table that the
servlet returns to the browser in response to the query.

Building AS/400 Internet-Based Applications with Java

1.6.4 When to Use

¥ Parts Retrieval - Netscape
File Edit “iew Go Communicator Help

<« =2 A 4 a 3 & B
Back Fomvard Reload Home Search Metscape Print Security Ejin]a]
W Bookmarks & Go i [t/ /myas400/servlet/PartsSenet v|@'What‘sRelated
i Rlnstant Message Internet (Lookup [New&Cool

-

Here are the results of your query:

[Number | Description [Quantitiy| Price | Date
[12301 |Quad speed CDROM Drive | 14 [$ 151 [1993-09-01
[12302 [SCSIII Cable | 25 | $30 [1995-11-13

[12303 [17 inch 5VGA Monitor
[12304 [Ethernet PCMCIA card
[12305 |Home mouse

[12306 [Gender-bender

[12307 |600 dpi flatbed scanner
[12308 [100 MHZ Pentium PC 4 $1875/1996-02-24
[12309 |Laserdet Toner 12 | $389 [1995-12-17

| 6 |$1100[1996-03-04

|

|

|

|

|

|
[12310 |Logo mouse mat | 376 | $7 [1994-11-24

|

|

|

|

|

|

[

30 | $85 [1995-12-17 —
47 | $25 [1996-02-18
75 | $8 [1951-08-27
12 [$875 [1996-03-01

[12311 [Screen wipes 4750 | $1 [1996-01-10
[12312 |[v34 Modem 58 | $ 120 [1996-03-06
[12313 [Games joystick 32 | $42 [1995-11-12
[12314 [3m printer cable 20 | $12 [1996-01-23
[12315 |anti-glare screen 45 | $34 [1996-02-27
[12316 |Quad speed CD ROM Drive | 14 [$ 151 [1996-01-12 5

[1ami= [rrmmT 11 ol 1= [# a7 [ianc 44 10

E| \Document; Dane

Figure 13. Servlet Example Output

Servlets

If you have not yet started creating AS/400 Web serving applications, seriously
consider adopting Java servlets as the technique you will use, even if you do not
yet use Java. In fact, learning Java by working with servlets is ideal, since
servlets are basically batch processes that do not have to deal with user interface
issues found in client-side programs.

There are only a few classes and methods that you need to work with to create
functional servlets. As with Net.Data and CGlI, you may find that most of the work
involved in creating a servlet is actually spent creating HTML code.

If you anticipate having a lot of activity on your IBM HTTP Server for AS/400 for
dynamic Web pages, consider using servlets as opposed to the other techniques.
Servlets allow your Web site to scale-up much better than the other server-side
techniques.

In summary, Java servlets are currently the best alternative for Web serving from
the IBM HTTP Server for AS/400. They provide an easy to learn and use,
industry-standard, and highly scalable architecture on which to build your AS/400
system Web presence.

AS/400 Internet Application Development Overview 39

1.6.5 Servlet Development

Rather than review the servlet code and development process at this point, read
Chapter 4, “Introduction to AS/400 Servlets” on page 159 in this redbook. That
chapter presents a complete overview of the servlet development process and
describes the different options you have for hosting and deploying servlets.

40 Building AS/400 Internet-Based Applications with Java

Chapter 2. IBM HTTP Server for AS/400

Although IBM has included a no-charge HTTP server with OS/400 since V3R2
and V3R7, the IBM HTTP Server for AS/400 introduced with OS/400 V4R3 is a
significantly different product than the previous versions. Some of the changes
are immediately apparent, such as the product name and number, and the
browser-based administration program. From the point of view of an AS/400
system Web programmer, the most important enhancements include:

e Support for the HTTP 1.1 protocol
» Support for proxy, cache, and local memory cache for selected Web pages

« Greatly improved CGI programming techniques, including Java CGl, PERL,
REXX, and new APIs for traditional AS/400 system programming languages

 Persistent CGl, which enables a CGI program to remain active and span
multiple Web pages

« Integration of Secure Sockets Layer (SSL) support, Certificates and Digital ID
authentication

* Integration of the WebSphere Application Server for AS/400, which provides
support for Java servlets on the AS/400 system

This chapter provides an overview of those enhancements. You can find
information on how to install, configure, maintain, monitor, and program the I1BM
HTTP Server for AS/400 in the following publications:

» HTTP Server for AS/400 Quick Beginnings, GC41-5433
e HTTP Server Webmaster’s Guide, GC41-5434

2.1 Product Packa ging

© Copyright IBM Corp. 1999

Prior to OS/400 V4R3, the HTTP server provided with OS/400 is known as the
Internet Connection Server (ICS). It is part of the TCP/IP Connectivity Utilities
(5769-TC1) Licensed Program Product (LPP). A chargeable companion LPP, the
Internet Connection Secure Server (ICSS, 5769-NC1 or 5769-NCE) is available
for OS/400 V4R1 and V4R2 to provide SSL support.

Starting with V4R3, the HTTP server provided with OS/400 is called the IBM
HTTP Server for AS/400. The HTTP Server is provided as a separate no-charge
LPP (5769-DG1). SSL support is provided in the no-charge Cryptographic
Access Provider LPP (5769-AC1, 5769-AC2 or 5769-AC3).

Another packaging change is the separation of the Digital Certificate Manager
from the Web server itself. In VAR3, the Digital Certificate Manager is installed as
option 34 of the base operating system (5769-SS1). By installing the Digital
Certificate Manager as a separate component, other AS/400 system servers can
use its services without requiring that the HTTP Server component be installed.

Table 4 on page 42 is a cross reference between pre-V4R3 and V4R3
components. When you install 0S/400 V4R3 on your AS/400 system, you can
either manually install the new LPPs for the HTTP Server, Cryptographic Services
and Digital Certificate Manager. Or, you can use the "Prepare for install" option

41

on the GOLICPGMmenu to identify and install the new components from your

installation media.

Table 4. Summary of 0S/400 Pre-V4R3 and V4R3 HTTP Server Components

0S/400 Pre-V4R3

0S/400 V4R3

Internet Connection Server (ICS), part of
TCP/IP Connectivity Utilities (5769-TC1)

IBM HTTP Server for AS/400 (5769-DG1)

Internet Connection Secure Server (ICSS),
chargeable LPP

5769-NC1 — US/Canadian version
5769-NCE — Export version

Cryptographic Access Provider, no-charge
LPP

5769-AC1 — 40 bit strength
5769-AC2 — 56 bit strength
5769-AC3 — 128 bit strength

Note: The installation media includes only
one of these providers, based on the
country where the AS/400 system is
located.

Digital Certificate Manager, part of ICS
(5769-TC1)

0S/400 Digital Certificate Manager
(5769-SS1, option 34)

All HTTP server tasks run in subsystem
QSYSWRK.

All HTTP server tasks run in subsystem
QHTTPSVR.

2.2 HTTP 1.1 Protocol

The IBM HTTP Server for AS/400 implements the HTTP version 1.1 protocol.
This is the current version of the HTTP protocol.

Note

You can find more information about the HTTP 1.1 protocol and other Internet

standards at the Web site for the Internet Engineering Task Force:

http://www.ietf.org

Two of the more significant enhancements supported by the IBM HTTP Server for

AS/400 are:

* Persistent connections
 Virtual hosts

2.2.1 Persistent Connections
When you enter a URL into your browser’s address line or click on a link on a

42

Web page, you open a connection between your browser and the HTTP server.
Prior to the availability of persistent connections, each file referenced on the Web

page was retrieved using a separate connection. This type of retrieval is

tremendously costly for the HTTP server and the network since there is overhead

required to establish and terminate each connection.

Persistent connections are the default behavior for an HTTP server that

implements the HTTP 1.1 protocol. Persistent connections provide the following

advantages:

Building AS/400 Internet-Based Applications with Java

2.2.2 Virtual Hosts

» Because there is less opening and closing activity, CPU and memory
utilization on the HTTP Server is reduced.

* Network congestion is minimized because of the fewer number of TCP/IP
packets that are required to request the files.

« HTTP requests and responses can be pipelined on the connection. Using
pipelining, a client can make several requests to the server without waiting for
the responses to the requests.

In previous versions of the AS/400 system HTTP server, the only way to host
multiple Web sites on the AS/400 system and use the default HTTP port (80) is to
use different communications adapters in the AS/400 system. If you want to host
multiple Web sites through the same communications adapter, only one of the
sites can use the default HTTP port. All other Web sites need a separate port
assignment. To request those Web sites, the unique port assignment is included
as part of the requesting URL.

Starting with the V4AR3 IBM HTTP Server for AS/400, you can enable virtual
hosting. This allows you to host any number of Web sites through one
communications adapter. With virtual hosting, you do not need to assign a unique
port to each Web site.

Virtual hosting is useful if you need to provide multiple "top-level" URLs for your
Web sites or if you are providing Internet Service Provider (ISP) services to
clients.

2.3 Proxy, Cache, and Local Memor y Cache

The IBM HTTP Server for AS/400 can be configured as a non-caching or caching
proxy server. When used as a non-caching proxy, the primary benefit of enabling
proxy services is that the IP addresses used on your internal network are not sent
out of your network. The proxy service forwards the request from your internal
network using the IP address of the proxy server, not the address of the original
requester. When the proxy server receives the response, it forwards the response
to the original requester.

2.3.1 Proxy Caching

With caching enabled, the proxy server can act as a high-speed local store of
previously accessed Web pages. For example, if you frequently access the same
set of Web pages from one or more sites, it may be advantageous to activate the
caching feature. The retrieved Web page is stored locally on your AS/400 system.
Any subsequent accesses to the page occur at LAN speed, rather than Internet
speed.

Web pages can be encoded with a "no-cache" attribute or a specific expiration
date. You can also configure the IBM HTTP Server for AS/400 proxy service so
that it periodically performs "garbage collection" to remove expired files from the
cache. The cache is located in the QOpenSysfile system, which provides support
for case sensitivity in file names. You configure the maximum size of the cache
(which uses AS/400 system disk storage), protocols and URLs to cache or not
cache.

IBM HTTP Server for AS/400 43

2.3.2 Proxy Logging

Another use of the proxy service (with or without caching) is to log client
requests. Some of the data available includes:

» Client IP address
« Date and time

* URL requested

e Byte count

* Success code

2.3.3 Local Memor y Cache

A proxy cache is traditionally most beneficial to clients on your network since it
lets you store files that were retrieved from other Web sites. You can provide a
caching service for files on your site using the local memory cache configuration
options.

To use a local memory cache, you identify an amount of memory to allocate and a
set of files to be cached. When the IBM HTTP Server for AS/400 is started, the
files are read into the local memory cache, up to the limit of the amount of
memory allocated or the limit of the number of files that you allow to be cached.
When a request is received at your IBM HTTP Server for AS/400, the local
memory cache is checked first to determine if it has a copy of the requested file. If
so, the file is served from the cache, which is significantly faster than if the file is
retrieved from disk storage.

2.4 CGI Programmin g

As described in Chapter 1, there are several techniques available to you to create
Common Gateway Interface (CGI) programs for use with the IBM HTTP Server for
AS/400. The VAR3 IBM HTTP Server for AS/400 provides the following
enhancements for GCI programming:

« Java and REXX CGl
* Non-parsed headers CGl
¢ QzhbCgiParse API

2.4.1 Java and REXX CGlI

44

In addition to traditional AS/400 system languages used for CGI programming
(ILE RPG, ILE COBOL and ILE C), you can now use Java and REXX to create
CGI programs. Java, in this case, means Java applications that use AS/400
system support for working with files STDIN and STDOUTor the CGIl APIs, not Java
servlets. Support for Java servlets is provided with the WebSphere server, which
is an add-on to the IBM HTTP Server for AS/400.

Building AS/400 Internet-Based Applications with Java

— Note

Perl version 5.003 is also available for the AS/400 system. Although IBM
provides a version of Perl ported to the AS/400 system, IBM does not provide
any support for the Perl environment or Perl script execution problems on the
AS/400 system. You can download the Perl execution environment and related
files in the Web Builder's Workshop area from the Web site at:
http://www.as400.ibm.com/techstudio.

2.4.2 Non-parsed Headers CGI

Most CGI programs generate response headers and HTML and return the data to
the requesting client through the IBM HTTP Server for AS/400. However, there
may be occasions when you want to generate a response in your CGI program
and return it directly to the requesting client.

If the name of your CGI program begins with nph_ or nph-, its output is not
converted by the IBM HTTP Server for AS/400. You are responsible in your
non-parsed header CGI program for creating a complete HTTP response
message, including the HTTP return code and status information.

2.4.3 QzhbCgiParse API

Prior to the VAR3 IBM HTTP Server for AS/400, CGI programs written in ILE RPG
or ILE COBOL needed to use several APIs to work with HTML form data:

* QmmhGetEnv to get the value of the QUERY_STRIN@nvironment variable and other
environment variables

* QmhRdStn to read data from file STDIN for a POSTrequest

« QmhCviDb to parse data from the QUERY_STRIN&nvironment variable or the data
retrieved from STDIN

Although the QtmhGetEnv and QmhRdStin APIs are easy to work with and relatively
straightforward, the QtmhCviDb API is somewhat cumbersome to use.

The IBM HTTP Server for AS/400 provides the QzhbCgiParse API, which combines
the functionality of the three Qmh APIs into one. Some of the features of this API
include:

» Support for both GETand POSTdata

« Parses form data into field name/field value pairs

« Uses a list technique similar to other AS/400 system APIls. Rather than
determine the format of the data to be retrieved in advance (that is, while
coding the CGI program), you can simply call the APl and walk through the list
of retrieved values. If your HTML form changes, you do not necessarily need
to recode and recompile your CGI program to accommodate the changes.

2.5 Persistent CGI

One of the most significant enhancements in the VAR3 IBM HTTP Server for
AS/400 for CGI programs is the introduction of persistent CGI, or persistency. To
understand the benefit of persistency, you can compare it with what happens in a
non-persistent CGI application:

IBM HTTP Server for AS/400 45

1. The requester makes entries on an HTML form and clicks a submit button on
the form. The submit button has an associated URL that invokes a CGlI
program on the HTTP Server. A connection is created between the HTML form
and the CGI program.

2. The CGI program is invoked and retrieves the form data (using either the GET
or POSTmethod). The CGI program processes the data, prepares a response,
and returns the response to the requester using the STDOUTile.

3. After completing the output to STDOUTthe connection between the requester
and the CGI program is terminated when the end-of-file indication is sent
through STDOUTAL this point, the CGI program ends, since there is no way for
any subsequent requests to reconnect to that instance of the CGI program.

4. Subsequent requests start at step 1 again. A new connection must be
established between the HTML form and the HTTP Server.

Although this scheme is fine for HTML forms that can be processed in a single
invocation of a CGI program, most Web transactions involve more than one HTML
form or multiple interactions with the same form.

For example, a "shopping cart" application is a form that is continuously added to
as the requester selects items from other Web pages. As items are added to the
cart, the list of items must be maintained somewhere because in a non-persistent
application, there is no program running on the HTTP Server that can retain the

list. Some solutions for maintaining this state information include temporary files
on the HTTP Server or "cookies" that are written to the requester’s local storage.

2.5.1 How Persistent CGl Works

46

In contrast, a Web application that uses persistent CGI does not need to rely on
temporary storage schemes to maintain state information. A persistent CGI
application may work as described in the following series of events:

1. The requester fills in an HTML form and clicks the submit button. The
requesting URL invokes a CGI program. The connection between the
requester and the HTTP Server is now active.

2. The CGI program prepares output to send back to the requester. However, a
special header record (Accept-HTSession) is returned to the requester along
with a "handle" to identify the persistent CGI program that services the
requester.

3. Output from the CGI program is sent to the requester in file STDOUTAs with
non-persistent CGlI, the connection between the requester and the CGl
program is terminated after end-of-file. However, the CGI program itself
remains active, since the HTTP Server can identify and use it for additional
requests from the same requester.

4. Subseguent requests send the handle along with data from the form. The
HTTP Server recognizes the incoming request as belonging to the particular
instance of the CGI program. The new connection between the requester and
the HTTP Server is linked to the already executing CGI program. Because the
program never ended, any internal data structures that it had created on
previous requests are still available.

Building AS/400 Internet-Based Applications with Java

2.5.2 Controllin g Persistent CGI

Since there is no way to guarantee that a requester completes a transaction, the
IBM HTTP Server for AS/400 includes directives that let you specify the amount
of time a persistent CGl application can be inactive before being terminated. The
time-out value can be specifed at both the server level and the application level
so that you can allow some applications more time to complete.

No indication is sent to the requester when the timeout is reached. Also, any
database and file processing is your responsibility. For database applications
where changes occurred, you typically want to perform a ROLLBACKoperation when
a persistent CGI timeout occurs.

2.6 Cryptographic Support, Certificates, and Di gital ID

Prior to the V4AR3 IBM HTTP Server for AS/400, cryptographic support for the
HTTP Server was provided in the Internet Connection Secure Server (ICSS) LPP
(5769-NC1 and 5769-NCE). ICSS is a chargeable item and is required if you
need to provide SSL support and server authentication.

2.6.1 Cryptographic Access Provider

Starting with V4R3, IBM includes the Cryptographic Access Provider as a
no-charge LPP with OS/400. There are three versions of the Cryptographic
Access Provider:

« 5769-AC1 provides 40-bit encryption
» 5769-AC2 provides 56-bit encryption
* 5769-AC3 provides 128-bit encryption

Only one version is shipped with your OS/400 installation media. The version
shipped is based on the country where the AS/400 system is installed to comply
with United States export laws for computer encryption products and local laws of
the country.

By providing the Cryptographic Access Provider along with OS/400, it is now
possible to use the support provided by this LPP even if the IBM HTTP Server for
AS/400 is not installed.

2.6.2 Digital Certificate Mana ger

Another change introduced with OS/400 V4R3 is the Digital Certificate Manager
option. This is installed as option 34 of the OS/400 base installation.

Digital Certificate Manager provides support for generating and maintaining
digital certificates. Certificates are used for both server and client authentication.
Although you can generate certificates for your HTTP Server to attest to its
authenticity, you most likely need to apply for and receive a certificate from a
well-known certificating authority if you intend to conduct e-commerce with your
AS/400 system. Both the Netscape Navigator and Microsoft Internet Explorer
browsers include a list of well-known certificating authorities that will be accepted
by the browsers to authenticate Web pages from your HTTP Server.

IBM HTTP Server for AS/400 47

2.6.3 Digital ID

Note

One of the most widely known and used certificating authorities is VeriSign,
Inc. You can learn more about certificates and digital IDs at their Web site:
http://www.verisign.com

Another feature introduced with the V4R3 IBM HTTP Server for AS/400 is using
digital IDs to provide client certification. Although we traditionally think of digital
IDs to provide verification of the server’s authenticity, it is also useful for clients to
provide the server with a guarantee of their authenticity.

Client authentication using digital IDs can be used as an alternative to prompting
for a user ID and password.

2.7 WebSphere Application Server for AS/400

One of the most significant additions to the VAR3 IBM HTTP Server for AS/400 is
the WebSphere Application Server for AS/400 ("WebSphere"). WebSphere is
installed as part of the IBM HTTP Server for AS/400 (5769-DG1).

— Attention

As of October 1998, there are several PTFs that you must obtain and apply to
your AS/400 system prior to working with WebSphere. You can obtain the list of
required PTFs at this Web site:
http://www.as400.ibm.com/tstudio/http/services/WASInfo.htm

You can also find additional information about configuring and using
WebSphere at this site.

2.7.1 What WebSphere Provides

WebSphere provides a Java-based environment in which Java servlets are
hosted and execute. Servlets are based on Sun Microsystems’ Servlets API and
include complete support for working with an incoming HTTP data stream and
writing a response HTTP data stream.

WebSphere servlets run in a multi-threaded environment. That means that a
servlet can potentially use additional threads so that it can service requests more
quickly. Servlets can also be started when the WebSphere server is started, so
there is no overhead associated with starting the servlet from the requester’s
point of view, as there is with CGI programs.

2.7.2 Accessin g the WebS phere Server

The WebSphere server is configured using an applet specifically designed for it.
You must invoke the applet from a Java-capable browser, such as Sun
Microsystems’ HotJava browser, Netscape Navigator 4.x, or Microsoft Internet
Explorer 4.x. To invoke the applet, enter a URL similar to this:

http:/myServer:9090

48 Building AS/400 Internet-Based Applications with Java

By default, port 9090 is used to identify the WebSphere configuration page.

2.8 Summary

Although it is possible to develop highly-functional Web serving applications on
the AS/400 system prior to V4R3, it is advantageous to install 0S/400 V4R3 and
the associated LPPs for Internet enablement before starting any serious
development efforts. It is important to understand that the underlying HTTP
Server has undergone major changes, and that the V4R3 version of the IBM
HTTP Server for AS/400 is the foundation for the future.

In several informal tests, we have not found any cases where configurations or
CGI programs written for pre-V4R3 need to be significantly changed to work on
the V4R3 IBM HTTP Server for AS/400. In one test, a complete upgrade to
0S/400 V4R3 was performed over an OS/400 V4R2 system. When the upgrade
was complete, the IBM HTTP Server for AS/400 started without incident and
could use the existing configurations.

If you are just getting started with developing Internet applications for your
AS/400 system, you may want to immediately investigate Java servlets, rather
than create CGI programs using traditional AS/400 system programming
languages. The new Java servlet support provided by the WebSphere Application
Server for AS/400 provides better performance, scalability, and maintainability
than the CGI techniques.

IBM HTTP Server for AS/400 49

50 Building AS/400 Internet-Based Applications with Java

Chapter 3. Introduction to AS/400 A pplets

In Chapter 1, “AS/400 Internet Application Development Overview” on page 1 of
this redbook, you learned that Java applets are a special type of Java program
that runs inside a browser. Because the applet is delivered to the browser in an
HTML file, you can use applets to provide additional functionality for your Web
pages. After the Web page containing the applet is downloaded, the browser
starts running the applet. At that point, it is an active program, although it does
have to comply with the security constraints imposed by the sandbox and the
browser.

You can include classes from the IBM AS/400 Toolbox for Java in your applets.
Using Toolbox classes, you can access resources on the AS/400 system. Some
of the resources available to your applet using the Toolbox include:

* AS/400 system database

e Data queues

Compiled AS/400 system programs

* Record-level access using the AS/400 system Distributed Data Management
(DDM) server

 Printers and output queues

» Directories and files in the AS/400 system Integrated File System (IFS)

This chapter describes a simple applet that retrieves information from the AS/400
system database using SQL. Records from a sample Parts database are
displayed in a multi-column listbox in the applet. The chapter includes these
sections:

« An overview of the applet as constructed in the IBM VisualAge for Java
(Enterprise) version 2.0 Integrated Development Environment (IDE)

» A description of how to import, prepare and test the applet in the VisualAge for
Java IDE

» A review and description of the classes and Java source code used in the
applet

Instructions on how to deploy the applet to the local hard drive of a PC
* Instructions on how to deploy the applet from the IBM HTTP Server for AS/400

« Instructions on how to use the Java Plug-in to deploy applets

3.1 The PartsView A pplet

Figure 14 on page 52 shows a sample of the PartsView applet running in the
Applet Viewer that is included in the VisualAge for Java IDE. As you can see, the
applet is simple and performs only one task: retrieve records from an AS/400
system database and display them in a multi-column listbox. Nevertheless, if you
follow the steps described in this chapter to create and deploy the sample applet,
you can spend your programming time creating more interesting applets.

© Copyright IBM Corp. 1999 51

Note

The example programs discussed in this chapter are available for download
from the redbook Web site. Refer to Appendix A.1, “Downloading the Files from
the Internet Web Site” on page 299 for details.

EZ Applet Viewer: views PartsView M[=] E3
Applet
Description Cluantity | Price
12301 |Cuad speed CD ROM Drive 14 151.38 |1998-09-01 [~
12302 |SCSI Cable 25 30.00 1995-11-13
12303 |17 inch SYGA Monitar] 1100.75 | 1996-03-04
12304 |Ethernet PCMCIA card 30 85.30 1995-12-17
12305 |Home mouse 47 25.40 1996-02-18
12306 |Gender-hender 7a 8.50 1951-08-27
12307 | 600 dpiflathed scanner 12 875.33 |1996-03-01
12308 |100 MHZ Pentiurm P 4 187520 |1996-02-24
12309 |Laserdet Toner 12 89.45 1995-12-17
12310 |Logo maouse mat 3T6E 728 1994-11-24
12311 |Screen wipes 4740 1.80 1996-01-10
12312 |W34 Modem 58 120.45 |1996-03-06 Ll
| Getall parts |
Anplet started.

Figure 14. PartsView Applet

3.1.1 Importin g the Source Code for the A pplet to the Workbench

52

The source code for the applet is provided in both source files and in a VisualAge
for Java repository file. To work with the applet in the VisualAge for Java IDE, you
must import the project from the download repository file into your repository.
Then, import the project from your repository into your workspace. The following
instructions assume that you have downloaded the VisualAge for Java repository
file from the redbooks Web site and that the repository file is in a directory named
codeb5337 on your PC’s disk.

Building AS/400 Internet-Based Applications with Java

3.1.1.1 Startin g the Import Process
Start the import process by right-clicking on the All Projects pane in the
Workbench. Select the Import item on the pop-up menu, as shown in Figure 15.

@Wurkbench [Administrator] !Elm
File Edit ‘Workspace Selected Window Help

0B

9 All Projects +]

&4 1BM Java Implermentation: :I d
& Java class libraries

&Y JFC class libraries

5§ Metscape Security

& Sun class libraries P Wini2

GoTo »

Add »

_

Expmrte.

(] pi
[mporprogemelemerts.

Figure 15. Starting the Import Process

The Import SmartGuide window appears (Figure 16 on page 54). Select the
Repository option, and click the Next button.

Introduction to AS/400 Applets 53

5 SmartGuide

Figure 16. Import SmartGuide

54 Building AS/400 Internet-Based Applications with Java

3.1.1.2 Workin g with the Im port from a Director y Panel

As shown in Figure 17, the SmartGuide now shows the Import from another
repository screen. Click on the Browse button and find the red5337.dat
repository that you downloaded from the redbook Web site. In this example, it is
found in the code5337 directory. Click on the Details button.

EC_,.J SmantGuide E3

Import from another repository o "—I

% Local repositony

= Shared repositany with EMSEY server address: I

Repositony name; |E:\EDdEE33?\rEd533?.dﬂt . Browse...

Wwhat do you want bo impaort?

% Projects Detailz.. | O szelected

" Packages [etaile |Elselected

< Back [dExt = ety Cancel

Figure 17. Import from another Repository SmartGuide

As shown in Figure 18 on page 56, the Project import dialog allows you to select
which projects you want to import into your repository. The following projects are
available:

» Advanced Servlet —Contains the examples discussed in Chapter 7,
“Developing AS/400 Java Servlets” on page 221.

* AppletWorksho p—Contains the examples discussed in Chapter 6,
“Developing AS/400 Java Applets” on page 193.

« Servlet Exam ples—Contains the applet examples discussed in this chapter
and the servlet examples discussed in Chapter 4, “Introduction to AS/400
Servlets” on page 159.

After you select the projects to import, click on OK and then click on the
Finish button.

Introduction to AS/400 Applets 55

56

&2] Project import

Select the project versions to import
Projects Werziong available

W] Advanced Serdet I | R (=
W] ssppletiw’ork shop

1 ol o

3 projects, 3 versions zelected

Ok I Cancel |

Figure 18. Projects Import Dialog

After you click the Finish button, the selected projects are imported from the
download repository into your repository. You can now add them into your
workspace. To add a project, from the menu, follow this path:
Selected—>Add—>Project (see Figure 19).

GoTao bl
Package...

Irnpart...

Erport... Clazz...
Interface. ..
Applet...
et
Frelds.

Figure 19. Add Project Menu

As shown in Figure 20 on page 57, click on the Add Projects from the

repository radio button and then select the projects that you want to add to your
workspace. In this case, we add the Servlet Examples Project. Click on the
Finish button to add the project.

Building AS/400 Internet-Based Applications with Java

: - T
Add Project =

i~ Create a new project named:

* Add projects from the repositary
Available project names Available editions

1 by Servlet Shut B EEEE -

[J5ervlettdvanced

[J5un class libraries UNIX J|
[J5un JDK Animator

[J5un JDK ArcTest

[J5un JDK BarChart

[15un JOK Blink -
q » 4/

o

1 editions selected

< Bach I Finish I Cancel

Figure 20. Add Projects SmartGuide

3.1.2 Resolvin g Problems in the Im ported A pplet

While the import process is running, you see a message indicating that a number
of problems were found in the imported Java classes. When the import is
complete, you see the project in the VisualAge for Java Workbench, with the
packages expanded to indicate classes that have problems. The problems are
indicated with an X to the left of the class or method name (Figure 21).

@Workbench [Administrator] _ (O] %
FEile Edit “Workspace Selected Window Help
B Y U E) L
5 Projects | 4% Packages [@ Classes |8 ntedaces [B Managing |0 Al Problems
5 All Projects +| | « Source
® & BN Java Implementation ;I i ;I
= 5§ Jowa clase libraries /f Set the praperties for the JDBC connection
® 5§ JFC class libraries i
= &3 Metscape Security jdbcProperties. put{user", USERID);
= &5 Sordet Examples jdbcProperties.put{"password", PASSWORD) ;
E (F datasccess jdbcProperties.put{"naming", "sqlty;
€8 DataAccessor jdbcProperties.put(errors"”, a1ty
= @ ¥JDECParsCatalog jdbcProperties.put{"date format", "iso");
"k] jdbcProperties, put{"extended dynamic", "Lrue");
“ getAll] jdbcProperties.put('package”, "SerTest");
& @ TestPar /fjdbcProperties, put("trace", "true"l;
= &3 domain
® @ Part i
® @ PartsCatalog /7 enable security for Metscape
3 javasenrdet i
(3 javax.serdethtp try 1
(@ servets Sinetscape.security.PrivilegeManager.enablePrivilegel"UniversalConnect"); /4 Meeded for
= @3 views 1
& @ XPansviowTE
= & Zun class libraries P Win32 catch (Throwable exception) {
System.out.printin{"error in enable security for Netscape"); b
}
i
Jf register the driver using the AS/400 JDBC driver,
S get a connection to the AS/400,
S initialize the prepared statement for the query
i
try {
System.out.printini"datadccess.JDBCPartsCatalog. connectTo .before register driver");
¥ DriverManager.registerDriverinew [§ C [y) A
14 » <] | »
|x The type named com.ibm.as400.access AS400JDBCDriver is not defined

Figure 21. Problems Indicated in the Workbench

Introduction to AS/400 Applets 57

@Workbench [Administrator] !Em
FEile Edit ‘“orkspace Selected Window Help

You can review all of the problems by clicking the All Problems tab. The
Workbench view shown in Figure 22 appears.

B Y
5 Projects | & Packages [@ Classes |48 Inetaces [Managing [=0 Al Probler{s

!

ol

(®11 Problems " ;G
Element |ErrnrMessage -
= S)Serdet Examples
= (fdateAcoess
={®*JDBCPansCatalog
& XcannectTaDE() The tyge named com.ibrr a0 0JDBC not defined
= Fsenlets
=@ A PartsSenet
» AudoPostiHitpSenietRequest HipSenletResponse) The method getParameter invoked far type javax.serlethitp HitpSerdetRequest with arguments (java.lang.String) is deprecated
= fviaws
O XPartsview T Field type com.ibm.ivi.eab. dah IMulicolumnListbox is missing
v
| -]
= Source
catch (Throwable exception) { ;I
System.out.printin{"error in enable security for Netscape');
¥
!

Ff register the driver using the AS/400 JDEC driver,
£ get a connection to the AS/400,
S/ initialize the prepared statement for the query

try {

System.out.printin("datatccess.JOBCPartsCatalog. connectToDB. . before register driver");
DriwverManager.registerOriver(new [SquiuivinE] 30 ar b

System.out.printin({"before getConnection");
dbConnection = DriwverManager.getConnection{"jdbc:as400://" +

SYSTEMNAME + -
s

|x The type named com.ibm.asd00.access AS400J0BCD ver is not defined

Figure 22. All Problems Tab

There are two types of problems in the imported Java source code:

* Missin g types—This means that there are additional classes required in the
project to provide the code for the missing types.

« Deprecated methods —A deprecated method is a method that has been
superseded by a new method. This is a warning to help you identify methods
that will be obsolete in the future. You can change the code to use the
superseding method when it is convenient for you.

3.1.2.1 The Missin g Types Problems
The missing types problems occur because the example Java source code uses
two classes that are not available in the workspace:

« Multi-column list box used in the a pplet (see Figure 14 on page 52).

This is in class com.ibm.ivj.eab.dab . This class is provided in the VisualAge for
Java Enterprise Edition in the IBM Enterprise Data Access Libraries project.

* JDBC class for the AS/400

This is in class com.ibm.as400.access.AS400JDBCDriver . This class is provided in
the VisualAge for Java Enterprise Edition in the IBM Enterprise Toolkit for
AS400. This class is also provided in the AS/400 Toolbox for Java that is
installed on the AS/400 system as part of Licensed Program Product
5763-JC1.

58 Building AS/400 Internet-Based Applications with Java

3.1.2.2 Importin g the Pro jects to Resolve the Missin g Types

You need to import the two IBM provided projects into the VisualAge for Java
workspace. You also need to import the Netscape Security project, since you will
use that in the applet.

To start the import process, right-click in the All Projects panel in the Projects
tab (Figure 23). Select the Add item on the pop-up menu, and select the Project
item on the next pop-up menu, as shown in the following figure.

@Wurkbench [Administrator] !Em
Eile Edit ‘Workspace Selected Window Help

Y VLV YDIYYY WY W)
5 Projects | &% Packages | & Classes |48 Interfaces |8 Managing [*) All Problems

9 All Prajects +|| « Source
= 55 BM Java Irmplementation ;I :I
® & Java class libraries JDBC connectian
® =g JFC class libraries
& Metscape Security USERID?;
= & Servlet Examples PASSWORD) :
= 3 datatccess "sgql");
fullty;
= @ *IDBCPartsCatalog £, "isg");
x wn o IItruell);
< getall) Open "SerTest");
= (& TestPart OpenTo »
= F# domain GoTa 4
= & Part : |
0 Parscacos IR WCTC
F javaxsendet Method Template Package...
H (F javaxsendethttp R
H 7 sandats Beferences To Class... 1ege
= @& views Declarations Of 4 Interface. ..
X oy A Applet..
= o Pgnsv!ew . Feplace With » SPP
® 5§ Sun class libraries Ph Wi
Delete... Method... -
Feorganize 4 Field... £oTar
Compare With 4
RBun 4)
Pri 0 JDEC driwver,
Tint...
Fropetties or the query
"
< 2 BEY

| Add a project to the workspace.

Figure 23. Add Project Menu

The Add Project SmartGuide appears (Figure 24 on page 60). Follow these steps
to select the required projects for the applet:

1. Click the Add projects from the re positor y selection.

2. Scroll through the list of available project names. Check the following projects:

— IBM Enterprise Data Access Libraries
— IBM Enterprise Toolkit for AS400
— Netscape Security

3. If there are multiple available editions for either project, select the highest
numbered edition as the edition to add.

4. Click the Finish button to add the projects to the workspace.

Introduction to AS/400 Applets 59

60

Add Project >

" Create a new project named:

& Add projects from the repositony
Awailable project names Awailable editions

[JIEM Enterprise Data Access Examples ;I 2.0 ;l
w/IBr Enterprise Data Access Libraries
[JIEM Enterprise IDL Development Envira__|
[1IBM Enterprise RMI Access Builder Libr
B4 Enterprise Toolkit for . i]
[IIBM ET Workstation Examples &
[CJIEM IDE LHtility class libraries

[1IEM IDL Development Environment Exa) o
SV I ;IJ - I>|_I

2 editions selected

< Hack I Einish I Cancel

Figure 24. Add Project SmartGuide

As the projects are added into the workspace, the missing types problems are
resolved. The All Projects pane should appear as shown in Figure 25 on page 61
when the project addition is complete. If you do not see the two projects in the list,
or if you still have the missing types problems, you need to run the Add Project
SmartGuide again to select the correct projects to add.

Building AS/400 Internet-Based Applications with Java

@Wurkbench [Administrator] !Em
File Edit ‘“Workspace Selected MWindow Help

HYH L YUYV YYHW B
5 Projects | 4% Packages | @ Classes [£8) Interfaces [& Managing [All Problems

5 All Projects +| || &4 Comment

&5 |BM Enterprise Toolkitfar AS400 k
5§ IBM Java Implementation

® &g Jeva class libraries

® & FC class libraries

&9 MNetscape Security

& Servlet Examples

® &5 Sun class librares P Win3?2

" B ot o

| |IBM Enterprise Data Access Libraries 2.0 (Administrator)

Figure 25. Workbench with Added Projects

3.1.3 Overview of Classes Used in the PartsView A pplet

The PartsView applet was created in VisualAge for Java. Because the applet will
be converted to run as a servlet on the AS/400 system, a project named
ServletExamples was started to contain the packages and classes used in the
applet. Figure 26 on page 62 shows a view of the ServletExamples project with
the packages used for the applet expanded.

Introduction to AS/400 Applets 61

EZWorkbench [Administrator] M=l E3
Eile Edit ‘Waorkspace Selected Window Help
Y O VY99 YY DY
5 Projects | &% Packages | Classes |48 Interfaces [Managing [0 &l Problems
(9 All Projects o
C] - [
#= {3 JDBCPartsCatalog
= TestPar
= 3 domain
= (& Part
H) PartsCatalog
® F# servlets
= £ views
= 3 Partsyigw &2 -
| <] r
| Semvlet Examples(9/15/98 12:567:08 Ph) (Administratar)

Figure 26. ServietExamples Project

Table 5 briefly describes the packages, classes, and interfaces used in the applet.

Table 5. ServietExamples Packages, Classes, and Interfaces

ServletExamples Project

Package Class/Interface Description

dataAccess DataAccessor Interface used to define methods that must be
implemented by classes in this package.

JDBCPartsCatalog Used to connect to the AS/400 system
database, returns a vector of parts.

TestPart Used to simulate a connection to a database,
returns a vector of parts.

domain Part Represents a row of part data retrieved from the
database.
PartsCatalog Determines which data source to get part data

from, gets parts from the selected data source,
and returns a vector of parts data.

views PartsView The visible part of the applet, includes the parts
listbox and the button to start the query.

3.1.4 Workin g with the A pplet in the Visual Com position Editor

The classes in the dataAccess and domain packages do not contain any user
interface code. All of the user interface code for the applet is contained in the
views package. The PartsView applet was designed in the Visual Composition
editor in VisualAge for Java. Figure 27 on page 63 shows the applet with the
multi-column listbox and push button in place. In this section of the chapter, we

62 Building AS/400 Internet-Based Applications with Java

show how a PartsCatalog bean, which provides access to data, is added to the
PartsView class.

L PartsView(3/15/98 1:01:11 PM) in views [Administrator]

File Bean Edit Tools ‘Workspace ‘Window Help

H» Gy Y HHHDHY P W B

i Methods .{- Hierarchy il Edlitions ["5visual Composition | je Beaninfo

GCDmstition Editor
AWT - =

Descripti | Quantil

Get all pars |

getDatar) Q

¥
4 e

| Mothing selectad

Figure 27. PartsView Applet in the Visual Composition Editor

3.1.4.1 Addin g the PartsCatalo g Bean to the A pplet

The ParsCatalog bean contains the code that is responsible for obtaining records
from the data source and making them available to the PartsView class. To
complete the PartsView applet, the ParisCatalog bean(or class) must be added to
the applet.

To add a bean to the applet, click the Choose Bean icon located in the palette, as
shown in Figure 28 on page 64.

Introduction to AS/400 Applets 63

L PartsView(3/15/98 1:01:11 PM) in views [Administrator]

File Bean Edit Tools ‘Workspace ‘Window Help

H» Gy Y HHHDHY P W B

.{- Hierarchy il Edlitions ["5visual Composition | je Beaninfo
GCDmstition Editor

AWT - =

= @!
J |Choose Bem

W 4o LB
B B
L0
D&
U=
E

=
| | B

Get all pars

getDatar)
q A

Figure 28. Clicking the Choose Bean Icon

| Mothing selectad

VisualAge for Java now displays the Choose Bean dialog (Figure 29). Enter the
package and class name, or click the Browse button to select the class.

& Choose Bean B
Bean Type
& Class “ariahle Serialized

Class name:

|| j Eruwse...l
MName

Enter the name of the class.
1k I Cancel | Help |

Figure 29. Choose Bean Dialog

When you click Browse , the Choose a valid class dialog is displayed (Figure 30
on page 65). The Class Names list in the middle of the dialog initially contains all
classes in the VisualAge for Java workspace.

64 Building AS/400 Internet-Based Applications with Java

iz Choose a valid class |

Selecta class to add as a bean

Fattern (# = any character, * = any string)

Ipart
Class Mames:

i=al LG
ParnsSersdet
Pars'iew

Fackage MNames:

I, & | Cancel

As you start typing the pattern, the list of classes is reduced so that it includes
only those classes that start with the pattern. When you locate the class you
need, click the class name to display the package in which the class is contained.

Figure 30. Choose Class Dialog

When you click OK in the Choose a valid class dialog, the selected class name
returns to the Choose Bean dialog (Figure 31 on page 66).

Introduction to AS/400 Applets 65

66

&JChoose Bean [%

Bean Type

&+ Class " “ariable " Serialized

Class name:

Idu:umainPartsCatalu:ug

MName

)8 ,}I Cancel Help

Figure 31. Choose Bean Dialog with PartsCatalog Selected

Click OK on the Choose Bean dialog to add the PartsCatalog ~ bean to the
workspace in the Visual Composition editor (Figure 32). Now that the

PartsCatalog ~ bean is part of the applet, you can use its methods to work with the
data sources.

C)PartsView(9/15/98 1:01:11 PM) in views [Administrator]
File Bean Edit Tools “Workspace Mindow Help

H 8 DY HHIDVHLHY PSS W P

ipt | Quanti

Get all pads |

tDat
getData) ParsCatalog

ki

s

| MNothing selected

Figure 32. PartsCatalog Added to the PartsView Applet

Building AS/400 Internet-Based Applications with Java

3.1.4.2 Setting an Option for Ex port to Source Files

Although you can develop the entire applet within the VisualAge for Java IDE,
there may be occasions where you need to export the Java source code from the
applet so that you can work with the Java source code in another environment.
For example, you may want to work with the Java source files in another editor or
in a source-code version control system. Also, you may want to work with the
Java source files in the VisualAge for Java IDE on another computer.

If you do plan to export and import Java source code files that were generated in
the VisualAge for Java Visual Composition Editor (VCE), you need to set an
option to indicate that an additional method is to be added to the bean (the bean
in this case is the PartsView class). The getBuilderData method contains
hexadecimal data that is used by the VCE to construct the view of the bean when
the Java source code files are imported to the VisualAge for Java IDE and
opened in the VCE.

To set the option, select Windows—>Options (Figure 33). The Window menu is
available on most dialogs in VisualAge for Java, including the VCE shown in the
following figure and the Workbench.

L PartsView(10/4798 10:26:25 PM) in views [Administrator]

File Bean Edit Tools “Woarkspace ‘N Help

Clane R
Switch To ’ ‘)
Refresh

Lock Window
[yfEirmize Parme (2 e =

Sty Elitim N ErmEs

Fs
= @ “Workbench m
+ Q Scrapbook
Ef Repositary Explarer
e | Consale
Log
E L
E.i Debug 3

- FI
- F L oeicr=.___,__| =

Get all parts |
IgetDataOI
Parts Catalog

-
| b

I Modify userconfigurable options.

Figure 33. VisualAge for Java IDE Options Menu

Introduction to AS/400 Applets 67

68

B General Design Time
Cache
B Appearance ¥, Genarate meta data method;
Lists ¥ Inherit Beaninfo of hean superclass
Source
Dialog Beanlnfo search path extensions
Banner .
Printer I il
= Coding Complete Beanlnfo search path
Compiler

com.ibm.uym.swing.beaninfo;
com.sun.java.swing.beaninfo;
com.ibm.uvm.awt beaninfo;

i
Inclentation sun.beans.infos; -
tethod Jawadoc 4 _’I_I
Type Javadoc

Help

Resources Design time class path extensians

= | Edit |

Complete design time class path

Debugging
Formatter

. FY
CAIBMY Javalideyproject_resourcesh|BM Enterprise Data Access Librat:
CAIBMY Javalidehproject_resourcesh|Bi Enterprise Toolkit for A5400;

CAIBMY Javalideyproject_resources' JFC class libraries; -

4| | B

Qefaultsl Apply |

QK I Cancell

Figure 34. Design Time Options Dialog

On the Options dialog, click the Design Time item in the left column. Click the
Generate meta data method option at the top of the Design Time panel (Figure
34). By enabling that option, you instruct VisualAge for Java to automatically
generate a getBuiderData ~ method for each bean that you create in the VCE.

— Tip

You may want to leave the Generate meta data method checked for all beans
that you create in the VisualAge for Java Visual Composition Editor. This
creates an extra method in each of the beans that you create. However, it
provides the only available technique to export/import Java source files from
VisualAge for Java so you can view the bean again in the Visual Composition
Editor.

Since you may not be able to predict in advance if you need to export or import
the Java source files, you may find it easier to check this option and leave it
checked.

Building AS/400 Internet-Based Applications with Java

3.1.4.3 Saving the Bean

Before running the bean, save it. Saving the bean incorporates all of the settings
and options from the Visual Composition Editor. To save the bean, click
Bean—>Save Bean (Figure 35).

C) PartsView(10/4/98 10:26:25 PM) in views [Administrator] Mi=1E

Edit Tools ‘Workspace Window Help

omposition | je Beanlnfa

B¢ hodify Palete...

Fix Unresolvwed References..
|§ Eanstriet SienaEs e SEurEe

4 »
Get all parts
IgetDataOI
ParsCatalog

-
«| | »

Figure 35. Saving a Bean

3.1.5 Testing the Appletin the VisualA ge for Java A pplet Viewer

VisualAge for Java includes a built-in Applet Viewer that you can use to view and
test the applet before launching it from within a browser. As you develop an
applet, you may want to test it frequently so that you can see if it is working
correctly.

Note: Although it is convenient to test the applet from within the VisualAge IDE,
there is no guarantee that the applet will run in a browser because it runs
successfully in the Applet Viewer. Even so, the Applet Viewer is useful for initial
testing and debugging.

Introduction to AS/400 Applets 69

70

— Note

The applet can display data retrieved from the AS/400 system or it can display
data retrieved from local test data. The version that is available from the
redbooks Web site is set to access an AS/400 system.

Before you can test the applet and access your AS/400 system, you must
update the JDBCPartsCatalog class variables to include a valid system name,
user ID and password. See Section 3.2.5.2, “JDBCPartsCatalog Class Code”
on page 91 for details about the JDBCPartsCatalog class.

If you want to test using the local test data, you need to change the
defaultDataAccessor method so that the qualifiedClassName variable is set to
"dataAccess.TestPart ." See Section 3.2.8.4, “The defaultDataAccessor
Method in the PartsCatalog Class” on page 101, for details.

3.1.5.1 Setting Applet Attributes and Class Path
Before testing the Applet, you need to apply these additional settings:

 Attributes —To specify the height and width of the Applet (in pixels) when it is
displayed.

« Class Path —To indicate which additional projects are used in the Applet.
You set both of those values in the Properties for PartsView dialog. To get to that

dialog, click the Bean—>Run—>Check Class Path in the Visual Composition
Editor (Figure 36).

L) PartsView(10/4/98 10:26:25 PM) in views [Administrator]

File WSEGLM Edit Tools ‘Workspace Window Help

Sawe Eean (54 =
Be-generate Code
0 T ' <ot v

Eu
B Modifty Palatts..

Eix Unresolved References...
K Sanstriictyisials o Suurce
s I N5
w3 L3
e
IRS: R
in]

L IREINE,

Getall parts

I getDatal) I

FarsCatalog

Figure 36. Checking the Class Path

Building AS/400 Internet-Based Applications with Java

Setting Applet Attributes
Click the Applet tab on the Properties for PartsView dialog (Figure 37). Change
the value for Width to 700 and Height to 350.

[{,J Properties for PartsView m

Applet | Prograrm | Class Path | Info

— Adtributes —Parameters

“ilth Example: <param name=level value=5>

J7o0 [|

Height

J350

MName

-
< E

Codebase

file:f { /CAIBMY Javahidehproject_resources\Serdet Example

[T Sawvein repository (as default)

Ok I Cancel

Defaults

Figure 37. Setting the Width and Height Attributes

Setting the Class Path
Click the Class Path tab. The tab initially appears as shown in Figure 38 on page
72. You use this part of the Properties dialog to indicate the following information:

« If the current directory is to be included in the Class Path

* The names of any other projects that are in the VisualAge for Java workspace

and are to be included in the Class Path

« Any additional directories where .jar or .zip files are located that contain
classes used in the project

Introduction to AS/400 Applets

71

E{_,J Properties for PartsView m
Applet | Frogram | Class Fath | Info

W Include ! (dot) in class path
I Erojectpath; Computz Now |
|n0 other projects are used Edit... |

" Extra directories path:

| Edit... |

“Waorkspace class path:

|NDne specified - see options dialog

Complete class path:

A

EE:‘xlBMVJavaRideRPROGRAMHIib\;
ChIBMY Javaide\ PROGRAM: lib\classes zip;

o

Autornatic class path updated.

[T Sawve in repositany (as defaulf)

Ok I Cancel Defaults

Figure 38. Setting the Class Path

The VisualAge for Java version 2.0 Help system states the following about using
class paths in the IDE:

"In VisualAge for Java, each runnable class is responsible for its own class
path. The class path is necessary when running a class in order for the class
loader to properly find the classes that your class references and the classes
that they in turn reference."

Note

A runnable class is a class that can be launched in the VisualAge for Java IDE
using the Run menu item. Runnable classes are indicated in the Workbench
with a small "running-man" icon next to the class name. You can see an
example of this icon for the PartsView class in Figure 26 on page 62.

Click the Edit button next to the Project path field to go to the Class Path dialog
(Figure 39 on page 73). On that dialog, select the following projects to include in
the Applet’s class path:

* IBM Enterprise Data Access Libraries
* IBM Enterprise Toolkit for AS400
* Netscape Security

Building AS/400 Internet-Based Applications with Java

Selectthe projects to include on the class path.

[l |BM Enterprize Data Access Libraries
w]IBM Enterprise Toolkit for AS400
OIBM Jawa Implementation

[Jawa class librares

JJFC class libraries
NEE SECUrity
CServiet Example
[Sun class libraries Ph Win32

<

3 selected selectall | Deselect all |

[

o

conce |

Figure 39. Select the Projects to be Included in the Class Path

Click the OK button to return to the Class Path tab. You now see the additional
projects that you selected in both the Project Path and the Complete class path

(Figure 40 on page 74).

Click OK on the Class Path tab to close the Properties for PartsView dialog.

Introduction to AS/400 Applets

73

74

E{,__] Properties for PartsView B
Applet|Program | Class Path | Info

¥ Include "' {dof) in class path

¥ Project path: Compute Mow |

|IEIM Enterprise Data Access Libraties:BM Enterprise Toolki ; Edit.

" Extra directories path:

| Edit. |

Workspace class path:

|N|:une specified - see options dialog

Complete class path:

EE:'\IBMVJava‘-,ide‘-,prajed_resaurc:es"\lEiM Enterprise Data Access Libraries;
CAIBMY Jawalideh project_resourceshIBM Enterprise Toolkit for A5400;
ChIBMY Javalideh project_resourcesiNetscape Security;

CAIBMY Javalide\FROGRAM I v|
F

[T Sawve in repository (85 default)

OK& I Cancel Defaults

Figure 40. Project Path and Complete Class Path

—— Attention

Although the Class Path tab includes a Compute Now button (see Figure 40),
it did not correctly determine all of the additional projects that need to be
included in the PartsView applet’s class path. The Compute Now function only
returned the IBM Enterprise Data Access Libraries project to the list.

If you are using classes from multiple additional projects, click the Edit button
and manually select the additional projects.

3.1.5.2 Launchin g the Applet Viewer

To launch the Applet Viewer, click Bean—>Run—>In Applet Viewer (Figure 41
on page 75). That menu item starts the Applet Viewer, at which point you can see
the applet and start working with it (Figure 42 on page 75).

Building AS/400 Internet-Based Applications with Java

¥ Sawe Bean
Be-generse CodE
o

G Ce Modify Palette... IR o

Check Class Path. |a]
—— FEixUnresolved References...
Ig Canstruetyisualsrarm Sauree

s N2 NEE
[) 4o LB
=0 B
;R
D
O = Ef
ERE=)

x -
4 | B

Get all parts

getDatal) &
PartsCatalog

-
1| | 3

| Fun the appletin an Applet Viewer.

Figure 41. Running the PartsView Applet

&l Applet Viewear: views PartsView
Applet

iption

Get all parts |

Applet stared.

Figure 42. PartsView Applet in the Applet Viewer

3.1.5.3 Setting AppletViewer properties

Before you can get data from the AS/400 system, you may need to change the
AppletViewer properties to allow the applet to access resources in the network. In
the AppletViewer, click Applet—>Properties (Figure 43 on page 76).

Introduction to AS/400 Applets 75

&2 Applet Viewer: views PartsView [_ (O] =]

Applet

Festart
Reload 1l Quantity
Stop
Save...
Start
Clone...

Tag...

Info...

=l

Character Encoding

Print...

by

Close
Cigit Get all parts |

Applet started.

Figure 43. Applet Viewer Properties Dialog
The AppletViewer Properties dialog shown in Figure 44 appears. Set the
AppletViewer properties as follows:

* Network access: Unrestricted
* Class access: Unrestricted
* Allow unsi gned applets: Yes

Ei AppletYiewer Properties =] E3
Hitp procy server:

Hitp prosy port:
Metwork access: nrestricted

Class access: nrestricted

Ll

Allow unsigned applets: |Yes

Appl\ﬁl Reset| Cancel |
L)

Figure 44. Applet Viewer Properties

76 Building AS/400 Internet-Based Applications with Java

3.1.5.4 Runnin g the Applet

After changing the AppletViewer properties, you can run the applet. When you

click the Get all parts button, a Java Database Connectivity (JDBC) query request
is sent to the AS/400 system. The AS/400 system responds by creating a result

set of Parts data that is returned to the applet. The applet fills the multi-column

listbox with the returned Parts data, as shown in Figure 45.

[C,JApplEt Viewer: views PartsView
Applet

12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312

4 T4

Description

SCEl I Cahle

17 inch SWGA Manitor
Ethernet PCMCIA card
Home mouse
Gender-bender

600 dpi flathed scanner
100 MHZ Pentium PC
Laserdet Toner

Logo mouse mat
Screen wipes

W34 Modem

LT S

Zuad speed CD ROM Drive

Cluantity

25

a7
75
12

12
376
4740
a8

A

~ Getall parts |

Applet started.

151.38
30.00
1100.75
85.30
25.40
8.450
87533
1875.20
89.45
7.2
1.480
120.44

An T

1988-08-01
1985-11-132
1996-03-04
1995-12-17
1996-02-18
1951-08-27
1986-03-01
19896-02-24
1985-12-17
1994-11-24
19496-01-10
19496-03-06

hd|
ANAS 44 47

Figure 45. Displaying the AS/400 Parts Data Using the PartsView Applet

The sample applet also sends status messages to the Java Console so that you
can track the execution of the applet (Figure 46 on page 78). If the applet

generates any unhandled exceptions, the Java stack trace is also written to the

Console. Using the Console and the VisualAge for Java Debugger, you can locate
and correct any coding errors in the applet.

Introduction to AS/400 Applets

77

78

=] E3
Programs Mdindow Help

1 B:18:41 Ph)

Standard Out

Appletviews Farts' -
) y
ﬁ

initConnections

into connectTolE

error in netscape.security.PrivilegeManager.enablePrivilege
before register driwver

before getConnection

before prepare

connected successfully

before getDatahAccessor().getAll({).elementsi)

.y ot

Standard In

4 LI:I

Figure 46. The Java Console Messages

Building AS/400 Internet-Based Applications with Java

3.2 Detailed Review of Java Classes Used in the A pplet

Now that you know the steps required to create the applet and test it in the
VisualAge for Java Applet Viewer, you review the code in the Java classes. As
described in Section 3.1.1, “Importing the Source Code for the Applet to the
Workbench” on page 52, there are three packages, five classes, and one
interface used in the applet. Before reviewing the code, it is helpful to understand
the overall design of the applet and the testing and debugging features that are
included in the applet.

3.2.1 Design of the A pplet

© Copyright IBM Corp. 1999

Although the application was initially designed, tested, and used as an applet, the
intention was to create a body of reusable code that can be used when the
application is migrated to a servlet. By adopting the three-tier architecture shown
in Figure 47, the application can be easily changed.

Java Applet/Servlet Desi gn

serviet views
Package EI End User Interface

N ¥
domain
Package

A

Application Logic

v

dataAccess Data Access
Package
JDBCPartsCatalog I Other data sources:
class TestPart - DDM
|
class -- Stored Procedures
-- Data Queues

Figure 47. The Applet/Servet Three-Tier Design

In fact, it is quite easy to change the application at any of the three tiers. In
addition to changing the end-user interface code to support an applet or a servlet
presentation, the data source can be changed in the data access layer without
affecting the other two layers. Also, if any of the application logic needs to be
changed, the changes can be made at that layer without affecting either the data
access or end user interface layers.

The application is well positioned for change if a different data access technique
is used. For example, the IBM Toolkit for Java supports record-level access using

79

the AS/400 system Distributed Data Management (DDM) server, program call,
and data queues. If you decide to change from the Java Database Connectivity
(JDBC) technique, all you need to do is code your new data access class so that
it returns the same type and format of data to the application logic layer.

The applet uses the JDBCPartsCatalog and TestPat classes. The TestPart class is
used to simulate a connection to a data source.

3.2.2 Testing and Debu gging Features in the PartsView A pplet

80

The PartsView applet includes code to help develop, test, and debug the applet.
You may want to incorporate some of the same techniques in applets that you
create.

3.2.2.1 Internal Test Data

The primary test feature is the DataAccessor interface in the dataAccess package.
Using the DataAccessor interface, we created an internal (to the applet) data
source that provides test data to the other classes. The reason for the internal
data source is that it is relatively difficult to debug network and database
connection issues when you develop an applet. Because you can test with and
view the internal data, you can verify that the main parts of the applet work
correctly before trying to connect to the AS/400 system database. Also, because
there is no overhead associated with connecting to the applet’s internal data, you
can test the applet more quickly in the applet viewer. This way, you do not have to
wait for the database connection to be established each time you start a test.

The most obvious benefit of the test data is that it exposes errors in the rest of
your applet at an early stage in its development. If your applet cannot correctly
obtain and display the internal test data, it obviously cannot work with data from
the AS/400 system database.

Deferring the network connection until after all of the other parts of applet are
tested is one of the most productive techniques you can adopt. Although the
applet includes "extra code", not only for the test data but also to select the
connection, the small amount of time and effort required to include the test code
is quickly repaid.

3.2.2.2 Logging to the Console

The applet includes several calls to the System.outprintin method to write
messages to the Java console. The messages are written before major sections
of the applet are executed. Although it may be argued that console logging is
unnecessary, since you can use the Debugger to follow the applet’s flow, the
console log is useful in helping you isolate a failing section of code. If an expected
message does not appear in the console, you know that you need to start
debugging in the code after the last displayed message and before the expected
message.

3.2.2.3 Exception Handlin g

The applet uses ry [/ catch blocks for sections of code where there is a known
possibility of an error occuring. In some classes, the catch exception handling
code writes a message to the console with the System.out.printin method. In the
PartsView class, the handleExcepton =~ method is invoked. That method uses the
exception.printStackTrace method to write the Java stack trace to the Java
console.

Building AS/400 Internet-Based Applications with Java

VisualAge for Java automatically includes the handieException ~ method in the
PartsView class since that class was created in the Visual Composition editor.
However, the code inside the method is commented out. You need to remove the
comments from the code before testing the applet to get the benefit of the stack
trace logging.

3.2.3 The PartsView Class

The PartsView class is used to display the user interface components of the
applet. This class contains code to instantiate the components, respond to the
click event on the button, and put records retrieved from the data source into the
multicolumn listbox.

Figure 48 shows the views package, which contains the PartsView class in the
VisualAge for Java workbench.

E_;I Workbench [Administrator]

File Edit ‘Workspace Selected “Window Help

(5 All Projects +]

= 5§ Servet Example ;I
£ datatccess

£F# domain
{f# serdets
= (TF views

—— @ getBuilderDatal) S

actionPerformed(ActionEvent) @

connEtoC1 ()9

getdppletinfol)

getbinGetParts ()@

getDatarl)

getitulticolurnnbist o)) @

getParts Catalogl)

handleException(Throwalle)

init() 4 o

— initConnections() -
[l 2

Figure 48. The Views Package

BE o B OB OE E E € E &

81

3.2.3.1 Methods Used in the PartsView Class
Table 6 summarizes the methods used in the PartsvView class.

Table 6. Methods Used in the PartsView Class

Method Description

getBuilderData Added by the VisualAge for Java Visual Composition Editor
(VCE). This method is used to instruct the VCE how to display
the bean if the PartsView class is imported from a Java source
file.

The code for this method is not shown in the following sections,
since it is simply a large comment block of hexadecimal
characters.

actionPerformed Invoked when an event occurs in the applet (Java 1.1 event
model event handler).

connEtoC1 Event handler for the button click event (method name
generated in Visual Composition editor).

getAppletinfo Returns text describing the class.

getbtnGetParts Adds the button to the applet.

getData Get parts from the data source; add to the multicolumn listbox.
getiMulticolumListbox Adds the mutlicolumn listbox to the applet.

getPartsCatalog Adds the PartsCatalog bean to the applet.

handleException Generic exception handler; logs Java stack to console.

init Invoked when the applet is loaded; adds listbox, and button;

initializes connections (database and event handler).

initConnections Connects to the data source; adds event listener to the button.

3.2.3.2 PartsView Class Code
The code shown in Figure 49 is used to define the PartsView class. Note that the
class extends the Applet class.

package wiews;

I
ff PartsView class - wisual interface for the applet
£
import java.applet.*;
import java.awt.*;

public class PartsView extends Applet implements java.awt.event.ActionListener |

private com.ibm.ivj.eab.dab.IMulticolumnlisthox ivjIMulticolumnlListhox = null;
private domain.PartsCatalog ivjPartsCatalog = null;
private Button ivjbtnGetParts =null;

Figure 49. The PartsView Class

82 Building AS/400 Internet-Based Applications with Java

3.2.3.3 The actionPerformed Method in the PartsView Class

The code shown in Figure 50 is used to define the actonPerformed method. This
method is invoked whenever there is an action event on the applet. The source of
the action is compared with the user interface components that are registered as
event listeners. For this applet, the only event listener is for the button. When the
button is clicked, the connEtoC1 method is invoked.

i
ff actionPerformed method - handle events for the Actionlistener
ff interface

i
public void actionPerformed(java.awt.event.ActionEvent e) {

if ((e.getSource() == getbtnGetParts())) {
connEtoCli);
h

Figure 50. The actionPerformed Method in the PartsView Class

3.2.3.4 The connEtoC1 Method in the PartsView Class

The code shown in Figure 51 is used to define the connEtoC1 method. This method
is invoked when the button on the applet is clicked (the method is invoked from
within the actionPerformed ~ method in this class). The connEtoC1 method invokes
the getData method in this class, which retrieves records from the data source that
is opened for this execution of the applet in the initConnections method in this
class.

The method name connEtoC1 was automatically generated by the VisualAge for
Java Visual Composition editor when the connection from the button to the
getData method was drawn.

i
Ff connEtoCl method - used to handle the button click event
i
private woid connEtoCl() {

try {
this.getData();
}

catch (java.lang.Throwable iwjExc) {
handleException{ivjExc);
h

Figure 51. The connEtoC1 Method in the PartsView Class

83

84

3.2.3.5 The getAppletinfo Method in the PartsView Class

The code shown in Figure 52 is used to define the getAppletinfo method. This
method is automatically generated by the VisualAge for Java Visual Composition
editor. Its purpose is to return a brief text identifier that describes the applet. This
method is not otherwise used in this project.

144

£f gethppletInfo method - returns string description of the applet
i
public String getAppletInfo() {

return "servlets.examples.views.PartsView created using Yisualhge for Java.";

Figure 52. The getAppletinfo Method in the PartsView Class

3.2.3.6 The gethtnGetParts Method in the PartsView Class

The code shown in Figure 53 is used to define the getbtinGetParts method. This
method is invoked in the int method in this class when the applet starts. If the
vjbnGetParts object was not previously instantiated (the button on the applet
has not yet been created), the code inside the ty block is executed. That code
instantiates a java.awtButton object and sets its properties.

If there is an existing instance of the ijbinGetParts button, the code in the if
block is skipped, and the reference to the existing button object is returned.

i
£f getbtnGetParts method - instantiatesreturn the button used on
£f the applet

i
private Button getbtnGetParts() {

if (ivjbtnGetParts == null) {
try {
ivibtnGetParts = new java.awt.Buttoni);
ivibtnGetParts. setlame("btnGetParts");
ivibtnGetParts. setBounds (185, 233, 103, 30;;
ivibtnGetParts.setActionCommand("Get all parts");
ivjbtnGetParts.setlabel{"Get all parts");

h
catch (java.lang.Throwable iwjExc) {
handleException{ivjExc);
h
h

return ivibtnGetParts;
}

Figure 53. The getbtnGetParts Method in the PartsView Class

Building AS/400 Internet-Based Applications with Java

3.2.3.7 The getData Method in the PartsView Class

The code shown in Figure 54 is used to define the getbata method. This method
is invoked in the connEtoC1 method in this class when the button is clicked on the
applet.

The method creates a Vector and an Enumeraton object. The data vector is used
to hold the rows retrieved from the data source. The pats enumeration is used to
access each of the elements within the vector so that each part can be accessed
individually.

The while block is used to iterate over the parts enumeration. For each element in
the enumeration, object aPart is instantiated, which is an instance of the Part
class. The getAttributeString method for the aPart object is invoked, which
returns the list of column values for the part. The values are added as a row to the
multicolumn listbox.

144

£f getData method - get parts from data source, add to listhox
i
private void getData () {

i
£f get all parts from the data source to wvector "data",
£ f111 enumeration "parts" with all data elements
i
java.util.Vector data = getPartsCatalogi().getAl1();
java.util.Enumeration parts = data.elements();

i
£f add each part to the MultiColumnlistBox,
£f use the part number as key

i
while (parts.hasMoreElements()) {

domain.Part aPart = (domain.Partiparts.nextElement(};
gqetIMulticolumnlisthox(). addRow(aPart.getAttributeString(l,
aPart.getMumber());

return;

Figure 54. The getData Method in the PartsView Class

85

86

3.2.3.8 The getlMulticolumnListbox Method in the PartsView Class

The code shown in Figure 55 is
method. This method is invoked
starts. If the ivjiMulticolumnListbox

used to define the getiMulticolumnListbox
in the int method in this class when the applet
object was not previously instantiated (the

multicolumn listbox on the applet is not yet created), the code inside the ty block
is executed. That code instantiates a com.ibm.ivj.eab.dab.IMutticolumnLibstbox

object and sets its properties.

If there is an existing instance of the wjiMulicolumnListhox

listbox, the code in

the if block is skipped, and the reference to the existing listbox object is returned.

i
£ getIMulticolumnlisthbox method -
£f used on the applet

instantiatesreturn the listhox

144

private com.ibm.ivj.eab.dab.IMulticolumnlistbox getIMulticolumnlistbox() {

if (iviIMulticolumnlistbox == null) {

try {
iwjIMulticolumnlisthox
iwjIMulticolumnlisthox
iwjIMulticolumnlisthox
iwjIMulticolumnlisthox

= new com.ibm.ivj.eab.dab.IMulticolumnlistbox();
LsetMame ("IMulticolumnlisthox");
.setDataBackground{java.awt.Color.1ightGray};
.setHeadingForeground(java.awt.Color.white);

String fvjlocalOcolumns [1 = {

"oIph,
"Quantity",
" Price",
" Date"l;
iwjIMulticolumnlisthox

Description”,

LsetColumns (ivilocalOcolumns);

int fwjlocalOcolumnWidths [1 = {

50,
lan,
65,
55,
ant;

iwiIMulticolumnlisthox.
iwiIMulticolumnlisthox.
iwiIMulticolumnlisthox.
iwiIMulticolumnlisthox.

setColumnWidths(ivilocalOcolumnWidths);
setBounds(22, 12, 450, 268);
setHeadingBackground(java.awt.Color.black);
setHeadingFont(new java.awt.Font("dialog", 0, 14));

b

catch (java.lang.Throwable iwjExc) {
handleException{ivjExc);
h
h

return ivjIMulticolumnlisthox;
}

Figure 55. The getIMulticolumnListbox Method in the PartsView Class

Building AS/400 Internet-Based Applications with Java

3.2.3.9 The getPartsCatalo g Method in the PartsView Class

The code shown in Figure 56 is used to define the getPartsCatalog method. This
method is invoked in the initConnections method when the applet starts and in
the getbata method in this class when the button is clicked on the applet.

The method returns a reference to the ijPartsCatalog object, which points to the
data source being used. The data source is either the internal test data source for
the applet or the connection to the AS/400 system.

i
ff getPartsCatalog method - instantiatesreturn the PartsCatalog
£f used on the applet

i
private domain.PartsCatalog getPartsCatalog() {

if (ivjPartsCatalog == null) |

try {
ivjPartsCatalog = new domain.PartsCatalog();

b

catch (java.lang.Throwable iwjExc) {
handleException{ivjExc);
h
h

return ivjPartsCatalog;

Figure 56. The getPartsCatalog method in the PartsView Class

3.2.3.10 The handleExce ption Method in the PartsView Class

The code shown in Figure 57 is used to define the handleExcepton ~ method. This
method is invoked within several catch blocks in this class. The method logs a
message to the Java console followed by the Java stack trace.

This method is added to the applet automatically in the VisualAge for Java Visual
Composition editor. The two lines of code that log to the Java console are
commented out. To enable the logging, you must remove the comments before
testing the applet.

i
Ff handleBException method - handle exceptions that are otherwise
£ unhandled

i
private wvoid handleException({Throwable exception) {

System.out.printin("--------- UNCAUGHT EXCEPTION -----o--- "
exception.printStackTrace(System.out);

Figure 57. The handleException Method in the PartsView Class

87

88

3.2.3.11 The init Method in the PartsView Class

The code shown in Figure 58 is used to define the int method. This method is
automatically invoked for the applet when it is started in either the VisualAge for
Java AppletViewer or in a browser.

The super.init() method call is used to initialize the Applet class that the
PatsView class extends. Inside the ty block, the user interface for the applet is
constructed. Finally, the initConnections method is called to initialize the
connection to the selected data source and to add an action listener to the button.

i
£ init method - called when the applet is invoked to initialize
£f the applet

i
public woid init() {

super.init();

try {
setMame("PartsView");
setlayoutinulll;
setSize (495, 331);
add(getIMulticolumnListhbox (), getIMulticolumnListhox().getMName());
add(getbtnGetParts(), getbtnGetParts().getName());
initCannections();

b

catch (java.lang.Throwable iwjExc) {
handleException{ivjExc);
h

Figure 58. The init Method in the PartsView Class

3.2.3.12 The initConnections Method in the PartsView Class

The code shown in Figure 59 is used to define the initConnections method. This
method is used to instantiate a PartsCatalog ~ object and open the connection to
the selected data source. It also adds an action listener to the button on the
applet.

i
A7 initConnections method - initialize connection to data source,
£f add action listener to button

i
private void initConnections() {

System.out.printin{"initConnections");
getPartsCatalog().connectToDE();

getbtnGetParts().addActionListener(this);
t

Figure 59. The initConnections Method in the PartsView Class

Building AS/400 Internet-Based Applications with Java

3.2.4 The DataAccessor Interface

The DataAccessor interface is used to define methods that must be included in
classes that implement the DataAccessor interface. The interface does not contain
any code to indicate how the methods must be implemented. It simply lists the

required methods and their parameters.

Figure 60 shows the dataAccess package in the VisualAge for Java workbench.
That package contains the DataAccessor interface, the JDBCPartsCatalog class, and

the TestPart class.

gzl Workbench [Administrator]
File Edit ‘Workspace Selected MWindow Help

IS[=] E3

Y LV YN H

59 All Projects

B &§ Servslet Examples

Datasccessar
@ connecfToDB(QA
@ getdll)h
= (¥ JDBCParsCatalog
« connectToDE)
@ getall])
2 TestPart
« connectToDB(
@ getall])
= £# domain
H 7 serdets
B R wiews

4

| datasccess(9/15,/98 12:57:18 PM) (Administrator)

Figure 60. The dataAccess Package

3.2.4.1 Methods defined in the DataAccessor interface
Table 7 summarizes the methods defined in the DataAccessor

Table 7. Methods Defined in the DataAccessor Interface

interface.

Method Description

connectToDB

Defines the connectToDB method that must be included in
classes that implement the DataAccessor interface. This
method is used to create a connection to a data source.

getAll

Defines the getAl method that must be included in classes
that implement the DataAccessor interface. This method is
used to return all data from the selected data source in a
Vector.

89

3.2.4.2 DataAccessor Interface Code
The code shown in Figure 61 is used to define the DataAccessor interface.

package datahccess;

import java.util.*;

J,ff’****'k'k'k'k**'k*'k'k'k******'k'k'k'k*'k*'k'k'k'k'k*'k*'k'k'k'k************************

Ff define methods that must be implemented for accessing

if a data source
J,ff’*-)c-)c-)c-k-k-k-}c*-)c-)c-)c-k-k-}c-k-k*-)c-)c-k-k-k-k-}c*-)c-)c-k**-}c********************************

public interface DataAccessor |

S sk e dhe ke o she s ke e she ke ok ke sde ke ok ohe sk ok dhe ke ok ol ke ok ke ke ok ok sk ko ke ke kol she sk ke ke ke b ke she ke sk ok she Sk ke ke she ke sk sk ke ke

£f connectToDE method - connect to a data source
ff’****-k-k-k-k*****-k-k-k-k*-k*-k-k-k-k-k*-k*-k-k-k-k-k*-k**-k-k-k************************

public void connectTolB ();

J[f’****'k'k'k'k**'k*'k'k'k******'k'k'k'k*'k*'k'k'k'k'k*'k*'k'k'k'k************************

Ff gethAll method - get all data from the data source
J,’fk-:k-:k-:k-k-k-k-k-:k-:k-:k-:k-k-k-k-k-k-:k-:k-:k-k-k-k-k-k-:k-:k-:k-k-k-k-k-k-:k-:k-:k-:k-k-k-k************************
public Vector getAl10(J;

]—

Figure 61. The DataAccessor Interface in the dataAccess Package

3.2.5 The JDBCPartsCatalo g Class

90

The JDBCPartsCatalog ~ class is used to connect to the AS/400 system using the
Java Database Connectivity (JDBC) driver. This class also returns all records
from a query run over the connection to the applet. Figure 60 on page 89 shows
the dataAccess package, which contains the JDBCPartsCatalog class in the
VisualAge for Java workbench.

3.2.5.1 Methods Used in the JDBCPartsCatalo g Class

Table 8 summarizes the methods used in the JDBCPartsCatalog class. Note that
these methods are required because the JDBCPartsCatalog ~ class implements the
DataAccessor interface.

Table 8. Methods Used in the JDBCPartsCatalog Class

Method Description

connectToDB This method is used to create a connection to the AS/400
system database using JDBC. The method performs the
following functions:

— Sets properties for the JDBC connection

— Enables security for the Netscape Navigator browser

— Registers the AS/400 JDBC driver with the Driver Manager
— Gets a connection to the AS/400 system

— Creates the prepared statement object that defines the SQL
query statement to be run

getAll This method is used to execute the query and return the query

results in a Vector object.

Building AS/400 Internet-Based Applications with Java

3.2.5.2 JDBCPartsCatalo g Class Code

The code shown in Figure 62 on page 91 is used to define the JDBCPartsCatalog
class. Note that the class implements the dataAccess.DataAccessor interface.
Therefore, it is required to implement the two methods defined in the interface.

The class uses staticfinal String variables to hold the values required to make
the connection to the AS/400 system. If you run the sample applet, you need to

change the SYSTEMNAME, USERID, and PASSWORD variables to the required
values for your AS/400 system. In a production applet, you would allow the user

to enter the values, rather than hard-code them into the code for the applet.

The class also defines the java.sgl.Connection and java.sgl.PreparedStatement
objects that will be used in the query.

i
£f Class JDBCPartsCatalog - work with a JDBC data source
i
import Java.util.*;
import java.sgl.®;
import java.net.®;

public class JDBCPartsCatalog implements datahccess.Datahccessor |

private static final String SYSTEMMWAME = "MYAS400"; £f add your system name
private static final 3tring LIBRARY = "APILIB"; £fadd your library
private static final String USERID = "MYUSERID"; FFadd your userid
private static final 3tring PASSWORD = "MYPASSWORD"; £f add your password

private java.sgl.Connection dbConnection;
private java.sgl.Prepared3tatement pshAllRecord;
t

Figure 62. The JDBCPartsCatalog Class

3.2.5.3 The connectToDB Method in the JDBCPartsCatalo g Class

The code shown in Figure 63 on page 92 is used to define the connectToDB
method. This method is invoked from the domain.PartsCatalog connectToDB method
when the applet needs to make the connection to the AS/400 system.

This class includes three main sections:

« Instantiation and setting of a Properies object used for the JDBC connection
» Enabling security for the Netscape Navigator browser
* Instantiating and setting the Connection and PreparedStatement objects for the

query

91

92

144

Ff connectToDB method - connect to JDBC data source

144

public void connectToDB () {

b

System.out.printin{"into connectToDE");

i

ff Create a properties object for JDBC connection

i

Properties jdbcProperties = new Fropertiesi);

i

£f 3et the properties for the JDBC connection

i

jdbcProperties.put("user", USERID);

jdbcProperties.put("password”, PASSWORDY ;

jdbcProperties.put("naming", "sql");

jdbcProperties.put("errors", "fulltys

jdbcProperties.put("date format"”, "iso");

jdbcProperties.put("extended dynamic", "true"});

jdbcProperties.put("package", "SerTest");

i

£f enable security for Metscape

i

try {
netscape.security.PrivilegeManager.enablePrivilege("UniversalConnect");

t

catch (Throwable exception) {
System.out.printin{"error in enable security for Metscape");
t

i
Ff register the driver using the ASS400 JDBC driwver,
Ff get a connection to the ASS400,
Ff initialize the prepared statement for the query
i
try {
System.out.printin{"before register driver");
DriverManager.registerDriver(new com.ibm.asd400.access. AS400JDBCDriver());

System.out.printin{"before getConnection"};

dbConnection = DOriverManager.getConnection("jdbc:asdln: /" +
SYSTEMMAME +
Wiy
LIBRARY,
jdbcProperties);

System.out.printin{"before prepare”};
psAlTRecord = dbConnection.prepareStatement("Select * from Parts");
t

catch (SOLException ex) {
System.out.printin{"connect failed"});
ex.printStackTrace();
return;

t

System.out.printin{"connected successfully");
return;

Figure 63. The connectToDB Method in the JDBCPartsCatalog Class

Building AS/400 Internet-Based Applications with Java

The Properties Object for the JDBC Connection

A properties object named jdbcProperties is created to contain the property
settings that are associated with the JDBC connection to the AS/400 system. The
advantage of setting the JDBC connection properties is that you can assign a
value to each setting individually, rather than code all of the properties in a
lengthy string. It is much easier to review and change the individual settings.

— Note

You can find documentation about the JDBC properties and values in the
VisualAge for Java Help system. To get to the Help page for JDBC properties,
perform the following steps:

1. Click Help on the VisualAge for Java workbench menu.

2. Click Tools—>AS/400 Toolbox for Java . A Web page, which is the Help
index, opens.

On the Web page, click the Access Classes link.
Click the JDBC link.

Click the Connection link.

© a0 k~ ow

Scroll down on the Connections page, and click the JDBC Pro perties link.

Enable Security for the Netscape Navigator Browser

When you try to make a connection to the AS/400 system from the applet, the
Netscape browser throws a security exception. To enable the Netscape Navigator
browser to connect from the applet to the AS/400 system, you need to include the
line of code shown in the method.

The applet was tested in the Netscape Navigator browser, version 4.07 for
Windows 95/NT.

Instantiate the Connection and PreparedStatement Objects

The code in this section of the method is used to get a Connecton object to the
AS/400 system and to initialize a PreparedStatement ~ object with the SQL statement
that will perform the query.

The java.sgl.DriverManager.registerDriver method is used to load the AS/400
JDBC driver for the applet. The DriverManager.getConnection method is used to
identify the AS/400 system name and library that the applet will use and also to
associate the JDBC Propertes ~ object with the Connection object.

After instantiating the Connection object, the Connection object’s prepareStatement
method is used to instantiate and initialize the PreparedStatement object that
contains the SQL statement.

3.2.5.4 The getAll Method in the JDBCPartsCatalo g Class

The code shown in Figure 64 on page 94 is used to define the getAl method.
This method is invoked from the domain.PartsCatalog getAll method when the
applet needs to get database records from the AS/400 system.

The code defines a Vector and a ResultSet object. The ResultSet object is filled
with the result set of the query executed on the PreparedStatement object from the

93

connectToDB method (see “Instantiate the Connection and PreparedStatement
Objects” on page 93).

After executing the query, the code loops through the result set. Column data in
each row retrieved from the result set is putinto a Sting array. The Sting array is
added to the Vector object.

The Vector object is returned from this method. It is up to the invoking class to
retrieve the results from the Vector object.

i
£F gethl]l method - execute query, getsreturn all rows from
ff data source

i
public ¥ector getAl1() {

Yector aDataVector = new Yector();
java.sql.ResultSet aResultSet = null;

i
£f excute the query, put all row data into vector
i
try {
aResultSet = psAllRecord.executeluery();
i
/f Toop through all rows retrieved by the SOL query
i

while (aResultSet.next()) {
Stringl[] data = new Stringl5];
datal0] aResultSet.getBigDecimal(l,0).toString(); £ number

datalll = aResultSet.getString(2); ff description
datal2] = aResultSet.getBigDecimali(3,0).toString(); £f quantity

datal3] aResultSet.getBigDecimal(4,2).toString(); ff price
datal4] aResultSet.getDate(5).toString(); £ date
i

ff add the data element (3tringll) to the wvector

i

aDataVector.addElement(data);
}
catch (SOLException ex) {
ex.printStackTrace();
}

return aDataVector;

Figure 64. The getAll Method in the JDBCPartsCatalog Class

3.2.6 The TestPart Class

The TestPart class is used to simulate a connection to the AS/400 system. The
class also returns sample records that are hard-coded into the class. This class is
used early in the development and test cycle for the applet to help you debug the
user interface layer of the applet and the application logic layer.

Figure 60 on page 89 shows the dataAccess package, which contains the TestPart
class in the VisualAge for Java workbench.

94 Building AS/400 Internet-Based Applications with Java

3.2.6.1 Methods Used in the TestPart Class

Table 9 summarizes the methods used in the TestPart class. Note that these
methods are required because the TestPatt class implements the DataAccessor
interface.

Table 9. Methods Used in the TestPart Class

Method Description

connectToDB This method is used to simulate a connection to the AS/400
system.

getAll This method is used to simulate the execution of a query. Test
data is returned in a Vector object.

3.2.6.2 TestPart class Code

The code shown in Figure 65 is used to define the TestPat class. Note that the
class implements the dataAccess.DataAccessor interface, and is, therefore,
required to implement the two methods defined in the interface.

i
£f TestPart class - provide simulated data from a data source
i
import Java.util.*;

public class TestPart implements datahccess.Datahccessor |
t

Figure 65. The TestPart Class

3.2.6.3 The connectToDB Method in the TestPart Class

The code shown in Figure 66 is used to define the connectToDB method. This
method is invoked from the domain.PartsCatalog connectToDB method when the
applet needs to make the connection to the AS/400 system.

Because this class is used for testing, the method immediately returns. As far as
the invoking class is concerned, there is now a valid connection to a data source.

i
Ff connectToDEB method - simulate connection to data source
i
public wvoid connectToDB() {

return;

Figure 66. The connectToDB Method in the TestPart Class

3.2.6.4 The getAll Method in the TestPart Class

The code shown in Figure 67 on page 96 is used to define the getAl method.
This method is invoked from the domain.PartsCatalog getAl method when the
applet needs to get database records from the data source.

The code defines a Vector and a Sting array object. Elements of the string array
are filled with data to simulate column values in a database row. After filling each
column value, the simulated row is added as an element of the Vector .

The class returns the Vector to the invoking class. To the invoking class, it
appears as if a query was performed against a data source.

95

i
FFgethl]l method - simulate returning results from a query
i
public Yector getAl1() {

Yector dataVector = new Vector();
Stringl[] data = new Stringl5];

datal0] = "000D1";

datal[l]l = "Parts Description”;
datal2] = "2&";

datal3] = "Bb2";

datal4] = "1997-03-02"

dataVector.addElementidata);

data = new Stringl[5];

datal0] = "000OD2";

datall]l = "Parts Descriptionzg";
datal2] = "99";

datal3] = "123";

datal4] = "1998-03-02"

dataVector.addElementidata);

return dataVector;

Figure 67. The getAll Method in the TestPart Class

3.2.7 The Part Class

96

The Part class is used to define the data and methods that are used to represent
a part in the database. The Part class is used in the PartsView class, getData
method so that the method can work with the Vector of parts returned from the
JDBCPartsCatlog ~ or TestPat classes.

Figure 68 on page 97 shows the domain package, which contains the Pat class
and the PartsCatalog class in the VisualAge for Java workbench.

Building AS/400 Internet-Based Applications with Java

%] Workbench [Administrator] =] E3
File Edit “Workspace Selected Window Help

ﬁ@j@j@)@)@)@)@@)@iﬂi
DREARE

9 All Projects +

B 5§ ServletExamples =]
(9 dataAccess
Bk clomain
= (& Part
Far(String 1)
getAttributeString()
getDate()
getDescription()
getMurmber()
getPricel)
getQuantity()
setDate(Date)
setDescription(String)
setMumberBigDecimal)
setPrice(BigDecimal)
setQuantity(BigDecimal)
artsCatalog
connectToDB()
defaultDatatccessor)
getAll])
getDataAccessor)
getParts()
setDatasccessorDatadccessar)
@ setPars(vVectar)
(FF servlets

B (73 views -
LJ £

=
| domain(9,/15/98 1:00:43 PM) (Administratar)

L

T & & & & &€ & & & & & &

=0

B OEE « E

Figure 68. The Domain Package

3.2.7.1 Methods Used in the Part Class

Table 10 summarizes the methods used in the Part class.

Table 10. Methods Used in the Part Class

Method Description

Part Constructor for the class.

getAttributeString Returns a string array containing part data.

getDate Returns the value of the data associated with the part.
getDescription Returns the value of the description associated with the part.
getNumber Returns the value of the part number associated with the part.
getPrice Returns the value of the price associated with the part.
getQuantity Returns the value of the quantity associated with the part.
setDate Sets the value of the date associated with the part.
setDescription Sets the value of the description associated with the part.
setNumber Sets the value of the part number associated with the part.
setPrice Sets the value of the price associated with the part.
setQuantity Sets the value of the quantity associated with the part.

97

98

3.2.7.2 Part Class Code

The code shown in Figure 69 is used to define the Part class. The class defines
five private variables that are used to hold the data for the part record retrieved
from the data source.

i
Ff Part class - all data about a part from the data source
i
import java.math.*;
import Java.util.*;
import java.sgl.®;

public class Part {

private BigDecimal iHumber =null;
private 3tring ilescription = null;
private BigDecimal iQuantity = null;
private BigDecimal iPrice =null;
private java.sgl.Date iDate =null;

Figure 69. The Part Class

3.2.7.3 Part Constructor in the Part Class

The code shown in Figure 70 is used to define the constructor used for the Part
class. When the class is instantiated, a Sting array is passed to the constructor.
The Sting array contains elements for each of the data fields contained in the
Pat class. The constructor extracts the data field values from the Sting array
and uses the set methods in the class to store the values.

i
£f Part constructor - invoked when a new object based on the
£ Part class is instantiated

i
public Part { Stringl] data) {

setNumber (new BigDecimalidatal01));
setDescription(datalll);

setQuantity(new BigDecimal(datal2l));
setPrice(new BigDecimal(datal3]));
setDate(java.sql.Date.valueOf(datal4]));

Figure 70. The Part Constructor in the Part Class

3.2.7.4 The getAttribute Method in the Part Class

The code shown in Figure 71 on page 99 is used to define the getAtribute

method. This method is used to return all of the field values associated with the
instance of the Part classin a Sting array. By using this class, you do not have to
invoke each of the get methods in your higher-level classes that use the Part
class when you need to work with the field values.

Building AS/400 Internet-Based Applications with Java

i
£f getAttributeString method - return a string array of part data
i
public String[] getAttributeString () {

Stringl] returnString = new Stringl[&];

returnstring[0]
returnstringl[l]
returnstringl2]
returnstring[3]
returnstring[4]

gethlumber ().toStringl();
getDescription();
getOuantity (). toString();
getPrice().toString();
getDate().toString();

return return3tring;

Figure 71. The getAttributeString Method in the Part Class

3.2.7.5 The get Methods in the Part Class

The code shown in Figure 72 is used to define the five get methods used in the
Part class. These methods are used to obtain the current value of a field
associated with this instance of the Part class.

public java.sql.Date getDate() {

return iDate;

public String getDescription() {

return iDescription;

public Biglecimal getNumber() {

return iNumber ;

public BigDecimal getPrice() |

return 1Price;

public BiglDecimal getQuantity() {

return iluantity;

public void setDate(java.sql.Date aDate) {

iDate = aDate;

Figure 72. The get Methods in the Part Class

3.2.7.6 The set Methods in the Part Class

The code shown in Figure 73 on page 100 is used to define the five set methods

used in the Part class. These methods are used to store the current value of a
field for this instance of the Part class.

99

public void setDate(java.sql.Date aDate) {

iDate = aDate;

public void setDescription(3tring alescription) {

ilescription = alescription;

public void setNumber(EigDecimal aNumber) {

iNumber = aNumber ;

public woid setPrice(BigDecimal aPrice) {

iPrice = aPrice;

public woid setQuantity(BigDecimal aQuantity) {

iQuantity = aluantity;

Figure 73. The set Methods in the Part Class

3.2.8 The PartsCatalo g Class
The PartsCatalog ~ class is used for the following purposes:

100

* To select the data accessor that will be used, which indicates which data
source will provide part data to the applet

* To connect to the selected data source

 To retrieve all of the parts from the data source and return a Vector object
containing the part data

Figure 68 on page 97 shows the domain package which contains the PartsCatalog
class in the VisualAge for Java workbench.

3.2.8.1 Methods Used in the PartsCatalo g Class
Table 11 summarizes the methods used in the PartsCatalog class.

Table 11. Methods Used in the PartsCatalog Class

Method Description

connectToDB Makes the connection to the selected data source.

defaultDataAccessor Determines which data source to use and returns a Class that
points to the data source.

getAll Initiates the query of the data source and returns all data in a
Vector .

getDataAccessor Returns a Class that points to the selected data source.

getParts Returns a Vector containing the parts data.

setDataAccessor Sets the value of the data accessor associated with this class.

setParts Sets the value of the parts Vector associated with this class.

Building AS/400 Internet-Based Applications with Java

3.2.8.2 PartsCatalo g Class Code

The code shown in Figure 74 is used to define the PartsCatalog ~ class. The class
defines a Vector , which is used to contain parts data retrieved from the data
source, and a DataAccessor , which points to the currently selected data source.

i
£f PartsCatalog class - performs required operations to get
£f parts data from the data source and return a vector of
£f parts data

i
import Java.util.*;

public class PartsCatalog {

private Wector parts = new WVector();
private datahccess.Datahccessor datahccessor;
}

Figure 74. The PartsCatalog Class

3.2.8.3 The connectToDB Method in the PartsCatalo g Class

The code shown in Figure 75 is used to define the connectToDB method. This
method is invoked from the applet in the initConnections method (see Section
3.2.3.12, “The initConnections Method in the PartsView Class” on page 88).

The method first determines which data source to use by invoking the
getDataAccessor method in this class. After determining which data source to use,
the connectToDB method in the data source’s class is invoked:

« |f the data accessor is the JDBCPartsCatalog , the connectToDB method in the
JDBCPartsCatalog is invoked (see Section 3.2.5.3, “The connectToDB Method
in the JDBCPartsCatalog Class” on page 91).

+ If the data accessor is the TestPart , the connectToDB method in the TestPart
class is invoked (see Section 3.2.6.3, “The connectToDB Method in the
TestPart Class” on page 95).

£f connectToDEB method - get the data accessor (select data source
ff to use), open connection to the data source

public void connectTaDB() {

getDatadccessor().connectToDB();
return;
t

Figure 75. The connectToDB Method in the PartsCatalog Class

3.2.8.4 The defaultDataAccessor Method in the PartsCatalo g Class
The code shown in Figure 76 on page 102 is used to define the
defaultDataAccessor method. This method is invoked from the getDataAccessor
method in this class.

The method includes two lines of code that are used to select the data accessor
to use. When you initially test the applet, comment out the line that assigns the
dataAccess.JDBCPartsCatalog class and remove the comment from the

dataAccess. TestPart line. When you want to test the applet with the connection to
the AS/400 system, remove the comment from the dataAccess.JDBCPartsCatalog

line and comment out the dataAccess.TestPart line.

101

102

In a production applet that needs to work with multiple data sources, you can
make the selection of the data accessor a user selectable option.

After assigning the class name, the ClassforName method is used to instantiate
the selected data accessor class, which is returned to the invoking method.

i
Ff defaultDatahccessor method - set the name of the class

£f containing the data source to use

i

Ff Select one of the qualifiedClassMWame choices, comment the
£f other

i
private Class defaultDataAccessor () {

String qualifiedClassMame = "datahccess.JDBCPartsCatalog”;
Fi5tring qualifiedClassMame = "datahccess.TestPart";

try {
return Class.forMName(qualifiedClassName);
t

catch (ClassMotFoundException cnfe) {
System.out.printin{"No such class... " + cnfe);
t

return null;
3

Figure 76. The defaultDataAccessor Method in the PartsCatalog Class

3.2.8.5 The getAll Method in the PartsCatalo g Class

The code shown in Figure 77 on page 103 is used to define the getAl method.
This method is used to get the part data from the selected data source and return
the data to the invoking method in a Vector . This method is invoked from the
applet’s getbata method (see Section 3.2.3.7, “The getData Method in the
PartsView Class” on page 85).

The method instantiates a Vector used to return the part data. It instantiates and
fills an Enumeration ~with the part data by invoking the getAl method for the
selected data accessor (see Section 3.2.5.4, “The getAll Method in the
JDBCPartsCatalog Class” on page 93 and Section 3.2.6.4, “The getAll Method in
the TestPart Class” on page 95).

After filling the Enumeration , the method iterates through it. Each element in the
Enumeration is cast to a Part object, which is added to the Vector . The Vector is
then returned from the method to the invoking method.

Building AS/400 Internet-Based Applications with Java

i
£F gethl]l method - get all parts from data source, return
£f wector of parts data

i
public ¥Wector getAll() {

Yector aPartsVector = new WVector();

i
Ffget all elements from the database.

£f use the data accessor provided in the method getDatahccessor()
i
System.out.printin{"before getDataAccessor().getAl1().elements()");
Enumeration parts = getDataAccessor().getAl1().elements();

i
£f for each element in the parts wvector create a new instance of
ff Part and add it to the wector aPartsVector
i
while (parts.hasMoreElements()) {
Part aPart = new Part{{(String[liparts.nextElement());
aPartsVector.addETement(aPart);

b

setParts(aPartsVector);
return aPartsVector;
}

Figure 77. The getAll Method in the PartsCatalog Class

3.2.8.6 The getDataAccessor Method in the PartsCatalo g Class

The code shown in Figure 78 on page 104 is used to define the getDataAccessor
method. This method is invoked in the connectfToDB method in this class to
determine which data source is to be used (see Section 3.2.8.3, “The
connectToDB Method in the PartsCatalog Class” on page 101).

The method invokes the defaultDataAccessor method in this class, which returns a
Class pointing to the selected data accessor (see Section 3.2.8.4, “The
defaultDataAccessor Method in the PartsCatalog Class” on page 101). That class
value is used by the setDataAccessor ~ method in this class to store the value of the
selected data accessor (see Section 3.2.8.8, “The set Methods in the
PartsCatalog Class” on page 105).

103

104

i
£ getDatahccessor method - return the name of the currently
ff selected data source

i
private datadccess.DataAccessor getDataAccessor() {

i
7 if the wariable datadccessor is null, create a new instance of
£ the data accessor provided in the method defaultDatahccessor()

i
try {
if (datahccessor == null) {
setDatahccessor({datahccess. Datahcoessor)
defaultDatadccessor().newInstance());
}
}

catch (InstantiationException ie) {
System.out.printin{"Error instantiating DatahAccessor class");
t

catch (IT1legalhccessException ie) {
System.out.printin("ITlegal access to DatahAccessor class");
t

return datahccessor;

Figure 78. The getDataAccessor Method in the PartsCatalog Class

3.2.8.7 The getParts Method in the PartsCatalo g Class

The code shown in Figure 79 is used to define the getPats method. The method
is used to return the Vector of parts data for this instance of the PartsCatalog

class.

i
£f getParts method - return the parts vector
i
private Yector getParts() {

return parts;

Figure 79. The getParts Method in the PartsCatalog Class

Building AS/400 Internet-Based Applications with Java

3.2.8.8 The set Methods in the PartsCatalo g Class

The code shown in Figure 80 is used to define the set methods used in the class.
The methods are used to store the values of the parts Vector and DataAccessor
object that are local to the class.

i
ff setDatahccessor method - set the datadccessor to the value
Ffof the currently selected data source

i
private void setDatahccessor{dataAccess.Datahccessor ahccessor) {

datahccessor = aAccessor;
return;

i
£ setParts method - set the parts wvector the parts returned
£ from the data source

i
private wvoid setParts(Vector aPartWector) {

parts = aPartVector;
return;
}

Figure 80. The set Methods in the PartsCatalog Class

3.3 Runnin g the Applet in a Browser

Now that you tested the applet in the AppletViewer included with VisualAge for
Java and reviewed all of the classes used in the applet, it is time to run the applet
in a browser. The applet is loaded into a browser from an HTML file. The HTML
code includes the APPLETtag, which identifies the applet to run and its location in
the network.

You have several options for packaging and serving the applet. You need to
carefully assess how your applet will be used before deciding how to deploy the
applet. For example, the deployment considerations are different if you are
developing the applet for use on your enterprise’s intranet, as opposed to making
the applet publicy available over the Internet.

3.3.1 Test Environment
While writing this redbook, we tested the applet in the following environment:

* AS/400 system at OS/400 V4R2 and OS/400 V4R3

« AS/400 Toolbox for Java, V3R2 level (5763-JC1)

« Windows NT 4 with Service Pack 3

* Microsoft Windows NT 4 TCP/IP stack with Token-Ring connection to the
AS/400 system

 VisualAge for Java Enterprise edition, version 2.0

* Netscape Navigator 4.07

* Microsoft Internet Explorer 4.01 with Service Pack 1 (SP1)

Other test environments should work as well. For example, the Netscape
Navigator browser can be used on a Windows 95 or Windows 98 PC.

105

3.3.2 Serving the Applet from the PC Drive

For your first test, try serving the applet from the PC drive. This test is
recommended because there are no dependencies on the network for serving the
applet. The steps used in this test are:

1. In the VisualAge for Java workbench, export all of the required classes to a
Java Archive (Jar) file on the PC drive.

2. Create or work with the generated HTML file that contains the APPLETtag and
add the ARCHIVEtag.

3. Start the browser. This includes opening the Java Console and the HTML file.
4. Respond to the browser’s Java Security alert.

5. Work with the applet in the browser.

Each of these steps is explained in detail in the following sections.

3.3.2.1 Exportin g Classes to the PC Drive
To run the applet in the browser, you need to get the Java classes used by the
applet into a Jar file. The process is called exporting. It is supported by several
options in the VisualAge for Java environment.

To begin the process, select the three packages that are used in the applet in the
VisualAge for Java workbench, as shown in Figure 81 on page 107. To select
multiple packages, press and hold the Cii key, while clicking the required
packages.

106 Building AS/400 Internet-Based Applications with Java

%:]Workbench [Administrator] =10 %]
File Edit ‘Waorkspace Selected MWindow Help

HPH WV YIDYYYH)

9 All Projects +

= & Appletworkshop =l
= &g AppletwarkshapListbox

& IBM Cormmon Connector Frarmewark:
= & IBM Enterprise Access Builder Library
& |BM Enterprise Data Access Libraries
& IBM Enterprise Toolkitfor AS400

& BM Java Implermentation

= & IBM Java Record Library

& |IBM Servet Builder class libraries

5§ B Servlet Builder Exarnples

® & Java class libraries

® & JFC class libraries

& WS Stuff 2

& MNetscape Security

B & Serdet Examples

Open

Open To 3

GoTao »
® &Y Sunclass librar————
& Sun JSDK class Add 3

Impart...

Search...

Feplace With »
Delste...
Feorganize 4
Manage
Compare YWith
Fun
Document

Tools 4 _ILI
g Brapetties k
@ —_—

| Exportthe selected iterns.

* v v v

Figure 81. Exporting the Applet Packages

After making your selections, right-click to display the pop-up menu. Click Export
on the menu. The Export SmartGuide shown in Figure 82 on page 108 appears.

107

To export the classes to the PC drive, select Jar file as the export destination.
After selecting the export option, click Next to continue.

Export :

Select an export destination

" Directory

 Bepository

< Back I Ilext > I:I it Cancel
k]

Figure 82. Export SmartGuide

3.3.2.2 Specifying Export O ptions
The SmartGuide now displays the Export to a jar file dialog (see Figure 83 on
page 109). The following selections were made in the dialog:

» The directory to export to is c\AppletTest . The drive and directory are not
important. You can export to any directory you want on your PC.

» The class, resource, beans, and html options are selected by default. The six
selected classes are the classes defined in the dataAccess , domain , and views
packages used in the project. The HTML file is generated by VisualAge for
Java so that you can test the applet.

Click the Finish button to complete the export. VisualAge for Java writes the jar
file into the AppletTest directory and also generates file PartsViewhtml . The name
of the HTML file is based on the runnable class in the project.

108 Building AS/400 Internet-Based Applications with Java

Export to a jar file

e
Jarfile: |C:\App|etTe sty Partsiew jar Browse... |

What do youwant to include in the jar file?

v class Details... | G selected
I java [Details:. | G selected
¥ resource Details... | 0 selected

V¥ heans Details... | 0zelactad

Select referenced types and resources |

Deselect Beanlnfo and ProperyEditor |

Do ywouwantta create html files to launch applets?

v html Cetails... | 1selected

d

Options
™ Include debug attributas in class files.
¥ Compress the contents of the jarfile.
[~ Owverwrite existing files without warning.

[T Automatically open aweh browser on created hirm| files.

< Back el > | Cancel |

Figure 83. The Export to a Jar File Dialog

3.3.2.3 Copying the jt400.jar File to the A ppletTest Director y

The PartsView applet uses several Java classes that are provided in the AS/400
Toolbox for Java. When you exported the Java classes in the project, you only
exported the classes that are specific to the applet.

For the applet to work, it needs access to the classes in the AS/400 Toolbox for
Java. There are several techniques you can use to provide access to those
classes. In this example, you copy the Jar file that contains the Toolbox to the
directory where the applet’s jar file is located.

The AS/400 Toolbox for Java is located in the AS/400 system Integrated File
System (IFS). Use a Client Access for Windows 95/NT connection or the AS/400
system NetServer to get to the following IFS directory on your AS/400 system:

QIBM\ProdData\HT TP\Public\it400\ib

That directory contains files jt400.jar and j1400zip . Copy the jt400jar file to
the c\AppletTest directory.

3.3.2.4 Copying the dab. jar File to the A ppletTest Director y

The PartsView applet uses several Java classes that are provided in the IBM
Enterprise Data Access Libraries project. They are available in a jar file that you
download from the redbook Web site. They are in a jar file named dab.jar . The
classes in this jar file support the multi-column listbox. Copy the dab.jar file to
the AppletTest directory.

109

110

3.3.2.5 Addin g the ARCHIVE Parameter to the HTML file

Attention

When using Netscape Navigator, you need version 4.07 or later to use multiple
jar files. In our tests with earlier Netscape Navigator browsers, we could not
use multiple jar files.

Now that you have the jt400,jar and dab.jar file in the AppletTest directory, you
need to modify the generated HTML file so that the applet can use the classes in
f400jar . and dab.jar . Perform these steps:

1. Use NotePad or another editor to open file c\AppletTest\PartsView.html

2. Change the line ARCHIVE=PartsView.jar so that it includes the reference to
jt400 jar and dab.jar |, as shown in the following code.

3. Save the changed HTML file to the c)\AppletTest directory.

<HTML>

<HEAD>

<TITLE>PartsView</TITLE>

</HEAD>

<BODY>

<H1>PartsView</H1>

<APPLET CODE-=views.PartsView.class
ARCHIVE=PartsView.jar,jt400.jar,dab.jar
WIDTH=700
HEIGHT=350>

</APPLET>

</BODY>

</HTML>

Note

Be sure there are no blank spaces in the ARCHIVEtag. If you leave a blank after
the comma that separates the two jar files, the applet will fail.

3.3.2.6 Startin g the Browser; O pening the Java Console
You can now start the Netscape 4.07 or later browser. Adjust the size of the
browser so that it does not occupy the entire screen space on your monitor.

You can follow the progress of the applet as it executes by opening the Java
Console. Use the Window—>Java Console menu item to open the Java console
(see Figure 84).

5o | o
Q: Mawvigator Cirl+1
- Bookmarks 4

@ 1B

Cirl+Shift+]

¥ 0'Web Page: <no title>

Figure 84. Opening the Netscape Java Console

A sample of the Java Console at runtime is shown in Figure 85 on page 111.

Building AS/400 Internet-Based Applications with Java

M. Java Console !Em
Metscape Communications Corparation - Java 1.1.8 - l

Type '?*for aptions.

Symantec Javal ByteCode CompilerVersion 210065
Copyright {(C) 1996-97 Symantec Carporation
Fartsiew.initConnections

into connectToDB

into enable security for Metscape - UniversalConnect
hefare registerDriver

hefore getConnection

hefore prepare

o o

tear | X Close |

Figure 85. Netscape Java Console when the PartsView Applet is Running

3.3.2.7 Opening the PartsView.html file
You need to load the PartsViewhtml file to start the applet. When you load the
HTML file, the APPLETtag in the file is processed:

» The CODEparameter on the APPLETtag is used to identify the runnable class in
the applet.

* The ARCHIVEparameter on the APPLETtag is used to identify the jar files that
contain the applet classes and the AS/400 Toolbox for Java classes used in
the applet.

Click on File—>Open Page to open the HTML file (see Figure 86). Use the file
dialogs to navigate to the c\AppletTest directory and select file PartsView.html
within that directory.

Sl Edit “iew Go ‘Aindow

Mew Window Ctrl+1
Open Page... Ctrl+0 ‘l

y
EEE A (EfH = pn:
Eane Erarme e, et
e Page... T

UlEed Files.

Fage Setup...
it Prewre:
Erinte.

Close Chrl+4y
Exit Ctrl+C1

Figure 86. Opening the PartsView.html File in the Browser

Soon after opening the HTML file, you should see the status messages from the
applet displayed in the Java console. It may take several seconds before you see
the first message. The delay is because the Java Virtual Machine in the browser
is analyzing the Java bytecodes from the applet and Toolbox classes.

111

3.3.2.8 Respondin g to the Netsca pe Security Prom pt

Because the applet includes the enablePriviege code in the connectToDB method
(see Figure 75 on page 101), the browser displays the Java Security dialog (see
Figure 87). You can accept or reject the applet’s attempt to connect to the AS/400
system using the dialog.

To continue processing, click the Grant button.

M. Java Security !Em
i g JavaScript or a Jawa applet from "Unsigned classes from local hard

disk' is requesting additional privileges.

Granting the following is high risk:

Contacting and connecting with other computers over a network

1

Dretails
| Remember this decision

Identity werified by

Certificate | Granh | Deny | Help |

Figure 87. Java Security Dialog

3.3.2.9 Workin g with the A pplet

After granting authorization to the applet to connect to the AS/400 system, the
applet runs the JDBC code to retrieve records from the AS/400 database. The
records are displayed in the multi-column listbox in the applet.

Figure 88 on page 113 shows how the PartsView applet appears in the Netscape
browser.

112 Building AS/400 Internet-Based Applications with Java

}?ﬂ— Parts¥Yiew - Netscape !E m

File Edit Yiew Go Window Help

g_@taﬁ@.dﬁz’ﬁi

Erel Forward Reload Home Search MNetscape Frint Security t=iin]e]

W Bookmarks 4 Lacation:file ///C|/AppletTesi/PartsView him| v | &7 What's Related
ﬁlnstantl\dessage Intemet 5 Lookup 4 MewaCool MNetcaster
-
PartsView
Quantity
12301 |Quad speed CO ROM Drive 120 42 1996-01-12 =~
12302 |SCSII Cable 30 25 1995-11-13
12304 |(Ethernet PCMCIA card ¥ 85 30 1995-12-17
12305 |Home mouse 25 47 1996-02-18
12307 (600 dpiflathed scanner 875 12 1996-03-01
12308 [100 MHZ Pentium PC 1874 4 1996-02-24
12310 [Logo mouse mat T 376 1994-11-24
12311 |Screen wipes 1 4750 1996-01-10
12312 (W34 Modem 120 58 1996-03-06
12313 |[Games joystick 42 32 1995-11-12
12314 | 3m printer cable 12 20 1996-01-23 —
;], o i wmne Iﬂ’

= |Applet views PartsWiew running 4

Figure 88. PartsView Applet in the Netscape Browser

3.3.2.10 Testing the Applet Usin g Microsoft Internet Ex plorer 4.01

If you have Microsoft Internet Explorer version 4.01 available, you should also
test the applet using that browser. When you create an applet for
general-purpose use, you need to test it extensively in all of the browsers that
your applet’s users may have. As you see, there are many deployment
considerations you have to accommodate, based on the selection of browser
used to work with the applet.

— Note

The level of Microsoft Internet Explorer used in the tests described in this
redbook is version 4.01 with Service Pack 1. If you are uncertain what version
of Microsoft Internet Explorer you have, click on Help—>About Internet
Explorer in the browser.

If you need to update your version of Microsoft Internet Explorer, open a
connection to the Internet from your PC, select Help—>Product Updates in
the browser. This takes you to a Microsoft update Web site where you can
install the Service Pack and additional features of Microsoft Internet Explorer.

Before you open the HTML file to start the applet in Microsoft Internet Explorer,
open the Java console. Click on View—>Java Console . You can now click
File—>Open to open the HTML file in the browser.

113

Applet Failure

When you start the applet in Microsoft Internet Explorer, it fails with a
SecurityExceptionEx exception. You get the failure first at the enablePriviege code
for the Netscape browser. You can ignore that failure. The more critical failure for
the applet is the failure when the JDBC connection is attempted.

Netscape and Microsoft use different techniques to implement browser security
for Java applets. With the Netscape browser, you can simply include the
enablePrivilege code to indicate to the Java Virtual Machine (JVM) the types of
privileges that your applet needs. For each requested privilege, a Java Security
dialog (similar to Figure 87 on page 112) is displayed.

Microsoft implements applet security by using a signed cabinet file. The cabinet
file is used instead of the jar file and is "signed" with a digital certificate. Digital
Certificates are explained in greater detail in Section 8.2, “Digital Certificates and
Certificate Authority” on page 267 of this redbook. When Microsoft Internet
Explorer starts an applet in a signed cabinet file, the browser presents one
security dialog where you can review all of the requested privileges.

The reason for the applet failure is to protect your PC from harmful actions that
may be coded into applets that you download from the Internet. If the applet is
allowed to freely access your PC, it can perform any number of actions that can
damage data on your PC and compromise security.

3.3.3 Creating a Signed Cabinet File for Microsoft Internet Ex plorer 4.01

114

There are a number of steps you need to follow to create a signed cabinet file that
can be used in Microsoft Internet Explorer. You need a signed cabinet file for
either of the following conditions:

e The applet is installed on your PC and you do not set the CLASSPATH
environment variable (see Section 3.3.4, “Using the CLASSPATH Environment
Variable” on page 125). Since you have to explicitly set the CLASSPATH
environment variable, the assumption is that if you did change it, you did
intend to allow applets to run on your PC and have access to the classes
identified in the CLASSPATH

* The applet is in a cabinet file that is served from the IBM HTTP Server for
AS/400. Since the cabinet file can be downloaded and installed on your PC as
part of its invocation from a Web page, there needs to be some mechanism to
let you accept or reject the applet from running. If you attempt to run an applet
in an unsigned cabinet file, Microsoft Internet Explorer rejects the request.

3.3.3.1 Signed Cabinet Files at Runtime

When you open a Web page that loads an applet in a signed cabinet file, the
Microsoft Internet Explorer JVM presents a Security Warning panel, similar to
Figure 92 on page 119. You can review information about the applet and the
signer in the tabs on the panel. Note the following points:

« If you recognize and trust the signer of the applet, you may choose to let it
execute.

« If you do not recognize the signer, you should carefully review the permissions
that the applet is requesting. Let the applet execute only if you are certain that
it will not harm your system.

Building AS/400 Internet-Based Applications with Java

3.3.3.2 Digital Certificate Conce pts
The signed cabinet technique is based on digital certificates. A digital certificate
is an encrypted string of bytes that can be attached to a cabinet file.

If you intend to conduct e-business over the Internet, you need to obtain a
certificate from a Certification Authority (CA). You apply to the CA of your choice
and submit required information about your enterprise or organization. The CA
examines the credentials you present and, for a fee, issues a digital certificate
that is unique to you. The certificate can be used to identify your Web server and
also to "sign" applets.

When a signed applet is loaded into the browser, the signature is compared with
a list of known CAs that are configured as part of the browser. Figure 89 shows a
list of CAs that are provided with Microsoft Internet Explorer. Click on
Views—>Internet Options to open the dialog. Click the Content tab, then the
Authorities button).

Internet Options
Ganara\l Security Content | Cﬂnnecﬂnnl Prngramsl Advancedl Certificate Authorities
— Content Advisor i~ Issuers
@I Ratings help you control the Internet content that can be viewed an % Trustsites, people, and publishers with credentials issued by
this computer. the following Ceritying Autharities
Enable | SefinEe: | lesuer Type
i~ Certificat INetwnrk server authentication j
% Use ct_:.‘rtiﬁcates to positively identify yourself, certificate EA‘W Cerificate Services DM
X authorities and publishers.
[F1ATT Directory Services Omn
Persanal... Authorities... | Fublishers.. | [F1GTE CyberTrust Root O
[Firternettcl Omn
— Personal information EKEy\MInEss Canada Inc. keywiness@keywitness.ca ETI
Microsoft Authenticode(tm) Roat T
& Microsoft Profile Assistant stores vour name, Edit Profile Cl . (i) i
E’f address, and other personal information [F]Microsoh Froat Authority [y
Reset Sharing. [¥] Microsoft Root SGC Authority Fm
I []
Microsoft Wallet provides a secure place to Felelrazas
store private information for Intemet e EeriiEate | DElEte |
shapping PE/HETTE:
3
0K | Cancel | Al |

Figure 89. Microsoft Internet Explorer List of Certificate Authorities

If you do not intend to conduct public e-business or if you simply need to test
signed applets, you can use tools provided with the Microsoft Java Software
Development Kit (SDK) to generate test certificates. It is unlikely that you can use
these "free" certificates for e-business and avoid paying a fee to a Certification
Authority. As shown in Figure 92 on page 119, the Security Warning panel
displays information about the certificate attached to a signed applet. If the
Security Warning indicates that the applet was signed with a certificate issued
from an unknown CA, it is unlikely that anyone will choose to allow the applet to
execute in their browser.

3.3.3.3 Obtainin g the Microsoft Java Software Develo pment Kit

The programming tools you need to create signed cabinet files are contained in
the Microsoft Java SDK. You can freely obtain the SDK from Microsoft’s Web site
at the following address: http://www.microsoft.com/java

115

116

Follow the links on that page to the Downloads section. At the time this redbook
was written, Microsoft had three versions of the Java SDK available for download:

« 3.1
« 2.02
« 151

Unless you have specific reasons for working with the earlier versions, you should
download version 3.1. The instructions in this redbook assume that you are
working with the Microsoft Java SDK version 3.1.

The SDK is provided as a self-extracting EXE file. Simply run the EXE file to
create the setup procedure. The setup procedure prompts you for the additional
steps required to install the SDK on your PC.

3.3.3.4 Locatin g the Certificate Tools in the SDK
The programs you use to create a test digital certificate and sign your applet are
in subdirectories of the SDK. Assuming that you install the Microsoft Java SDK to
a directory named SDK, the tools are in the directory:

c\sdk\Bin\PackSign

You should add that directory to your PC’s PATHenvironment variable so that you
can access the programs from any other directory on your PC. The programs you
will use are:

« makecert —Used to create (make) a test digital certificate

» ce2spc —Used to convert the test certificate into a Software Publisher
Certificate (SPC)

« signcode —Used to sign your applet with the SPC file

» chkava —Used to display information about the signed applet

You need to consult Microsoft's documentation for a complete description of all of
the options available with those programs. You can review documentation for the
tools at the Microsoft Java SDK Web site or optionally download the
documentation. The instructions in this redbook simply show the parameters to
use for each of the programs.

3.3.3.5 Creatin g the Test Certificate

If you have the makecert and cert2spc tools available, you can create the test
certificate that you will attach to the applet. Follow these steps to create the test
certificate:

1. Open a MS-DOS Prompt window (Windows 95/98) or a Command Prompt
window (Windows NT).

2. Set the PATHenvironment variable so that it includes the path to the SDK
PackSign directory. You can add the SDK directory to the existing path by
entering this command in the window:

PATH=c:\sdK\Bin\PackSign;%cPATHY
3. Change the directory in the window to c\AppletTest

4. Enter the makecert command and parameters as shown. This command
creates a test certificate with a name and a test key.

makecert -sk TestKey -n "CN=ITSO-Applet’ TestCert.cer

Building AS/400 Internet-Based Applications with Java

5. Enter the cet2spc command and parameters as shown in the following
example. This command converts the test certificate from makecert into a
Software Publisher Certificate, which is required to sign the cabinet file that
will contain the applet:

cert2spc TestCert.cer TestCert.spc

6. Leave the window open. You return to the window to create the cabinet file
and sign the cabinet file after exporting the applet in VisualAge for Java.

3.3.3.6 Addin g Trace Statements to the connectToDB Method

To create the cabinet file, you need to export the applet packages from VisualAge
for Java. However, there is a problem in the export process, in that not all of the
referenced classes used in the applet are exported. This problem does not
become evident until you try to run the applet from the signed cabinet file in the
browser.

To help locate the missing classes, you can add trace statements to the Java
source code in the applet’s connectToDB method. The trace statements write to the
Java Console when the applet is invoked. Using the trace statements, it is
relatively easy to determine which of the referenced classes do not get exported.
Without the trace statements, there is little debugging information available to
help identify and resolve the problem.

Go to the dataAccess.connectToDB method in VisualAge for Java. Add the Trace
statements as shown in Figure 90.

Note: Several lines of code that are already in the method are shown for
reference to help you locate where to add the Trace statements.

"
Fokkokok

/I connectToDB method - connect to JDBC data source

"
Fokkokk

public void connectToDB () {

System.out.printin('into connectToDB");

com.ibm.as400.access. Trace.setTraceErrorOn(true);
com.ibm.as400.access. Trace.setTrace\WamingOn(true);
com.ibm.as400.access. Trace.setTraceDiagnosticOn(true);
com.ibm.as400.access. Trace.setTracelnformationOn(true);
com.ibm.as400.access. Trace.setTraceOn(true);

"
Fekkekkekkokkokk

I/ Create a properties object for JIDBC connection

"
Fokkokkokkokkokk

Properties jdbcProperties = new Properties();

Figure 90. Enable Tracing of the Applet at Runtime

117

3.3.3.7 Exportin g the Appletin VisualA ge for Java

In Section 3.3.2.1, “Exporting Classes to the PC Drive” on page 106, you saw
how to use the Export option in VisualAge for Java to export the packages used in
the applet to a jar file. Follow the instructions in that section to start the export
process again. Instead of selecting Jar file as the export destination (see Figure
82 on page 108), select Directory as the export destination.

Figure 91 shows the Export to a directory dialog. Follow these steps to complete
the export of the applet to a directory:

1. Enter c\ppletTest\ for the directory.

2. Click the .html checkbox so that an HTML file is generated for the applet.

3. Click the Select referenced t ypes and resource button so that VisualAge for
Java gets the list of additional classes and resources used.

4. After generating the references, click the Finish button to write the classes
and resources to the directory.

Export to a directory

“ai
Directary: |C:\App|etTest\ Browse... |

What do you want to expor?

v class Details... | 6 selected
[jawa Cetails.. | 6 selected

v resource Details... | 0selected

il

Select referenced types and resourceer\J

%
Deselect Beanlnfo and PropertyEditor |

Do you want to create html files to launch applets?

d

Details... | 1 selected

Options
™ Include debug attributes in class files.
[~ Owverwrite existing files without waming.

[T Automatically open a web browser on created html files.

< Back | [alExd | Finish I Cancel

Figure 91. Export to a Directory Dialog

3.3.3.8 Creating a Signed Cabinet File Based on the A pplet Directories
Now that the classes and resources used in the applet are available in the
c\ppletTest directory and subdirectories, you can create a cabinet file of those
files. A cabinet file is similar to a jar file, in that it is a compressed collection of
other files and is intended to be transported in a network.

The reason why you export to a directory, rather than to a jar file, is so that the
cabinet creation program has the correct files and directory structure to add to

118 Building AS/400 Internet-Based Applications with Java

the cabinet. When Microsoft Internet Explorer opens the cabinet file, it locates
classes and resources based on the directory information stored in the cabinet
file. If you create a cabinet file based on a jar file, the browser cannot open the
files correctly in the cabinet file.

Go back to the MS-DOS or Command Prompt window and follow these steps to
create, sign, and test the cabinet file:

1. Verify that the current directory is c\AppletTest

2. Enter the cabac command to create the cabinet file. Be sure you enter the /p
and fr parameters, to preserve directory names and to recurse directories:

cabarc /p Ir n PartsView.cab *.*

3. Verify that file PartsView.cab is in the c\AppletTest directory. If not, repeat the
steps in this section.

4. Enter the signcode command to sign the cabinet file with the test certificate you
generated in Section 3.3.3.5, “Creating the Test Certificate” on page 116. The
jplow parameter is used to assign a security level of "low" to the applet:

signcode -j javasign.dll p low -spc TestCert.spc -k TestKey PartsView.cab

5. Enter the chkpva command to check the signature on the cabinet file. When
you enter the command, the display in Figure 92 appears. You should spend a
few minutes in the panel to examine all of the options used to identify and
describe the signed applet.

chkjava PartsView.cab

Security Warning m
YWarning: The authenticity of this content cannot be verified,
therefare it cannot be trusted.

Froblem listed below:

The test root has not been enabled as a trusted root.

Do you want to install and run "partsview.cab" signed an an
unknown dateftime and distributed by

[TS0-Applet

SIGHNED WITH FERMISSIONS
Full Permissions

Mo More Info

Figure 92. The chkjava Command Security Warning Panel

3.3.3.9 Modifying the HTML File to Point to the Cabinet File

Open the PartsViewhiml file that VisualAge for Java generated in the

c\ppletTest directory. Add the PARAMstatement to the HTML file so that it points
to the cabinet file. Save the file in the c\AppletTest directory.

<HTML>

<HEAD>
<TITLE>PartsView</TITLE>
</HEAD>

<BODY>
<H1>PartsView</H1>

119

120

<APPLET CODE=views.PartsView.class
WIDTH=700
HEIGHT=350>
<PARAMNAME=cabbase
VALUE=PartsView.cab>
</APPLET>
</BODY>
<HTML>

3.3.3.10 Testin g the Cabinet File in Microsoft Internet Ex plorer
You can now test the signed cabinet file in Microsoft Internet Explorer. Follow
these steps to run the test:

1.

Start Microsoft Internet Explorer version 4.01 (SP1). Adjust the browser so
that it does not take up the entire display space on your monitor.

Click on View—>Java Console to open the Java Console.

3. Click on File—>Open to open the file c\AppletTestiPartsView.html

The Security Warning panel appears (see Figure 92 on page 119). Click Yes
to allow the applet to run.

The applet fails because of the classes that are missing. Figure 93 on page
121 shows a portion of the Java Console with the trace messages written
during execution of the applet. The next to last line in the figure identifies the
missing class as com.ibm.as400.access.SocketContainerinet

Close the Microsoft Internet Explorer browser. You need to add classes to the
cabinet file to make the applet work correctly.

Building AS/400 Internet-Based Applications with Java

help

clear

run finalizers
garbage collect
WEmMOYY uFage
quit

thread list

g Bog o bho0 o

PartsView.initConnections

into connectToDlE

bhefore registerDriwer

before getConnection

Wed Now 25 00:04:36 P3T 1993 New signon...

Wed Nov 25 00:04:37 P3T 1995 signon and get new security ohject...

Wed Now 25 00:04:41 P3T 1998 Opening a socket to werify security...

Wed Now 25 00:04:41 P3T 19983 Loading browser security classes

Wed Now 25 00:04:41 P3T 1993 Loaded Netscape browser security classes

Wed Now 25 00:04:41 P3T 19983 Loaded IE browser security classes

Wed Now 25 00:04:41 P3T 1993 Enabling connect priwileges for Navigator

Wed Nov 25 00:04:41 PST 1998 Enabled connect priwvileges for Navigator

Wed Now 25 00:04:41 P3T 1993 Enabling connect priwvileges for IE

Wed Now 25 00:04:41 P3T 1993 Enabled connect priwvileges for IE

Wed Now 25 00:04:41 P3T 1998 Opening socket o port mapper...

Wed Now 25 00:04:42 P3T 1998 Sending port mapper data stream...

6l 73 2D 73 69 67 6E 6F 6E

Wed Nov 25 00:04:43 PST 1998 Port wapper data stream receiwved...

ZB 00 00 21 1C

Wed Now 25 00:04:43 P3T 1998 Opening socket Lo signon server...

Wed Now 25 00:04:43 P3T 1998 TUnexpected ClassNotFoundException

java. lang. Throwahle
at con/ibm/as400/access /Trace. log (Trace.jawva:Z35)
at con/ibm/as400/access /45400, loadSocketContainer (45400.jawva: 1691)
at con/ibm/as400/access/Security400. connect (Securityd00.jawva:905)
at con/ibm/as400/access Securityd00. signon (Security400. java: 412)
at con/ibm/as400/access /SecurityManagerddl. signon (SecuritcyManagerd0l. java: 257)
at con/ibm/as400/access /45400, getiecuricy400 (A3400.jawva:1255)
at con/ibm/as400/access /45400, signln (A5400. jawva: 2091)
at con/ibm/as400/access /45400, connect (45400, java: 554)
at con/ibm/as400/access /A5400JDECConnection. open (A5400JDECConnection. java:§77)
at con/ibm/as400/access /A5400IDECConnection. <init> (A43400JDECConnection. java:202)
at con/ibm/as400/access /A5400JDECDriver. connect (AS400JDECDriver. java: 187)
at Jjava/sql/DriverManager.getConnection (DriverManager.java)
at datakccess/JDECPartsCatalog.connectToDE (JDECPartaCatalog.java)
at domain/PartsCatalog.connectToDE (PartsCatalog. java)
at wiews/PartsView.initConnections (PartsView.Jawa)
at wiews/PartsView.init (PartsView.Jawa)
at com/ms/applet/ippletPanel.securedCalll (AppletPanel. java)
at com/ms/applet/dppletPanel. securedCall (AppletPanel.java)
at com/mssapplet/dppletPanel.processientEvent (&ppletPanel.java)
at con/ms/applet/dppletPanel.processientEvent (AppletPanel. java)
at com/ms/applet/dppletPanel.run (AppletPanel. jawva)
at java/lang/Thread.run (Thread.jawva)

Wed Now 25 00:04:45 P3T 1993 New signon...

Clear

Wed Now 25 00:04:45 PST 1995 Load of socket container: com.ibm.asd00.access.3ocketlContainerInet failed

Close

Figure 93. Java Console with the Trace Messages

121

3.3.3.11 Correctin g the Missin g Classes Problem
There are actually two missing classes in the applet:

¢ com.ibm.as400.access.NLSImplRemote
* com.ibm.as400.access.SocketContainerinet

To add the missing classes to the cabinet file, perform the following tasks:
1. Delete file c\AppletTest\PartsView.cab
2. Delete the following directories:

c\AppletTesticom
c\AppletTestidataAccess
c\AppletTestidomain

c\AppletTestinetscape
c\AppletTestiews

You should leave these files in the c\ppletTest directory:

PartsView.html
TestCert.cer
TestCertspc

Note: Although you can simply export the two missing classes to the directory,
you will start the entire export process over in these steps so that you can
remove some of the unnecessary classes and resources that VisualAge for
Java exported. By removing the unnecessary classes and resources, you
reduce the size of the cabinet file. As with any files that are transmitted in a
network, the smaller the file size is, the better the performance is.

3. Re-export the applet packages in VisualAge for Java.

4. On the Export to a directory panel (see Figure 91 on page 118), remove the
check from the .html option.

5. Click the Select referenced t ypes and resource button.
After VisualAge for Java generates its list of referenced classes and resources,
manually add the two classes listed above:

1. Click the Details button that is to the right of the .class check box (see Figure
91 on page 118).

2. Inthe .class export dialog (Figure 94 on page 123), click the IBM Enter prise
Toolkit for AS/400 entry in the Projects list (on the left).

3. Scroll through the Types list (on the right) to the NLSImplRemote entry. Click
in the box next to the name to add that class to the list of classes to be
exported.

4. Continue scrolling through the Types list to the SocketContainerinet entry.
Select that entry also.

5. Click the OK button to return to the Export to a directory dialog.

122 Building AS/400 Internet-Based Applications with Java

Selectthe types to export
Frojects Types

[visualAge Persistence + || NPAtributelFS : com.ibm. as400 accessE o
— e - P — - P TN . Py 2]
< y [[«] | >

M/|BM Enterprise Data Access Libraries | & ||WINLEGetTableReqguest : com.ibm.asélﬂﬂ.f:l
|BM Enterprise Toolkit for AS400 WMINLSImpl = com.ibm.asd00.access AR

[JIBM Jawa Implementation %ELSImpIRemote :com.ibm.asd00.acces:
[JJawa class libraries LSTableDownload :: com.ibm.as400.ac
[JJFC class libraries WIMorhBorder : com.ibm.as400 access®
WIMNetscape Security CINPABind - comm.ibm.as400 accessE =
M Servlet Example CINPAtFloat - com.ibrm.as400 accessE
[J3un class libraries PM Win32 CINPAtribute @ com.ibm.as400. access AR

4 projects, 262 types selected

Cancel |

Figure 94. Selecting the Missing Classes in the .class Export Dialog

3

.3.3.12 Removin g Unnecessar y Classes and Resources

This step is optional, although as explained in the previous section, it helps
reduce the size of the cabinet file.

When VisualAge for Java generates its list of referenced types and resources, it
includes many hundreds of types and resources that are not used in the applet.

Although it is difficult to identify every unneeded type or resource, there are some
large groups that can be removed from the export list.

Follow these steps to remove some of the unnecessary types and resources:

1.

Click the Details button next to the resource check box in the Export to a
directory panel (see Figure 91 on page 118).

In the Resource Ex port dialog, expand the IBM Enter prise Data Access
Libraries listing to its lowest level (comibm/vjleab/dab). See Figure 95 on
page 124.

3. The list of resources in the dab branch are listed in the right list.

9.

You can remove the check mark from any of the entries with the .gif
extension. If there are several sequential .gf entries, you do not have to click
each entry individually to remove the check mark. Instead, position the mouse
pointer over the first .gf that you want to uncheck, left-click and hold, then
move the mouse down through the list of gif entries. The check mark is
removed or added for each of the check boxes that the mouse moves over.

Remove the check for the gif entries only. Leave the .properties entries
checked.

Now expand the top-level listing for IBM Enterprise Toolkit for AS/400. The
expansion of that item is shown in Figure 96 on page 124.

Uncheck the vaccess entry (comfibm/as400/ivaccess).

Uncheck the vj entry (comibm/ivj). Unchecking ivj also unchecks et400 and
examples , which are under ivj

Click the OK button to close the dialog.

10.When you return to the Export to a directory panel, you should notice that the

count of types and resources to be exported is much less than before.

123

124

Select resource files

= @ [0 |Bt Enterprise Data Access Libraries

= M[Jcom

= M[ibm
B W (v
= #[Jeab

[[0 1Bt Enterprise Toolkit for AS5400
]2 IBM Java Implementation

3 Java class libraries
® ([JFC class libraries

[Metscape Security

[Servlet Example
® [[3%isualsge Parsistence

[1M visualsne Persistance EJB Librarias
4

353 files selected

a ||¥ [DABeanText properties
[DABeanText_en properies
N lor 6. gif
W DAIOStreamColor32. gif
[3 DAIOStreamhonal B.gif
[3 DAIOStreamhona32.gif
[3 DALabels properties

[3 DALabels_en propetties
[3 DAManagerCalar B.gif
[3 DAManagerCalor32 gif
—Iw [DAManagertonol6.gif
[3 DAManagertono3?2 gif
[1 DAMassages properties

_ILI W1 DAMessaoes ennroneties
F 4

Cancel |

i

Figure 95. Removing Unwanted Entries from the Export List

Select resource files

¥ [1Bk Entarprise Diata Access Libraries
=] IBM Enterprise Toolkit fi an
= M[Jcom
= M[Dibm
= M as400
WD access
[[Qwaccess
B O
B D et400
® [[Jexamples
I3 1Bk Java Implamentation
(3 Jawva class libraries
®] JFC class libraries

_II_Iﬁ Metscane Sacurity
4

140 files selected

 ||# [(Dcom

||

Figure 96. Resource Export Dialog

Building AS/400 Internet-Based Applications with Java

3.3.3.13 Completing the Ex port; Makin g the New Cabinet File

Now that you have manually added the two addition required classes and
removed some of the unneeded resources, you can complete the export to the
directories. Click the Finish button on the Export to a directory panel (see Figure
91 on page 118).

After the export is complete, go back to the MS-DOS or Command Prompt
window. You need to run the steps shown in Section 3.3.3.8, “Creating a Signed
Cabinet File Based on the Applet Directories” on page 118 again to create and
sign the cabinet file.

After creating the signed cabinet file, start Microsoft Internet Explorer again and
load the cabinet file, as described in Section 3.3.3.10, “Testing the Cabinet File in
Microsoft Internet Explorer” on page 120.

3.3.4 Using the CLASSPATH Environment Variable

As an alternative to the Netscape enablePrivilege or Microsoft signed cabinet file,
you can set your PC’s CLASSPATHenvironment variable to point to the location of
the AS/400 Toolbox for Java. When the applet starts, it refers to the CLASSPATHO
determine where the AS/400 Toolbox for Java is located. The AS/400 Toolbox for
Java can be located on any of the following locations:

e Your PC
» A server in your network
* The AS/400 system IFS

In this example, you copy the AS/400 Toolbox for Java to your PC and set the
CLASSPATHO point to the location on your PC.

Because you must manually set the CLASSPATHON your PC, the browser assumes
that you are explicitly allowing applets hosted inside the browser to have access
to all of the classes in the AS/400 Toolbox for Java. By using the CLASSPATHYyou
do not need to add a reference to the AS/400 Toolbox for Java to the ARCHIVE
parameter of the APPLETtag in the HTML file.

3.3.4.1 Creating the JT400 Director y

In the tests, we created directory c\t400 on the PC. This directory contains the
AS/400 Toolbox for Java. By using this directory, every applet that is installed on
the PC can use the common copy of the AS/400 Toolbox for Java contained in this
directory.

3.3.4.2 Copying the jt400.zip File to the JT400 Director y

In Section 3.3.2.3, “Copying the jt400.jar File to the AppletTest Directory” on page
109, you copied file jt400.jar from the AS/400 system IFS to the applet test
directory on your PC. You now need to copy the jt400.zip file from the IFS
directory to the c\it400 directory on your PC.

Use a Client Access for Windows 95/NT connection or the AS/400 system
NetServer to get to the following IFS directory on your AS/400 system:

QIBM\ProdData\HT TP\Public\it400\ib

This directory contains the jt400jar and jt400.zip file. Copy the j400.zip file to
the c\00 directory.

125

126

— Note

In Section 3.3.2.3, “Copying the jt400.jar File to the AppletTest Directory” on
page 109, you copied file ji400jar . For the CLASSPATHsetting, you need to copy
the j400zip file (the files contain equivalent Java classes).

If you use file jt400jar instead of jt400.zip in the CLASSPATHNetscape
Navigator fails when it attempts to retrieve classes from the jar file.

3.3.4.3 Add/Modif y CLASSPATH in AUTOEXEC.BAT (Windows 95/98)
If you are working with Windows 95 or Windows 98, you need to add or modify the
CLASSPATHstatement in file AUTOEXECBATConsider the following points:

 If you have VisualAge for Java installed on your PC, you already have a
CLASSPATHstatement in AUTOEXEC.BAThat was written when you installed
VisualAge for Java. You need to modify that statement.

« If you do not have VisualAge for Java installed on your PC, add the CLASSPATH
statement to file AUTOEXEC.BAT
Use NotePad or another editor to open file c\autoexec.bat

« If there is already a CLASSPATHstatement in the file, change it so that the first
directory referenced is j400 . Leave all of the other paths as they were,
following the new reference to jt400 :

CLASSPATH=C\t400\jt400.zip;...

« If there is no CLASSPATHstatement in the file, add the following statement. It
does not matter where it is located in the file:

CLASSPATH=C\t400\jt400.zip;

Save file cautoexec.bat after making the change. Reboot the PC so that the
CLASSPATHhange take affect, and set the environment variable.

3.3.4.4 Add/Modif y CLASSPATH Environment Variable (Windows NT)
If you are working with Windows NT 4.0, set the CLASSPATHN the System
Properties dialog. Follow these steps to set the CLASSPATHor a Windows NT 4.0
PC:

1. Right-click on the My Computer icon on the Windows NT 4.0 desktop.
2. Click the Properties item in the pop-up menu.

3. In the System Pro perties dialog, click the Environment tab.

4

. If there is an existing CLASSPATH/ariable in the System Variables list, click to
select and modify it. Add the new path c\i©400\t400.zip to the front of the
CLASSPATHist (see Figure 97 on page 127).

5. If there is no CLASSPATH/ariable in the System Variables list, enter the variable
name CLASSPATHand the value as c\jt400\t400.zip;

6. Click the Set button to set the value.
7. Click the Apply button.
8. Click the OK button to close the System Properties dialog.

You do not need to reboot Windows NT 4.0 for the change to take affect.

Building AS/400 Internet-Based Applications with Java

System Properties 21
Startup/Shutdown | Hardware Profiles | User Profiles |

General | Ferformance Enviranment

System Yariahles:

Yariahle | Value |ﬂ

CLASSPATH c\jtd004jt400.zip: DA IBMY ConnectorsEncinal Clas...
ComSpec DAWANMNTY system32iomd.exe

HELF DA IBMY Javaleabihelp:

IMNINST help

IMNINSTSRY DA _NT =l

User\ariables for Administrator:

Wariahle | Value |
TEMP DATEMP
THP DATEMP

Yatigble: |CLASSPATH

Walue: Ic:\jt4DD\jt4DD.zip;D:\IEIM\Connectors\Encina\CIasses;D:\\BM\f‘Ja\/a

Set Delete |

Ok | Cancel | Al |

Figure 97. Setting the Windows NT 4.0 CLASSPATH Environment Variable

3.3.4.5 Commentin g Out the EnablePrivile ge Statement

Now that you have a CLASSPATHstatement in affect, you can comment out the
enablePrivilege statement in the connectToDB method. You can review the method
in Figure 75 on page 101.

This step is optional. If you leave the enablePrivilege statement in the method,
you get an exception in Microsoft Internet Explorer. However, the exception does
not terminate the applet.

3.3.4.6 Changing the ARCHIVE Tag in the HTML File

Because the CLASSPATHow points to the location of the AS/400 Toolbox for Java,
you no longer need the reference to the Toolbox in the ARCHIVEtag. To change the
ARCHIVE tag, perform the following steps:

1. Use NotePad or another editor to open file c\AppletTest\PartsView.html

2. Change the line ARCHIVE=PartsViewjar so that it no longer includes the
reference to j400jar . The only jar files that needs to be specified are
PartsView.jar and dab.jar

3. Save the changed HTML file to the c\AppletTest directory.

<HTML>

<HEAD>

<TITLE>PartsView</TITLE>

</HEAD>

<BODY>

<H1>PartsView</H1>
<APPLET CODE-=views.PartsView.class
ARCHIVE=PartsView.jar,dab.jar
WIDTH=700

HEIGHT=350>

</APPLET>

</BODY>

</HTML>

127

3.3.4.7 Testing the Applet in Both Browsers

You should now test the applet in Netscape Navigator and Microsoft Internet
Explorer. Remember to open the Java Console for both browsers before opening
the HTML file.

The Netscape Navigator browser presents the Java Security dialog (see Figure
87 on page 112), even if you have commented out the enablePrivilege statement.
Click the Grant button to continue the applet.

Microsoft Internet Explorer should now be able to run the applet. If you did not
comment out the enablePriviege statement, you see several security exception
messages. You can ignore those, since the applet continues running.

3.3.5 Considerations for Usin g CLASSPATH

128

Using the CLASSPATHenvironment variable seems to be an "easy fix" to the
problem of the applet failure in Microsoft Internet Explorer. Some other
advantages of using CLASSPATHare that you do not have to add the jt400jar
reference to the ARCHIVEparameter of the APPLETtag. You can use the same
f400.zip file for all of your applets (you do not need to copy jt400,ar into each
applet’s directory).

However, you need to manually set the CLASSPATHor each PC where you want to
use this technique. This is obviously not feasible if your applet is used by the
general public. You may be able to use this technique in a corporate intranet
environment.

You may also need to install file t400zp on each PC that uses the CLASSPATH
Again, this is probably not possible for publicly accessed applets, but it may be
possible in your own environment.

If you are using applets in an intranet, you do not necessarily need to install
f400zip on each PC. As an alternative, you can install 400zip on a server or
point to the version of the file in the AS/400 system IFS. Using this technique, you
do not have multiple versions of 400zp on different PCs. By pointing to a
common version of the file, all users have access to the same version. It is much
easier to maintain the common version rather than all of the copies.

The disadvantage of pointing the CLASSPATHO a server or the AS/400 system IFS
is network performance. If you make extensive use of applets, you encounter
significant network traffic as each applet loads classes from jt400.zip across the
network. For infrequently used applets, the network traffic factor may not be of
much concern. It would make sense in that case to locate jt400zip on a server
or the AS/400 system IFS.

In the next series of tests, you serve the applet from the IBM HTTP Server for
AS/400. When you serve the applet from the Web server, you usually serve the
AS/400 Toolbox for Java classes from the Web server.

Building AS/400 Internet-Based Applications with Java

3.3.6 Serving Applets from the HTTP Server for AS/400

Up to this point, you have worked with the applet on your PC. Even though the
applet uses JDBC to work the AS/400 system database, there is nothing in the
deployment of the applet that requires the services of the HTTP Server for
AS/400.

In this part, you see what is required to configure your HTTP Server for AS/400 to
serve applets from the AS/400 system. Serving applets from the AS/400 system
is actually easier to implement than serving applets from your PC. You do not
need to create signed cabinet files for Microsoft Internet Explorer, nor do you
need to set the CLASSPATHenvironment variable. There are a few configuration
steps you need to take to allow the applet to be served from the HTTP Server for
AS/400.

Your main deployment consideration is performance. As you may have noticed,
the jar and cabinet files that you created on the PC are hundreds or thousands of
kilobytes in size. If you are using applets in an intranet, the applet file sizes are of
some concern. They are not extraordinary in terms of files that are sent through a
network.

If you are using the applet for public access to your HTTP Server for AS/400, for
example, to provide support for dial-in users to access your AS/400 system, the
applet files may be too large to be practical.

This part of the redbook describes two scenarios for serving applets from the
HTTP Server for AS/400.

3.3.6.1 Applet and Su pportin g Files on the AS/400 S ystem

For this method, the entire applet and all supporting jar files are served from the
AS/400 system. This is the easiest technique to use to deploy the applet, but also
the most expensive in terms of network performance and response time in the
browser.

3.3.6.2 Applet on the AS/400 S ystem; jt400.zip on the PC

The code for the applet is served from a jar file on the AS/400 system, and the
fa00zip file is located on the PC. This method requires that the CLASSPATH
environment variable be set on the PC to point to the local copy of the j400.zip
file. You also need to develop a plan to update j400zip as changes are made to
it by IBM.

This method is probably impractical for public deployment because of the
requirement to distribute the j1400zip file and set the CLASSPATHIt may be the
best solution for intranet or extranet applets. An extranet is an extension of an
intranet, which usually includes other companies or organizations with which you
have an on-going relationship.

When used appropriately, this method offers a good compromise between ease of
deployment and performance. As you will see, the size of the jar file for the applet
itself is quite small. By moving j400zip to the PC, you avoid the necessity of
transmitting it to the browser every time the applet is invoked.

129

130

3.3.6.3 Configuring the AS/400 System for A pplet Servin g

To test serving applets from the AS/400 system, there are several steps you need
to take to configure the AS/400 system. After following the steps, you will use
VisualAge for Java to export the applet to the AS/400 system.

Creating a Directory to Contain the Applet

Although you can use any of the existing directories in the AS/400 system
Integrate File System (IFS), you may find it easier to create a new directory for
testing. For our tests, we created directory apptest as an IFS root directory (not
contained in any other directories).

You can use the OS/400 command Create Directory (CRTDIR to create the
directory. Enter the following command on a 5250 display:

CRTDIR DIR(apptest)

Configuring the HTTP Server for AS/400 to Serve from Apptest

The applet jar files and the HTML file that invokes the applet are located in
directory apptest . To load the HTML file in a browser using the HTTP protocol,
you need to configure the HTTP Server for AS/400 so that it can serve Web
pages from the apptest directory. For details about how to configure the IBM
HTTP Server for AS/400, see Section 9.3, “IBM HTTP Server for AS/400” on
page 293.

3.3.6.4 Copying the jt400.jar File to the a pptest Director y

If you have a Client Access for Windows 95/NT connection to the AS/400 system,
use the Windows 95/NT Explorer program. You can also choose to use the
AS/400 NetServer in the Windows 95/NT Explorer to copy file jt400jar to the
apptest directory.

Copy file jt400jar from this directory on your AS/400 system IFS:
\QIBM\ProdData\HT TP\PUblic{t400\ib\t400 jar

Copy file dab.jar to the apptest directory located in the AS/400 integrated file
system.

3.3.6.5 Exportin g the Applet from VisualA ge for Java

You can now go into VisualAge for Java and export the applet as a jar file to the
AS/400 apptest directory. Follow the instructions in Section 3.3.2.1, “Exporting
Classes to the PC Drive” on page 106. When you get to Section 3.3.2.2,
“Specifying Export Options” on page 108, click the Browse button on the Export
to a jar file dialog (see Figure 83 on page 109) and navigate to the apptest
directory on your AS/400 system.

Be certain that the name of the jar file to export to (PartsViewjar) includes the
jar extension, as shown in Figure 98 on page 131. The export process does not
append the extension, even though it suggests the extension in the File Selection
dialog.

Building AS/400 Internet-Based Applications with Java

File Selection m
Savain: I[:I applest

R
(=it jar

Save as type: IJar Files (*jan ;I Cancel

File narmne: IParts\/iew.jar Seave I

Figure 98. Setting the Name of the jar File

On the Export to a jar file dialog (see Figure 83 on page 109), be sure the .html
option is checked, so that VisualAge for Java generates the HTML file required to
serve the applet. Do not click the Select referenced types and resources button,
since you will use the j400,jar file to provide the required AS/400 Toolbox for
Java classes and resources.

Click the Finish button on the Export to a jar file dialog. When the export is done,
use the Windows 95/NT Explorer to verify that file PartsView.jar and
PartsView.html are in the apptest directory on your AS/400 system.

3.3.6.6 Addin g the ARCHIVE Parameter to the HTML File

You need to modify the generated HTML file to add the ARCHIVEparameter to the
APPLETtag. The ARCHIVEparameter includes the references to the PartsViewjar
dab.jar and jt400jar files.

Follow the instructions in Section 3.3.2.5, “Adding the ARCHIVE Parameter to the
HTML file” on page 110. Be certain that you edit file PartsViewhml from the
apptest directory on the AS/400 system, and not the .html file on your PC.

3.3.6.7 Loadin g the HTML file in the Browser

You can now start either the Netscape Navigator or the Microsoft Internet
Explorer browser. After starting the browser, open the Java Console so that you
can follow the progress of the applet.

Instead of using the browser File—>0Open = command to load the HTML file, enter a
URL to load the Web page. Enter the URL as shown in the following example.
Substitute the name of your AS/400 system as known in your TCP/IP network, or
enter your AS/400 system IP address in place of system nhame AS400ABC

http://AS400ABC/apptest/PartsView.html

131

132

— Note

The apptest string in the URL is case-sensitive. You must enter apptest exactly
as specified in the PASSdirective (see Section 3.3.6.3, “Configuring the AS/400
System for Applet Serving” on page 130).

If you want to allow various cases for the directory (for example, apptest and
Apptest), you need to enter additional PASSdirectives for each variation.

If the browser responds with a 403 error message, check the entire URL
carefully. The 403 message is usually sent when you mistype any portion of the
URL.

As the applet is loaded from the AS/400 HTTP Server, you may notice that the
start-up time is longer than when you loaded the applet from your PC. This is
because the browser has to load the 400 ar file from the AS/400 HTTP Server
in addition to the start-up time associated with the browser’'s JVM.

3.3.6.8 Using jt400.zip on the PC, PartsView. jar on the AS/400 S ystem
Use the following steps to implement the applet serving as described in Section
3.3.6.2, “Applet on the AS/400 System; jt400.zip on the PC” on page 129. If you
have followed all of the other steps in this chapter, you have essentially already
used this method. The only differences are that the Partsview.jar file is located
on the AS/400 system and the HTTP Server for AS/400 is used to provide the
HTML file to the browser.

Follow these steps to implement this technique:

1. Verify or create directory JT400 on your PC (see Section 3.3.4.1, “Creating the
JT400 Directory” on page 125).

2. Copy the j400.zip file to the JT400 directory on your PC (see Section 3.3.4.2,
“Copying the jt400.zip File to the JT400 Directory” on page 125).

3. Set the CLASSPATHenvironment variable and reboot your PC (Windows 95/98)
(see Section 3.3.4.3, “Add/Modify CLASSPATH in AUTOEXEC.BAT (Windows
95/98)” on page 126 and Section 3.3.4.4, “Add/Modify CLASSPATH
Environment Variable (Windows NT)” on page 126).

4. Modify the HTML file in the apptest directory on the AS/400 system (see
Section 3.3.4.6, “Changing the ARCHIVE Tag in the HTML File” on page 127).

You can now load the HTML file using the URL shown in Section 3.3.6.7,

“Loading the HTML file in the Browser” on page 131. This time, you should notice
that the applet loads about as quickly as when you deployed it on the PC. This is
because the t400.zip file is now available to the browser locally. The download
time for the PartsView.jar file is trivial. In our tests, that file was only 8KB in size.

This technique provides a good combination of download time with ease of
maintenance of the applet itself. If you need to make corrections or add features
to the applet, you only need to update the applet’s jar file on the AS/400 system,
not on all of the PCs. However, you must balance this against the requirement to
initially load (and subsequently maintain) the j400zip file on each PC, and also
the requirement to set the PCs CLASSPATHenvironment variable.

Building AS/400 Internet-Based Applications with Java

3.4 Workin g with the Sun Java Plu g-in

3.4.1 Java Plug-in

© Copyright IBM Corp. 1999

Throughout this chapter, you may have noticed that it is far easier to work with the
Java source code for the applet than it is to understand all of the issues
surrounding the actual deployment of the applet. Getting your applet to run in
different browsers or different versions of the same browser can be incredibly
difficult. Not only do the browsers work with different file types (jars or cabinets),
but they are also sensitive to the AS/400 Toolbox for Java files (jar or zip). Also,
there are inconsistencies in the Java runtime environments implemented in the
browsers that you must be aware of and for which you may have to write
"work-around" code.

The easiest solution for applet deployment is to mandate that all users of your
applet use a specific browser, at a specific release level with whatever required
service packs, patches, or plug-ins you require. That obviously rules out
deployment of your applet over the Internet, since users who choose not to
conform to your requirements may simply take their browser (and their business)
elsewhere.

In an intranet environment, you may be able to constrain a small user community
to a certain browser environment. If you do not "lock down" your user’s
configurations, you will soon have "browser creep"”, with different versions of
browsers in your intranet.

Sun Microsystems, Inc., who has a great interest in the advancement of Java as a
corporate platform, has developed what may be your best choice for applet
deployment. You can freely obtain the Sun Java Plug-in, which provides a
common Java runtime environment for the Internet Explorer and Netscape
Navigator series of browsers. Although there is additional setup work that you
need to do to implement the Java Plug-in, you will may find it easier to use the
Java Plug-in, rather than attempt to resolve all of the problems you encounter
trying to support the different browsers.

Basics

The Java Plug-in is provided in a file that you download from one of Sun
Microsystems, Inc. Web sites. Upon installing the plug-in on a PC, you have the
following options are available:

* A Java Plug-in Properties control panel lets you indicate how the plug-in is to
behave when invoked. You can specify which Java runtime environment is to
be used, if you have more than one installed on your PC.

« For Microsoft Internet Explorer, an ActiveX object provides a link to the
selected Java runtime environment.

» For Netscape Navigator, a plug-in provides a link to the selected Java runtime
environment.

You control the invocation of the Java Plug-in in the HTML for the Web page that
contains the applet. Because the required changes to the HTML can be rather
complicated, Sun Microsystems, Inc. also provides a no-charge HTML Converter
that you can use to convert your existing HTML file to a version that invokes the
Java Plug-in for either Microsoft Internet Explorer or Netscape Navigator.

133

Table 12 shows the operating systems and browsers supported by the Java
Plug-in.

Table 12. Operating Systems and Browser Versions Supported by the Java Plug-in

Internet Explorer Netscape Navi gator
Operatin g System 3.02 4.x 3.x 4.x
Windows 95 Yes Yes Yes Yes
Windows 98 Yes Yes Yes
Windows NT 4.0 Yes Yes Yes Yes
Solaris/SPARC Yes Yes
Solaris/x86 Yes

3.4.2 Workin g with the Java Plu g-in—A Ste p-by-Step Approach

134

The best way to learn about the capabilities and deployment considerations for
the Java Plug-in is to work through a complete example, using both Internet
Explorer and Netscape Navigator. In the following sections, you learn how to:

« Obtain the required programs for the Java Plug-in from Sun Microsystems,
Inc.

¢ Convert the HTML file to invoke the Java Plug-in

« Install the Java Plug-in on the AS/400 system so that the Java Plug-in can be
installed as part of the applet invocation

» Customize the Java Plug-in install process for Microsoft Internet Explorer and
Netscape Navigator

» Test and verify the operation of the Java Plug-in in both browsers

3.4.2.1 Downloadin g the Java Plu g-in HTML Converter

To understand why you should get the Java Plug-in HTML Converter ("the
Converter" from this point on), review both the original PartsView.html file and a
converted version of PartsViewhtml that invokes the Java Plug-in when the applet
is loaded.

The following example shows the original PartsView.html code before it is
converted to invoke the Java Plug-in.

<HTML>

<HEAD>

<TITLE>PartsView</TITLE>

</HEAD>

<BODY>

<H1>PartsView</H1>

<APPLET CODE=views.PartsView.class
ARCHIVE=PartsView.jar
WIDTH=700
HEIGHT=350>

</APPLET>

</BODY>

<HTML>

Figure 99. PartsView.html Code before Conversion for the Java Plug-in

Building AS/400 Internet-Based Applications with Java

The following example shows the converted PartsViewhtml file with the code
required to invoke the Java Plug-in in either Microsoft Internet Explorer or
Netscape Navigator.

<HTML>

<HEAD>
<TITLE>PartsView</TITLE>

</HEAD>

<BODY>
<H1>PartsView</H1>

<I-"CONVERTED_APPLET"-->
<l- CONVERTER VERSION 1.0 >

<OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
WIDTH=700
HEIGHT=350
codebase="http:/fjava.sun.com/products/plugin/1.1.1/jinstall-111-win32.c
ab#Version=1,1,1,0">

<PARAM NAME=CODE VALUE=views.PartsView.class >

<PARAM NAME=ARCHIVE VALUE=PartsView.jar >

<PARAM NAME="type" VALUE="application/x-java-appletversion=1.1">

<COMMENT>

<EMBED type="application/xjava-applet,version=1.1"
java_CODE=views.PartsView.class
java_ARCHIVE=PartsView.jar
WIDTH=700
HEIGHT=350
pluginspage="http:/fjava.sun.com/products/plugin/1.1.1/plugin-install. nt
mil">

<NOEMBED>

</COMMENT>

</NOEMBED>

<EMBED>

</OBJECT>

<l

<APPLET CODE=views.PartsView.class
ARCHIVE=PartsView.jar
WIDTH=700
HEIGHT=350>

</APPLET>

>

<-"END_CONVERTED_APPLET"—>

</BODY>
<HTML>

Figure 100. PartsView.html File after Conversion for Use with the Java Plug-in

The Converter takes as input your original HTML file (for example, the file shown
in Figure 99 on page 134) and outputs the version shown in Figure 100. Although
you can certainly create the code shown in the converted file, it should be
obvious that using the Converter is preferred to hand-coding the Java Plug-in
enabled HTML file.

135

136

The Java Plug-in HTML Converter is available at the following Web site:
http://java.sun.com/products/plugin/converter.html

The file to download for Windows 95/NT is htmlconvi111-win32.exe . You can
download the file to a temporary directory on your PC. The file that we
downloaded for testing was 3367KB in size.

— Note

Please note that the URLs shown for the Java Plug-in are provided by Sun
Microsystems, Inc. or its Javasoft subsidiary, and are not controlled by IBM. As
with any URL, the URL, Web pages available, or downloads available from a
particular page are subject to change.

If any of the URLs given for the Java Plug-in do not take you to the referenced
Web page, try a less-specific version of the URL. For example, the following
URL may not work:

http:/java.sun.com/products/plugin/converter.html

If not, enter this URL instead:
http:/fjava.sun.com/products/plugin

You may find links on the less-specific Web page that take you to the
referenced Web page.

If these options fail, start at the top-level URLs and look for links to the lower
level pages from there. Two top-level URLs that you can use are:

http:/java.sun.com
http:/Amwy javasoft.com

3.4.2.2 Installin g the Java Plu g-in HTML Converter
After downloading the Java Plug-in HTML Converter file, you must run it to launch
the installation process. When you run it, a conventional installation process is
started, which leads you through a series of prompts.

The only significant prompt is the selection of a Java VM for the use of the
Converter (Figure 101 on page 137). Unless you have specific reasons for
selecting another Java VM, select the default option and let the Converter install a
JavaSoft Java runtime environment (JRE) as shown in Figure 101 on page 137.

Building AS/400 Internet-Based Applications with Java

Y2 Java(tm) Plug-in HTML Converter !Em

Please select a Java VM for your application

F Choose avirtual machine already installed on this machine

Search | Choose Another... |
Exitlnstalll Frevious | InstaIID |

Figure 101. Java Plug-in HTML Converter Options

When you install the Java Plug-in HTML Converter, you are also given several
choices to start the Converter. For example, you can add an item to a new or
existing program group or create a shortcut on the Windows desktop. It does not
matter which of the choices you select, as long as you can locate the Converter
so that you can start it.

3.4.2.3 Runnin g the Java Plu g-in HTML Converter for PartsView.html

You have already seen the sample input to the Converter (Figure 99 on page 134)
and the sample output of the Converter (Figure 100 on page 135). In this part,
you review how to run the Converter and the options that are available to you.

When you start the Converter, you work with the dialog shown in Figure 102 on
page 138. In the upper half of the dialog, you have the following choices:

« If you have multiple HTML files to convert, select the All Files in Folder
option. Then, specify the folder, file extensions, and if you want to include
subfolders.

« If you have just one HTML file to convert, select the One File option. Then,
specify the complete path and file name of that HTML file.

For the test, select One File and specify the path to file PartsView.html in the
apptest directory on your AS/400 system.

137

ﬁ Java(tm) Plug-in HTML Converter !Em
) AllFiles in Folder: | k:‘tprogram filegthtml_conwverter Browse... |
Matching File Mames: | * html, * htm, *.asp
Iriclude Subfalders
(® One File: | 51 03dE4gAppTestPartsyiew himl Browse... |
Backup Files to Folder: | WS103d64gWhppTest_BAK Browse... |
|7 Generate Log File: | clprogram filesihtml_convertericonvertiog bt Browse... |
Temnplate File: IStandard {|E & Mavigatar) for Windows & Solaris Onlyj
Gluit | Help | Advanced Options... | Conven..hl
"

Figure 102. Java Plug-in HTML Converter Dialog

Note

In our tests, the AS/400 system name S103D64G is a test system. In all cases
where you see that system name S103D64G, substitute the name of your
AS/400 system .

As soon as you specify the HTML file to be converted, the Converter proposes a
directory to use for a backup copy of the HTML file (the Backup Files to Folder
option in the lower half of the dialog). You can change the proposed directory if
you want, but you should not make the backup directory the same as the directory
where the original HTML file is located.

The backup process works as follows:

« When you start the conversion, the backup directory is created if it does not
already exist.

« If there is not a file in the backup directory with the same name as the HTML
file being converted, the HTML file is copied from the originating directory to
the backup directory. When the conversion is completed, the converted file is
in the originating directory.

« If there is a file in the backup directory with the same name as the HTML file
being converted, the HTML file in the originating directory is not copied to the
backup directory. When the conversion is completed, the converted file is in
the originating directory as temp.conv . The original HTML file remains in the
originating directory and is not altered.

In other words, your original HTML file is always maintained. If you specify a valid
backup directory, the original HTML file is copied there if possible. If you do not
specify a valid backup directory or if the HTML file cannot be copied (because of
duplication), the original HTML file is kept in the originating directory. You then
have to manually rename the temp.conv file, which is the output of the Converter.

138 Building AS/400 Internet-Based Applications with Java

— Note

We noticed in our testing that the automatic backup to a directory does not
seem to work if the originating directory is mapped to a network drive. For
example, the network path \s103d64g\apptest was mapped to drive letter G:

The automatically proposed backup directory was G._BAK. Upon completing the
conversion, directory _BAKwas located in the apptest directory on the AS/400
system. However, the original HTML file was not copied into the _BAKdirectory.
Instead, the original HTML file remained in the apptest directory and the
converted file was available as temp.conv .

Suggestion : Specify the full network path to be used for the backup directory.
Do not use a mapped network drive.

The Generate Log File option is of most used when you convert multiple HTML
files. Figure 103 shows a sample of the log file data. The summary information is
also displayed in a summary panel when you run the Converter.

Applet Conversion November 28, 1998 9:14:51 PM PST
\\S103d64g\apptestiPartsView.html Processing...Done Applets Found: 1
All Done Files Processed: 1 Applets Found: 1

Figure 103. Sample Output of the Generate Log File

The Template File option lets you select which browsers you want to generate
Java Plug-in compatible code for. The Converter uses template files to create the
required additional HTML. The templates provided with the Converter work with
the following targets:

e Standard (IE & Navigator) for Windows and Solaris onl y—Generates
HTML that will be processed by Microsoft Internet Explorer and Netscape
Navigator browsers on Windows and Sun Solaris platforms.

« Extended (Standard + All Browsers/Platforms)—Generates HTML that will
be processed by the standard browsers and other browsers. The generated
HTML includes JavaScript that uses browser detection to determine which
browser opened the HTML file. However, because a user may disable
JavaScript in their browser, the generated HTML from this template may fail to
load the Java Plug-in. The HTML generated by the Standard template (above)
does not include any JavaScript for browser detection. Standard is the
preferred template unless you know that you need to support other browsers
or platforms.

* Internet Ex plorer for Windows and Solaris onl y—Generates the HTML that
will be processed by Microsoft Internet Explorer. The "Solaris" reference
seems to be an error in the selection list in the Converter, since Sun
Microsystems, Inc. does not support the Java Plug-in for Microsoft Internet
Explorer on the Solaris platform, as shown in Table 12 on page 134. See the
description of the next template.

* Navigator for Windows onl y—Generates the HTML that will be processed by
Netscape Navigator. This template includes the Solaris platform that was
mistakenly coded in the previous template.

139

140

« Other Tem plate—You can also create a customized template. When you
install the Converter, there is a readmetxt file in the program directory where
the Converter program is located. That file contains information about the
variables you can use in a template file and additional information about
creating a custom template.

The Advanced Options Button

If you click the Advanced Options button on the Java Plug-in HTML Converter
dialog (Figure 102 on page 138), the Advanced Options dialog is displayed
(Figure 104). You use this dialog to specify what action Microsoft Internet
Explorer or Netscape Navigator should take when an HTML file that requires the
Java Plug-in is loaded.

Leave the settings on this dialog as they are for now. You return to this dialog later
to change the settings for use in your intranet environment.

@Advanced Options m

Specify Source Location for ActiveX CAB File:
| hitp:ifjava.sun.comipraductsiplugind 1 fjinstall-111-win32 cab#version=1,1,1,0

Specify Source Location for Metscape Plug-In:

| hitp:ifjava.sun.comipraductsiplugind 1. 1plugin-install html
Resetto Defaultsl Cancel | Ok |

Figure 104. Advanced Options Dialog

Running the Converter
If you have not already done so, run the Converter now to convert the
PartsViewhtml file. You should end up with these versions:

» A backup version of PartsView.html in the directory specified in the Backu p
Files to Folder directory.

* A converted version of PartsView.html in the apptest directory on the AS/400
system.

3.4.2.4 Opening the Converted PartsView.html in Internet Ex plorer

This part assumes that you have Microsoft Internet Explorer version 3.02, 4.0, or
4.01 installed on your computer. If you do not, go to the next step and open the
file in the Netscape Navigator browser.

Load the converted Partsviewhtml file by entering one of the following URLSs that
point to your AS/400 system:

http:/AS400_name/apptest/PartsView.html

or
http://AS400_ipaddress/apptest/PartsView.html

Instead of loading the applet directly, you see the Security Warning panel shown
in Figure 105 on page 141.

Building AS/400 Internet-Based Applications with Java

Security Warning m

Do you want to install and run "Jawva Plug-in 1.1.1" signed an
712498 11:12 AM and distributed by

Sun Microsysterms, Inc.

Fublisher authenticity verified by VeriSign Commercial
Software Publishers CA

Caution: Sun Microsystems. Inc. assers that this content is
safe. You should only install view this content if you trust Sun
Microsystems, Inc. to make that asserion.

[T Always trust cantent fram Sun Microsystems, Inc.

[[u} More Info

Figure 105. Microsoft Internet Explorer Security Warning

This panel appears because Microsoft Internet Explorer processes the following
lines of code in the converted HTML file (see Figure 100 on page 135 for the
complete listing of the converted HTML file):

<OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
WIDTH=700
HEIGHT=350
codebase="http:/fjava.sun.com/products/plugin/1.1.1jjinstall-111-Win32.cab#
Version=1,1,1,0">

<PARAM NAME=CODE VALUE=views.PartsView.class >

<PARAM NAME=ARCHIVE VALUE=PartsView.jar >

<PARAM NAME="type" VALUE="application/x-java-appletversion=1.1">

Figure 106. Code in the Converted HTML File

The OBJECTtag is used to identify an ActiveX control that Microsoft Internet
Explorer uses to provide Java Plug-in support. The ActiveX control is uniquely
identified by the dassid parameter. When you load the converted HTML file,
Microsoft Internet Explorer uses the classid to determine if that particular ActiveX
control is already loaded and available on the PC (the Windows 95/NT Registry
contains a list of installed ActiveX controls).

The first time you load the converted HTML file, the ActiveX control is not on the
PC, so the codebase parameter is used to indicate where Microsoft Internet
Explorer can find a copy of the control. The URL in the codebase parameter is set
in the Converter Advanced Options (see Figure 104 on page 140). The control is
available on a Sun Microsystems, Inc. Web site.

Upon contacting that site and starting the download of the control, the Security
Warning panel is displayed (Figure 105 on page 141). This is the default behavior
of Microsoft Internet Explorer, since downloading an ActiveX control is a
potentially harmful activity (ActiveX controls are not subject to the same security
constraints as Java applets). After downloading the ActiveX control, it prompts
you to download the Java Plug-in (Figure 107 on page 142).

141

142

» Select Java(TM) Plugin Installation ... m

Please selectthe language, region and the nearest
location to download the installation.

Locale : IU.S. English LI

Fegion: IUSA LI

Awailable Locations:

Install ,\I

“

Figure 107. Select Java Plug-in Installation Dialog

There are two important points you should note about the Java Plug-in installation
process in Microsoft Internet Explorer, using the defaults from the Converter:

« The ActiveX control is not the Java Plug-in itself. Its only purpose is to create
a connection to a Web site where you can download the Java Plug-in from.

* The Java Plug-in file that is downloaded is 4779KB in size. If you are using a
dial-up connection to the Internet, it may take quite a long time to download
the Java Plug-in.

The good news is that you only need to download and install the Java Plug-in
once for each PC. The next time you load the HTML file, the ActiveX control is
located on your PC, so the download process is not required.

The bad news is that most people using a dial-up connection to the Internet may
cancel the download of the Java Plug-in. The other consideration is that if you are
using this technique in an intranet environment, it is wasteful for every PC to
download the Java Plug-in from the Sun Microsystems, Inc. Web site.

In Section 3.4.2.6, “Downloading the Java Plug-in for an Intranet Environment” on
page 145, you see how to install the Java Plug-in using an intranet environment.
For now, you can cancel the download and close the Microsoft Internet Explorer
browser.

3.4.2.5 Opening the Converted PartsView.html in Netsca pe Navigator
This part assumes that you have Netscape Navigator version 3.x or 4.x installed
on your computer. If you do not, go to the next step to set up the Java Plug-in to
run in an intranet environment.

You load the converted PartsViewhtml file by entering one of the following URLs
that point to your AS/400 system:

¢ hitp://AS400_name/apptest/PartsView.html
¢ hitp://AS400_ipaddress/apptest/PartsView.html

Building AS/400 Internet-Based Applications with Java

When you load the HTML file, the PartsView page appears in the browser with an
icon in the middle of the page. If you click on the icon, you see the Plug-in Not
Loaded panel, as shown in Figure 109. That panel appears because Netscape
Navigator processes the following lines of code in the converted HTML file (see
Figure 100 on page 135 for the complete listing of the converted HTML file):

<EMBED type="application/xjava-applet;version=1.1"
java_CODE=views.PartsView.class
java_ARCHIVE=PartsView.jar,dab.jar
WIDTH=700
HEIGHT=350
pluginspage="http:/fjava.sun.com/products/plugin/1.1.1/plugin-install. html"
>

Figure 108. Code in the Converted HTML File that is Processed by Netscape Navigator

The EMBEDag is used to identify the plug-in that is used to process the Java
applet. If the plug-in is not installed, the pluginspage = parameter is used to indicate
where Netscape Navigator can go to retrieve the plug-in. The URL in the
pluginspage parameter is set in the Converter Advanced Options (see Figure 104
on page 140). The page is available on a Sun Microsystems, Inc. Web site.

?1;‘— PartsYiew - Netscape

File Edit ¥iew Go Window Help
Back Fomvard Reload Home Search MNetscape Frint Security St
¢ Bookmarks & Location: |hitp://s103d64g/AppTest/PartsView himl ¥ | &7 What's Related

e

Internet 04 Lookup £ MewaCool

PartsView

Plug-in Not Loaded m

Information on this page requires a plug-in for:
applicationfx-java-appletversion=1.1

Communicator can retrieve the plug-in for you fram:

hitp:# fjeva.sun.com/products/pluging1.1.1 plugin-install. html

What would wou like to do?

Cancel

=] |Document Dane 4

Figure 109. Netscape Navigator Plug-in Not Loaded Panel

143

When you click the Get the Plug-in button in the Plug-in Not Loaded panel (Figure
109 on page 143), another browser window is open to display the Web page
identified in the pluginspage = parameter. Figure 110 shows a view of part of the
page. You can download the Java Plug-in from the page.

Fﬁ— Java Plug-in Download Page - Netscape

File Edit ¥iew Go Window Help
4 @ - e
¢« @2 A & o < & @
EeEk Fomvard Reload Home Search MNetscape Frint Security St

wW§ Bookmarks Location: |/ fjava.sun.com/products/plugin/download fwindows htrml vl@'What'sRelated
Internet 04 Lookup £ MewaCool

I/_; _
q_%(z THE SOURCE FOR JAVA" TECHNOLOGY
JAVA Feedback Map ¢ Search
What's New?
Products & APls . . a4 .
Documentation Java™ Plug-in 1.1.1
Applets T
o bevelopers Windows Download Page
Java in the Real World Downloads for other platforms
Business & Licensing
:""'i'm & s:"'i”” This page allows you to download the Java Plug-in
]amv: :::::n 1.1.1 for Windows NT, Windows 95, and Windows 98.
A-1 Index))
Note: If you have previously installed the Netscape
¥ P ¥ Nelscape
Try the Applet Wem JDK 1.1 patch, then check for some advisory |

information.

Downloading the Java Plug-in 1.1.1 Release

Select either the US version (4.9 Megs) or the
International Version (7.5 Megs). The International
Version includes support for non-US locales and
character sets.

LS wersion QJ

International wersion |

After downloading Java Plug-in for Windows,
double-click on the downloaded executable file to start
the istallation.

E| |&pplet harizMenu running

NI

Figure 110. Java Plug-in Download Page

The file that you download from the Java Plug-in page is the same file that is
downloaded for Microsoft Internet Explorer. The primary difference between the
Microsoft Internet Explorer download and the Netscape Navigator download is
that Microsoft Internet Explorer automatically installs the Java Plug-in after the
download completes. With Netscape Navigator, you need to close the browser,
navigate to the directory where you stored the downloaded file, run the
installation program, and restart the browser.

As with the Microsoft Internet Explorer test (see Section 3.4.2.4, “Opening the
Converted PartsView.html in Internet Explorer” on page 140), you do not

144 Building AS/400 Internet-Based Applications with Java

download the Java Plug-in at this time. Close the download window (Figure 110
on page 144) and the applet window (Figure 109 on page 143).

3.4.2.6 Downloadin g the Java Plu g-in for an Intranet Environment

As you saw in the previous two sections, the default behavior of the converted
HTML file is to connect to the Internet and download the Java Plug-in the first
time it is required on each PC. Because of the size of the file (4779KB), it is far
better to download the Java Plug-in once to a server, and install it on each PC in
your intranet as required from the server. There are two primary advantages to
installing the Java Plug-in from your intranet:

* The download time for each PC is considerably less than if those PCs
retrieved the Java Plug-in from the Internet. Also, if you block downloads
through your firewall, you can still install the Java Plug-in on your PCs that are
behind the firewall.

* You control the version of the Java Plug-in that is installed on the PCs. If Sun
Microsystems, Inc. posts a new version of the Java Plug-in, you can download
and test it on your test PCs, rather than potentially have different versions of
the Java Plug-in downloaded to PCs in your organization.

To download the Java Plug-in to a server, go to the following Web site:

http:/fjava.sun.com/products/plugin/1.1.1/index-1.1.1.html
You are prompted to select a directory to which download the file. The name of
the file is:

plugin-111-win32.exe
The file size is approximately 4779KB (at the time we tested this process).

Download the file to the apptest directory on your AS/400 system. You serve the
Java Plug-in from your AS/400 system, along with the applet.

3.4.2.7 Changing the Converter to the Local Version of the Java Plu g-in
Now that you have a version of the Java Plug-in on your AS/400 system, you need
to change the Java Plug-in HTML Converter so that the converted HTML that it
outputs points to your copy of the Java Plug-in.

Go back into the Converter (Figure 102 on page 138) and click the Advanced
Options button. Specify the following information for the two entries in the
Advanced Options dialog:

» Source location for ActiveX CAB file . This is used in the codebase parameter
for the OBJECTtag (Figure 106 on page 141):

file://AS400_name/apptest/plugin-111-win32.exe

« Source location for Netsca pe plug-in. This is used in the pluginspage
parameter for the EMBEDag (Figure 108 on page 143):

http:/AS400_name/apptest/NetscapePlugin.html

When you are finished, your Advanced Options dialog should appear as shown in
Figure 111 on page 146 (with your AS/400 system name in place of s103d64g).

145

@Advanced Options m

Specify Source Location for ActiveX CAB File:
| file:fis103d6dgiAppTestplugin-111-win32 exe

Specify Source Location for Metscape Plug-In:
| hitp:ifs103d64gfappTestiMetzcapePlugin. html

Resetto Defaultsl Cancel |

Figure 111. Revised Advanced Options Settings for the HTML Converter

The ActiveX CAB File

For Microsoft Internet Explorer, you can specify a file URL to point to the actual
Java Plug-in file that you downloaded from Sun Microsystems, Inc. Microsoft
Internet Explorer can directly open the Java Plug-in file and install it using the file
URL. You can see what happens with the revised HTML file in Section 3.4.2.10,
“Testing the Revised HTML File in Microsoft Internet Explorer” on page 148.

The Netscape Plug-in

Netscape Navigator cannot directly load the Java Plug-in file that you
downloaded. You need to point the browser to an HTML file that contains a link to
the Java Plug-in file. You create the HTML file referenced in this setting in the
next section.

3.4.2.8 Creatin g the Netsca pePlugin.html File

Enter the code shown in Figure 112 on page 147 using NotePad or another
editor, then save the file as NetscapePlugin.html in the Applet directory on the
AS/400 system. This HTML is referenced in the Advanced Options dialog in the
HTML Converter (Figure 111 on page 146).

The most important line in this HTML file is the line with the <ahref> tag. The
code in that line points to a file URL that identifies the Java Plug-in on the AS/400
system. Change the AS/400 system name to the name of your AS/400 system.
You can change any of the other lines that you like. If you do, remember to follow
the steps listed in this version of the HTML file.

<htmi>
<head>
<tile>Install Java Plug-In 1.1.1 for Netscape Navigator<fitie>
<head>
<body bgcolor="white">
<h1>Install Java Plug-In 1.1.1</h1>
Click here
to download the Java Plug-In installer program.

Follow these steps to download and install the Java Plug-In:

Building AS/400 Internet-Based Applications with Java

Download file plugin-111-win32.exe to a temporary directory on your
PC.
Exit your browser.
Run plugin-111-win32.exe in the temporary directory.
Restart the applet in your browser.

</body>
<tmi>

Figure 112. Netscape Plug-in HTML File

3.4.2.9 Regeneratin g the Converted HTML

Now that you downloaded the Java Plug-in to your AS/400 system and changed
the Converter to point to that version of the plug-in, you need to regenerate the
HTML file. Follow these steps to create an updated version of the HTML file:

1. Using the Windows 95/NT Explorer, go to directory APPTEST_BAKon your
AS/400 system (or the directory that you specified for the Backu p Files in
Folder directory in Figure 102 on page 138).

2. Right-click on file PartsViewhml in the backup directory. Select the Cut option
from the pop-up menu.

3. Right-click on directory apptest on your AS/400 system and select Paste from
the pop-up menu. Select the option to overwrite file PartsViewhtml with the
backup version of the file.

4. Run the Converter again to create a new version of PartsView.html (see
Section 3.4.2.3, “Running the Java Plug-in HTML Converter for
PartsView.html!” on page 137).

5. Examine the generated PartsView.html file in directory apptest . You should
specifically check the codebase parameter in the OBJECTtag and the pluginspage
parameter in the EMBEDOag to verify that the values are the same as those you
entered in the Advanced Options dialog (Figure 111 on page 146). If any of the
parameters are incorrect, review the steps in Section 3.4.2.7, “Changing the
Converter to the Local Version of the Java Plug-in” on page 145 and the steps
in this section.

— Note

Be especially careful to specify and verify the file name for the ActiveX CAB file
correctly. The file name is:

plugin-111-win32.exe

In one of our tests, we mistakenly entered the file name in the Advanced
Options dialog as:

plugin-win32.exe

When Microsoft Internet Explorer opened the Web page with the applet, it

simply did nothing. It did not load the plug-in because of the incorrect file name,
and it did not display any type of error or warning message.

147

3.4.2.10 Testing the Revised HTML File in Microsoft Internet Ex plorer
Enter the URL to load the applet from the AS/400 system, as shown in Section
3.4.2.4, “Opening the Converted PartsView.html in Internet Explorer” on page
140. This time, when the browser realizes that the Java Plug-in is not installed, it
goes to the file URL and starts to download the Java Plug-in from the apptest
directory on the AS/400 system. Because the ActiveX control is not being
downloaded from the Sun Microsystems, Inc. Web site, you do not see the
Security Warning panel (Figure 105 on page 141).

After downloading the Java Plug-in (over 4MB), the browser launches the
installation part of the program. The installation program is a conventional
InstallShield installation. The first panel displayed is the Software License
Agreement (Figure 113).

Software License Agreement m

g Flease read the following License Agreement. Press the PAGE DOWN key to see the
= rest of the agreement.

lIas/aTh Plug-in i’
Version 1.1.1

Binary Code License

SUN MICROSYETEMS, INC., THROUGH JAVASOFT {("SUN" IS WILLING TO
LICEMSE THE JAWATK PLUG-IN AND THE ACCOMPANYING DOCUMEMNTATION
INCLUDING AUTHORIZED COPIES OF EACH (THE "SOFTWARE") TO LICENSEE
OMLY ON THE COMDITION THAT LICENSEE ACCEPTS ALL OF THE TERMS IN
THIS AGREEMEMT.

=
Do you accept all the terms of the preceding License Agreement? Ifyou choose No, Setup will
close. Tainstall Java Plug-in, you must accept this agreement.

< Back Yes Mo |

Figure 113. Java Plug-in Software License Agreement

The panel in Figure 114 on page 149 is the Choose Destination Location panel.
You can accept the default destination or click the Browse button to select or
specify another destination.

148 Building AS/400 Internet-Based Applications with Java

Choose Destination Location

Ta install to this folder, click Mext.

Setup.

Setup will install Jawva Flug-in in the following falder.

Tainstall to a different falder, click Browse and select another falder.

You can choose notto install Java Plug-in by clicking Cancel to exit

C:AProgram FileshJawva Plug-in 1.1

’—Destination Folder

Browse.. |

< Back

Figure 114. Java Plug-in Choose Destination Location Dialog

After specifying the destination location, the Java Plug-in is installed. The
browser continues loading the applet, which invokes the Java runtime

environment from the Java Plug-in.

You can tell if the Java runtime environment is provided by the Java Plug-in in the
Java Console (Figure 115). As shown in Figure 115, the first two lines in the Java
Console identify the Java Plug-in and the version of the Java runtime environment

in use (1.1.6).

a Java Console [_ O] x|

Java(Th) Plug-in
Using JRE version 1.1.6
User home directory = CUWWINDOWSIProfilesiCPelkie
FProxy Canfiguration: Manual Configuration

Proxy: hitp=10.1.1.30:80

Proxy Overrides:

JAR cache disabled.

Opening hitp:ifs103d64gappTestiPartsView jar proxy=10.1.1.30:80
Fartsiew.initConnections

into connectToDB

hefare registerDriver

hefore getConnection

Sat Moy 28 03:01:25 PST 1998 New signon...

Sat Moy 28 03:01:25 PST 1988 signon and get new security ohject...
Sat Moy 28 03:01:25 PST 1988 Opening a socket to verify security...
Sat Moy 28 03:01:25 PST 1988 Loading hrowser security classes

Sat Mov 28 03:01:25 PST 1998 MNetscape browser security classes not loaded
Sat Moy 28 03:01:25 PST 1988 |E hrowser security classes not loaded

Sat Moy 28 03:01:25 PST 1988 Opening socketto port mapper...
4 | »
Clearl Close |

Figure 115. Java Console

149

150

3.4.2.11 Uninstallin g the Java Plu g-in for the Netsca pe Navigator Test
If you have Netscape Navigator 3.x or 4.x on your PC, test its ability to install the
Java Plug-in using the NetscapePlugins.html page that you created (see Section
3.4.2.8, “Creating the NetscapePlugin.html File” on page 146). To test the
installation process, you need to uninstall the Java Plug-in from your PC,
assuming that you completed the test with Microsoft Internet Explorer (see
Section 3.4.2.10, “Testing the Revised HTML File in Microsoft Internet Explorer”
on page 148). The reason why you need to uninstall the Java Plug-in is because
Netscape Navigator considers the Java Plug-in to be installed, even if it was
initially installed by Microsoft Internet Explorer. If the Java Plug-in is already
installed, Netscape Navigator does not try to run its version of the installation
process, but simply loads the applet.

To uninstall the Java Plug-in, go to the Windows 95/NT Control Panel and start
the Add/Remove Programs program. Scroll to the entry for the Java Plug-in
1.1.1 in the Install/Uninstall tab (Figure 116). Click the Add/Remove button to
remove the Java Plug-in from you PC. Close the Add/Remove Programs
program. You can now run the test with Netscape Navigator. It attempts to install
the Java Plug-in.

Add/Remove Programs Properties m
Install/Uninstall |Wind0ws Setupl Startup Diskl

@ Taoinstall & new program from a floppy disk or CO-ROM
g

drive, click Install.
Install... |

The following software can be automatically remowved by
Windows. To remowve a program or to modify its installed
components, select it fram the listand click Add/Remowve.

Internet Client SDK 4.0 =]
Internet Explorer Administration Kit 4.0

lug-in 1.1.
(tm) Flug-in HTHML Converter

Lotus SrmartSuite 97

MGA PowerDesk 3.81.013

Microsoft Agent 1.5

Microsoft Anomaly Tracking System

Microsoft Camcorder

oK Cancel | Al |

Figure 116. Windows 95/NT Add/Remove Programs Dialog

3.4.2.12 Testing the Revised HTML File in Netsca pe Navigator

Enter the URL to load the applet from the AS/400 system, as shown in Section
3.4.2.5, “Opening the Converted PartsView.html in Netscape Navigator” on page
142. Because the Java Plug-in is not installed, Netscape Navigator displays the
icon in place of the applet. Click the icon to display the Plug-in Not Loaded panel,
as shown in Figure 117 on page 151.

This time, the Plug-in Not Loaded panel should refer to the NetscapePlugin.html
file that you created in Section 3.4.2.8, “Creating the NetscapePlugin.html File”

Building AS/400 Internet-Based Applications with Java

on page 146. You indicated that you wanted to use that HTML file, rather than the
Sun Microsystems, Inc. Web page (see Figure 109 on page 143) in the Advanced
Options dialog (see Figure 111 on page 146).

?1;‘— PartsYiew - Netscape

File Edit ¥iew Go Window Help

T - - - e
iow > ‘a4 b6 & R =4 & 3
i Eizil Fonvard Reload Home Search Metscape Print Security (=]

i Bookmarks Location: |http: //5103d64g/AppT est/PartsWiew html -| 17 What's Related

i Internet 04 Lookup £ MewaCool

PartsView

Plug-in Not Loaded m

Information on this page requires a plug-in for:
applicationfx-java-appletversion=1.1

Communicator can retrieve the plug-in for you fram:
http:#=103d64g/AppTest/NetscapePlugin. html

What would wou like to do?

. Getthe Plug-in , Cancel
5

=] |Document Dane 4

Figure 117. Plug-in Not Loaded Panel

When you click the Get the Plug-in button in the Plug-in Not Loaded panel, the
Web page that you created is displayed (Figure 118 on page 152). Click the link
to start downloading the Java Plug-in file from the AS/400 system to your PC.

Unlike Microsoft Internet Explorer, Netscape Navigator does not automatically
start the Java Plug-in installation procedure. Instead, you need to follow the steps
as shown on the NetscapePlugin.html page. You need to manually start the Java
Plug-in installation procedure. You work with the same panels that are used in the
Microsoft Internet Explorer install (see Figure 113 on page 148 and Figure 114 on
page 149).

After completing the Java Plug-in installation procedure, you can restart the
Netscape Navigator browser and reload the Patsviewhtm! file to start the applet.
After starting, you should see the same Java Console as is used in the Microsoft
Internet Explorer version of the applet (Figure 115 on page 149).

151

Fﬁ— Install Java Plug-In 1.1.1 for Netscape Navigator - Netscape
File Edit ¥iew Go Window Help

I 4 @2 32 ¥ a s & @

EeEk Fomvard Reload Home Search MNetscape Frint Security St

W Bookmarks Location: |pePlugin htmi?application fxjava-appletversion=1.1 vl@'What'sRelated

e

Internet 04 Lookup £ MewaCool

Install Java Plug-In 1.1.1

Click herﬁ to download the Java Plug-In installer program.

Follow these steps to download and install the Java Plug-In:

Download file plugin-111-win32.exe to a temporary directory on your PC.
Exit your browser.

Run plugin-111-win32.exe in the temporary directory.

Restart the applet in your browser.

B -

=] [file: 5103064G/ AppTest/plugin-111-win32 exe 4

Figure 118. Netscape Plug-in.html File

3.4.2.13 Verifying Netscape Navigator Plu g-ins

Netscape Navigator includes a feature you can use to easily verify the presence
or absence of any plug-ins used with the browser. In the browser’s Location entry
space, enter:

aboutplugins

The browser responds with a page similar to Figure 119 on page 153, which lists
all of the plug-ins that are currently available to the browser. Microsoft Internet
Explorer does not provide a feature similar to this.

152 Building AS/400 Internet-Based Applications with Java

?1;‘— About Plug-ins - Netscape
File Edit ¥iew Go Window Help

¢« =2 3 X a & & @

EeEk Fomvard Reload Home Search MNetscape Frint Security St

6 Bookmarks A Location: |aboutplugins -| 17 What's Related
Internet 04 Lookup £ MewaCool
Installed plug-ins
For more information on Netscape plug-ins, click hgd'e.
Java Plug-in 1.1.1 for Netscape Navigator

File name: C:\PROGRAM FILESNETSCAPE\COMMUNICATOR

4. 07" PROGRAM'plugins'NPJava32.dll

Java Plug-in 1.1.1 for Netscape Navigator with JDI/JRE 1.1
‘ Mime Type ‘ Description ‘ Suffixes ‘ Enabled
‘ application/x-java-bean ‘ JavaBeans ‘ class ‘ Yes
‘ application/x-java-applet ‘ Java Applet ‘ class ‘ Yes
‘ application/x-java-bean;version=1.1 ‘ JavaBeans ‘ class ‘ Yes
‘ application/x-java-applet;version=1.1 ‘ Java Applet ‘ class ‘ Yes
‘ application/x-java-bean;version=1.1.1 ‘ JavaBeans ‘ class ‘ Yes
‘applicationfx-ja\-'a-applet:\-'ersi011=1.1.1 ‘ Java Applet ‘ class ‘ Yes

Netscape Default Plug-in

File name: C:\PROGRAM FILESNETSCAPE\COMMUNICATOR

4. 07" PROGRAM pluginsnpnul32.dil

Defanlt Plug-in
‘ Mime Type ‘ Description ‘ Suffixes ‘ Enabled
‘ * ‘ Netscape Default Plug-in ‘ * ‘ Yes

E| |htt: ¢ fhome netscape.com/comprod/products/navigatorfversion_2.0/plugins findesx htral i

Figure 119. About.plugins Feature

153

154

3.4.2.14 Java Plu g-in Control Panel

Regardless of which browser is used to install the Java Plug-in on your PC, the
Java Plug-in Control Panel is also installed. The Control Panel is available from
the Start—>Programs menu in Windows 95/NT.

g Java(TM) Flug-in Properties !Em

fBa':il: r.udvam:ed rProxies |

[V] Enable Java Plug-in

[V Show Java Console
[_] Cache JARs in memory

Network access |Applet Host >
Java Run Time Parameters | |
Apply Reset

Figure 120. Basic Tab of the Java Plug-in Control Panel

Figure 120 shows the Basic panel of the Control Panel. The options on this panel

are:

< Enable Java Plu g-in—If checked, the Java Plug-in is used to provide the
Java runtime environment for applets. If not checked, the Java runtime
environment is provided by the browser. You can use this option to test
differences in browser Java support compared with the Java Plug-in, rather
than uninstall the Java Plug-in. The default for this option is checked.

Show Java Console —If checked, the Java Console is displayed when an

applet runs (see Figure 115 on page 149). As shown throughout this chapter,
the Java Console is one of the best tools you have for debugging applets. The
default setting for this option is unchecked, which is appropriate for users
other than the applet programmers.

Cache JARs in memor y—If checked, applet classes are cached and reused
when the applet is reloaded. This improves memory usage and performance.
However, you should uncheck this option when you are developing and testing
an applet so that the most recent classes are always loaded.

* Network access —This option lets you choose the level of permission you

grant an applet in your network. The options are:

— None—The applet cannot access any resources in the network, not even
the host server it was loaded from.

— Applet Host —The applet can connect back to the server it was loaded
from. This is the default setting for this option.

— Unrestricted —The applet can access any resources in the network. This
is considered to be a security hazard.

Note: This option can only be changed if the Java runtime environment in use
is a 1.1.x version. If you use the 1.2 runtime environment, you must use the
new security architecture to select the level of network access the applet is
allowed.

« Java Run Time Parameters —This option is used to enter startup parameters,

similar to those you can provide for the javaexe command line.

Building AS/400 Internet-Based Applications with Java

The Control Panel has two additional tabs:

* Advanced (Figure 121)—The main feature on this tab is the Java Run Time

Environment selection. When you install the Java Plug-in, a version of the

Java runtime environment is installed with the plug-in. If you want to use a

different runtime environment, you can select any of the versions that are

installed on your PC.

« Proxies (Figure 122)—If you need to use different proxy settings than those in

your browser, you can uncheck the Use browser settin gs check box and

enter the proxy information required.

g Java(TM) Flug-in Properties !Em

fBasic rﬂc_l'w_'n_l_:ed_ 'rPruxies |

Java Run Time Emronmennt

|Use Java Plug-in Default

=

{y
g
[v] Enable Just In Time Compiler JIT path [symcjit

Debug Settings -

[_] Enable Debug

Figure 121. Advanced Tab in the Java Plug-in Control Panel

g Java(TM) Flug-in Properties !Em

fBasic r.udvam:ed rPr_ﬁ')iies’. |

[V] Use browser settings
Proxy Settings
Type Proxy Address Port

Ne proxy serve or all protocols
1e proxy server for all proto

ooy o[rmst |

Figure 122. Proxies Tab in the Java Plug-in Control Panel

155

3.4.3 Summary of the Java Plu g-in

Although it may seem like a lot of work to use the Java Plug-in, we found in our
testing that the Java Plug-in actually makes it much easier to develop, test, and
deploy an applet. For example, some of the early Netscape Navigator 4.x
browsers (4.01 and 4.04) do not provide stable Java runtime environments.
Rather than code the work-arounds required for those versions of the browsers,
try to accommodate the later versions (4.05, 4.06, 4.07 and most recently 4.5),
and provide support for Microsoft Internet Explorer (3.02 and 4.01), it is far easier
to install the Java Plug-in and learn how to work with its Java runtime
environment. There are some browser Java runtime environments that are simply
not worth the effort to develop for and support.

Although it may be argued that imposing the installation of the Java Plug-in on
users is an extra burden, keep in mind that the installation is a one-time event.
Given that the installation process requires minimal user intervention and no
entries other than a few mouse clicks, even the most hesitant user should be able
to successfully negotiate the installation process.

The primary advantage of deploying the Java Plug-in to provide applet support is
that you can debug any problems with much greater confidence and accuracy
than if you have multiple browser versions. Based on our testing and the
problems we encountered trying to get applets to work successfully with different
browsers, the only realistic alternative to the Java Plug-in is to adopt one browser
at one specific release level and support it. You then need to "lock-down" the
users so that they cannot upgrade or alter their browser configuration. Using the
Java Plug-in alternative, it does not matter which browser or which version is
used. When the browser hosts an applet, the same Java runtime environment is
called upon.

3.5 Conclusion

As you have seen throughout this chapter, there are a number of factors that are
involved in developing and deploying applets. In our tests, one of the main factors
in the success or failure of the applet was the version of the browser being used.
Generally speaking, the more recent versions of Netscape Navigator and
Microsoft Internet Explorer are more "applet friendly".

Because of the browser dependencies, it is difficult to guarantee that an applet
using the AS/400 Toolbox for Java classes is suitable for use by the general
public. The jt400ar file is approximately 2MB in size. The jt400.zip file is
approximately 4MB. Those sizes alone rule out the use of applets served over a
dial-up connection, except by the most dedicated or desperate of users.

It may be possible to reduce the size of the required Toolbox jar file by careful
study of the classes and resources required to be exported. However, you may
find that, in practice, the resulting jar file is still several hundred kilobytes in size.
The classes and resources required go far beyond those that you directly
reference in your Java code. As is, you need to rely on VisualAge for Java to
discover classes and resources. Otherwise, if you try to select just the classes
and resources you think are required, you may need to iteratively debug the
applet many times.

156 Building AS/400 Internet-Based Applications with Java

There is a tool named JarMaker available as a beta release on the AS/400
Toolbox for Java homepage. In your browser, enter the URL
www.as400.ibm.com/toolbox . Click on Downloads to find it.

The JarMaker class speeds download through its ability to create a smaller jar file
from a larger one. You can use this tool to help reduce the size of jar files that
want to serve over a network.

The test described in Section 3.3.6.8, “Using jt400.zip on the PC, PartsView.jar
on the AS/400 System” on page 132, seems to provide the best combination of
performance and ease of deployment. That being said, that test requires the
installation of the jt400zip file on the PC and a modification to the CLASSPATH
environment variable. Those requirements may not be overly burdensome for
PCs that you can directly control.

Although applets provide access to GUI elements in the AWT or with Swing that
you may really want to use, you may find that deployment issues render applets
impractical. You can still take advantage of the AS/400 Toolbox for Java by using
servlets, which are described in the following chapters in this redbook.

157

158 Building AS/400 Internet-Based Applications with Java

Chapter 4. Introduction to AS/400 Servlets

© Copyright IBM Corp. 1999

The objective of this chapter is to provide an introduction to Java servlets. It
explains:

< An introduction to Java servlet support

« How to use servlet support within VisualAge for Java

* How to change the application discussed in Chapter 3, “Introduction to AS/400
Applets” on page 51, from an applet to a servlet

How to configure an HTTP server to run servlets

* How to run servlets using HTML files

In Chapter 3, “Introduction to AS/400 Applets” on page 51, we discuss an applet
that displays data retrieved from an AS/400 database. In this chapter, you see
how to add servlet functionality by simply replacing the front end. Instead of using
a Graphical User Interface to display the data, we use HTML.

The objective of this chapter is to build a servlet that accesses a database file on
the AS/400 system. The output from the servlet is shown in Figure 123.

Note

The example programs discussed in this chapter are available for you to
download from the redbook Web site. Refer to Appendix A.1, “Downloading the
Files from the Internet Web Site” on page 299, for details.

arts Retrieval - Netscape
Edit “iew Go Communicator Help

| 4 @ A D o <+ & @
Back Fanward Reload Haome Search Neiscape Frint Security S

I w¥ Bookmarks GD101Ihttp:,f,fmyasélDD,-"servlet,-’PansServlet 'l & What's Related

i &InstantMessage Internet L.‘ Loakup L‘i MNewdCool

-

Here are the results of your query:

[Number | Description |Quantitiy| Price | Date
[12301 |Quad speed CC ROM Drive | 14 |[$ 151 [1998-09-01
[12302 [sCSI 1I Cable | 25 | $30 [1995-11-13

[12303 [17 inch SVGA Monitor
[12304 |[Ethermet PCMCIA card
[12305 [Home mouse

[12306 |Gender-bender

[12307 |600 dpi flatbed scanner
[12308 [100 MHZ Pentium PG 4 |$1875(1996-02-24
[12309 |Laserlet Torer iz | $89 [1895-12-17

[8 |$ 1100[1996-03-04

|

|

|

|

|

|
[12310 [Logo mouse mat [376 §7 [1994-11-24

|

|

|

|

|

|

[

30 | $85 [1995-12-17 —
47 | $25 [1996-02-18
75 | $8 [1951-08-27
12 [$ 875 [1996-03-01

\
[12311 [Screen wipes 4750 | $1 [1996-01-10
12312 [¥34 Modem 58 |$ 120 [1996-03-06
32 | $42 [1995-11-12
20 | $12 [1996-01-23
45 | § 34 [1996-02-27
id [$151 [1996-01-12 5

~C [+ =7 [HhnE 44 47

S e 2

[12313 |Games joystick

[12314 [3m printer cable

[12315 [anti-glare screen

[12316 |[Quad speed CL ROM Drive

[4 2= = [rreT 11 o

’@| |Document; Done

Figure 123. Servlet Application

159

4.1 Introduction to the Servlet Support

160

Before starting with the development of the servlet application, this section
explains briefly the basic idea behind servlets. Figure 124 shows an overview of
the servlet architecture.

<>,

Brawser HTTP Server
-

4 -
Browser I ~ <> Serviet

<>

Resources

Figure 124. Servlet Architecture

Servlets are modules that run inside request or response-oriented servers, such
as Java-enabled Web servers, and extend them in some manner. For example, a
servlet may be responsible for taking data in an HTML order-entry form and apply
the business logic used to update a company's order database. Servlets relate to
servers as applets relate to browsers.

Servlets can provide services or extensions to HTTP servers, performing
functions equivalent to CGI programs, server side includes and server side APIs
(NSAPI and ISAPI). Although servlets also provide services outside of the HTTP
environment, it is the HTTP servlet is of most interest to the AS/400 system at
this point. Servlets can also be used as a powerful substitution for CGI-Scripts.

As shown in Figure 124, communication between a browser and a servlet
application follows this sequence:

1. The client (browser) sends a request to the HTTP server.

2. The HTTP server forwards the request to the servlet.

3. The servlet receives the request and generates a response by accessing
resources and passes the response back to the HTTP server. The response
usually contains HTML or other data that can be processed by the client.

4. The HTTP server sends the response to the calling client (browser).

5. The browser renders the data.

Servlet support is provided in two packages:

javax.servlet.* Provides basic servlet classes and interfaces
javax.servlet.http.* Provides classes and interfaces for use with HTTP

The classes and interfaces are organized as shown in Figure 125 on page 161.

Building AS/400 Internet-Based Applications with Java

GenericSerylet Servlet

(B E

Httpserylet

’ « doGet()

= daF o)
* SEMViCED

Override one oF m ore of..
+ dotet)

* doF ozt

* zanice])

LI

Figure 125. Servlet Hierarchy

Servlet support for Java is provided as part of JDK 1.2. However, the support can
be used in JDK 1.1. Two packages are required, javax.servlet and
javax.servlet.http. They can be obtained at the Javasoft Web site. In VisualAge
for Java 2.0, these packages are available in the Sun JSDK class libraries
project.

When we start writing servlets, we usually use HTTP for communication between
the browser and the server. For that reason, we normally extend the class
HttpServlet, which extends the GenericServlet class. To react to a client request,
we must extend HttpServlet and override one or more of the following methods:

» doGet()—To support HTTP GET requests

« doPost()—To support HTTP POST requests

» doDelete()—To support HTTP DELETE requests
e doPut()—To support HTTP PUT requests

4.1.1 Why Use Servlets

Java applets have many restrictions. Servlets offer alternatives for some of these
restrictions. Servlets do not offer a "better" solution than applets. They simply
provides an alternative solution. The "better" solution depends on the user
environment and requirements.

You normally store applets and their associated classes at a central location, and
download them as needed. As a result, the classes are downloaded as needed by
the browser. Depending on the size and number of classes, and the speed of the
communications line, the download time can be expensive. There are various

solutions available and proposed. Nearly all implement a "download the first time,
check, and synchronize changes" scheme. For an infrequent user, this may result

Introduction to AS/400 Servlets 161

in synchronization and downloading for each access. An analogy for this is the
infrequent AOL or Prodigy user that receives software updates every time they
signs on.

Servlets run on the server, which eliminates the class download time. Since an
HTTP servlet can output HTML, relatively small amounts of data can be
transferred between the Web server and the Web browser. A high speed link
between the Web server and the data server should provide reasonable
performance for users that are connected using modems or over the Internet.

Applets running in a browser cannot access system resources and can only open
a socket to the server that served the applet. This restriction is relaxed in the
newer browsers, which allows the user to grant signed applets to perform some of
the restricted tasks. However, this is up to the individual user, not the
administrator. The user may not have the necessary knowledge to know if this
authority should be granted. To simplify the decision process for the end users,
the administrator may choose to store the applets, the depending classes, and
the pages on the same system as the data. In an enterprise where the data is
stored on multiple servers, the administrator maintains applets, classes, and
HTML pages on each server.

Not all browsers run applets in the same way. For example, security is handled
differently in Netscape Navigator than it is handled in Microsoft Internet Explorer.
Different versions of the same browser may also handle applets differently. This
can make implementing an applet solution difficult. Most browsers are capable of
rendering HTML. Running a servlet on a server and using HTML to control input
and output can help solve these browser compatibility problems.

Servlets offer these important advantages:

 Servlets have full access to local resources.

« They are easy to develop.

« Servlets are portable.

 Servlets are multi-threaded.

 Since servlets run on a server, no downloading is necessary.

» Servlets can be dynamically loaded and unloaded without shutting down the
HTTP server.

« Once installed, servlets can be compiled using a JIT or native compiler.

4.1.2 Servlets versus CGI.BIN

162

Servlets provide functionality similar to cgi-bin programs. Servlets offer a number
of advantages of cgi-bin. These include:

» Servlets are written in Java and are easy to develop.

« Cgi-bin programs are platform dependent. For example if you write a cgi-bin
program in RPG, it can only run on an AS/400 system. Since servlets are
written in Java, they can run on any platform that supports Java.

« Java programs support threads. You can take advantage of this to write
multi-threaded servlets to increase functionality and efficiency.

For a more complete discussion of cgi.bin programs on the AS/400 system, see
Section 1.4, “Common Gateway Interface (CGI) Programming” on page 15.

Building AS/400 Internet-Based Applications with Java

CGI-BIN Servlet

Process 1 |/ —
/ D
Process 2

/ | Threadn I
Process n IA’

Servlet Process

HTTP Server HTTP Server

Figure 126. Servlets versus CGI.BIN

4.2 How to Use Servlets

This section introduces you to the basics of how servlets work. For detailed
information about servlets, refer to the Javasoft Web site at: www.javasoft.com

Servers load and run servlets, which then accept requests from clients and return
data to them. They can also remove servlets. Servlets follow the lifecycle
described in the following text.

When a server loads a servlet, it runs the servlet's init method. Even though most
servlets run in multi-threaded servers, there are no concurrency issues during
servlet initialization. The server calls the init method once when it loads the
servlet, and does not call it again unless it reloads the servlet. The server cannot
reload a servlet until after it removes the servlet by calling the destroy method.
Initialization is allowed to complete before client requests are handled (before the
service method is called) or the servlet is destroyed.

After the server loads and initializes the servlet, the servlet can handle client
requests. It processes them in its service method. Each client's request has its
call to the service method run in its own servlet thread. The method receives the
client's request, and sends the client its response.

Servlets can run multiple service methods at a time. It is important, therefore, that
service methods be written in a thread-safe manner. For example, if a service
method updates a field in the servlet object, that access should be synchronized.
If, for some reason, a server does not run multiple service methods concurrently,
the servlet should implement the SingleThreadModel interface. This interface
guarantees that no two threads run the servlet's service methods concurrently.

During a servlet's lifecycle, it is important to write thread-safe code for destroying
the servlet. It is also important for servicing client requests, unless the servlet
implements the SingleThreadModel interface. In general, you need three
methods to run a servlet:

Introduction to AS/400 Servlets 163

* init()
* service()
* destroy()

For HTTP servlets, these methods can also be used:
» doGet()

This method is called by the service method to handle HTTP GET operations.
This operation allows the client to "get" a response from an HTTP server. It is
the default method executed when running an HTTP servlet. This method is
generally used for query type requests, where no changes to stored data are
made.

» doPost()

This method is called by the service method to handle HTTP POST
operations. This operation includes data in the request body that should be
acted upon by the servlet.

4.2.1 Communication with an HTTP Server

164

Servlets implement the javax.servlet.Servlet interface. While servlet writers can
develop servlets by implementing the interface directly, this is usually not
required. Because most servlets extend Web servers that use the HTTP protocol
to interact with clients, the most common way to develop servlets is by extending
the javax.servlet.http.HttpServlet class.

The HttpServlet class implements the Servlet interface by extending the
GenericServlet base class, and provides a framework for handling the HTTP
protocol. Its service method supports standard HTTP/1.1 requests by dispatching
each request to a method designed to handle it. By default, servlets written by
specializing the HttpServlet class can have multiple threads concurrently running
its service method.

Several methods are provided to allow HTTP servlets to interface with a client:

e doGet—For handling GET, conditional GET and HEAD requests
« doPost —For handling POST requests

e doPut —For handling PUT requests

« doDelete —For handling Delete requests

When you write a servlet, you override these method with application specific
code. Each method has two parameters that are passed in:

« ServletRequest—Encapsulates the request to the servlet
« ServletResponse—Encapsulates the response from the servlet

By using the ServletRequest interface or its subclass HttpServletRequest,
servlets can access protocol specific header information such as the scheme of
the URL used in the request or the value of the specified parameters. After
retrieving the data from the HttpServletRequest, the servlet performs the
requested task and sends the information back to the client using the
ServletResponse object. It allows the servlet to set the MIME content type and a
Writer, through which the servlet can pass the information back to the client.

Parameters passed by the client can be accessed using these methods of the
ServletRequest class:

Building AS/400 Internet-Based Applications with Java

« getParameterNames()
» getParameter()
» getParameterValues()

4.2.2 Invoking a Servlet
There are three different methods to invoke a servlet:

» Using the servlet's URL:

http://<yourServer>/serviet/ServietToCall

Figure 127. Calling a Servlet Directly

« Using the HTML <form> tag:

<form method=GET action=/serviet/ServietToCall> ... <fform>

<form method=POST action=/serviet/'ServietToCall> ... <fform>

Figure 128. Calling a Servlet Using HTML Files

» Using the HTML <servlet> </servlet> tags:

<senvlet name=SenietToCall code=SenletToCall.class>

</senvlet>

Figure 129. Calling a Servlet Using SHTML Files

In this case, you have to use the file extension .shtml instead of .html or .htm.

4.3 A Simple Servlet

The servlet example in Figure 130 on page 166 displays "Hello world" in a
browser.

Introduction to AS/400 Servlets 165

import javax.senvet*,
import javax.senvethttp*;
importjavaio;

{

out=res.gefWiter();
outprintin<htmb>");
outprintin(*<body>");
outprintin(*</body><htmi>";

PrintvWriter out;

r&e.selContent‘I_’yperﬂ/htmr');

public dass HelloWordSenviet extends HitpSenviet{

public void doGet (HitpSenvietRequest req, HttpSenetResponse res)
throws SenvetException, IOException

outprintn('<head><ile>Helo World</ite></heacs>):

outprintin(‘<h1>Hello World<h1>");

Figure 130. HelloWorldServiet

To call the servlet directly, you can specify the servlet name directly in the URL as
shown in the following example:

http://<YourServer>/senviet’HelloWorldServiet

The HelloWorldServlet demonstrates some of the basic concepts, as shown in
the following sequence, that are used when creating HTTP servlets:

1.

2.

e

We import support classes from the javax.servlet and javax.servlet.http
packages.

The HelloWorldServlet extends the HttpServlet class, which implements the
Servlet interface.

. The doGet method is called when a client makes a GET request (the default

HTTP request method). If the servlet is called directly, the doGet method is
called.
We override the doGet method to handle application processing.
Two parameters are passed in to the doGet method:
« HttpServletRequest req—Encapsulates the input
« HttpServletResponse res—Encapsulates the output
Because text data is returned to the client, the reply is sent using a print writer
object obtained from the HttpServletResponse object:
a. We declare a PrintWriter object named out.
b. We set the response content to "text/html".
c. We use the HttpServietResponse getWriter method to create the print
writer named out.
d. We use the println method to write HTML tags.

. The HMTL tags are rendered by the browser.

4.4 Developing the Servlet Application

This section explains the conversion of the applet (discussed in Chapter 3,
“Introduction to AS/400 Applets” on page 51) to a servlet.

166 Building AS/400 Internet-Based Applications with Java

The PartsServlet servlet was created in VisualAge for Java. Figure 131 shows a
view of the ServletExamples project with the servlets package expanded.

[C_,:l\hl"olkbench [Administrator] [_ O] <]
Fle Edit ‘workspace Selected Window Help

¥ L DY YW E L
(5 Projects | 4% Packages [& Classes |8 Interfaces [& Managing [®) All Problems

5 Al Projects +f
® & JFC class libraries B
5§ MNetscape Security
= &9 Servlet Examples

(7 datadcoess

 (FF domain

= (7# sarvlets

; /et

i close(3endetOutputStream)

¢ doGet(HtpSerdetReguest, HitpSerdetResponse)

« doPost{HitpSendetRequest, HitpServletRespanse)

@ getServietinfol)

@ initiServietConfig)

oputputHeadenSerdstOutputStrearn) —
@ outputFarsinformation(SersetOutputstrearn, Yectar)

@ printError(ServietOutputStrearm, Throwakle)

(TP wviews -
é »
O Source

inport javax.servlet *; ;I
import javax.=servlet http. *;

import java.io. *;

import java.util. =

SEE

Thi= clasz= was generated by a SmartGuide.

*

*®

public class PartsServlet extends HttpServlet {
private domain.PartsCatalog partsCatalog:

1 o

I Double click to maximize wigw

Figure 131. ServletExamples Project

Table 13 briefly describes the packages, classes and interfaces used.

Table 13. Summary of Packages, Classes, and Interfaces Used for the PartsServlet

ServletExamples Project

Package Class/Interface Description

dataAccess DataAccessor Interface used to define methods that must be
implemented by classes in this package.

JDBCPartsCatalog Used to connect to AS/400 system database.
Returns a vector of parts.

TestPart Used to simulate a connection to a database.
Returns a vector of parts.

domain Part Represents a row of part data retrieved from the
database.
PartsCatalog Determines which data source to get part data

from. Gets parts from the selected data source
and returns a vector of parts data.

Introduction to AS/400 Servlets 167

168

ServletExamples Project

Package Class/Interface Description

views PartsView The visible part of the applet. Includes the parts
listbox and the button to start the query.

servlets PartsServlet Provides the servlet support.

Although the application was initially designed, tested, and used as an applet, the
intention was to create a body of reusable code that can be used when the
application is migrated to a servlet. By adopting the three-tier architecture shown
in Figure 132, the application can be easily changed.

Java Applet/Serviet desi gn

Pservlet et End User interface
ackage Package
domain i i i
el Application Logic
dataAccess Data Access
Package
JDBCPartsCatalog I Other data sources:
class TestPart - DDM
class -- Stored Procedures
-- Data Queues

Figure 132. Java Applet/Serviet Design

In fact, it is quite easy to change the application at any of the three tiers. In
addition to changing the end user interface code to support an applet or a servlet
presentation, the data source can be changed in the data access layer without
affecting the other two layers. Also, if any of the application logic needs to be
changed, the changes can be made at that layer without affecting either the data
access or end user interface layers.

The application is well positioned for change if a different data access technique
is used. For example, the IBM AS/400 Toolbox for Java supports record-level
access using the AS/400 system Distributed Data Management (DDM) server,
program call, and data queues. If you decide to change from the Java Database
Connectivity (JDBC) technique, you only need to code your new data access
class so that it returns the same type and format of data to the application logic

Building AS/400 Internet-Based Applications with Java

layer. The applet uses the JDBCParsCatalogy and TestPart classes. The TestPart
class is used to simulate a connection to a data source.

For detailed information about the dataAccess package, the views package, and
the domain package, refer to Chapter 3, “Introduction to AS/400 Applets” on page
51. This chapter covers the servlet package.

4.5 Migrating the Applet to a Servlet

The servlet application is contained in a class named PartsServlet, which resides
in the servlet package.

import javax.servet*;

import javax.senviethttp.*;

importjavaio;

import java.util.*;

public class PartsServiet extends HitpSenviet
private domain.PartsCatalog partsCatalog;

}

Figure 133. PartsServiet Class

Note the following points in Figure 133:

« A private instance variable named partsCatalog is in the class definition.
Because of our object-oriented design, we can use the same domain package
and dataAccess package that we used for the applet. Here, we declare a
PartsCatalog object from the domain package.

< We also import the javax.servlet and javax.servlet.http packages. To use
these packages inside VisualAge for Java, we restore the Sun JSDK class
libraries project from the repository.

public void init (SenvietConfig config) throws SenietException {
super.init(config);

log(PartsSenviet: init)..."Y;

partsCatalog = new domain.PartsCatalog();
partsCatalog.connectToDB();

log(PartsSenviet: init() executed.”);

retum;

Figure 134. Servlet init Method

The init method is called when the servlet is started. Note the following steps:

1. We instantiate the PartsCatalog object named partsCatalog .

2. We call the connectToDB method. This loads the JDBC driver into the JVM
and performs any required JDBC initialization.

3. We use the log method to write messages to the log. This may be useful for
debugging an application.

Introduction to AS/400 Servlets 169

public void doGet(HtpSenietRequest request, HitpSenietResponse response) throws IOException {
log(PartsSenvet: doGet)...");
1l setthe MIME type to texthtml
response.setContentType(texthtiml);
Il create the output stream
SendetOutputStream out = response.getOutputStream();
Vector parts =nul;
ty{

log("PartsServiet: doGety), try{} block ...");

I wiite the HTML header to the output stream

outputHeader(out);

parts = partsCatalog.getAll();

log(after getall...");

Ihnite the HTML table to the output stream
outputPartsinformation(out, parts);

close(out);

log("PartsServiet doGet), try{} block executed.”);

retum;

}
catch(Throwable e){
printEnor(out,),

Figure 135. The doGet Method

The doGet method is used to retrieve all the records from the Parts database file
and display them in a browser.

private void outputHeader (SenetOutputStream printStream) throws IOException {
log("PartsServiet outputHeade()...");

printStream.print{ <HTML><HEAD><TITLE>Parts Retrieval</TITLE>");
printStream.printin("<YHEAD><BODY>');

printStream.print{ <BODY BGCOLOR=HC0COCO>");

log("PartsSenviet outputHeader() executed.”);

}l end outputHeader()

Figure 136. The outputHeader Method

The outputHeader() method is called to create the HTML tags, which, when sent
to the browser, produce the heading.

We call the partsCatalog object’s getAll method to retrieve all the records from
the database. The getAll method returns a Vector.

170 Building AS/400 Internet-Based Applications with Java

private void outputPartsInformation (SenvietOutputStream printStream, Vector partsVector) throws
IOException {

log(PartsServiet outputPartsinformation()...”);

Enumeration parts = partsVector.elements();

printStream.printin('<TABLE BORDER>");

printStream.printin(<P><CENTER>Here are the results of your query.<[FONT></P>");
printStream.printin(<TR>");
printStream.print('<TH>Number</TH><TH>Description</ TH><TH>Quantitly</ TH><TH>Price</TH><TH>Date</TH>');
printStream.printin('</TR>");

while (parts.hasMoreElements()) {

domain.Part aPart = ((domain.Part)parts.nextElement();

printStream.print('<TD>" + aPartgetNumber() + "</TD>');

printStream.print('<TD>" + aPartgetDescription() + "</TD>");

printStream.print('<TD><CENTER>" + aPart getQuantity() + "<JCENTER></TD>");
printStream.print('<TD><CENTER>$" + aPartgetPrice() + "</CENTER></TD>'");
printStream.print('<TD><CENTER>" + aPart getDate() + "<JCENTER></TD>");

printStream.printin('</TR>'");

¥ lend while

printStream.printin(“</TABLE>'");

printStream.printin(</BODY><HTML>");

log("PartsSenvet outputPartsinformation() executed.”);

}H/ end outputPartsinformation()

Figure 137. The outputPartsinformation Method

We call the outputPartsinformation to build an HTML table which contains all
the records. We then send the HTML table to the browser for display. The output
is shown in Figure 138.

-

Here are the results of vour query:

|Numher| Description |Quanliﬁy|13rice| Date
17300 |Quad speed COROM Dewe | 42 |§120 [1996-01-12 i
12302 [SCS11I Catte B | $30 19951013

12303 |17 inch SVGA Monitor
12304 |Ethermet PCMCLA card

|6 |6 1100 [1996-03-04
LN B85 19951217
4T 835 19960218
12307 600 dpi flathed scanner | 12 |8 875 19960301
|12308 |10 MHZ Pentium PC 4 B1ETS 1996024
12310 |Logo mouse mat T | BT |19M-11-H

|

|

|

|

|123D5 ‘Hume s

4750 | §1 [1996-01-10
53 [$120 [1996-03-06
32| $42 19951112
0 [412 19960123

|12311 |Scree:mdpes

17312 VM4 Modem
|12313 |Games {oystick
|12314 ‘3m printer cable

Figure 138. The doGet Method Output

Introduction to AS/400 Servlets 171

4.5.1 Enhancing the Servlet

This section shows how to enhance the servlet to allow user input and to use an
HTML file to control the servlet. The enhanced servlet is shown in Figure 139.

Figure 139. Enhanced Serviet

To produce the enhanced servlet, perform the following steps:

1. Add the doPost method to the PartsServlet class.
2. Create an HTML file to control running the servlet.

172 Building AS/400 Internet-Based Applications with Java

public void doPost(HtipServietRequest request, HitpServietResponse response) throws I0Exception{

I/ setthe MIME type to texthtml
response.setContentType(texthtml?);
Il create the output Stream
1IS;/e?/ietoulputStream out =response.getOutputStream();
I get the value from the input field named part (see HTML fie)
Iland check if value is valid
String[] parameter = request.getParameterValues("partno");
if (parameter{0].rim().length() = O) parameter{0] ="*ALL",
Vector parts =nul;
Iwite the HTML header to the output sream
outputHeader(out);
Il retrieve all data from the database
parts = partsCatalog.getAll();
I process the request according to the value of the input field
if (parameter{O} toUpperCase().equals(*ALL") {
Vector selectedParts = new Vector();
Enumeration partsk =parts.elements();
while (partsE hasMoreElements(){
domain.Part aPart = (domain.Par)partsE.nextElementy);
if (@PartgetNumber()).equals((new java.math.BigDecimal(parameter{O]))
selectedParts.addElement(@Part);
¥
3
=selectedParts;
wite the HTML table to the output stream
outputPartsinformation(out, parts);
Close(ou);
retum;

}
catch(Throwable e
printError(out, e);

}
}//end of doPost()

Figure 140. The doPost Method

In Figure 140, we show the doPost method. We use the outputHeader, getAll, and
outputPartsinformation methods in exactly the same way as in the doGet method.

We use the HttpServietRequest class getParameterValues method to read the
value from the partno field. We need to define the partno field in the HTML file. If
the parameter is *all, we return all parts. Otherwise, we return only the part
record requested.

Notice that we use the getAll method to retrieve all the records from the database.
If only one record is requested from the database, we find it in the Vector
containing all the records and return only that record. Since the database is
small, this does not cause a performance problem. If we actually implemented
this in a production environment, we would add a getPart method, which would
retrieve only one part record.

Introduction to AS/400 Servlets 173

<HTML>

<BODY BGCOLOR="#C0C0C0">

<FORM action="/servlet/PartsServlet" method="POST">

<CENTER><IMG SRC="as400gif' BORDER=2 X-SAS-UselmageWidth X-SAS-UselmageHeight HEIGHT=120
WIDTH=120></CENTER>

<CENTER>

<HR SIZE="5"></CENTER>

<CENTER>Enter*ALL to get all parts

from the catalog</CENTER>

<CENTER>0r</[FONT></CENTER>
<CENTER>Enter the part number to

getonly one part from the catalog</CENTER>

<CENTER>Press the Button o refrieve

the parts</IFONT></CENTER>

<CENTER> ,</CENTER>

<CENTER><TABLE BORDER=0 WIDTH="50%"HEIGHT="1">

<TR>

<TDWIDTH="169" HEIGHT="14">

<DV ALIGN=right>Part Number or *ALL </DIV>
<TD>

<TR>

<TDWIDTH="118"HEIGHT="14">

<I- Add the input field after this line —

<INPUT TYPE="text" NAME="partno" VALUE="*ALL" SIZE=10 MAXLENGTH=10>--></TD>
<TR>

<TR>

<TDWIDTH="169"></TD>

<TD WIDTH="118"><INPUT TYPE="submit' NAME="Submit' VALUE="Get Parts Information"></TD>
<TR>

</TABLE></CENTER>

<CENTER>

<HR SIZE='5"></CENTER>

</FORM>

Thisfile uses the senviet <I>PartsSeniet</1> to refrieve information

from the AS/400

<HR SIZE=5 WIDTH="100%">

</BODY><HTML>

Figure 141. Servlet HTML File (Parts.html)

Figure 141 shows the source for the HTML file that we use to run the servlet. We
use the FORM action tag to specify which servlet to run and the method to use. In
this case, we use the POST method. We use the INPUT TYPE tag to define an
input field named partno . The name we use here must match the parameter
name that we use in the doPost method.

4.6 Executing the Servlet

After creating the servlet, we are ready to deploy the servlet on an HTTP server.
The application discussed in this chapter uses servlets to access AS/400
resources. To run it, we need a server that supports Java servlets. We tested the
application using two servers:

* The Domino Go Webserver running on a Windows/NT platform
e The IBM HTTP Server for AS/400 running on an AS/400 system

174 Building AS/400 Internet-Based Applications with Java

4.6.1 Running under the Domino Go Webserver

The Domino Go Webserver is part of the recently announced IBM WebSphere
software family. It is a scalable, high-performance Web server that is available, in
addition to OS/390, on many workstation platforms (AlX, Solaris, HP-UX, 0S/2
Warp, Windows NT, and Windows 95).

client = NT server AS/A400
serviet

Figure 142. Three-Tier Servlet Architecture

The Domino Go Webserver includes:

« State-of-the-art security

 Site indexing capabilities

» Advanced server statistics reporting

« Relational database connectivity with Net.Data
» Support for Java servlets on all platforms

e Support for JIDK 1.1

« Support for the JIT (Just-in-Time) compiler

e HTTP 1.1

* Web-site content rating

We use the combination of Domino Go Webserver and ServletExpress to provide
a three-tier implementation for the servlet:

* Client—Provides the end-user interface
* NT server —Provides the HTTP server
* AS/400—Provides the database server

For the Domino Go Webserver and ServletExpress, we export the classes to the
\ServletExpress\servilets directory on the NT server.

To view the configuration steps for Domino Go Webserver, see Section 9.1,
“Domino Go Webserver” on page 287.

Note

You can run both the client and Domino Go Webserver on the same hardware
platform. This allows you to test the three-tier implementation using two
hardware platforms.

To export the Java classes, follow these steps:

1. In the Workbench, select the packages dataAccess , domain , and servlets .
2. From the File menu, select Export. In the dialog that follows, select only the
Class Files option.

Ensure that the Director y radio button is selected.

Press the Next button.

5. In this dialog, specify the path to the x:\ServletEx press\serviets directory.
Where x = a drive on the NT server.

Export only the class files.

7. Press the Finish button.

Pk w

o

Introduction to AS/400 Servlets 175

176

4.6.1.1 Configure ServletExpress

Now you are ready to configure ServletExpress. ServletExpress allows you
manage the servlets running under the control of the Web server. You do not
have to use ServletExpress to run servlets under the Domino Go HTTP server if
they are stored in the default directory. For the PartsServlet class, it is stored in a
package named servlets. When you export it, it is exported to a subdirectory
named servlets in the default directory. You need to configure ServletExpress so
it can find the PartsServlet class. ServletExpress also makes it easy for you to
load and unload servlets without stopping the Web server. To configure
ServletExpress, see Section 9.2, “ServletExpress” on page 289.

4.6.1.2 Running the PartsServlet
After these configuration steps, you are ready to test your servlet. Point your Web
browser to the following URL: http://server:xxxx/servlet/PartsServlet

Press the Enter key. Replace server with the name of your server and xxxx with
the port you are using (by default, Domino Go uses port 0080).

If everything is configured properly, you should see the table with all the parts in it
as shown in Figure 138 on page 171.

But what if not everything works as expected? Are there any means to debug or
trace the program? Maybe you noticed in some of the PartsServlet's methods that
the log() method is called. When you call this method, the arguments are logged
on the server. This is similar to what you are normally doing when using
System.out.printIn().

You can find the log file used by the Domino Go Webserver and ServletExpress in
the directory \ServletExpress\logs\ncfservice under the name of event_log. When
you open this file using NotePad, for example, you can see that there are some
lines at the end that were produced by the PartsServlet class. This logging facility
can be helpful when trying to find program problems.

4.6.1.3 Running the Enhanced Servlet
To run the servlet using the HTML file discussed in Section 4.5.1, “Enhancing the
Servlet” on page 172, in the browser, enter:

http://server/apptest/Parts.html

The page shown in Figure 143 on page 177 appears. In this scenario, you can
select either one specific part or all parts from the parts database.

Building AS/400 Internet-Based Applications with Java

3 Parts Retrieval - Netscape
File Edit “iew Go Communicator Help
« 2 3 4 a = 4 & 0

: N
i Back Fooward Reload Haome Search Guide Print Security Ztop .
A R

Enter *ALL to get all parts from the catalog
or
Enter the part number to get only one part from the catalog
Press the Button to retrieve the parts

Part Number or l*—
*ALL ALL

Get Parts Information

This file uses the servlet Parts:Serviet to retrieve information from the AS/400

E| |Document Dane

Figure 143. Enhanced Serviet

4.6.2 Running under the IBM HTTP Server for AS/400

We use the combination of the IBM HTTP Server for AS/400 and the WebSphere
Application Server to provide a two-tier implementation for the servlet. This
support is available with 0S/400 V4R3 and later. In Figure 144, client provides
the end user interface and AS/400 provides the HTTP server and the database
server.

AS/400
servlet

|
¥

client

Figure 144. Two-Tier Servlet Architecture

For the IBM HTTP Server for AS/400 and the WebSphere Application Server, we
export the classes to the \QIBM\ProdData\lBMWebAS\servlets directory in the
AS/400 Integrated File System.

To view the configuration steps for the IBM HTTP Server for AS/400, see Section
9.3, “IBM HTTP Server for AS/400” on page 293.

4.6.3 Running Servlets on the AS/400 System

The IBM WebSphere Application Server is IBM's Java servlet-based Web
application server that helps you deploy and manage Web applications. They
range from simple Web sites to powerful e-business solutions. For detailed
information on how to obtain and use the IBM WebSphere Application Server for
AS/400, see the following URL: http://www.as400.ibm.com/HTTP

Introduction to AS/400 Servlets 177

You can configure a server instance of the IBM HTTP Server for AS/400 to run
WebSphere. It is enabled through the Server API of the HTTP Server. For
information about how to configure the IBM HTTP Server for AS/400 and the IBM
WebSphere Application Server for AS/400, see Chapter 9, “HTTP Server
Configuration” on page 287. For an entire listing of the IBM HTTP Server for
AS/400 configuration file used for this redbook, refer to Appendix B, “IBM HTTP
Server for AS400 Configuration” on page 301.

4.6.4 Running the PartsServlet Servlet on the AS/400 System

178

Once you configure the IBM HTTP Server for AS/400 and the WebSphere
application server to serve servlets, you can run the PartsServlet servilet on the
AS/400 system. Enter:

http://yourAS400Server:xxxx/servlet/PartsServlet

To run the servlet using the HTML file, enter:
http://yourAS400Server:xxxx/apptest/Parts.html
The variable yourAS400Server is the name of your AS/400 system. The variable

xxx is equal to the TCP/IP port over which you are running the IBM HTTP Server
for AS/400.

Building AS/400 Internet-Based Applications with Java

Chapter 5. Overview of the Order Entry Application

This chapter covers an example RPG order entry application. This application
represents a commercial application, although it does not include all the
necessary error handling a business application requires. In Chapter 6,
“Developing AS/400 Java Applets” on page 193, we convert this RPG application
to a Java Internet-based application.

5.1 Overview of the Order Entry Application

This section provides an overview of the application and a description of how the
application database is used.

5.1.1 The ABC Company

The ABC Company is a wholesale supplier with one warehouse and 10 sales
districts. Each district serves 3000 customers (30000 total customers for the
company). The warehouse maintains stock for the 100000 items sold by the

Company.

The following diagram illustrates the company structure (warehouse, district, and
customer).

Company
Warehouse
Dristrict 1 Cristrict 2 Dristrict 10
S0k 30k 30k
Customers Customers Customers

Figure 145. The Company Structure

5.1.2 The ABC Company Database

© Copyright IBM Corp. 1999

The company runs its business with a database. This database is used in a
mission critical, OLTP (online transaction processing) environment. The database
includes tables with the following data:

« District information (next available order number, tax rate, and so on)
« Customer information (name, address, telephone number, and so on)
» Order information (date, time, shipper, and so on)

« Order line information (quantity, delivery date, and so on)

* Item information (hame, price, item ID, and so on)

« Stock information (quantity in stock, warehouse ID, and so on.)

179

5.1.3 A Customer Transaction
A customer transaction occurs based on the following series of events:

1.
2.

Customers telephone one of the 10 district centers to place an order.

The district customer service representative answers the telephone, obtains
the following information, and enters it into the application:

¢ Customer number
* Iltem numbers of the items the customer wants to order
« The quantity required for each item

The customer service representative may prompt for a list of customers or a
list of parts.

The application then performs the following actions:

a. Reads the customer last name, customer discount rate, and customer
credit status from the Customer Table (CSTMR).

b. Reads the District Table for the next available district order number. The
next available district order number increases by one and is updated.

c. Reads the item names, item prices, and item data for each item ordered by
the customer from the Item Table (ITEM).

d. Checks if the quantity of ordered items is in stock by reading the quantity in
the Stock Table (STOCK).

When the order is accepted, the following occurs:

a. Inserts a new row into the Order Table to reflect the creation of the new
order (ORDERS).

b. A new row is inserted into the Order Line Table to reflect each item in the
order.

c. The quantity is reduced by the quantity ordered.

d. A message is written to a data queue to initiate order printing.

5.1.4 Application Flow
The RPG Order Entry Application consists of the following components:

Note

To download the sample code used in this redbook, please refer to Appendix
A.1, “Downloading the Files from the Internet Web Site” on page 299, for more
information.

* ORDENTD (Parts Order Entry)—Display File

« ORDENTR (Parts Order Entry)—Main RPG processing program
* PRTORDERP (Parts Order Entry)—Print File

* PRTORDERR (Print Orders)—RPG server job

e SLTCUSTD (Select Customer)—Display file

e SLTCUSTR (Select Customer)—RPG SQL stored procedure

* SLTPARTD (Select Part)—Display file

e SLTPARTR (Select Part)—RPG stored procedure

180 Building AS/400 Internet-Based Applications with Java

) > B G
w Customer ltern Stock w
Line

n Frocess : Data r Frint
Order Queue Crder

ORDENTR PRTORDERP
v,
Frompt Prompt
for far
Customer Fart

SLTCUSTR SLTPARTR
Figure 146. RPG Application Flow

ORDENTR is the main RPG program. It is responsible for the main line
processing. It calls two supporting RPG programs that are used to prompt for and
select end-user input. They are SLTCUSTR which handles selecting a customer,
and SLTPARTR which handles selecting part numbers. PRTODERR is an RPG
program that handles printing customer orders. It reads order records that were
placed on a data queue and prints them in a background job.

5.1.5 Customer Transaction Flow

The following scenario walks through a customer transaction showing the
application flow. By understanding the flow of the AS/400 application, you can
understand the changes made to this application to support a graphical client.

5.1.5.1 Starting the Application
To start the application, the customer calls the main program from an AS/400
command line:

CALL ORDENTR

When the order entry application is started, the display in Figure 147 on page 182
appears.

Overview of the Order Entry Applicaton 181

=EAS/400 _ (O]

File Edit Transfer Appearance Communication Azgist Window Help

gl 2] o= 2w €[] 2 =]
Partz Order Entry
Tupe choices, press Enter.
Z=Change
Customer number | Order number

F3=Exit Fd=Prompt F&=Accept Order F1Z=Cancel

Ml o bE./033

Figure 147. Parts Order Entry

When the Parts Order Entry display appears, the user has two options:

» Type in a customer number and press the Enter key
» End the program by pressing either F3 or F12.

If they do not know the customer number, the user can press F4 to view a window
containing a list of available customers.

182 Building AS/400 Internet-Based Applications with Java

= EAS /400
File Edit

Tranzfer Appearance Communication Asgist Window Help

S I=] E3

o | (| e A

e

oo

il
=0 @

| 2

Partz Order Entry

Tupe choices, press Enter.
Z=Change

Customer number

F3=Exit Fd4=Prompt FB=Accept Order

Select Customer

Tupe choices, press Enter.
1=5elect

Mt Mostomer

OAKLEY, Annie OE
BARBER, Elizaketh OE
ABLE, Piggu OE
WILLIS, MEIL CE
HULLEM-SCHULTZ , Kareem OE
MAATTA, Bob OE

FRIR, JIM OE
COULTER, SIMOM OE
GOUDET, PIERRE W
LLAKMES, Joe OE

Flz=Cancel

Bottom

MAll d

11044

Figure 148. Select Customer

The user presses F12 to remove the window and return to the initial panel, or
scrolls through the items in the list until they find the customer they want. By
typing a 1 in the option field and pressing the Enter key, the user indicates their
choice. The selected customer is then returned to the initial panel.

Overview of the Order Entry Applicaton 183

184

= EAS/400 M= E

File Edit Transfer Appearance Communication Azsist Window Help

of| B[] |]] e ne] 20 m]]

Partzs Order Entru

Tupe choices, press Enter.

#=Change
Cuztomer number E]0]8]s] Order number o 30EES
Customer name . . . « + . . : COULTER, SIMOM 5
Addrez= 1 DUOO3 Awe. K
ity . - . . . - % De= Moines m A7A91-7345
Opt Part Dezcription [ty

F3=Exit F4=Prompt FB=Rccept Order FlE=Cancel

T 15/006

Figure 149. Parts Order Entry

After selecting a customer from the list, or typing a valid customer number and
pressing the Enter key, the customer details are shown and an order number is

assigned. An additional prompt is displayed allowing the user to type a part
number and quantity.

If the user does not know the part number, they can press F4 to view a window
containing a list of available parts.

Building AS/400 Internet-Based Applications with Java

= EAS/400

File Edit Transfer Appearance Communication Azgist Window Help

=] E3

=

4l =

Partz Order Entry

Tupe choices, press Enter.

#=Change
Select Part
Customer number
Customer name Type choices, press Enter.
Addre== 1=Select
(S o Mpt Part Demeription Nty
BEEEEl QUAD SPEED CD ROM DRIVE Th
lpt Part Description _OEE02 Radio_Controlled_Plane 91
_ IREA3 Change_Machine i
_ BoEaRd Bazeball_Tickets 2
_ 0Eees Twelve_Mum_Two_Pencils an
_ REaee Over_Under_Shotgun 97
_ DEERET Feel _Good_Yitamins 91
_ IREARE Cross_Country_Ski_Set 14
_ QEE209 Rubber_Babu_Bugoy_iheel Ti
_boole ITS0 REDBOOQK SG24-2152 94
More. ..
Flz=Cancel
F3=Exit Fd4=Prompt F&=
HEl d 11031

Figure 150. Select Part

The user presses F12 to remove the window and return to the initial panel, or
scrolls through the items in the list until they find the part they want. By typing a 1
in the option field and pressing the Enter key, they indicate their choice. The
selected part is returned to the initial panel.

=EAS/00 M=l E
File Edit Transfer Appearance Communication Assigt wWindow Help
o 2] || |] (] 2T &
Parts Order Entry
Type choices, press Enter.
Z=Change
Cuztomer number Dang Order numberk 3025
Cuztomer name & . i COULTER, SIMOM 3
Address L. oL BODEE Ave. K
City o o o o . ot Des_Hoines_ 10 O7E91-2345
Opt Part Dezcription [ty
BE000E Cross_Country_Ski_Set
F3=Exit Fd=Prompt FB=Accept Order FlZ=Cancel
Hi]l d 13006

Figure 151. Parts Order Entry

Overview of the Order Entry Application

185

After selecting a customer from the list, or typing a valid customer number and
pressing the Enter key, the part and quantity ordered are added to the list section
below the part entry fields.

2 EAS/400 M=l E3

File Edit Transfer Appearance Communication Assigt wWindow Help

= el AR AN AN TSRS N T T

Parts Order Entry

=

Type choices, press Enter.
Z=Change

Cuztomer number Dang Order number 1 302D
Cuztomer name ¢ COULTER, SIMOM 3
Address o . . . ¢ BHODES Ave. K

—

City+ [es_Moines_ 0 A7E91-2343

(pt Part Dezcription [ty

_ HEEANS Cross_Country_Ski_Set
_ Baoezl Ten_Gallon_Hats

7 BEORZS Zoo_Season_Pass

B 000013 Radio_Controlled_Plane
_ HEEAnd Baseball _Tickets

_ BAoalT Magical _Mystery_Maze
_opaoels 25 Inch_Color_T¥s

_ el Dry-Erase_Markers

F3=Exit Fd=Prompt FB=Accept Order FlZ=Cancel

=
[ERN ol e Nl ol el Sl]

More. ..

WA d 17,005

Figure 152. Parts Order Entry

The user may type a 2 beside an entry in the list to change the order. When the
Enter key is pressed, a window appears that allows the order line to be changed.

= EAS/A00 _ O]

File Edit Transfer Appearance Communication Aszist Window Help

e e A A e R A T

Parts Order Entry

Tuype choices, press Enter.

Z=Change
Customer number 21815 Order number @ 3HES
Customer name : COULTER, SIMON 5
Address @ DODOS Ave. K
C
Change Selected Order
il

EO00Z9 Zoo_Season_Pass 1
F4=Prompt FlZ=Cancel

pooaod Basehall_Tickets
paoElT Magical _Mystery HMaze
BE0ELS 25_Inch_Color_T¥s
0ooe30 Dry-Eraze_Markers

F3=Exit Fd=Prompt FB=fAccept Order Fl#=Cancel

WA d 15,00,

=
(ALY ol o ca]

Hore. ..

Figure 153. Change Selected Order

The user chooses to press F12 to cancel the change, press F4 to list the parts, or
type a new part identifier or different quantity. Pressing the Enter key validates

186 Building AS/400 Internet-Based Applications with Java

the part identifier and quantity. If valid, the order line is changed in the list and the

window is closed.

2 EAS/400

File Edit Transfer Appearance Communication Assigt wWindow Help

=] 3

=] e e st e e

Parts Order Entry

=

Type choices, press Enter.
Z=Change

Cuztomer number Dang Order numberk
Cuztomer name ¢ COULTER, SIMOM 3
Address o . . . ¢ BHODES Ave. K

—

City+ [es_Moines_ 0 A7E91-2343

Opt Part Dezcription [ty

AHEEAE Cross_Country_Ski_Set
paoEzl Ten_Gallon_Hats
BE0EZY Zoo_Seazon_Pass
aoELE Radio_Controlled_Plane
Bazeball _Tickets
paoELT Magical _Mystery Maze
BE0ELS 25_Inch_Color_T¥s
OOUE30 Dry-Eraze_Markers

F3=Exit Fd=Prompt FB=Accept Order FlZ=Cancel

I O B |
=
=
=
=
=
=

=
W20 -2

Al =

More. ..

HA d

137006

Figure 154. Completed Order

In Figure 154, you see the quantity for Zoo Season Pass is changed to 3. When

the order is complete, the user presses F6 to update the database. Then, an

order is placed on the data queue for printing.

= EAS/400 M=] 3

File Edit Transfer Appearance Communication Assist Window Help

Bl B[]]]] n] 2 2

Display Sponled File

File PRIORDERP

Find .o v

ABC Conpany - Part Order

COULTER, SIHOM OE Order Hbr: ar
DOAR3 Ave,KL Order Date: 11-18-1997
Des_Haines_ I0 OFael-2345

Part Description Quantity Price Discount Anount
AR0eas Cross_Country_Ski _Set 1 9300 L2005 502,81
A0AAZ1 Ten_Gallon_Hats 4 P 5664 L2009 $226.10
900629 Zoo_Season_Pass T 0T 1 R 111 $269.54
apaale Radio_Controlled_Plane 1 $12.41 .05 $12.38
A00aRd Basebal | _Tickets 10 o1 L2009 $on9.57
BE0017 Hagical _Hystery_Haze O 18 < S 111 579,50
anaals 25 Inch_Color_Ths 1 $63.TS L2005 503,62
f00630 Dry-Erase_Harkers 3 FTRSE L2009 $211.29
a0aaal - Snorkle_And_Fins_Set 2 $ 3235 .5 504,57
a0aass Quartzligital _Uristuatch 1 $ 42,17 .05 542,08
Order total: $1,971.42

Fi=Ewit F12=Cancel F19=Left F20=Right F24=Hore keys

2 17|

HY o 34022

Figure 155. Printed Order

Overview of the Order Entry Application

187

The printed order is created by a batch process. It shows the customer details
and the items, quantities, and cost of the order.

5.1.6 Database Table Structure
The ABC Company database has eight tables:

* District

e Customer

e Order

¢ Order Line
e |[tem

» Stock

* Warehouse
 History

The relationship among these tables are shown in Figure 156.

YWarshouse District=
¥ ¥
Stock History [— Customer
&
r
Item] OrderLine —————— Order

Figure 156. Table Relationships

5.1.7 Order Entry Application Database Layout
The sample application uses the following tables of the database:

* District

e Customer

* Order

¢ Order line

» Stock

Item (catalog)

The following sections describe, in detail, the layout of the database.

188 Building AS/400 Internet-Based Applications with Java

5.1.7.1 Tables

Table 14. District Table Layout (Dstrct)

Field Name Real Name Type Length
DID District ID Decimal 3
DWID Warehouse ID Character 4
DNAME District Name Character 10
DADDR1 Address Line 1 Character 20
DADDR2 Address Line 2 Character 20
DCITY City Character 20
DSTATE State Character 2
DzZIP Zip Code Character 10
DTAX Tax Decimal 5
DYTD Year to Date Balance Decimal 13
DNXTOR Next Order Number Decimal 9
Primary Key: DID and DWID

Table 15. Customer Table Layout (CSTMR)
Field Name Real Name Type Length
CID Customer ID Character 4
CDID District ID Decimal 3
CwWID Warehouse ID Character 4
CFIRST First Name Character 16
CINIT Middle Initials Character 2
CLAST Last Name Character 16
CADDR1 Address Line 1 Character 20
CCREDT Credit Status Character 2
CADDR2 Address Line 2 Character 20
CDCT Discount Decimal 5
CCITY City Character 20
CSTATE State Character 2
czip Zip Code Character 10
CPHONE Phone Number Character 16
CBAL Balance Decimal 7
CCRDLM Credit Limit Decimal 7
CYTD Year to Date Decimal 13

Overview of the Order Entry Application

189

Field Name Real Name Type Length
CPAYCNT Payment Decimal 5
CDELCNT Delivery Qty Decimal 5
CLTIME Time of Last Order Numeric 6
CDATA Customer Information Character 500
Primary Key: CID, CDID, and CWID

Table 16. Order Table Layout (ORDERS)
Field Name Real Name Type Length
OWID Warehouse ID Character 4
ODID District ID Decimal 3
OCID Customer ID Character 4
OID Order ID Decimal 9
OENTDT Order Date Numeric 8
OENTTM Order Time Numeric 6
OCARID Carrier Number Character 2
OLINES Number of Order Lines Decimal 3
OLOCAL Local Decimal 1
Primary Key: OWID, ODID, and OID

Table 17. Order Line Table Layout (ORDLIN)r
Field Name Real Name Type Length
OID Order ID Decimal 9
ODID District ID Decimal 3
OwWID Warehouse ID Character 4
OLNBR Order Line Number Decimal 3
OLSPWH Supply Warehouse Character 4
OLIID Item ID Character 6
OLQTY Quantity Ordered Numeric 3
OLAMNT Amount Numeric 7
OLDLVD Delivery Date Numeric 6
OLDSTI District Information Character 24

Primary Key: OLWID, OLDID, OLOID, and OLNBR

Building AS/400 Internet-Based Applications with Java

Table 18. Item Table Layout (ITEM)

Field Name Real Name Type Length
IID Item ID Character 6
INAME Item Name Character 24
IPRICE Price Decimal 5
IDATA Item Information Character 50
Primary Key: 11D

Table 19. Stock Table Layout (Stock)
Field Name Real Name Type Length
STWID Warehouse ID Character 4
STID Item ID Character 6
STQTY Quantity in Stock Decimal 5
STDIO1 District Information Character 24
STDIO2 District Information Character 24
STDIO3 District Information Character 24
STDI04 District Information Character 24
STDIOS District Information Character 24
STDIO6 District Information Character 24
STDIO7 District Information Character 24
STDIO8 District Information Character 24
STDIO9 District Information Character 24
STDI10 District Information Character 24
STYTD Year to Date Decimal 9
STORDERS Quantity Decimal 5
STREMORD Quantity Decimal 5
STDATA Item Information Character 50
Primary Key: STWID and STIID

5.1.8 Database Terminology

This redbook concentrates on the use of the AS/400 system as a database server
in a client/server environment. In some cases, we use SQL to access the AS/400
database. In other cases, we use native database access.

Overview of the Order Entry Application

191

The terminology used for the database access is different in both cases. In Table
20, you find the correspondence between the different terms.

Table 20. Database Terminology

AS/400 Native SQL

Library Collection
Physical File Table

Field Column
Record Row

Logical File View or Index

192 Building AS/400 Internet-Based Applications with Java

Chapter 6. Developing AS/400 Java Applets

This chapter investigates a more complex applet development scenario. We build
an AS/400 Internet-based shopping applet. It is actually a set of three applets.
These applets use the CPW databases that are described in Chapter 5,
“Overview of the Order Entry Application” on page 179. The databases are
AS/400 databases and are accessed using JDBC. This suite of applets allow you
to select items from the Item database, place and confirm orders, and check the
status of orders. This application example is an Internet-based version of the
RPG order entry application discussed in Section 5.1, “Overview of the Order
Entry Application” on page 179.

The first two applets are the Toolbox applet and Cart applet. Use them to select
items to order and to place an order:
» Toolbox applet
— Used to query the Item database and select items to be ordered
» Cart applet
— Used to check what items have been selected
— Used to place and confirm an order for those items

Normally the Toolbox applet works in conjunction with the Cart applet. The third
applet is independent of the preceding two applets. It is the Status applet and is
used to check the status of an order.

Note

The example programs discussed in this chapter are available for you to
download from the redbook Web site. Refer to Appendix A.1, “Downloading the
Files from the Internet Web Site” on page 299 for details.

6.1 Shopping Application User Interface

© Copyright IBM Corp. 1999

This section shows the "shopping" applet graphical user interfaces. The images
shown were captured when running under Netscape Navigator.

193

194

Product Catalog

Select the ltems you want by pressing Ctrl then Clicking the ltem in the Listbox, then put it into your Cart

QuewRangeofltemsl From: |Duunn1 Tao: |Duuuzu

Item# |Description Price $ |Details
000005 | Twelwve Num Two_Pencils 50.55 |YELLOW IN COLOR ;l
Q00006 | Ower_Tnder Shotoun 79.66 |1Z GUAGE
000007 |Feel Good_Vitamins 29.81 |A&,B,C AND D J
000008 (Cross_Country SEi_Set 93.00 |ENTRY LEVEL
000009 |Rubber Eaby Buggy Wheel 95.71 |4 INCH SIZE
000010 (ITS0 REDEOOK 5GzZ4-zZ152 50.00 |ACCESSING THE &45/400 WITH J&VA
000011 |ITS0 REDBOOK R2G24-2163 20.87 |BUILDING A45/400 APPLICATIONS WITH JAWA -
4« | »
FUTEEIEohBrTs Can| system | sysname

user Iuser

passwaord I
Messages: I Connect Successiully connect

Figure 157. Toolbox Applet

Figure 157 shows the Toolbox applet, which is the first applet we investigate. It
allows you to query the AS/400 Items database for information and display the
qguery results in a listbox. You can select the items you want and put them into a
“Shopping Cart.” Then, use the Cart applet to check your selected items and
place an order. You can also use the Status applet to check the status of your

orders.

My Shopping Cart

Item# |Description Price $|Stock |Detail
0000058 |Cross_Country Ski_Set 93.00 |71 ENTEY LEVEL
000010 |ITS0 REDEOOE 3G24-2152 50,00 |354 ACCESSING THE AS/400 WITH JAVA

Look into Cart |

CustomerNo.I ConﬂrmOrderl systern |Sysname

Total Arnount: 1143

Figure 158. Cart Applet

]

user I user

passwordl

connect

Figure 158 shows the Cart applet. It displays the items that you select using the
Toolbox applet. Normally, the Toolbox applet and the Cart Applet are run together
in a browser.

Building AS/400 Internet-Based Applications with Java

My Shopping Cart

Item# |Description Price $|Stock |Detail
000008 |Cross_Country_Ski_Set 93.00 |71 ENTEY LEVEL
000010 |(IT30 REDEOOE 5G24-2Z152 S0.00 |3554 ACCESSING THE AS/400 WITH JAVA

Look into Cart | Customer Ma. IUUU1| ConﬂrmOrderl system |Sysname

Total Amount: J 143.00

Figure 159. Placing an Order

user |user

passwordl

connect

In the Cart applet, confirm your order by entering a valid customer number. The
number entered is checked against the AS/400 Customer database. If the

customer number is valid, the “Confirm Order” button is enabled as shown in
Figure 159. You can place an order by clicking on the Confirm Order button.

. Information

[order Mo.2404

Kl

o

{Remember this Order Mumber far Checking Order Status)

E | Unszigned J ava applet Window

Figure 160. Order Confirmation

Upon confirmation of the order, the Cart applet returns a message box, which

displays an order number. Use the order number to track the order status.

Developing AS/400 Java Applets

195

Order Number ORDER STATUS system | sysname

user Iused

| 3404 Query | preeeees
password I
Order 3404 was Ordered by Annie OAKLEY connect |

Item?# |Description Quantity |Amount
000008 [Cross_Country_Ski_Set 1 93.00
000010 |ITSC REDBOOK 5G24-2152 1 50,00

Figure 161. Status Applet

The Order Status applet, shown in Figure 161, allows you to check the status of
an order by entering the order number and clicking on the Query button.

The Shopping application has limitations that can easily be eliminated by adding
additional function to the applets. These limitations include:

* The Toolbox applet only allows you to order a quantity of one.
* The Cart applet does not allow you to delete items from the cart.

6.2 Shopping Application Objects and Classes
Figure 162 on page 197 shows the design of the Shopping application. It consists
of five classes. Three of the classes are applets that provide a graphical user
interface, while the other two are supporting classes. All of the programs
discussed in the chapter are available for you to ownload from the redbook Web
site. The "Shopping" application was created using VisualAge for Java 2.0
Enterprise Edition.

196 Building AS/400 Internet-Based Applications with Java

ToolhoxApplet
- Frant End GUI

- for selecting Product

=Selecteditems Clags

ltermsDb Class

Contains;
Selected Rows Mathode:
Operations: ;_Dnnect
Add Selected Row ISC_Dnnect
Clear CartApplet get item
Get Vector - Front End GUI get items
fetch next

- for confirming orders

ruantity in hann
confirm arder
check order status
werfy customer info

Statusfpplet
- Front End GUI
for checking order statys

Figure 162. Shopping Application Design

A project named “AppletWorkshop” that holds a package named ToolboxApplet
and the classes is in the VisualAge for Java Integrated Development
Environment(IDE). The project includes:

» ToolboxApplet —A GUI applet that allows items to be selected.

» CartApplet —A GUI applet that allows orders to be placed.

» StatusApplet —A GUI applet that checks the order status.

 ItemsDb —A supporting class that provides access to the AS/400 database (it
is used by the GUI applets).

» Selectedltems —A class for storing the items selected. A cart object is
instantiated from this class. The GUI applets can put items into the cart or
display what is in the cart.

The ItemsDb and Selectedltems classes are created to promote reusability. The
other classes use them. This allows you to easily change and add functionality to
the application.

Figure 163 on page 198 shows the ToolboxApplet package in the VisualAge for

Java WorkBench. The runner superscript on the top right hand corner of a class
means that it is a runnable Java applet.

Developing AS/400 Java Applets 197

E_,]kahench [Administrator] =]

File Edit ‘“Workspace Selected 'Window Help

P LV U8 wE) i
5 Projects &% Packages [Classes [£9 Interaces | & Managing [0 All Problems

5 All Projects +
=3 Appletvarkshop) =
Bl (7% Toolhoxspplet

= @ Cartapplet?HE
@ termsDh

H G OrderStatys 28
® @ Selectedliems

& ToolboxAppletExample 258 -
3

e
=

| 0 items selected.

Figure 163. ToolboxApplet Package

In addition to the classes shown in the ToolboxApplet package, we use several
other classes:

e The MultiColumnListbox from the IBM Enterprise Access Libraries project to
display the selected items

* The AS/400 Toolbox for Java classes to allow access to the AS/400 system
* The Java classes in the Java Classes Library project to provide Java support
* The Vector class from the java.util package to store the items in the "shopping”
cart
— A Vector is a collection of different objects.
— The difference between a Vector and an Array is:

< An array is a collection of the same type of objects.
< A vector is a collection of different or the same type of objects.

— VectorEnumeration is a support class:

« It allows you to scroll through the entire list of objects inside a Vector.
* It provides two main methods:

—getNextElement()

—hasmoreElements()

— Elements can be of different types in a vector; you have to type cast the
element to the proper type before using.

6.3 The Selectedltems Class

198

The Selectedltems class is a supporting class used with the Toolbox applet and

the Cart applet. Selectedltems acts as a buffer that stores items that you select.

As you view items that are available, you can select items and place them in your
“Shopping Cart.” You can view the items you select, which are stored in a

Selectedltems object.

The Selectedltems class contains a static vector named wanted that contains all
of the items selected. This is the “shopping cart” where we keep the selected
items. It also contains a static BigDecimal variable named totalAmount that

Building AS/400 Internet-Based Applications with Java

stores the total value of the items selected. We use the static keyword because
we want other classes to share these variables.

6.3.1 Writing the Class
The class definition for the Selectedltems class is shown in Figure 164.

import java.math.BigDecimal
import java.util.Vector;
public class Selecteditemns
{
private static Vector wanted;
public static BigDecimal totalAmount;

}

Figure 164. Selectedltems Class Definition

The two import statements tell the compiler where the supporting classes are
located. The BigDecimal class is in the java.math package. The Vector class is in
the java.util package.

In some cases, generic import statements are used. Instead of writing “import
java.math.BigDecimal;” we can write “import java.math.*”, so that all classes in
the java.math package are known to the compiler.

The advantage of using the specific import statement rather than the generic one
is that specific import statements document exactly what additional classes are
used in the application. This facilitates modifying code and packaging the
application using JAR files.

6.3.2 Writing the Methods

First, we discuss the getVector method which allows other classes or methods to
access the Vector named wanted (we declare this name as private). Declaring a
variable as private gives the class owner more control over it because other users
cannot access it directly. They can only access it through owner-supplied public

methods. Here, we supply the public getVector method. Also, if the wanted Vector
is not instantiated, we instantiate it here. This is called lazy initialization so if the
Vector is disposed later, it is regenerated when needed.

public Vector getVector()
{

if (Wanted == null)
wanted = new Vector();
retum wanted,;

}

Figure 165. The getVector Method

The clear method allows other applets to clear the cart and remove selections
from the cart.

Developing AS/400 Java Applets 199

public void clear()

{

wanted = null;

}

Figure 166. The clear Method

Finally, the addSelectedRows method allows items to be added to the wanted
Vector that was previously created. An object array is used as the input
parameter.

We add the object array to the vector and add the price of the item to the
totalAmount variable. Because we may not have initialized the totalAmount
variable, we set it to zero if it is empty.

public void addSelectedRow(Object]] row)
{
getVector().addElement(row);
if (totalAmount == null)
{
totalAmount = new BigDecimal('0");
}
String Column3 = new java.lang.String((String) row{2));
totalAmount = totalAmount.add(new BigDecimal(Column3.rim()));
}

Figure 167. The addSelectedRow Method

6.4 The ItemsDb Class

200

The ItemsDb class is a supporting class that provides access to the AS/400
system. All the graphical user interface applets use this class to access the
AS/400 databases. The class definition is shown in Figure 168 on page 201.

Building AS/400 Internet-Based Applications with Java

importjavamath.*;
import java.util*;
public dlass ftemsDb extends javalang.Object

{

private java.sgl.Connection dbConnect;

private java.sgl.PreparedStatement psitem;

private java.sgl.PreparedStatement psitemRange;
private java.sgl.PreparedStatement psCustomerDb;
private java.sgl.PreparedStatement psQuantityinHand;
private java.sgl.Statement sGetinetOrderNo;

private String systemName = new String(");

private String userid = new String(™);

private String password = new String(");

private java.sgl.ResultSet rs = nul;

public String itemid;

public String ittmName;

public BigDecimal itemPriceBigDecimal;

public String itemPrice;

public String iteminfo;

public Object]] row;

public String validCustomerid = null;

protected java.util Vector aConnectionListener = null;
}

Figure 168. The ItemsDb Class Definition

The class definition declares all the variables that we use in this class. An
explanation of the variables is shown in Table 21 on page 202.

Developing AS/400 Java Applets

201

Table 21. ItemsDb Class Variables

Variables

Description

java.sql.Connection dbConnect

The connection to AS/400

java.sql.PreparedStatement psltem

Optimized Query - see connect() for def
(Prepared Statements).

java.sql.PreparedStatement psltemRange

Optimized Quetry - see conneci() for def.

java.sql.PreparedStatement
psCustomerDb

Optimized Query - see conneci() for def.

java.sql.PreparedStatement
psQuantitylnHand

Optimized Query - see conneci() for def.

java.sgl.Statement sGetlnetOrderNo

Dynamic Query - used to get Intemet
Order Number. (slower than Prepared
Statement, but has more flexibility where
SQL can be changed on the fly.)

String systemName

Stores the AS/400 system name to
connect to {Intemet server name - for
example, www.as400.com).

String user ID

Stores the Default User Id for lcgen from
Intemet shopping applications.

String passwerd

Stores the password for the Default User
Id.

java.sgl.ResultSet rs

As a temporary variable for the Query
Result Set retumed.

String itemld

Store the item Id value of the current
record.

- lID of ITEM database in CSDB library

String itemName

Store the itemName INAME value of the
current record.

BigDecimal itemPriceBigDecimal

Store the itemPrice IPRICE of the current
record in BigDecimal format for
caculation.

String itemPrice

itemPrice in String format

String iteminfo

iteminfo - IDATA field of ITEM database

String validCustomerld

The Valid Customer Id for ordering
through Intemet.

6.4.1 Common Methods All Applets Use

202

The ItemsDb class provides some methods that are used by all GUI applets.

6.4.1.1 The connect Method

The connect method is used to connect to the AS/400 system. It uses the system
name, user ID, and password defined in the class variables. It also prepares the
JDBC statements that are used to access the AS/400 databases.

Building AS/400 Internet-Based Applications with Java

public String connect()
{

fy
{

netscape.security.PrivilegeManager.enablePrivilege("UniversalConnect");
java.sgl.DriverManager.registerDriver(new com.ibm.as400.access AS400JDBCDriven());

dbConnect = java.sgl. DriverManager.getConnection(jdbc.as400:/" + systemName +

"fapilib;naming=system;errors=full,date format=iso", userid, password);

psitem = dbConnectprepareStatement("SELECT * FROM aplbITEM WHERE ID = ?");

psitemRange = dbConnect prepareStatement('SELECT * FROM apiit TEM WHERE IID >=? AND IID <=7);
psCustomerDb=dbConnect prepareStatement("SELECT CID FROM apiit/ CSTMR WHERE CID =2 AND CDID=001 AND
CWID=0001");

psQuantityinHand = dbConnect prepareStatement('SELECT STQTY FROM apiil/'STOCK WHERE STWID="0001' AND
STID=?");

}

catch (Exception e)

{

System.out printin(‘connect(): " +€);
e printStackTrace();

retum "Connect "' +¢€;

}
retum "Connect Successfully”;
}

Figure 169. The connect Method

If we load an applet from the local workstation disk, we must handle security. By
default, applets do not have access to any remote system. In this case, the
AS/400 system is a remote system. Here, we run under Netscape Navigator, so
we use the security support provided by Netscape. We use the enablePriviledge
method from the PrivilegeManger class. This causes a security dialog to appear
when we attempt to connect to the AS/400 system. If we use the AS/400 HTTP
server to serve the applets, we automatically have access to the AS/400 system,
so we do not need to provide any special security support. For more information
about security and deploying applets, refer to Chapter 3, “Introduction to AS/400
Applets” on page 51.

6.4.1.2 The disconnect Method
The disconnect method is used for closing all AS/400 connections.

public void disconnect() throws Exception
{

dbConnect.close();

psltem.close();

psltemRange.close();
psCustomerDb.close();
psQuantitylnHand.close();

return;

}

Figure 170. The disconnect Method

6.4.1.3 The finalize Method

The finalize method automates using the disconnect method. Every time the
IltemsDb class is disposed, it disconnects from the AS/400 system and releases
all resources allocated.

Developing AS/400 Java Applets 203

protected void finalize()

{

try

{

disconnect();
superfinalize();

}

catch (Throwable t)

{
System.out.printin(t);

}

return;

}

Figure 171. The finalize Method

6.4.2 Methods Used by the Toolbox Applet

The ItemsDb class has some methods that are used only by the Toolbox applet
class.

6.4.2.1 The fetchNextltem Method

The fetchNextltem method is used after executing a JDBC statement that
returns a resultset. It fetches the next record from the current resultset and puts
the corresponding field values in the public class variables. It returns itself (this)
to allow for the cascading of methods.

204 Building AS/400 Internet-Based Applications with Java

public temsDb fetchNextitem()

{

try

{

if (rs.next())

{
itemid = rs.getString("liD");
itemName =rs.getString("INAME");

itemPriceBigDecimal = rs.getBigDecimal('IPRICE", 2);

itemPrice = itemPriceBigDecimal.toString();
iteminfo = rs.getSting('IDATA");
}
else
{
itemid = null;
itemName = nul;
itemPriceBigDecimal = null;
itemPrice = null;
iteminfo = null;
}
}
catch (Exception €)
{
System.out.printin(*fetchnext fail: * + €);
}

retumn this;

}

Figure 172. The fetchNextitem Method

6.4.2.2 The getltem Method

The getltem method queries the ITEM table using the itemno parameter passed
to it as input. It executes the psltem prepared statement object that was prepared
in the connect method. It uses the fetchNextltem method to load the information

from the resultset into the class variables.

public temsDb getitem(String itemno)
{
try
{
psltem.setString(1, itemno);
rs = psltem.executeQuery();
fetchNextitem();
}
catch (Exception €)
{
System.out.printin(‘getitem fail: " + €);
}

retumn this;

}

Figure 173. The getltem Method

Developing AS/400 Java Applets

205

6.4.2.3 The getltems Method

The getltems method queries the ITEM database for items matching a range of
item numbers. It executes the psitemRange prepared statement object created in
the connect method. It uses the fetchNextltem method to load the data into the
class variables. If there are no more records, the class variables are set to null.

public java.sgl.ResultSet getitems(String itemnoMin, String itemnoMax)
{
if (temnoMax.length() == 0)
{
getltem(itemnoMin);

}

else
{
try
{
psltemRange.setString(1, itemnoMin);
psltemRange.setString(2, itemnoMax);
rs = psltemRange.executeQuery();
}
catch (Exception €)
{
System.out.printin(‘getitems fail: " + €);
}
}

retumnrs;

}

Figure 174. The getltems Method

6.4.3 Methods Used by CartApplet

206

The ItemsDb class provides some methods that are only used by the Cart applet.

6.4.3.1 The quantitylnHand Method

The quantityinHand method returns the Quantity in Stock value for an item from
the AS/400 Stock table. It executes the psQuantitylnHand prepared statement
object that was prepared in the connect method.

Building AS/400 Internet-Based Applications with Java

public BigDecimal quantitylnHand(String itemNo)
{
try

{
/I Get next Order No. and the Inet YTD Balance

psQuantitylnHand.setString(1, itemNo);
rs = psQuantitylnHand.executeQuery();
rs.next();
retum rs.getBigDecimal("STQTY", 0);
}
catch (Exception €)
{
System.out.printin(e);
}

return null;

}

Figure 175. The quantityinHand Method

6.4.3.2 The verifyCustomer Method

The verifyCustomer method checks whether the customerld passed as an input
parameter is valid. It executes the psCustomerDb prepared statement object
created in the connect method. It returns as true or false depending on the result
of the check. If the customerld is valid, it saves it in the class variable
validCustomerld.

public boolean verifyCustomer(String customerld)
{

boolean isvalid = false;

try

{
psCustomerDb.setString(1, customerid);

rs = psCustomerDb.executeQuery();
if (rs.next())
{
isvalid = true;
validCustomerld = customerld;
}
}
catch (Exception)
{
validCustomerld = null;
}

retum isvalid;

}

Figure 176. The verifyCustomer Method

6.4.3.3 The confirmOrder Method

The confirmOrder method creates an order from the items inside the
Selectedltems object. The customerld is validated by the verifyCustomer method
prior to confirming the order.

Developing AS/400 Java Applets 207

The confirmOrder method uses JDBC to access the AS/400 database. It
contains the following logic:

Verify if there are items in the cart.

Retrieve the next order number and district YTD balance from the AS/400
District table.

Update the District YTD balance with the new order total.

Increment the District next order number by one.

Insert an order record to the AS/400 Order table.

Update the stock balance in the AS/400 Stock table.

Insert an order line record in the AS/400 Order Line table for each item
ordered.

Return the order number used.

Clear the items from the cart.

When confirming the order, the confirmOrder method performs the following
actions:

Retrieves the next order number DNXTOR from the District table(DSTRCT)
Increments it by one
Writes it back to the District table

6.4.4 Methods Used by the StatusApplet

The ItemsDb class provides some methods that are used only by the Status
applet.

208

6.4.4.1 The checkOrderStatus Method

The checkOrderStatus method receives an order number as a parameter, which

it uses to query the AS/400 database for order information. It returns a Vector
named orderStatus which contains all the details about the order.

Building AS/400 Internet-Based Applications with Java

public Vector checkOrderStatus(String orderldString)

{

I retum Vector contains CustomerL_astName, CustomerFirstName,Object], Object]...
Il where Object]] is OrderLineDetail => [ltemid, temName, QtyOrdered, Amourt]
Vector orderStatis = new Vector();

if (orderldString.length() > 9 || orderidString length() == 0)

retum null;

try

{

sGetinetOrderNo =dbConnect

rs =sGetinetOrderNo.executeQuery("'SELECT OCID OLINES FROM ORDERS WHERE OWID=0001' AND ODID=001 AND
OID="+ orderldString);

rsnexti);

String customerld =rs.getString('OCID");

BigDecimal orderLines = rs.getBigDecimal('OLINES", 0);

rs =sGetinetOrderNo.executeQuery('SELECT CHRST,CLAST FROM CSTMR WHERE CWID=0001' AND CDID=001 AND
CID="+customerld +"™);

rsnext();

String lastName = rs.getString("CLAST");

String firstName =rs.getString('CFIRST);

orderStatus.addElement(astName);

orderStatus.addElement(firstName);

retum orderStaus;

Figure 177. The checkOrderStatus Method

6.5 The Toolbox Applet

This applet allows you to enter a system name, user ID and password, and
connect to the AS/400 system. If the connection is successful, the QueryRange
of Items button is enabled. You can click on the Query Range of Items button to
get the items found in the ITEM table for the range specified by TextField1 and
TextField2. The item information is displayed in the listbox. It uses the ItemsDb
class for all the AS/400 Database accesses.

6.5.0.1 Basic Class Definition
Figure 178 shows the basic class structure, class variables, and the multicolumn
listbox declaration.

import java.applet*;
import java.awt.*;
import java.net URL,;
import java.util.x;
public class ToolboxAppletExample extends Applet implements
java.awt.event ActionListener, java.awt.event.itemListener {
static Selecteditems selected = new Selecteditems();
private com.ibm.ivj.eab.dab.IMutticolumnListbox ivjlMulticolumnListbox1 =
null;
private java.sgl.DriverManager ivjDriverManagerl = null;

}

Figure 178. ToolboxAppletExample Class Definition

Developing AS/400 Java Applets 209

We declare a variable named selected , which is based on the Selectedltems
class. Because selected is declared as static, it is shared by all other classes that
declare it. We declare a multicolumn listbox named ivjIMulticolumnListbox1 . It
is based on the IMulticolumnListbox class from the com.ibm.eab.dab package,
which is included with VisualAge for Java Enterprise Edition. We declare a
DriverManager, which is used for the JDBC connection.

6.5.1 The addAllIRows Method

The addAllIRows method is called after a JDBC statement that returns a resultset
is executed. It uses the fetchNextltem method to loop through the resultset and
retrieve all returned items. It formats the item information into an array, which is
used to populate the listbox.

public void addAlIRows(ToolboxApplet.ltemsDb anltemDb)
{

anltemDb.fetchNextitem();

while (anttemDb.itemid = null)

{

String[] array = new String[4];

array[0] = anltemDb.itemid;

array[1] = anltemDb.itemName;

array[2] = insertSpaces(anitemDb.itemPrice, 6);
array(3] = anltemDb.iteminfo;
getiMulticolumnListbox1().addRow(array, array0]);
anltemDb.fetchNextitem();

}

}

Figure 179. The AddAlIRows Method

6.5.2 The getSelectedindexes Method

The getSelectedindexes method is called when the user clicks on the Put
Selection into Cart button. It determines which listbox indexes are selected. It
adds the selected rows of the listbox to the Selectedltems class object named
selected . It places the selected items into the “cart.”

public void getSelectedindexes()

{

Object key = getiMulticolumnListbox1().getSelectedObject();
selected.addSelectedRow(getiMulticolumnListbox1().getRowData(key));

}

Figure 180. The getSelectedindexes Method

6.5.3 Checking the Connections

Figure 181 on page 211 shows the Toolbox applet in the VisualAge for Java
Visual Composition Editor(VCE).

210 Building AS/400 Internet-Based Applications with Java

Product Catalog

Select the [tems youwant by pressing Ctrl then Clicking the Item in the Listbox, then put it into your Cart

CER Ranae ohlierms From: I oooomm

-
Item |Desc\1j;}ﬁ\l\P:lge |Detai|,y

To: |Dnnuzu
]

removeAllRows

getltems

. -¢—— addAllRows

enabled

1] — I_>l;I

BUEE e otim i S

system

4— getSelectedIindexe

Messages: I

connect |

\.;%\

Drivertdanager]

get3electedindexes()

addaAllFows()

Figure 181. Toolbox Applet in the VCE

We use the following connections in this applet:
* connect button:

— ItemsDb—setSystemName method

— ItemsDb—setUserID method

— ItemsDb—setPassword method

— ItemsDb—connect method
» Connect the normal result to the message label
» Connect the normal result to enable the Query Range of Items button

* Query Range of Items button:

— ToolboxAppletExample—removeAllRows method to clear the list box

— ItemsDb—getltems method to retrieve the items from the AS/400 ITEM
table

— ToolboxAppletExample—addAllIRows method to add the items to the listbox

* Put selections in cart button:

— ToolboxAppletExample—getSelectedIndexes method to add the row
selected in the listbox to the cart vector

6.6 The Cart Applet

This applet allows you to enter a system name, user ID and password, and then
connect to the AS/400 system. If the connection is successful, the Look into Cart
button is enabled. You can click on the Look into Cart button to display the items
currently in the shopping cart, in the listbox. You can place an order for the items
in the cart by entering a valid cutomer number in the customer number text field.
The number entered is validated against the AS/400 Customer table. If the

Developing AS/400 Java Applets 211

customer number is valid, the Confirm Order button is enabled. Clicking on the
Confirm Order button generates an order. The created order number is returned
in a message box. This class uses the ItemsDb class for all AS/400 Database
accesses.

In the design of the Cart applet, we use a “Look into Cart” button to refresh the
listbox. We can also implement an event for the automatic refresh of the cart
whenever an item is put into the cart. For simplicity, we choose to implement the
Look into Cart button.

6.6.1 Writing the Class

In the class definition, we instantiate a Selectedltems object and name it cart.
This variable is shared with the Toolbox applet. The Toolbox applet puts items into
the cart. The Cart applet allows us to view what is in the cart and create an order
for the items in the cart.

import java.applet*;

import java.awt.*;

import java.util.*;

public class CartApplet extends Applet implements
java.awt.event ActionListener, java.awt.event.KeyListener {
Selecteditems cart = new Selecteditemsy();

}

Figure 182. CartApplet Class Definition

6.6.2 Viewing the Methods

212

The showCart method is used to display what is in the cart Vector in the listbox.
We use an object array of five elements (Object[5]) to store the elements from the
cart Vector. The cart Vector has four objects (columns) in it:

« Item Identification
¢ [tem Name
¢ Item Price
 Item Detall

We display the four values from the cart Vector, plus the Quantity in stock for the
item in the listbox. We use the listbox addRow method to add rows to the listbox.
It requires an array as an input parameter. We populate the array with the values
from the cart Vector.

We insert the quantity in stock of the item, which we retrieve from the AS/400
system in the fourth element (Object[3]) of the array. We obtain the quantity in
stock by calling the quantitylnHand method in the ItemsDb class. We convert it to
a String value for display.

Finally, we add the object array as a row to the listbox, display the total amount in
the Total Amount TextField, and display the listbox.

Building AS/400 Internet-Based Applications with Java

public void showCart()

{

try

{

if (cart.getVector() = null)

{

Enumeration enum = cart.getVector().elements();

while (enum.hasMoreElements())

{

String myObject]] = new String[5];

Object]] element = ((Object]]) enum.nextElement());

myOhbject[0] = (String) element[0]; /itemid

myObjec[1] = (String) element[1]; /itemName

myObject[2] = (String) element[2]; //Price

II[3]is qty in stock.

myObject[3] = (String) (getitemsDh().quantitylnHand(((String)
element]0]))).toString();

myObject{4] = (String) element[3]; /Details
getlMulticolumnListbox1().addRow(myObject, myObject{0]);
}

getTextField3().setText(cart.totalAmount.toString());
retum;

}

}

catch (Exception €)

{

e.printStackTrace();
System.out.printin(e);
}

retum;

}

Figure 183. The showCart Method

Developing AS/400 Java Applets

213

214

6.6.2.1 Viewing the Connections

Figure 184 shows the Cart applet in the VisualAge for Java Visual Composition
Editor.

My Shopping Cart

Item |Descripti |Price |Stoc|Deta|

removeAllRows confirmOrder

. \/ - | o

I Customer Mo. I T Graers syst I

e) Nz

enabled —p

showCart —» verifyCustomer
-
showCart]) IMessageBoxl

Figure 184. The Cart Applet in the VCE

We use the following connections:

e connect button:

— ItemsDb—setSystemName method
— ItemsDb—setUserID method
— ItemsDb—setPassword method
— ItemsDb—connect method
« Connect the normal result to the message label
« Connect the normal result to enable the Look into Cart button

¢ Look into Cart button:

— CartApplet—removeAllRows method to clear the listbox
— CartApplet—showCart method to display the items in the cart Vector

* Validate Customer Number:

We validate the customer number field so that the Confirm Order button is only
enabled if the customer number is valid. We use the verifyCustomer method in
the ItemsDb class to validate it. We connect it with the KeyReleased event of
the Customer Number Entry Field and the Confirm Order button. It enables the
Confirm Order button if the customer number in Entry Field is found in the
Database.

¢ Confrim Order button:

— ItemsDb—confirmOrder method, with the cart as the input parameter. The
normal result is connected to the MessageBox's show method to display
the order number.

Building AS/400 Internet-Based Applications with Java

— CartApplet—clear method. After confirming the order, items in the list box
are cleared.

6.7 The Order Status Applet

The OrderStatus applet allows you to enter a system name, user ID, and
password and connect to the AS/400 system. If a connection to the AS/400
system is successfully made, the Query button is enabled. You can then enter an
order number and click on the Query button to check on the status of an order.
This class uses the ItemsDb class for all of the AS/400 Database accesses.

public class OrderStatus extends Appletimplements
java.awt.event.ActionListener {

private com.ibm.ivj.eab.dab.IMulticolumnListbox ivjiMulticolumnListbox1 =
null;

private com.ibm.ivj.eab.dab.IMessageBox ivjlMessageBox1 = nul;

}

Figure 185. OrderStatus Class Definition

We declare a multicolumn listbox named ivjIMulticolumnListbox1 and a message
box named ivjMessageBox1. They are based on classes from the
com.ibm.eab.dab package, which is included with VisualAge for Java Enterprise
Edition.

To implement the Check Order Status Applet, two user-written methods are used.
The fillListbox method calls the ItemsDb class checkOrderStatus method with
Orderld as a parameter. The checkOrderStatus method returns a vector that
contains lastname, firsthame, and an array of order detail. If the order is found,
the items ordered are displayed in the listbox.

Developing AS/400 Java Applets 215

public void fillListbox(String Orderld)

{

Vector orderStatus = getitemsDb().checkOrderStatus(Orderid);
if (orderStatus == null)

{

getlabel2().setText("Order No. " + Orderld + " Not Found !'");
retum;

}

Enumeration detailLine = orderStatus.elements();

String lastName = ((String) detailLine.nextElement());

String firstName = ((String) detailLine.nextElement());
getLabel2().setText("Order " + Orderld + " was Ordered by " + firstName +"
"+ lastName);

while (detailLine.hasMoreElements())

{
String[] detail = ((String][]) detailLine.nextElement());

getiMulticolumnListbox1().addRow(detail, detail[O]);
}

return;

}

Figure 186. The fillListbox Method

6.7.0.1 Viewing the Connections
In Figure 187 on page 216, we show the Order Status applet in the VisualAge for
Java Visual Composition Editor.

Order Mumber ORDER STATUS system

|
user I
I (EIETy, I

——y

passward

Item# | Description\LQuantitv|Amount | /

connect

enabled »

showException showException

\3/

IMessageBox]

fillListh ox()

Figure 187. Order Status Applet

216 Building AS/400 Internet-Based Applications with Java

We use the following connections:
* connect button

— ItemsDb—setSystemName method
— ItemsDb—setUserID method
— ItemsDb—setPassword method
— ItemsDb—connect method
« Connect the normal result to the message label
« Connect the normal result to enable the Query button

e Query button:

— OrderStatus—fillListbox method to retrieve and display the order
information for the order number in the TextField.

6.8 Testing the Applets

You can run the Toolbox applet and the Status applet inside the VisualAge for
Java Integrated Development Environment. The Cart applet must be exported
and run outside the IDE. We use Netscape Navigator to test outside the IDE.

To run the applets outside the VisualAge for Java IDE, we export the applet
classes. We use C:\apptest as the directory in this example. We export the
following classes to the apptest directory:

» ToolboxAppletExample
e CartApplet
StatusApplet

* ItemsDb
Selectedltems

The package in which the classes are stored becomes a subdirectory of the
directory to which the export is done. In this case, ToolboxApplet becomes a
subdirectory of apptest.

| Contents of 'E:\apptesthT oolboxépplet’

B Cartbpplet.class:

@ lternzDb.clazs

@ OrderStatus claszs

@ selectedltems. class

@ ToalboxdppletE xample. class

Figure 188. The apptest\ToolboxApplet Directory

We use html files to control running the applets. The html files refer to the applet
class files using the APPLET tag. An applet viewer or browser tries to find the
classes in the current directory from where the html file is loaded.

Developing AS/400 Java Applets 217

218

Place the AS/400 Toolbox classes and any third party classes under the current
directory. A jar file can also be used to hold classes. We use a jar file, named
jt400.jar, to hold the AS/400 Toolbox for Java classes.

In addition to the AS/400 Toolbox for Java classes, we also need several classes
from the IBM Enterprise Access libraries. We export these classes to the com
subdirectory of the apptest directory. We also export the classes from the
netscape.security package to provide security support. Figure 189 shows the
contents of the apptest directory.

| Contents of 'E:\apptest’

Figure 189. The apptest Directory

Running Java applets is different than running Java applications. Java
applications normally use the CLASSPATH environment variable to find classes
that are located locally on the workstation. In many cases, applets are loaded
from a remote resource. We assume that the browser or applet viewer does not
use the local disk to find supporting classes. We must make them available so
they can be found. Three html files (Table 22) are available to run the applets.

Table 22. Applet HTML Files

"AppletViewer Order.htm" -- which runs both "ToolboxApplet' and
"CartApplet"

"AppletViewer Order1.htm" -- which only runs "ToolboxApplet"

"AppletViewer status.htm" -- which runs "StatusApplet"

All of the html files point to the class files in the apptest directory. Figure 190 on
page 219 shows the html file for Order.htm, which runs both the Toolbox applet
and Cart applet under the same browser session.

Building AS/400 Internet-Based Applications with Java

HTML>

<applet archive="1t400.jar"* code="ToolboxApplet ToolboxAppletExample.class " wicth=800 height=420>
<hr>

This Applet would only be seen on JDK1.1 compatible Browser

<hr>

<Japplet<p>

<applet archive="1t400 jar"* code="ToolboxApplet CartApplet" width=800 height=400>
<hr>

This Applet would only be seen on JDK1.1 compatible Browser

<hr>

<Japplet><p>
<HTML>

Figure 190. Order.htm

Figure 191 shows the html file for Order1.htm which runs only the Toolbox applet.

<applet archive="1t400.jar"* code="ToolboxApplet ToolboxAppletExample.class width=800 height=420>
<hr>

This Appletwould only be seen on JDK1.1 compatible Browser

<hr>

<lapplet<p>

Figure 191. Orderl.htm

Figure 192 shows the html file for the Status applet.

<HTML>

<applet archive="1t400.jar"* code="ToolboxApplet OrderStatus.class * wicth=800 height=450>
<hr>

This Applet would only be seen on JDK1.1 compatible Browser

<hr>

<Japplet><p>
<HTML>

Figure 192. Status.htm

6.9 Serving the Applets from the AS/400 System

We can also run the applets by using the AS/400 HTTP server. This involves
three steps:

1. Copy the apptest directory to the AS/400 system Integrated File System.

2. Configure the AS/400 HTTP server to allow the html files in apptest to be
executed.

Add the following directive to the HTTP configuration:
Pass /apptest/* /apptest/*
3. Point the browser to the html files stored on the AS/400 system.

Developing AS/400 Java Applets 219

Refer to Section 9.3, “IBM HTTP Server for AS/400” on page 293, for information
about configuring the AS/400 HTTP server.

Figure 193 shows the shopping applet running under Netscape Navigator and
serving it from the IBM HTTP Server for AS/400.

QUAD SPEED CD ROM DRIVE . AVATLAELE IN SEVERAL MODELS
Radio_Controlled Flane - DELI=E MODEL

Change Machine . HANDLES ZEVERAL CURRENCIES
Baseball_Tickets - WINNESOTA TWINS
Twelwe_Fum_Two_Pencila . YELLOW IN COLOR

Over Under Shotgqun - lz GUAGE

Feel Good Witamins

sysname
user

Figure 193. Shopping Applet Running under Netscape Navigator

220 Building AS/400 Internet-Based Applications with Java

Chapter 7. Developing AS/400 Java Servlets

© Copyright IBM Corp. 1999

In this chapter, we build a more complex servlet example. This application
demonstrates building Java programs that:

* Run as servlets

* Run as applets

» Provide security password validation and protection

* Use AS/400 Toolbox for Java classes to access AS/400 resources

* Run on a Windows/NT platform under Domino Go Webserver

* Run on the AS/400 platform under the IBM HTTP Server for AS/400

Note

The example programs discussed in this chapter are available for you to
download from the redbook Web site. Refer to Appendix A.1, “Downloading the
Files from the Internet Web Site” on page 299, for details.

This application runs under the control of a Web browser. The application
displays shown in this chapter use the Microsoft Internet Explorer 4.0 browser.
This application was also tested using Netscape Navigator 4.x.

To start the application, enter the URL of the application server. For example, to
run it on an AS/400 system running the IBM HTTP Server for AS/400 and the
WebSphere Application Server in the browser, enter:

http://AS400ABC:xoxd/serviet/Signon

— Note

In this application, we pass information across the network that we may want to
protect. For example, we pass in a password. In this case, we may want to use
the IBM HTTP Server for AS/400 Secure Sockets Layer (SSL) support. For
infomation about how to install and use SSL support on the AS/400 system,
see Chapter 8, “Security Considerations” on page 261. When running the
application under SSL, we enter:

https://ASA00ABCxxxxd/serviet/Signon

AS400ABC is the name of the AS/400 system. xxxx is the TCP/IP port over which
the IBM HTTP Server for AS/400 is running. Signon is a Java program, which
handles security, and runs as a Java servlet.

You can also run this application under the control of other HTTP servers. For
example, you can run under the Domino Go Webserver. In this case, we use a
three-tier approach:

1. The client workstation running a browser
2. The HTTP server running a server, for example Windows/NT
3. The AS/400 system

To run the application, enter:
http://serverxooxdserviet/Signon

221

In this case, server is the name of an HTTP server, which supports running
servlets. We tested using Domino Go Webserver and ServletExpress running on
a Windows/NT platform.

7.1 Running the Application

When the application is started, the AS/400 Sign On window appears as shown in
Figure 194.

/] LOCALHOST AS /400 Signon - Microsoft Internet Explorer

J File Edit “iew Go Favortez Help |
J@,@.Qﬁ‘@@@ﬁ@
Back Eanwand Stop Refresh Home Seaich Favortes History Channele | Fullscreen bd.
J.&ddress I@ . leLinks
=
Welcome to AS400ABC
Please log in:
AS/400 Logon Information
TTzer Ix: |
Paszword: |
ASMA00 I
System:
Signon |
[~
|@ | l_l_l_ 2| Local intranet zone 4

Figure 194. Servlet Sign On Window

The Sign On window allows you to enter security information and sign on to the
AS/400 system. After you enter a user ID, password, and AS/400 system name,
click on the Signon button. The information entered is validated. A Java program
running as a servlet does the validation using AS/400 Toolbox for Java classes. If
the information is valid and the AS/400 system is available, the application menu
window shown in Figure 195 on page 223 appears.

222 Building AS/400 Internet-Based Applications with Java

ft Internet Explorer

J File Edit ¥iew Go Favaortez Help

] G e A ‘ & 4 &€ o5 B 5 HA
Back Farward Stop Refresh Home Search Favortes History Channels | Fullscreen Il PFrint Edit
JAddress I@ j |J Lirks

|»

Welcome to AS400ABC

s Database gquery

s Nanage print jobs by
user

s Nanage print jobs by
output queue

» Files

s System performance

s Command line

s Change password

s Sion off -

=
|@ ’_ ’_ ’_ 2, Local intranst zone 4

Figure 195. Servlet Application Menu Window

The application menu window allows you to select an application to run. Do this
by clicking the mouse pointer on the option. If you select the Database query
option, the Query Recall window appears as shown in Figure 196 on page 224.

Developing AS/400 Java Servlets 223

Saved Queries

Openl Delete |

Figure 196. Query Recall Window

The Query Recall window allows you to recall a previous query or build a new
qguery. To build a new query, highlight new query, and click on the Open button.
This displays the Query Builder window, as shown in Figure 197.

Query AS/400 Database

select * from apilib.parts ;I

Query statemnent: =l

@& View results n HTML © Comma separated variable (CEW) format © Tab separated variable (TSV) format

Oueryl Save... |

Enter the 30QL statement. For example, 'select * from apilib parts' to use the demo database.

I you would like some assistance, you can use the wizard button to get some help on formulating your cquery.
S0QL gurus can simply type m the query and use the query button.

Figure 197. Query Builder Window

224 Building AS/400 Internet-Based Applications with Java

The Query Builder Screen allows you to enter an SQL statement and run it on the
AS/400 system. For example, to retrieve all rows from the Parts table in the apilib

library, enter:
select * from from apilib.parts

Clicking on the Query button causes the SQL statement to run on the AS/400

system. The results appear in a table as shown in Figure 198.

Statemenit:

select * from apilib parts

Resuli:

[PARTINO | PARTDS [PARTQY PARTPR [PARTDT

12301 |Quad speed CD ROM Drive |

44| 151.00| 09/01/98

12302 [SCSI I Cable |

25| 3000 11/13/95

12303 |17" mch SWVGEA Montor

6| 110075 03/04/96

12304 |Ethemet PCMCIA card

30| 8530 12/17/95

12305 |Home mouse

47| 2550 02/18/96

75| 850 082751

12| 87533 03/01/96

12308 |100 WMHZ Petitinm PC

4| 187520 | 02/24/96

12309 |Laser]et Toner

12| 8945 12117495

12310 |Logo frouse mat 3

76| 725 11724794

12311 [Sereen wipes 47

50| 150 01/10/96

|

|

| |
| |
| |
| 12306 |Gender-bender |
| 12307600 dpi flatbed scanner |
| |
| |
| |
| |
| |

12312/[734 Modem

sg| 12045/ 0306/96

Figure 198. Query Results

Rather than writing an SQL statement, click on the Wizard button and allow the

Query Wizard to help you build the SQL statement that you want to run. The

Query Wizard prompts you for the name of the table that you want to use. Click on
the Browse button to display the available tables or enter the name of the table,

as shown in Figure 199 on page 226.

Developing AS/400 Java Servlets

225

Enter the Table Name

Table name: [apilib parts]
Mext... | Finish |

Enter the table name. For example, apilib. parts

Figure 199. Query Wizard Table Prompt

After a table name is entered, click on the Next button. The Select Fields prompt
window appears as shown in Figure 200.

Select Fields

PARTDS FARTHNO

PARTDT _ PARTOY
Add > F&RTFR

<- Remaove

Add All -»

ikl

<- Remowe all

MNext.. | Finish |

Figure 200. Select Fields Prompt Window

226 Building AS/400 Internet-Based Applications with Java

The Select Fields window allows you to select which fields you want to include in
the query. To select a field, highlight it and click on the Add button. In this
example, we select the PARTNO, PARTQY, and PARTPR fields. After selecting
the fields you require, click on the Next button to display the Select Conditions
window shown in Figure 201.

PARTHO
PARTDS

FARTFR
FARTDT I

Hemoye | Bemayves! |

Finish |

Figure 201. Select Conditions Prompt Window

The Select Conditions prompt allows you to add conditions to the SQL statement.
For example, to select only those records that have a PARTQY value of greater
than 50, perform the following steps:

1. Highlight the PARTQY field.
2. Select ">" from the choice box.
3. Enter 50 in the TextField.

After setting the conditions, click on the Next button to display the Select Order
prompt window shown in Figure 202 on page 228.

Developing AS/400 Java Servlets 227

Select Order

PARTHO PARTOY ASC
P
FARTFR

Dezcending

Remaove

Remove Al

Up | Do |

0k

Finish

Figure 202. Select Order Prompt Window

The Select Order screen allows you to add ordering information to the SQL
statement. For example, to order the records based on the PARTQY field in
ascending order, perform these steps:

1. Highlight the PARTQY field.
2. Click on the Ascending button.

Click on the Finish button to see the SQL statement so you can run it. Figure 203
on page 229 shows the SQL statement and the results of running it.

228 Building AS/400 Internet-Based Applications with Java

Statement:

select PARTHO PARTOY PARTER from apilib parts where PARTQY = 50 order by PARTQY ASC

Result:
[PARTNO [PARTQY [PARTPR
| 12312 58| 12045
| 12327 58| 15194
| 12342 58| 104.79
| 12306 75| 850
| 12321 75 1071
| 12336 | 75 739
| 12310 376 725
| 12325 w6 913
| 12340| 376] 630
| 12311 4750 150
| 12326 4750 188
|12z 4750 130

Figure 203. Query Results

The second option on the application menu shown in Figure 195 on page 223,
allows you to manage print jobs by user. Selecting this option displays the User
ID Prompt shown in Figure 204 on page 230.

Developing AS/400 Java Servlets 229

230

Listing Print Jobs on AS400ABC

Tser ID to].ist:||

Tse *ALL to list output for all users.

Figure 204. User ID Prompt

Enter a valid user ID to view all the print jobs available for the user as shown in
Figure 205.

Prini Jobs for A980501A

| Name |J|Jb Number| User ||User Data| Status | Date | Time |Type
|CCG PARTS| 015427 ||A9805014 *READY [09/01/98 [22:15:31 [*5TD
|7 CG PARTS|| 015427 49805014 *READY [09/01/98 [22:18:25 [*3TD

Huldl Release | Deletel

Figure 205. Print Jobs By User

The Print Jobs window allows you to hold the print job, release it, or delete it from
the output queue.

You can also work with print jobs by output queue. Select Manage print jobs by
output queue to view the AS/400 Output Queues as shown in Figure 206 on
page 231.

Building AS/400 Internet-Based Applications with Java

Output Quenes on AS400ABC

o B soz05014

. &8 OEZDEBUG

. &% OEZIOBLOG
. &b sprooL

Figure 206. Output Queues Display

Click on an output queue to view the print jobs in that particular output queue as
shown in Figure 207.

Print Jobs for /QSYS.LIB/QUSRSYS.LIB/A980501A.0UTQ

| Name |Jub Number| User |UserData| Status | Date | Time |Type
|CCG PARTS| 015427 49805014 *READY [09/01/98 22:15:31 [*STD
|CCG PARTS| 015427 49805014 *READY [09/01/98 22:18:25 [*STD

HD|C|| Felease | Deletel

Figure 207. Print Jobs By Output Queue

The Print Jobs window allows you to select a job and hold it, release it, or delete
it from the output queue.

The Files option on the Application menu allows you to list the directories in the
AS/400 integrated file system. Figure 208 on page 232 shows a directory listing
for the root of the AS/400 integrated file system.

Developing AS/400 Java Servlets 231

232

Directory Listing for /

&

B 49805014
B apptest
B dev

B dgdir01
B dedir02
B ete

B home

3 btralmaster
=} Javalpps
B 7400

B netelab
EJ netscape
& pexcode
B gcado0
B opLs

Figure 208. AS/400 Integrated File System Directories

Select and click on one of the directories listed to view the files stored in that
directory. Click on the apptest directory to view the contents of that directory as
shown in Figure 209.

Directory Listing for /apptest

as400. gif 6902 Sun Apr 12 00:0%:56 EDT 1938
directory. gif 587 Mon Jun 01 17:00:55 EDT 1998
file. gif 585 Mon Jun 01 17:01:08 EDT 1998
Parts. hitrnl 1773 Fri Aug 28 09:12:34 EDT 1998
printers. gif 995 Tue Zep 01 15:1%:16 EDT 1938
Securityleon oif 270 Tue Aug 18 09:02:28 EDT 1998

Figure 209. Directory Listing

Selecting System Performance from the application menu retrieves and displays
AS/400 system performance information as shown in Figure 210 on page 233.

Building AS/400 Internet-Based Applications with Java

Performance Information for AS400ABC

CPTT Tilization: 4 %
DAED Tilization: 32 %%
Total jobs: 317

Total DASD: 18744

Figure 210. AS/400 Performance Information

The Command line option allows you to enter an AS/400 command as shown in
Figure 211.

Clotamand: pirksyssts

Run command

Figure 211. AS/400 Command

If you enter a valid AS/400 command, for example:
wrksyssts

The command runs on the AS/400 system, and the command output is written to
an AS/400 print file. You are notified that a print file is created as shown in Figure
212 on page 234.

Developing AS/400 Java Servlets 233

CPC9802 Printer output created.

Comtnaticd: |

Run command |

Figure 212. AS/400 Command Output

The Change password option allows you to change your password on the AS/400
system. Selecting this options displays the screen shown in Figure 213.

AS5/400 Password Information

Current Password: |

Mew Password: |

MNew Password I
(werification):

Change Password

Figure 213. Change Password

The final option is the Sign off option. Selecting it signs you on the AS/400
system and displays the initial sign on menu.

7.2 Application Programs

234

This section covers the Java programs that support this application. This
application consists of a number of Java classes. They are supporting class,
servlets, and applets. We cover some of the key classes here to give you an
understanding of how the application works. The entire application is available for
you to download from our Web site.

Building AS/400 Internet-Based Applications with Java

— Note

If you load the servlets that make up this application into the VisualAge for Java
2.0 Integrated Development environment, some of the classes are marked with
a warning message. If you read the warning messages, they indicate that the
getParameter method is deprecated. However, the Java Servlet API
specification (version 2.1a, November 1998), shows this to be a supported
method. Originally, Sun decided to deprecate this method, but has since
reconsidered.

7.2.1 How the Application Works

This application works by using HTML to display windows in a browser and
reading input requests from the HTML screens. The Java programs build the
HTML files "on the fly." There are no HTML source files used. Access to the
AS/400 system is done through classes provided by the AS/400 Toolbox for Java.

The Signon class is a servlet that provides support for signing on to the
application. It provides the following support:

« Display initial sign on menu
* Validate sign on information
 Display application main menu

Two methods are provided to allow a servlet to interface with a client:

* doGet
* doPost

Each of these methods has two parameters that are passed in:

» ServletRequest that encapsulates the request to the servlet
« ServletResponse that encapsulates the response from the servlet

Using the ServletRequest interface or its subclass HttpServletRequest, servlets
can access protocol-specific header information such as the scheme of the URL
used in the request or the value of the specified parameters. After retrieving the
data from the HttpServletRequest, the servlet performs the requested task and
sends the information back to the client using the ServletResponse object. It
allows the servlet to set the MIME content type and a Writer, through which the
servlet can pass the information back to the client.

The Signon servlet is run from a browser by entering:
http://serverxooxd/serviet/Signon

Entering this command from the browser runs the doGet method of the Signon
class.

Developing AS/400 Java Servlets 235

public void doGet(HtpSenetRequest req, HitpSenvietResponse res) throws SenvietException, IOException
{

log("Signon: doGet: Entered.”);
String unStr = new String(HtpUtils.getRequestURL (req));
SendetOutputStream out = res. getOutputStream();
imgBase ="htip/"' + regq.getServerName() +"" + Integer.toString(req.getServerPort() + '/
SenvletCallLoglogCaller(req, res);
Enumeration e = req.getParameterNames();
if (‘e hasMoreElements()) {
IlaGET request came inwith no parameters -
I Generate a signon form
genSignonForm(out, new String(HitpUtils.getRequestURL(req)));
Jelse{
String sysName = req.getParameter('system’);
String userld =req.getParameter(‘user”);
String urBase = urStr.substing(0, urStr.lastindexOf(') + 1);
Sting omd =req getParameter(amd
if (cmd.equalsignoreCase(‘'menu’)) {
genMenu(out, uBase, sysName, userid);
}else
if (omd.equialsignoreCase('signoff’) {
signOffiteg, res);
Jelse{
genlinfo(out, imgBase, sysName, userld);
}

}

outclose();
}

Figure 214. SignOn doGet Method

To help you understand the processing that takes place, we added logging to the
SignOn class. The log for the sign on processing shows the following entries.

» Signon: Signon: doGet: Entered.

The first time the doGet method is called, no parameters are passed in. It calls
the genSignonForm method to generate and display the Sign on menu.

» Signon: Signon: genSignonForm: Entered.

The genSignonForm method shown in Figure 215, builds the Sign on menu

using HTML tags. It specifies that the Post method be used and the Signon
program called.

236 Building AS/400 Internet-Based Applications with Java

private void genSignonForm(SenvietOutputStream out, String urBase)
throws IOException

{

log("Signon: genSignonFom; Entered.”);

log("Signon: genSignonFom: imgBase =" +imgBase);

String host = getHostFromURL(urBase);

outprintin('<HTML><HEAD><TITLE> "+ host + " AS/400 Signon </TITLE><HEAD>),
outprintin(<BODY>");

outprintin('<or><or>");

outprintin('<center>");

outprintn(''");

outprintn(‘

");

outprintn('<p>Welcometo" + host);

outprintin('<p>Please login.");

outprint(" <FORM ACTION=\""),

outprint(urlBase)

outprintn("\" METHOD=\"POST\">")

outprintin(<TABLE ALIGN=CENTER WIDTH=40%>");
outprintn('<CAPTION><BIG>AS/00 Logon Information</BIG></CAPTION>");
outprintin(<TR>");

outprintin(<TD></TD>'");

outprintin('<TD></TD>");

outprintn('</TR>");

outprintin(<TR>");

outprintn('<TD>User ID:</TD>";

outprintn('<TD><INPUT TYPE=text\" NAME=usert’ MAXLENGTHA"10V></TD>');
outprintn('</TR>");

outprintn(<TR>");

outprintin(<TD>Password:</TD>"),

outprintn('<TD><INPUT TYPE=\"password\" NAME=pvA' MAXLENGTHR"1O\></TD>");
outprintn('</TR>");

outprintin(<TR>");

outprintin('<TD>AS/400 System:</TD>");

outprintn('<TD><INPUT TYPE=\text\' NAMER"system\" MAXLENGTHR"10\></TD>");
outprintn('</TR>");

outprintn('</TABLE>");

I output submit button

outprintin('<P ALIGN=Center>");

out.printin("<INPUT TYPE=submit VALUE=\"Signon\">");
outprintn('</FORM>');

outprintin('</center>');
outprintin('</BODY></HTML>";
}

Figure 215. SignOn genSignonForm Method

The urlBase variable, contains the name of the program to run. This causes the
Sign on menu shown in Figure 194 on page 222 to be displayed. The HTML code
that is generated by the genSignonForm method is shown in Figure 216 on page

238.

Developing AS/400 Java Servlets

237

<HTML><HEAD><TITLE> LOCALHOST AS/400 Signon </TITLE><HEAD>
<BODY>

<br

<center>

<p>Welcome to LOCALHOST

<p>Please log in:
<FORMACTION=nhttp://sysname:xxxx/servlet/Signon" METHOD="POST >
<TABLE ALIGN=CENTER WIDTH=40%>
<CAPTION><BIG>AS/400 Logon Information</BIG></CAPTION>
<TR>

<TD></TD>

<TD></TD>

<JTR>

<TR>

<TD>User ID:</TD>

<TD><INPUT TYPE="text' NAME="user' MAXLENGTH="10"></TD>
<JTR>

<TR>

<TD>Password.</TD>

<TD><INPUT TYPE="password" NAME="pw' MAXLENGTH="10"></TD>
<JTR>

<TR>

<TD>AS/400 System.</TD>

<TD><INPUT TYPE="text' NAME="system" MAXLENGTH="10"></TD>
<JTR>

<TABLE>

<P ALIGN=Certer>

<INPUT TYPE=submit VALUE="Signon">

<FORM>

<center>

<BODY><HTML>

Figure 216. Generated Sign On HTML

Two key points to notice about the HTML file are:

* The FORM ACTION tag specifies that the Signon servlet will be run using the
Post method.

» The INPUT TYPE tag specifies that clicking on a Signon button causes the
servlet to run.
After the Signon button is clicked, the doPost method of the SignOn class is
called:
 Signon: Signon: doPost: Entered.

This method calls the addUserToCache method in the SuperServlet class,
which tries to create an as400 object using the sign on information. If this is
successful, the user is valid and the main application window appears.

238 Building AS/400 Internet-Based Applications with Java

public void doPost (HifpSenvietRequest req, HitpSenetResponse resthrows SenietException, IOException

{

log("Signon: doPost Entered.”);
SenetCallLog.logCaller(req, res);

String sysName =req.getParameter('system');

String userld =req.getParameter('user');
Stiing password = reg.getParameter(pw');

String unStr = new String(HitpUtils getRequestURL (req));
String unBase = urStr.substring(0, unStrlastindexOf(' 1) + 1);
log('unBase ="+ uriBase);

SenetOutputStream out = res.getOutputStream();

I set content type and other response header fields first
res.setContentType(texthtml’);

fry
{

addUsertoCache(req, res, sysName, userld, password);
genMain(out, urlBase, sysName, userld)

}

catch (Exception €)

{

outprintin('<HEAD><TITLE> AS/400 </TITLE><HEAD><BODY>"),
outprintn('<or>");

outprintin('<p>Signon to AS/400 failed");
outprintin('<p>"+ e.getMessage();
outprintn('</BODY>"),

eprintStackTrace();
IIthen write the data of the response

outclose();
}

Figure 217. SignOn doPost Method

« Signon: urlBase = http://localhost/servlet/

« Signon: Signon: genMain: Entered.

After a successful sign on, the genMain method displays the main application

menu and the information menu shown in Figure 195 on page 223.

Developing AS/400 Java Servlets

239

private void genMain(SenvietOutputStream out, String urBase, String sysName, String userid)
throws IOException

{
log('Signon: genMain: Entered.");
outprintin(<htmb>");
outprintin('<head>");
outprintin('<tte>AS/400<fite>");
outprintin('<head>"),

outprintn(<frameset cols=25%,*>");
outprint('<frame src=");
outprintin(urBase +" Signon?cmd=menu &system="+sysName
H+"&user="+ userld + " name=nav>"),

outprint('<frame src=");

outprintn(urBase +" Signon?cmd=info &system="+sysName
+"&user="+ userld + " name=content>");

outprintin(“<frameset>");

outprintn(<htmi>");

}

Figure 218. SignOn genMain Method

« Signon: Signon: doGet: Entered.
» Signon: Signon: genMenu: Entered.

The SignOn doGet method is called twice. The first time it is called with a
parameter named cmd, which is set equal to menu. This causes the genMenu
method to be called to generate the application menu. The HTML tags
generated by the genMenu method are shown in Figure 219 on page 240.

<HEAD><TITLE> AS/400 </TITLE><HEAD>

<BODY TEXT="#000000" BGCOLOR=#CCCCCC" LINK="#0000EE" VLINK="#551A8B" ALINK="#FF0000">
<center>

<h3>ASA00ABC<h3>

<lcenter>

<hrwidth="100%">

<>

<i< A HREF=<A
HREF=http://AS400ABC:1040/servlet/DbSelectServiet?system=AS400ABC&user=auser&cmd=qr
ylist target=content>Database query <>

<i><A HREF=htip:/ASA00ABC:1040/senvietPrintJob ?system=ASA00ABC&user=auser&cmad=init&type=user
target=content>Manage print jobs by user</i>

<i><A HREF=htip/AS400ABC:1040/senet/PrintJob?system=ASA00ABC&user=auser&emd=init&iype=outq
target=content>Manage print jobs by output queue</i>

<i><A HREF=http:/ASA00ABC:1040/senvietlifsHleSeniet?system=ASA00ABC&user=auser&ema=list&dir=/
target=content>Fles<fi>

<i>System
performance</i>

<i><A HREF=htip/AS400ABC:1040/seniet/CmdCallSenviet?system=ASA00ABC&uiser=auser
target=content>Command line</i>

<i><A HREF=htip/AS400ABC:1040/seniet/ChangePwdSenviet?system=AS400ABC&user=auser
target=content>Change password</i>
<i><AHREF=hip:/AS400ABC:1040/serviet’Signon?system=AS400ABC&user-auser&cmad=signofftarget=_top>Sign
offi<lAS<>

<ub>

<hrwidth="100%">

<BODY>

Figure 219. Application Menu HTML

240 Building AS/400 Internet-Based Applications with Java

The HTML tags control how the other Java servlets are run. To understand how it
works, look at the tag for the Database query option:

<A
HREF=http://AS400ABC:1040/senviet/DbSelectServiet?system=AS400ABC&user=auser
&cmd=qrylist target=content>Database query

HTML stands for hypertext markup language. Links are the hyper part of
hypertext. Links, which are also called anchors, mark text or images as elements
that point to other documents, images, applets, or, in this case, servlets. Links are
made up of three elements:

* An anchor tag <A>, which marks the text or image as a link

« An attribute, HREF="", which is located within the opening anchor tag

e An address (URL), which tells the browser what to link to,
http://AS400ABC:1040/servlet/DbSelectServlet

In this case, clicking on the text DataBase query links us to the servlet named
DbSelectServlet:

« Signon: Signon: doGet: Entered.
« Signon: Signon: geninfo: Entered.

Finally the doGet method is called again with a parameter of info. The geninfo
method is called to generate the right portion of the application menu. The
window shown in Figure 220 appears.

57400 - Microgoft Intemnet Explorer

J Ei Edit View Go Favoites Help |

J<)=,=>,°

Back Fomand Stop

[n & B & @

Refresh Home ‘ Search Favoites History Channels

? &5 o

Fullscreen Mail nt Edit

J Address I@

=] || Links

s Databasze query

o Nlanage print jobs by
user

s Ifanage prnt jobs by

sutput queue

Files

system performance

Command line

Change password

=ign off

| v

Welcome to AS400ABC

]

€]

l_l_l_ 25 Local intranst zone v

Figure 220. Application Menu

Developing AS/400 Java Servlets 241

7.3 The Java Application Programs

Now that you understand how the servlets are invoked, you can look at how they
work. The application servlets are similar. This section looks at a fairly simple
servlet, which calls a program on the AS/400 system and a more complex
application which allows SQL query statements to be created and executed on
the AS/400 system. By understanding how these applications work, you can look
at the code and understand how the other applications work.

7.3.1 System Performance Servlet

This section looks at the System performance servlet. This servlet uses the
AS/400 Toolbox for Java distributed program call (DPC) class to call a program on
the AS/400 system, which returns system performance information. The
information returned by the AS/400 program is displayed in the browser by

imbedding it in an HTML file.

Sm:ng sysName =req.getParameter('system’);
Sting userld = req.getParameter(‘user');
SenvietCallLog.logCaler(req, res);

SenetOutputStream out = res.getOutputStream();

I set content type and other response header fields first
res.setContentType(texthtmt);

String realSystem = sysName.toUpperCase();
if (sysName.equalsignoreCase(localhost'))

String earl = HitpUtils getRequestURL (reg)).toString();
realSystem = getHostFromURL (earl);

Ithenwwite the data of the response
System.outprintin(‘Perfivion: doGet: Starting output');

outprintin(“<center>";

outprintn('<h3> Performance Information for * + realSystem +" <h3>");
outprintin(“'
");

fry{
sys = getSysFromUserCache(req, res, sysName, userid);
getStatus(out, sys);
}catch (Excepione) {
outprintin(e.toSting();
e printStackTrace();
}

outprintin(*</BODY>");

outdose();
sys.disconnectSenvice(ASA00.COMMAND);
}

outprintin(*<img src=" +imgBase +"apptest/as400.gif alt=\"

public void doGet (HitpSenvietRequest req, HitpSendetResponse resthrows SenvietException, IOException

{

AS400 sys=nul;

imgBase ="http/"' + req.getServerName() + " + Integer.toString(req.getServerPort()
o

outprintin("<HEAD><TITLE> AS/400 Performance Monitor </TITLE></HEAD><BODY>');

+realSystem +'\>");

Figure 221. The PerfMon Class doGet Method

242 Building AS/400 Internet-Based Applications with Java

Clicking on the System Performance option invokes the doGet method of the
PerfMon class, which is shown in Figure 221 on page 242, of the PerfMon servlet.
This method builds the HTML tags for the display headings. It then calls the
getStatus method.

The getStatus method performs the following actions:

1. Creates a ProgramCall object named pgm.
2. Creates the parameters for the pgm object.
3. Sets the name of the AS/400 program to call equal to
QSYS.LIBIQWCRSSTS.PGM.
4. Calls the AS/400 program.
5. Formats the returned values into HTML tags for:
— CPU utilization
— DASD utilization
— Total Jobs
— Total DASD

Pearformance Information for AS400ABC

CPT Ttilization: 4 %o
DASD Tilization: 32 %%
Total jobs: 317

Total DASD: 18744

Figure 222. System Performance Information

7.3.2 Database Query

The Database Query application is the most complex of the applications. It is
actually made up of a combination of applets and servlets. The following classes
make up the DataBase Query application:

» DbSelectServlet—Servlet
e SQLOrder—Applet

* SQLWhere—Applet

* SQLWizard—Applet

When you click on the Database query option from the application menu, the
doGet method of the DbSelectServlet class is called with a parameter of grylist.
Refer to Figure 219 on page 240, to see the HTML file used. The doGet method
checks the parameter to determine which method to call. In this case, the

Developing AS/400 Java Servlets 243

getSavedQueries method is called to allow you to recall previously created
gueries. This method generates the HTML file shown in Figure 223.

<HEAD><TITLE>AS/400 Database Query</TITLE><HEAD>
<BODY>

<center>

<h3>Saved Queries<h3>

<lcenter>

<hrwidth="10096">

<up

<form action=http://AS400ABC:1040/servlet/DbSelectServiet method=post >
<input type=hidden name=cmd value= gryprompt >
<input type=hidden name=system value=AS400ABC>

<input type=hidden name=user value=aLiser>

<input type=hidden name=key value=as400abcausero08479492129>

<center>

<SELECT NAME="query" SIZE=5>

<OPTION VALUE=new selected>new query]

</SELECT>

<or><or>

<input type=submit name=open value=Open>

<input type=submit name=delete value=Delete>

<Jcenter>

<BODY>

Figure 223. HTML Generated by the getSavedQueries Method

Displaying this HTML file in a browser shows the window that appears in Figure
224 on page 245. The action of this HTML file is to call the DbSelectServlet class
using a post method. It sets the following parameters:

¢ name=cmd, value=qryprompt
* name=open, value=0Open
* name=delete, value=Delete

244 Building AS/400 Internet-Based Applications with Java

Saved Queries

Openl Delete |

Figure 224. Saved Queries Window

Clicking on the Open button runs the doPost method, passing in a cmd parameter
value of gryprompt. If a cmd value of gryprompt is received in the doPost method,
the gryPrompt method is called.

The gryPrompt method builds and displays the HTML file shown in Figure 225 on
page 246.

Developing AS/400 Java Servlets 245

O<HEAD><TITLE> Query Statement </TITLE><HEAD><BODY>
<center>

<h3>Query AS/400 Database<h3>

<Joenter>

<hrwidth="100%">

<center>

<form action=http:/ASA00ABC:1040/senet'DbSelectServiet method=post>
<input type=hidden name=cmd value=query>

<input type=hidden name=system value=as400abc>

<input type=hidden name=user value=auser>

<input type=hidden name=key value=as400abcauserd08479492129>

Query statement

<textarea name=statement rows=5 cols=40>

<ftextarea>

<input type=submit name=wizard value=\Wizard>

<input type=radio name=qtype value="html" checked>View results in HTML
<input type=radio name=qtype value="CSV">Comma separated variable (CSV) format
<input type=radio name=qtype value="TSV">Tab separated variable (TSV) format

<input type=submit value=Query>

<input type=submit name=save value=Save..>

<Joenter>

<form>

<p>Enter the SQL statement.

For example, 'select * from apilib.parts’

to use the demo database.

<p>if you would like some assistance, you can use the

wizard button to get some help on formulating your query.

SQL gurus can simply type in the query and use the queery button.

</body>

Figure 225. HTML Generated by the queryPrompt Method

Displaying this HTML file in a browser shows the window that appears in Figure
226 on page 247. The action of this HTML file is to call the DbSelectServlet class
using a post method. It sets the following parameters:

e name=cmd, value=query

* name=system, value=as400abc

* name=user, value=auser

* name=key, value=as400abcauserd08479492129
» radio name=qtype, default=html

e name=wizard, value=Wizard

* name=save, value=Save...

246 Building AS/400 Internet-Based Applications with Java

Query AS/400 Database

select ¥ from apilib.parts d

Query staterent: =

& View results in HTML © Comma separated variable (C5V) format € Tab separated variable (TSV) format

Queryl Save.. |

Enter the 3QL statement. For example, 'select * from apdib parts' to use the deme database.

If vou would ke some assistance, you can use the wizard button to get some help on formulating your query.
S0L gurus can simply type in the query and use the query button.

Figure 226. Query Statement Window

7.3.2.1 Writing your Own SQL Statements

At this point in the Database Query application, you can enter your own SQL
statements or use the Wizard to help you build an SQL statement. To see how the
Wizard works, refer to Section 7.3.2.2, “Using the Wizard” on page 248. In this
section, write our own SQL statement:

select * from apilib.parts

Clicking on the Query button runs the doPost method. If a cmd value of query is
received in the doPost method, the performQuery method is called. The
performQuery method sees how we want the results returned by checking which
radio button is selected. In this case, the View results in HTML radio button is
selected, so the fillTable method is called.

The fillTable method actually causes the sql statement to be executed on the
AS/400 system. It does the following:

» Creates a connection object using the JDBC DriverManager getConnection
method

» Creates a statement object using the createStatement method

Execute the SQL statement we entered using the statement object

Formats the rows into a table using HTML tags if a resultset is returned

» Causes the browser to execute the HTML file to show the results

The output from the HTML file displayed by the browser is shown in Figure 227 on
page 248.

Developing AS/400 Java Servlets 247

Statement:

select * from apilib. parts

Result:
PARTNO | PARTDS [PARTQY PARTFR PARTDT
12301 |Quad speed CD ROM Drive | 44| 15100 09/01/98
12302 [SCSI T Cable | 25| 3000 1171385

|

|

| 12303 |17 inch SVGA Meonitor

| 12304 [Ethernet PCMCLA card

| 12305 Home mouse 47| 2550 02118/96
| 12306 |Gender-bender 75| 850 08751
|
|
|
|
|
|

| 6| 1100.75| 03/04/96
|
|
|
12307 [600 dpi fatbed scanner | 12| 87533 03/01/96
|
|
|
|
|

30| 8530 1217485

12308 |100 WHZ Pentium PC
12308 |LaserI et Toner
12310 |Logo mouse mat

4| 187520/ 0224196
12| 8945 1211795
376 7.25] 11724784
4750 150/ 01/10/96
58| 12045/ 03/06/96

12311 |Screen WIpES

12312/[W 34 Modem

Figure 227. Query Results

7.3.2.2 Using the Wizard
If the Wizard button is clicked, the wizPrompt method is executed. It builds and
shows the HTML file shown in Figure 228 on page 249.

248 Building AS/400 Internet-Based Applications with Java

<HEAD><TITLE> Query Wizard </TITLE><HEAD><BODY>

<center>

<h3>Enter the Table Name<h3>

<center>

<hrwidth="100%6">

<center>

<form action=http:/as400abc:1040/seniet/DbSelectServiet method=post>
<input type=hidden name=cmd value=gqwcalinfo>

<input type=hidden name=system value=as400abc>

<input type=hidden name=user value=auser

<input type=hidden name=key value=as400abcauserd08479492129>

Table name: <input type=text name=tbiname>
<input type=submit name=wizact value=Browse...>

<input type=submit name=wizact value=Next...>
<input type=submit name=wizact value=Finish>
<center>

<form>

<p>Enter the table name.

For example, ‘apiiib.parts'
<fody>

Figure 228. HTML File Generated by the wizPrompt Method

The output of this HTML file appears in a browser as shown in Figure 229.

Enter the Table Name

Table name: [apilib parts]
IWexdt... | Finish |

Enter the table name. For example, apilib. parts

Figure 229. Enter Table Name Prompt

The action of this HTML file is to call the DbSelectServlet class using a post
method. It sets the following parameters:

* name=cmd, value=gwcolnfo
e name=system, value=as400abc
¢ name=user, value=auser

Developing AS/400 Java Servlets

249

* name=key, value=as400ahcauserd08479492129
» radio name=qtype, default=html|

* name=wizact, value=Browse...

¢ name=wizact, value=Next..

* name=wizact, value=Finish

Clicking on the Next button runs the doPost method with a cmd parameter equal
to qwcolinfo. This action, in turn, runs the wizCollnfo method. It generates and
displays the HTML file shown in Figure 230.

<HEAD><TITLE> Query Wizard < TITLE><HEAD><BODY>

<center>

<center>

<h3>Select Felds<h3>

<form action=htip:/ASA00ABC:1040/senet/DbSelectSenviet method=past>
<input type=hidden name=cmd value=gqwwhere>

<input type=hidden name=system value=AS400ABC>

<input type=hidden name=user value=aLiser>

<input type=hidden name=key value=AS400ABCauser908479492129>
<bor>

<applet code=SqlWizard.class codebase=htip:/ASA00ABC:1040/applets/ height=230 width=390>
<param name=system value="AS400ABC">

<param name=user value="auser">

<param name=key value="ASA00ABCauserd08479492129">

<param name=ur value=http./AS400ABC:1040/senviet’DbSelectSeniet>
<param name=fields value="PARTNO,PARTDS PARTQY ,PARTPR PARTDT">
<lapplet>

<or><or>

<input type=submit name=wizact value=Next.>

<input type=submit name=wizact value=Finish>

<Jcenter>

<fform>

</body>

Figure 230. HTML Generated By the wizCollnfo Method

This HTML file runs an applet named SqlWizard.

250 Building AS/400 Internet-Based Applications with Java

Select Fields

FARTDS FARTID
FARTDT _ FARTGY
hdd > FARTFR

<- Remove

Add Al -»

[kl

<- Remove all

[ext. .

I
=4
w

=

Figure 231. SQLWizard Applet

The SqlWizard applet allows you to select which table columns you want to add to
the selection criteria. As shown in Figure 231, we select the PARTNO, PARTQY,
and PARTPR columns.

The action of this HTML file is to call the DbSelectServlet class using a post
method. It sets the following parameters:

¢ name=cmd, value=gwhere

* name=system, value=as400abc

* name=user, value=auser

* name=key, value=as400ahcauserd08479492129
* name=wizact, value=Next..

* name=wizact, value=Finish

Click on the Next button to run the doPost method, with the cmd parameter set to
gwwhere. Now, the wizWhere method is run. It generates and executes the HTML
file shown in Figure 232 on page 252.

Developing AS/400 Java Servlets 251

<HEAD><TITLE> Query Wizard <TITLE<HEAD><BODY>

<center>

<center>

<h3>Select Condiions<h3>

<form action=htip/ASA00ABC:1040/seniet’DbSelectSenviet method=past>
<input type=hidden name=cmd value=gworder>

<input type=hidden name=system value=AS400ABC>

<input type=hidden name=user value=aLiser>

<input type=hidden name=key value=ASA00ABCauser908479492129>

<applet code=SqglWhere.class codebase=htip//ASA00ABC:1040/applets/ height=358 width=425>
<param name=system value="AS400ABC">

<param name=user value="auiser">

<param name=key value="ASA00ABCauserd08479492129">

<param name=ur value=htp:/ASA00ABC:1040/senvietDbSelectSenviet>
<param name=fields value="PARTNO,PARTDS PARTQY,PARTPR,PARTDT>
<lapplet>

<input type=submit name=wizact value=Next..>

<input type=submit name=wizact value=Finish>

<lcenter>

<florm>

<lbody>

Figure 232. HTML File Generated by the wizWhere Method

The HTML file shown in Figure 232 runs an applet named SqlWhere.

252 Building AS/400 Internet-Based Applications with Java

PARTNO
PARTDS
> x| |50

FPARTPR

FARTDT I

Add |] |

Hemnye | Eemayes |

Finish |

Figure 233. SQLWhere Applet

The SQLWhere applet allows you to add a where clause to the SQL statement. In
this case, we want only those records that have a PARTQY field value of greater
than 50.

The action of this HTML file is to call the DbSelectServlet class using a post
method. It sets the following parameters:

¢ name=cmd, value=gworder

* name=system, value=as400abc

¢ name=user, value=auser

* name=key, value=as400ahcauserd08479492129
* name=wizact, value=Next..

e name=wizact, value=Finish

Clicking on the Next button runs the doPost method, with the cmd parameter set
to gqworder . Now the wizOrder method runs. It generates and executes the HTML
file shown in Figure 234 on page 254.

Developing AS/400 Java Servlets 253

<HEAD><TITLE> Query Wizard <TITLE><HEAD><BODY>

<center>

<center>

<h3>Select Order</h3>

<form action=htip:/ASA00ABC:1040/senet/DbSelectSenviet method=past>
<input type=hidden name=cmd value=gryprompt>

<input type=hidden name=system value=AS400ABC>

<input type=hidden name=user value=aLiser>

<input type=hidden name=key value=AS400ABCauser908479492129>

<applet code=SqlOrder.class codebase=htip//ASA00ABC:1040/applets/ height=250 width=426>
<param name=system value="AS400ABC">

<param name=user value="auser">

<param name=key value="ASA00ABCauser908479492129">

<param name=ur value=http:/AS400ABC:1040/senviet’DbSelectSenviet>
<param name=selected value="PARTNO,PARTQY PARTPR>
<lapplet>

<bor>

<input type=submit name=wizact value=Finish>

<lcenter>

<fform>

<lbody>

Figure 234. HTML File Generated by the wizOrder Method

This HTML file runs an applet named SqlOrder.

FARTHD [FARTQY A5C
% 8

FARTPR

Descending
Remave

Remave Al

Up | Down |

Ll

Finish

Figure 235. SqlOrder Applet

254 Building AS/400 Internet-Based Applications with Java

The SqlOrder applet, allows us to add an order by clause to the sql statement. In
this case, we want to display the results in ascending order, based on the
PARTQY field.

The action of this HTML file is to call the DbSelectServlet class using a post
method. It sets the following parameters:

* name=cmd, value=gryprompt

e name=system, value=as400abc

* name=user, value=auser

* name=Kkey, value=as400abcauserd08479492129
* name=wizact, value=Next..

* name=wizact, value=Finish

Clicking on the Finish button starts the doPost method, with the cmd parameter
set to gyprompt . If a cmd value of gryprompt is received in the doPost method, the
gryPrompt method is called. The gqryPrompt method builds and displays the
HTML file shown in Figure 236.

<HEAD><TITLE> Query Statement </ TITLE><HEAD><BODY>

<center>

<h3>Query AS/400 Database<h3>

<Jcenter>

<hrwidth="100%6">

<center>

<form action=hitp/ASA00ABC:1040/senietDbSelectSenviet method=post>
<input type=hidden name=cmd value=query>

<input type=hidden name=system value=AS400ABC>

<input type=hidden name=user value=aLiser>

<input type=hidden name=key value=ASA00ABCauser908479492129>

<or>

Query statement

<textarea name=statement rons=5 cols=40>

select PARTNO,PARTQY,PARTPR from apilb.parts where PARTQY > 50 order by PARTQY ASC
<ftextarea>

<input type=submit name=wizard value=\izard>

<or>

<input type=radio name=qtype value="html" checked>View results in HTML
<input type=radio name=qtype value="CSV">Comma separated variable (CSV) format
<input type=radio name=qtype value="TSV>Tab separated variable (TSV) format
<or><or>

<input type=submit value=Query>

<input type=submit name=save value=Save...>
<Jcenter>

<fform>

<p>Enter the SQL statement.

For example, 'select * from apilib.parts'

to use the demo database.

<p>ifyou would like some assistance, you can use the
wizard button to get some help on formulating your query.
SQL gurus can simply type in the query and use the query button.
</body>

Figure 236. HTML File for the queryPrompt Method

Displaying this file in a browser returns you to the Query AS/400 Database
window shown in Figure 237 on page 256.

Developing AS/400 Java Servlets 255

256

Query AS/400 Database

select PARTNOC, PARTOY, PARTPE from ;I
apilib.parts where PARTOY > 50 order by
PARTOQY ASC

Query statement: = Wizard |

& View results in HTML © Comma separated variable (C5V) format © Tab separated variable (TSV) format

G]ueryl Sawve.. |

Enter the SQL statement. For example, 'select * from apiib parts' to use the demo database.

If you would like some assistance, you can use the wizard button to get some help on formulating your query. SQL
gurus can simply type i the query and use the query button.

Figure 237. Query AS/400 Database

The text area of the Query AS/400 Database window displays the SQL statement
that we created.

Clicking on the Query button runs the doPost method. If a cmd value of query is
received in the doPost method, the performQuery method is called. The
performQuery method verifies how we want the results returned by checking
which radio button is selected. In this case, the View results in HTML radio
button is selected, so the fillTable method is called.

The fillTable method actually runs the SQL statement on the AS/400 system. It
does the following:

» Creates a connection object using the JDBC DriverManager getConnection
method

» Creates a statement object using the createStatement method

Executes the SQL statement we entered using the statement object

Formats the rows into a table using HTML tags if a resultset is returned

Causes the browser to execute the HTML file to display the results

Clicking on the Query button runs the statement. The results are shown in Figure
238 on page 257.

Building AS/400 Internet-Based Applications with Java

Statement:

select PARTNO PARTOQY PARTPR from apilib parts where PARTQY = 50 order by PARTQY ASC

Resuli:
[PARTNO [PARTQY [PARTFR
| 12312 58| 12045
| 12327 58| 15194
| 12342 58| 104.79
| 12306 75 850
| 12321 75| 1071
| 1233 75 739
| 12310 376 725
| 12325 37| 93
| 12340 376 630
| 12311 4750 150
| 12326 4750 188
| 12341 4750 130

Figure 238. SQL Result

7.4 Running the Application

The application discussed in this chapter uses servlets to access AS/400
resources. To run it, we need a server that supports Java servlets. We tested the
application using two servers:

« Domino Go Webserver and ServletExpress running on a Windows/NT platform
e The IBM HTTP Server for AS/400 and the WebSphere Application Server for
AS/400 running on an AS/400 system

7.4.1 Domino Go Webserver

For details about configuring Domino Go Webserver and ServletExpress, see
Section 9.1, “Domino Go Webserver” on page 287. For the application to be
served by the Domino Go Webserver, you must:

1. Export the class files to a directory where the Web server can find them.
2. Add the appropriate directives to the Domino Go server request routing table.

By default the Domino Go Webserver serves servlets from following directory:
\SenvietExpress\serviets

We export the servlet classes to this directory. Figure 239 on page 258 shows the
servlet classes exported to the \ServletExpress\servlets directory.

Developing AS/400 Java Servlets 257

258

@ A54005 ervletS ecurityE soception. class
@ ChangePwdServiet. clazs
@ CrndCallServlet. class

@ DbSelectSerydet. class
@ FileListener. clazs

@ Hello orldS ervlet. class
@ HellaiwarldS ervlet. java
@ IfsFileSeret.class

@ ListCollector. class

@ Perftdon.class

@ Frintlob.clazs

@ RedirectServlet. class

@ ServletCallog.class

@ Servletlog.class

2| Signon class:

@ SuperSerelet.class

@ TraceSerylet. class

Figure 239. ServletExpress\serviets Directory

We also use three applets as part of this application. To keep access to the
applets secure and separate from the servlets, we export them to the following
directory:

\SenvietExpress\serviets\applets

Figure 240 shows the content of the \Servlet\Express\applets directory.

Sqldrder.clazs
Sgiwhere. class

Sghvizard.class

Figure 240. Applet Directory

The application uses gif files to display images. The gif files are stored in the
apptest directory. Figure 241 shows the content of the apptest directory.

B as400.gif

E directon,. gif
B file. i
Hp

Figure 241. apptest Directory

We add the following directives to the Domino Go server request routing table:
« Pass /apptest/* \apptest*

This directive allows us serve the gif files from the apptest directory.

Building AS/400 Internet-Based Applications with Java

e Pass /applets/* c:\ServletExpress\servlets\applets*

This directive allows us to serve the applets from the applets directory.

7.4.2 I1BM HTTP Server for AS/400

We can also serve this application using the IBM HTTP Server for AS/400 and the
WebSphere Application Server for AS/400. For configuration details about
running under the IBM HTTP Server for AS/400, see Section 9.3, “IBM HTTP
Server for AS/400” on page 293.

To allow the application to be served by the IBM HTTP Server for AS/400, you
must:

1. Export the class files to a directory where the Web server can find them.

2. Add the appropriate directives to the Domino Go server request routing table.
By default IBM HTTP Server for AS/400 serves servlets from the following
directory:

\QIBM\ProdData\IBMWebAS\serviets

We export the servlet classes to this directory. Figure 242 shows the servlet
classes exported to the \QIBM\ProdData\IBMWebAS\serviets

@ 454005 ervietS ecuntyE soception. clazs
@ ChangePwdS ervlet. claszs
@ CrndCall5ervet.class

@ DbSelectServlet.class
@ FileLiztener.class

@ Hello\ orldServlet. clazs
@ Hellaw/arldS erviet java
@ [fsFileSerdet. class

@ ListCollectaor. class

@ Perftd on.class

@ Print)ob. class

@ RedirectServlet. class

@ ServletCallog. class

@ Servietlog.class

@ TraceServlet. clazs

Figure 242. \QIBM\ProdDatallBMWebAS|\servlets Directory

We also use three applets as part of this application. To keep access to the
applets secure and separate form the servlets, we export them to the following
directory:

\QIBM\ProdData\IBMWebAS\serviets\applets

Figure 243 on page 260 shows the content of the \Servilet\Express\applets
directory.

Developing AS/400 Java Servlets 259

Sql0rder.clazz
Sah'here.class

Sghwfizard.clazs

Figure 243. Applet Directory

The application uses gif files to display images. The gif files are stored in the
apptest directory. Figure 244 shows the content of the apptest directory.

B as400.gif
E’ directary. gif

H file.gif
i

Figure 244. The apptest Directory
We add the following directives to the IBM HTTP Server for AS/400 request
routing table:
 Pass /apptest/* /apptest/*
This directive allows us serve the gif files from the apptest directory.
* Pass /applets/* /QIBM/ProdData/IBMWebAS/senvietsiapplets

This directive allows us to serve the applets from the applets directory.

260 Building AS/400 Internet-Based Applications with Java

Chapter 8. Securit y Considerations

This chapter explains how you can provide security for your Internet application.
This chapter describes:

* An overview of the elements of transaction security available on the Internet

« A high level explanation of the Secure Sockets Layer (SSL) protocol

* How to use Digital Certificate Manager on AS/400 to create an intranet
Certificate Authority (CA) and server certificates

* How to configure the IBM HTTP Server for AS/400 to use SSL

« Running a servlet under SSL

8.1 Internet Securit y Elements

© Copyright IBM Corp. 1999

There is no one single answer to Internet security. Some people think that by
installing a firewall between their networks and the Internet the company’s
network will be safe.

Is it simply a firewall that shields your company from any inappropriate Internet
access? No, security is not a single device or procedure. Security is a concept. It
is a set of different security measures that are selected based on the needs of a
specific installation. Therefore, it is essential to discuss first the type of Internet
security you need to achieve. Security is not simply a firewall.

First, the policy established by high-level management indicates how your
company wants to deal with the Internet and what level of security is to be
achieved. Various Internet security features, such as cryptography or host system
security functions, help you to implement what is designed.

Users must be educated to follow and maintain the implemented security
procedures, as well as to observe specific rules when acting as Internet clients.
These concepts are highlighted in Figure 245 on page 262.

261

Security Policy
User

Host Security

Ktgk$79hl]laD4

*g6
I o
-_-_§

Network Access
Security

Transaction Security

Figure 245. Internet Security Elements

8.1.1 Transaction Securit y and Secure Sockets La yer
Transaction security includes several basic elements, such as:

262

« Confidentiality and privacy

* Integrity
« Authentication

» Accountability

Web
server

Web
browser

-

*g6Ktgk$79hI]1aD4$

Owner:
John Doe

Client identity
authenticated

Owner:
IBM Server

Server identity
authenticated

Figure 246. Transaction Security

SSL is the Secure Sockets Layer protocol defined by Netscape Communications
Corporation. It provides a private channel between client and server that ensures

privacy of data, authentication of session partners, and message integrity.

Building AS/400 Internet-Based Applications with Java

Digital certificates are used for session partner authentication. Server
authentication is common. Client authentication is not yet common, but it is
growing in popularity. Keys are the base for end-to-end information encryption.
Figure 246 provides a high level view of SSL and transaction security.

TCP/IP applications must be rewritten to use SSL. Primarily SSL is used by HTTP
(HTTPS) for Web browsing. In OS/400, the V4R3 Directory Services Server
(LDAP) is SSL enabled. Other TCP/IP applications will follow.

8.1.1.1 Confidentialit y

Consider this problem: Intruders can eavesdrop on private information as
messages travel across the network. The solution lies in encryption. The sender
scrambles the message, and the receiver unscrambles it using a secret key.

Confidentiality means that the contents of the messages remain private as they
pass through the Internet. Without confidentiality, your computer broadcasts the
message to the network, which is similar to shouting the information across a
crowded room. Encryption ensures confidentiality.

8.1.1.2 Integrity

Consider, for example, that you want to know if the data received is the same as
the data that was sent. You can determine this through two possible solutions:
digital signature (hashing) and encryption.

The sending system calculates a value based on the data that is sent. The value
is appended to the transmission. The receiving system uses the same calculation
to generate a value. The receiving system compares the calculated value with the
received value. If the values are different, it assumes that the data changed.
Message hashing should be used with encryption for better protection.

Integrity means that the messages are not altered while being transmitted. Any
router along the way can insert or delete text or garble the message as it passes
by. Without integrity, you have no guarantee that the message you sent matches
the message received. Encryption and digital signature ensure integrity.

8.1.1.3 Authenticit y

Consider the scenario where you want to know who is at the other end of a Web
site to test its authenticity. One way to find out is through the use of digital
certificates and digital signatures (see Figure 247 on page 264).

Security Considerations 263

264

Authenticit y

Problem - How do we know who is at the other end?

P This site does not have a
~ Tam going to setup a fake site to Certificate from a trusted source. |

sell football tickets. No one will ~_/ think I'll order some football tickets

ever know. I'll make millions.) from someone else.

= =

=

Figure 247. Verifying ldentity—Digital Certificates and Digital Signatures

Authenticity means that you know who you are talking to and that you trust that
person. Without authenticity, you have no way to be sure that anyone is who they
say they are. Authentication through digital certificates and digital signatures
ensure authenticity.

There are two ways in which the server uses authentication:

« Digital signature
« Digital certificates

A digital signature ensures accountability. But how do you know if the person
sending you a message is who he says he is?

You look at the sender's digital certificate. A public key certificate is issued by a
trusted third party known as the certifying authority (CA). The browser and server
exchange information including their public key certificate. SSL uses the
information to identify and authenticate the sender of the certificate.

A digital certificate is like a credit card with your picture on it and a picture of the
bank president with his arm around you. A merchant trusts you more because
you look like the picture on the credit card, and they know the bank president
trusts you, too.

You base your trust for the authenticity of the sender on whether you trust the
third party (a person or agency) that certified the sender. The third party or
certification authority (CA) issues digital certificates.

How can you ensure that the person sending the message is really trustworthy?
Consider the following an example, which illustrates this point.

If you wake up one day feeling ill, you may decide to visit a doctor. You can select
a doctor from your phone book and go to his or her office for a visit. Once you
arrive at the office, how can you be sure that the person about to examine you is
really a doctor? After all, you have never met this person before. They may look
like a doctor and act like a doctor, but how do you know that this person has
successfully completed all the training necessary to become a doctor?

Building AS/400 Internet-Based Applications with Java

8.1.2 HTTP Server

You need certification by a trusted third party to reassure you that this person
really is a doctor. The doctor probably has a diploma on the wall stating that they
have successfully completed their training. If the diploma is from a well-known
school, you would probably be reassured that you are about to be examined by a
real doctor. What if the diploma is from the medical school of a correspondence
school whose name you don't recognize? You may not be reassured.

Authentication works the same way. Trusted third parties verify that the server
really is who it claims to be. This verification is provided with a digital certificate
(the digital equivalent of your doctor's diploma hanging on the wall). You base
your trust for the authenticity of the server on whether you trust the third party
that certified the server (the school that issued the diploma). That third party is
called a Certifying Authority (CA).

The term trusted root is given to a trusted certifying authority (CA) on your server.
A trusted root key is the key belonging to the CA.

Authentication can be used server to client (server authentication) or client to
server (client authentication). Server authentication is described earlier. The
clients authenticate the servers. With client authentication, the client is
authenticated by the server. For example, if a server contains hospital patient
information, we may use client authentication to verify that the client attempting to
access the data is really who he said he is before allowing him access to patient
records.

8.1.1.4 Accountabilit vy

Consider the situation where you want to prove that a transaction took place. We
combine all the techniques we have seen. First the data is hashed using
cryptography to assure its integrity. The data is encrypted using the keys derived
from the public key exchange, which assures the identity of the session partners.
This is used in combination with a time stamp in the data to provide a log of the
transactions.

Accountability means that both sender and receiver agree that the exchange took
place. Without accountability, the addressee can easily say that the message
never arrived. Digital signatures ensure accountability. Accountability is not part
of the SSL protocol.

Over SSL (HTTPS)

SSL ensures that data transferred between a client and a server remains private.
It allows the client to authenticate the identity of the server. In addition, SSL V3
allows a server to authenticate a client.

Figure 248 on page 266 shows the high level view of the flow that takes place
when a client (browser) sends an https request to an HTTP server.

Security Considerations 265

266

N

Browser sends HTTPS:// request

1.The user needs to send = 2.The server retrieves a
private data (for example, certificate from an

credit card number). y authority that the browser
3.The certificate signature A Server certificate sent back recognizes.

is checked by the -

browser.

4.The browser _conflrms The information is sent to the server » 5.The server un-encrypts
that the server is the encrypted with negotiated session key the data with negotiated
desired one and encrypts

) T o
the data. session key.

Figure 248. HTTP Server Using SSL

If SSL client authentication is configured, the server requests the client’s
certificate for any https request. The server establishes a secure session
depending on whether the client has a valid certificate. This depends on the
server configuration: no client authentication, optional client authentication, and
mandatory client authentication.

Once your server has a digital certificate, SSL enabled browsers can
communicate securely with your server using SSL. With SSL, you can easily
establish a security-enabled Web site on the Internet or on your corporate
network.

SSL uses a security handshake to initiate the secure TCP/IP connection between
the client and the server. During the handshake, the client and server agree on
the security keys that they will use for the session and the algorithms they will use
for encryption and to compute message digest or hashes. The client
authenticates the server. In addition, if the client requests a document protected
by SSL client authentication, the server requests the client’s certificate. After the
handshake, SSL is used to encrypt and decrypt all information on both the https
requests and the server response, including:

* The URL the client is requesting

* The contents of any form being submitted

« Access authorization information like user names and passwords
« All data sent between the client and the server

The benefits of HTTP using SSL include:

» Target server is verified for authenticity
 Information is encrypted for privacy
» Data is checked for transmission integrity

HTTPS is a unique protocol that combines SSL and HTTP. You need to specify
https:// as an anchor in HTML documents that link to SSL, protected documents.
A client user can open a URL by specifying https:// to request an SSL, protected
documents.

Because HTTPS (HTTP + SSL) and HTTP are different protocols and usually use
different ports (443 and 80, respectively), you can run both secure and

Building AS/400 Internet-Based Applications with Java

non-secure servers at the same time. As a result, you can choose to provide
information to all users using no security, and specific information only to
browsers who make secure requests. This is how a retail company on the Internet
can allow users to look through merchandise without security, complete order
forms, and send their credit card numbers using SSL security. A browser that
does not have support for HTTP over SSL naturally cannot request URLS using
HTTPS. The non-SSL browsers do not allow users to send forms that need to be
submitted securely.

Figure 249 shows how clients can access the same server instance in normal
mode (port 80) or encrypted using SSL (port 443).

0S/400
IBM HTTP Server for AS/400
IBM HTTP Server for AS/400 SSL
Non-secure Sockets Secure
Port 80 Port 443

|} |}
] s, ..

http://... https://...

Figure 249. Accessing a Secure HTTP Session

8.2 Digital Certificates and Certificate Authorit vy

A digital certificate identifies a user or a system and is required before SSL can

be used. Once a server has a digital certificate, SSL-enabled browsers, such as
the Netscape Navigator, can communicate securely with the server using SSL. A
digital certificate consists of:

* Owner’s distinguished name

e Owner’s public key

« Digital signature of certificate authority (CA)
* Name of the CA

* Issue date of certificate

 Certificate expiration date

e Serial number

Plus, digital certificates have the following characteristics:

« Digital certificates are digital documents that validate the identity of a
certificate's owner.
» There are three types of digital certificates: CA, server, and client certificates.

Security Considerations 267

Digital certificates contain public key—binds it to an identity.

« Digital certificates are created by trusted third parties called Certificate
Authorities (CA).

« Digital certificates can be distributed freely.

Digital signature in the digital certificate prevents tampering.

A digital certificate is issued by a certificate authority (CA). CAs are entities that
are trusted to properly issue certificates and have controls in place to prevent
fraudulent use. They are the equivalent to the Department of Motor Vehicles for a
driver's license. An individual may have many certificates from different CAs just
as we have many forms of personal identification (Social Security card, Blue
Cross/Blue Shield card, gym membership card.) If we can trust a CA, we can be
reasonably assured that any certificate they issue properly represents the
individual that is holding it.

The Certificate Authority charges a fee for issuing a certificate.

« Certificate Authorities broadcast their public key and Distinguished Name.

People add them as trusted root key to web servers and browsers.

* This means your server will trust anyone who has a certificate from that CA.

* There are several common CA's in the marketplace.

» Servers and browsers are shipped with several default trusted root keys and
more can be added as needed.

Some examples of universally recognized Internet Certificate Authorities (CA)
include:

* Thawte

* VeriSign

« US Postal Service
o AT&T

* MCI

For testing purposes or for applications that will be used exclusively in an intranet
environment, you may issue digital certificates using an intranet Certificate
Authority. The AS/400 system with Digital Certificate Manager (DCM) can act as
an intranet Certificate Authority.

For secure communications, the receiver must trust the CA that issued the
certificate, whether the receiver is a browser or a server. Any time a sender signs
a message, the receiver must have the corresponding CA certificate and public
key designated as trusted root key.

8.3 AS/400 Implementation of Di gital Certificate Mana gement

268

You can configure your AS/400 system as an intranet Certificate Authority. Digital
Certificate Manager (DCM) is a Web-browser based administration facility that
allows you to create, manage, and use certificates within an enterprise and with
partners of an enterprise. You can use DCM to request digital certificates from
Internet Certificate Authorities such as VeriSign and Thawte.

DCM allows you to create your own intranet Certificate Authority (CA). You can
then use the CA to dynamically issue digital certificates to servers and users
(client certificates) on your intranet. When you create a server certificate, DCM
automatically generates the private key and public key for the certificate.

Building AS/400 Internet-Based Applications with Java

You can also use DCM to register and use digital certificates from Verisign or
other commercial organizations on your intranet or the Internet.

Digital Certificate Manager is option 34 of OS/400 (5769-SS1 option 34). You
must install this option to use DCM. DCM is a link in the AS/400 Tasks page,
which runs in the *ADMIN HTTP server instance. Therefore, you must have
installed IBM HTTP Server for AS/400 (5769-DG1) and use it to access DCM. In
addition, you must install IBM Cryptographic Access Provider licensed program
(5769-AC1,0or AC2, or AC3) to create certificate keys. These cryptographic
products determine the maximum key length permitted for cryptographic
algorithms on your AS/400 system. Government export and import regulations
determine which version is available in your country. To use all the options
available in DCM, you must have *SECOFR and *SECADM authority.

To access the Digital Certificate Manager, click on the hyperlink for Digital
Certificate Manager from the AS/400 Tasks Page. When using Digital Certificate
Manager, you can click the Help button on any page at any time to access on-line
help.

8.3.1 Configuring a Digital Certificate Environment

You can use your AS/400 system to configure a digital certificate environment.
You can also configure the HTTP server to use digital certificates and run over
SSL.

Perform the following series of steps to configure an intranet digital certificate
environment using the AS/400 system as a Certificate Authority:

1. Use DCM to create an intranet CA in one or more AS/400 system.

2. Using DCM, the intranet CA issues server certificates that can be used in the
local server (same AS/400 system where the CA is configured) or exported to
a remote server.

3. For the clients to recognize and trust the server certificates issued by the
intranet CA, the CA certificate must be installed in the browsers and
designated as a trusted root.

4. If the server requests client certificates for client authentication, the users
must request and install client certificates in their browsers.

5. The HTTP server must be configured to enable SSL (SSL On) and specify the
key ring file where the server certificate is stored (keyfile). To optionally
authenticate client certificates (SSL_ClientAuth client), add
PROTECTION/PROTECT directives to protect resources.

8.4 Creating a Self-Signed Certificate

This section describes how to create a self-signed certificate using your AS/400
system as an intranet Certificate Authority.

Because self-signed certificates are not recognized by visitor's browsers as
coming from a trusted third party, they should not be used in customer transaction
situations over the Internet. Use them only on your test and development
systems, and for demonstration purposes. You can also use a self-signed
certificate for intranet applications.

Security Considerations 269

To obtain a self-signed certificate, perform the following tasks:

1. Create an intranet Certificate Authority.
2. Create a server certificate with your intranet CA.
3. Configure your HTTP server to use the server certificate.

8.4.1 Creating an Intranet Certificate Authorit vy

Digital Certificate Manager (DCM) allows you to create your own intranet CA in
your AS/400 system and use it to issue server and client certificates for testing
purposes or applications within your organization.

This section outlines the steps you must perform to create a CA on your AS/400
system. You only need to perform this task if the system administrator has not
previously created an intranet Certificate Authority and if you want to use your
AS/400 system to issue intranet server certificates.

To create an intranet CA in your AS/400 system, follow these steps:

1. Start the HTTP *ADMIN server on your AS/400 system. From the command
line, enter the command:

STRTCPSVR SERVER(*HTTP) HTTPSVR(*ADMIN)

2. Access the AS/400 Tasks page from your browser by entering the URL:
http:// System_name:2001

3. You are prompted to enter user name and password. Sign on with a user that
has *SECOFR and *SECADM authority.

The AS/400 Tasks Page appears as shown in Figure 250.

==}

AS/400 Tasks P

{C) BN Corporation 1995 ASA0ABC MYCOMPANY COM

S IBM HTTP Server for AS/400
W Configure the A5i400 HTTP Server and 551
IBM Firewall for AS/400
Set up and raonitor an Internet Firewall

s | Digital Certificate T
Create, distribute, and manage Digital Certificates

Belated task inforration @

Help
{Requires TamaScript)

Figure 250. AS/400 Tasks Page

4. Click on Digital Certificate Mana ger.
5. Click on Certificate Authorit y (CA).
6. Click on Create a Certificate Authorit .

Note: If a Certificate Authority (CA) was previously created on your system,
the Create a Certificate Authority link does not appears.

270 Building AS/400 Internet-Based Applications with Java

7. Complete the Create a Certificate Authority form as shown in Figure 251.

Replace the field values appropriately with your organization’s information.

:gg}:; r!I - Digital Certificate Manager

Create a Certificate Authority

w Certificate Authority (CA

u Create a Certificate The system will create a public-private key pair and store the key pair in a key ring file.

Authority

= Registered Certificates Koy size: m (bits)

P Server Certificates Key ring password: IM— (required)

P Client Certificates

Retnm to AS/400 Tasks Confirm password: TR (required)

Certificate Information

Certificate Authority name: IITSOSIGN (required)
Organization unit: |10
Organization name: |IEM Creguired)
Locality or city: |Ruc:hest,er
State or province: |HIN (required:minimum of 3 characters)
Country: lF (required)

Zip or postal code: 55001
Validity period of Certificate Authority (1-2000): [1095 | (days)

oK| _cancel | Help

Figure 251. Create an Intranet Certificate Authority

Click OK.

8. After DCM processes the form, it stores a copy of the CA certificate in the CA
default key ring file:

IQIBM/USERDATA/ICSS/CERT/CERTAUTH/DEFAULT KYR

At this point, you can install the CA certificate in your browser so that it
recognizes the certificates issued by the intranet CA. DCM displays the page
shown in Figure 252.

Digital Certificate Manager

CA Certificate Created Successfully
& certificate for your Certificate Authority was created and stored in the default Certificate Authority key ring file

File tarne:
AQIBNUSERDATA/ICSS/CER T/CER TAUTHDEFAULT KYR

Clients must install the certificate to malke use of the security provided by the certificate.

Click the following link to mnstall the certificate on your browser. Your web browser will display several windows to help you complete the
installation of the certificate.

Receive Certificaie

You will now provide the policy data to be used for signing and izsuing cerificates with this Certificate Authority.

%l Cancell Helpl

Figure 252. CA Certificate Created Successfully

Click Receive Certificate if you want to install the CA certificate in your
browser now. Or, click OK to proceed to the next setup window, and install the
CA certificate in your browser at later time. Notice the default path and file
name where the intranet CA key ring file is stored.

Security Considerations 271

9. Complete the CA Policy Data form to set the client certificate policy for your
CA. See Figure 253.

Digital Certificate Manager
Certificate Authority Policy Data

Your CA certificate was created with the default policy data shown below. Change the data if you wish and then click OK.

Allow creation of client certificates: © No

Validity period of certificates that are issued
by this Certificate Authority (1-2000): e aays)

Drays until Certificate Authority expites: 1095

%l Cancell Helpl

Figure 253. Certificate Authority Policy

This is where you define whether your CA can issue and sign client
certificates. If the CA can issue client certificates, indicate the length of time
for which the certificates will be valid.

10.The policy data for the Certificate Authority was successfully changed
message appears. At this point, you can continue to create a server certificate
signed by your Certificate Authority. This allows server authentication by
clients that use this system as a server.

8.4.2 Creating a Server Certificate with Your Intranet CA

272

Immediately after creating the intranet CA, DCM leads you to create a server
certificate.

To use Secure Sockets Layer (SSL) for secure Web serving, your server must
have a digital certificate. When you create a server certificate in DCM, the server
certificate and keys are stored in the following default directory and file:

IQIBM/USERDATA/ICSS/CERT/SERVER/DEFAULT KYR

Note: When you create a server certificate, Digital Certificate Manager (DCM)
stores a copy of the CA certificate in the server’s key ring and designates it as a
trusted root.

1. Complete the Create a Server Certificate form as shown in Figure 254
replacing the field values with your organization information.

The options for the key size are determined by the IBM Cryptographic Access
Provider (5769-ACx) licensed program installed in your system. This is the key
size that is used to generate your public and private keys.

Building AS/400 Internet-Based Applications with Java

Digital Certificate Manager

Create a Server Certificate

The system will create a public-private key pair and store the key pair in a key ring file.

Key size: |51 2 'l (hits)
Key ring password: [+++%++ (required)
Confirm password: | FEREEEE (required)
Certificate Information
Server name: IASQDDABC CMYCOMPANY. COM (recquired)

Organization unit: |ITSOROCH

Organization name: IIBH (redquired)

Locality or city: IRDl::hESt.Er

State or province: IMIN (required:minirmum of 3 characters)
Country: lF (required)

Zip or postal code: |55901
OKl Cancel | Helpl

Figure 254. Create a Server Certificate Page

By default, the system inserts the fully qualified name of the AS/400 system
into the system name field. Do not change this name. This is the name used to
describe your server. You can give the server any name. However, the fully
qualified TCP/IP host name is usually used for the server name.

Click OK.

2. The Server Certificate Created Successfully page appears (see Figure 255).

Digital Certificate Manager
Server Certificate Created Successfully

Your server certificate was created and stored in the default server certificate key ning file.

File narne:
MQIBWISERDAT A/ICSS/CER T/SERVER/DEF AULT K YR

Select the servers that will use this certificate:

[T HTTF &dministration {*ADMINY Server
[T Directory Services Server

% Cancel |

Figure 255. Server Certificate Created Successfully Page

From this page, you can select whether the HTTP ADMIN server or the
Directory Services server (LDAP) uses this server certificate for SSL
connections. Do not select any of these options.

3. Copy the file and path name where the server certificate is stored to the
clipboard. It is:

IQIBM/USERDATAVICSS/CERT/SERVER/DEFAULT KYR
Click OK. Click Done.

Security Considerations 273

274

8.4.2.1 Creating a Server Certificate with an Existin g Intranet CA

The steps to create a server certificate described in the previous section assume
that you are creating the intranet CA for the first time. If your administrator has
already created an intranet CA and server certificate, you can use the existing
server certificate in your HTTP server configuration.

If you want to create a new server certificate using an existing intranet CA, start
by clicking Create a server certificate under Server Certificates in DCM (see
Figure 256).

Digital Certificate Manager

Select a Certificate Authority

wCertificate Authority (Ch) N } L i i .
u Update s Certificate Certificate Authority that will sign this certificate:

Authority
» Display Certificate @ Local Certificate Authority

Authority © VeriSign or other Internet Certificale Authority
u Delete Certificate

Avuthority

= Change policy data OKl Cancel |
w Chavge ke ring password

w Send CA certificate to

another systern
= Create a server certificate

for another system
= Registered Certificates

wServer Cettifiates
= Create a server
certificate
u Update 4 server certificate
u Delete a server ke ring
m Recefve a server certificate
u Recetve a Cb certificate

= Key managernent
P Client Clertificates
Betumn to 4355400 Tasks

Figure 256. Create a Server Certificate with an Existing Intranet CA
Select Local Certificate Authority and Click OK.

The Create Server Certificate page appears next (see Figure 254 on page 273).

8.4.2.2 Authorizin ¢ QTMHHTTP to the Ke y Ring File

You may need to give QTMHHTTP (or the user profile under which your HTTP
server runs) authority to the key ring and stash files. The key ring and stash files
are created with *PUBLIC authority *EXCLUDE. QTMHHTTP (or the user profile
under which the HTTP server runs) must have at least read rights to those files.
Perform the following steps:

1. To authorize QTMHHTTP to the key ring and stash file, enter the command:
WRKLNK /QIBM/UserData/ICSS/Cert/Server

Enter 5, Next level, to display the files in the directory.

Enter 9, Work with authority, by the key ring file (DEFAULT.KYR).

Enter 1, Add user, User=QTMHHTTP, Data Authority=*R.

Repeat steps 1 through 3 to authorize QTMHHTTP to the stash file
(DEFAULT.sth).

o > 0D

Building AS/400 Internet-Based Applications with Java

8.4.3 Configuring the Web Server to Use SSL with Server Authentication

The Web server must be configured to run over SSL and use the server
certificate you created in Section 8.4.2, “Creating a Server Certificate with Your
Intranet CA” on page 272. To configure your HTTP server to run over SSL and
use a server certificate, you must perform the following tasks:

1. From Digital Certificate Manager, click on Return to AS/400 Tasks . The
AS/400 Tasks page is displayed (see Figure 250 on page 270).

o 0D

Click on IBM HTTP Server for AS/400 .
Click on Confi guration and Administration
Click on Confi gurations in the left frame.

Select your HTTP confi guration file in the drop-down box immediately

beneath the Configurations link as shown in Figure 257.

o
HTTP Server
jo 25120

u Global server parataters

) Server Instances

wConfigurations:

JavAs =
= Basic
| JE8

= Create configuration
= Delete configuration

Page

= Display configuration

= Erzox ruess:
customization

= Java servlets

» Languages and Erpoding

» Logeing

= Meta-information

) Brotestion

» Broxy Settings

) Eequest Processing

= Secwity configwation

» System Management

» [uternet Users

» Acoess control lists

Digital Certificate Manazer
Java ServietBuxoress Manazer
Back to AS/400 Tasks

» Directoriss and Welsome

Configuration and Administration

IBM HTTP Server Configuration and Administration

Welcome to the Configuration and Administration forms for the IBW HT TP Serwer for AS/400. Theze forms allow you to configure your
AB/00 as a web server.

The fist at the left aflows you ta navigate ta the configuration and administration forms. Click on the form name to display the form Some
forms are grouped together under a heading When you click on a heading, the list of forms sxpands. When you click on the sarme heading
again, the list of forms collapses.

To work with a configuration, click on Configurations in the list at the leff. When the list of forme expands a list of configurations is
shown. Choose a configuration to work with, then click on the configuration form you want to wse. To use the same form with a different
configuration, choose a new configuration in the list and then click the form name again

Click on @ in the title to bring up help. Help is shown in a new window so you can read help for a form while using the form. Help fora
specific form can be displayed by clicking on the 88 in each form or by clicking on help fils names in the help window.

If the Digital Certificate Manager is installed, you will see a link on the left above Back to AS/400 Tasks. Clicking on Digjtal Certificate
IManager brings up a new window so you can configure certificates and other security features while you are configuring security on the
web server.

If Java is installed, wou will see a link to the Java ServletEsxpress Manager on the left ahove Back to AS/400 Tasks. Clicking on Java
ServistExpress Manager brings up a new window so you can configure Jawa serviets while you are configuring the web server.

Click on Back to AS/400 Tasks to return to the AS/400 tasks page.

Figure 257. HTTP Server Configuration

6. Click on Security confi guration . Fill in the Security configuration page (see
Figure 258 on page 276).

a. Check Allow SSL connections
b. Accept the default SSL port (443) or specified the port you wish to use for

SSL.

c. Deselect Enable SSL client authentication
d. Add the key ring path and file name . If you copied it to the clipboard, you

can paste it now:
/QIBM/USERDATA/ICSS/CERT/SERVER/DEFAULT KYR

Security Considerations 275

276

L —
HTTP Server
- 451

wConfizurations:

| Configuration and Administration

. Security configuration

for S

Configuration: JAVAS
m Global server pararaeters

P Server Instances

¥ Allow HTTP connections
M Allow SSL connections

IJAVAS jv S5L port: |443

= Bagic
pCGIL [T Fnable 2L client authentication
m Create confizuration
m Dielete configuration
p Directories and Welcore Key rings:
Page -
= Display configuration |
= Error message
customization
m Java servlets -
P Languages and Encoding _I
P Logzing & add |/ QIBN/ UserDaca/ ICES/C
= Ivleta-imformation E
B Erotection 0 MNake current
P Proxy Settings
b Beguest Processing
= Security configuration

P Systemn Management Apply| Resetl

b Intemnet Users

© Remove

m Access control lists

Diigital Certificate Manager
Jarra ServietBaporess Ivl 14

Back to £5/400 Tasks

Figure 258. Security Configuration Page

Click Apply.

You should see this message at the top of the screen: The configuration file
was successfully updated. Server instances that are using this configuration
must be stopped and started for the changes to take affect.

You should also see your key ring file added in the Key rings box.

7. You should now stop the server instance and start it again. In the left pane
window, click Server Instances .

8. Click on Work with server instances
9. From the drop-down box, select your server instance (see Figure 259).

Building AS/400 Internet-Based Applications with Java

;! Configuration and Administration [23]
1

i Work with server instances

[T
HTTP Server
o 2L

Server instance: JAWAS 'I

Startup parameters |

w Global server pararusters

wServer [nstances
= Work with server

insiances
= Change associated Start| Stop | Restart
confipmration

w Change instance parareters
= Create server instance
m Delete server instance

w Confizurations:

JEVAS -

= Basic

b CGL

= Create confipmation

m Delete configuration

p Directories and Welcore
Page

m Display configuration

= Error message
customization

m Java serviets

P Languages and Encoding

¥ Logzmz

m Ileta-information

P Protection

P Prooy Settings

P Beguest Processing

m Security configuration
} System Management

P Internet Users

m Access control lists
Figure 259. Work with Server Instances

Click Stop. Wait until you see this message at the top of your window: The
server instance was successfully stopped.

10.From the drop-down box, select your server instance (see Figure 259).
Click Start.
You should see this message: The server instance was successfully started.

You have now successfully configured your Web server to use SSL with server
authentication.

8.5 Requestin g a Server Certificate from an Internet CA

To conduct commercial business on the Internet, you should request your server
certificate from an Internet Certificate Authority, such as VeriSign or Thawte,
which are widely known by clients browsers and servers.

For your private Web network within your own company, university, or group, or for
testing purposes you can, using Digital Certificate Manager (DCM), act as your
own CA. Section 8.4, “Creating a Self-Signed Certificate” on page 269, explains
this procedure.

This section describes how to obtain a server certificate from an Internet
certificate authority. To use a server certificate issued by an Internet CA, perform
these steps:

1. Request the server certificate from an Internet CA.
2. Receive a server certificate for this server.
3. Configure the HTTP server to use SSL and Server Authentication.

Security Considerations 277

8.5.1 Requestin g a Server Certificate from an Internet CA

To use SSL for secure Web serving, your server must have a digital certificate.
You can use an intranet certification authority (CA) to issue a server certificate
(see Section 8.4, “Creating a Self-Signed Certificate” on page 269), or you can
use an Internet CA.

278

When you choose to use an Internet CA to issue a server certificate, you must
first request the certificate. Follow these steps:

1.

From the Digital Certificate Manager (DCM) page, click Server Certificates in
the left-hand frame to display an extended list of server tasks.

Click on Create a server certificate from the list to display the Select a
Certificate Authority page.

Select VeriSign or other Internet Certificate Authorit y as shown in Figure
260.

Digital Certificate Manager

Select a Certificate Authority

Certificate &uthority (CAY . . P : .
b Cetificate Aruthor Certificate Authority that will sign this certificate:
m Begistered Certificates
v Sorver Cortifizates ' Local Certificate Authority .
 Create a server & WenSign or other Internet Certificate Authority
certificate
m Update a server certificate
m Dielete a server key ning OKl Cancel |

p Client Certificates
Beturn to £5/400 Tasks

m Becefve a server certificate
m Becerve a Ch certificate

m ey managerent

Figure 260. Requesting a Certificate from VeriSign or other Internet Certificate Authority

Click OK to display the Create a Server Certificate form.

. Complete the Create a Server Certificate form as show in Figure 261 on page

279 replacing the field values with your organization information.

The options for the key size are determined by the IBM Cryptographic Access
Provider (5769-ACx) licensed program installed in your system. This is the key
size that will be used to generate your public and private keys.

Building AS/400 Internet-Based Applications with Java

Digital Certificate Manager

The system will create a public-private key pair and store the key pair in a key ring file

» Cetifioate Autharity (CA)
» Registered Certificates Key size: [512 = chitsy

w Server Certificates . "
= Create 2 server Key label: IVErlslgn_CErt (required)

certificate
= Update a server certificate Key ring path and file name: [/QIEN/ USERDATA/ ICSS/CERT/ SERVER/ Ver i%ign.| (required)

= Dielete a server key ting.
= Recefve a server certificate. Key ring password: rEERAT (required)
= Key managsment. Confirm password: wEEEEE (required)

m Receive a Ci certificate
b Client Certificates

Betum to 45400 Tasks Certificate Information
Server name: IAS‘}UUABC MYCOMPANTY, COM (required)
Organization unit: [TsorocE
Organization name: |IBM (required)
Locality or city: IRDChESt.E[
State or province: |HIN Crequired:mindtmum of 3 characters)
Country: F (required)

Zip or postal code: 55901
ok| _cancel | Help

Figure 261. Request a Server Certificate from an Internet CA

By default, the system inserts the fully qualified name of the AS/400
system into the system name field. Do not change this name. This is the
name used to describe your server. You can give the server any name,
although the fully qualified TCP/IP host name is usually used for the server
name.

Click OK to process the Create a Certificate Request form.

You receive the Server Certificate Request Created page as shown in
Figure 262.

Digital Certificate Manager

Server Certificate Request Created

b Centfiocte snthanty (CA) Your server certificate request was created and stored in the file shown below.
= Registered Certifirates
wServer Certificates File name .
- ayp—— JQIBMUSERDAT A/CSS/CER T/SERVERVeriBign KYR. TXT
= Create a server
certificate
= Update a server certificate
= Delete o sexver ket ring

= Recelve a server cerificate
m Receive a Ol certificate

= Key sanagenent. MITEPDCESwWIEADCEQTELMAKGAIUEBhMCVVMxDDAKEGNVEAGTAO1IJTIESHEAGAITE
P Client Centificates BxMJ T2 326GV 2dGVyHOwnCg T DVOOEEWN QkOxETAPBgNVEAS TCE LUT09S TON INQ4w
Retum to ASM00 Tasks DAYDVOQOREWTINTkwMTEEMBOGELUE Ax MWCWHOMDBEQKNuTV 1DTO 1 QQUS ZLENF TTE:
= MAODGCSqGE [h3 DQEBAQUALDS ANEgCQOCr Sh1hwhSh+pwoVNVALx2 kr g7QCGEuuxBL
Q2kseiOTigDppCGVSBFetRvx/ / JQUeBEBEL AbOCKGQ40EVP SUGHYP AgMB ARG AD AN
BokiqhkiGIu0BAQIFAANBAH1JUOWb wYr zFklsmi6 i ZHnC 1ypehe fLGDHNI 0GI vplin
x0anHSUCE7+EhG+nichhVep zRx TEFSIOE/ xc405Zizl=

Your certificate request data is shown below. Copy and paste the request data into the appropriate form provided by the Certificate
Authority that will sign your certificate request.

Dane

Figure 262. Server Certificate Request Generated by DCM

Note: Do not click done or close the browser yet. You need to cut and paste
the certificate request when you submit the Certificate Signing Request to the
Internet CA.

5. Copy the Server Certificate Request to your clipboard. Start at ----- BEGIN
NEW CERTIFICATE REQUEST----- and end at ----- END NEW CERTIFICATE
REQUEST----- . Click Done to close the page.

Security Considerations 279

6. Follow your Internet CA procedures to paste the certificate request. For
example, to request a certificate from VeriSign, follow the instructions that are
described on the following URL:

http:/Amwwv.verisign.com

When VeriSign is satisfied that you meet all of its requirements, it e-mails the
secure server certificate to you. You should receive it in three to five business
days. Other certificates authorities have their own procedures.

8.5.2 Receivin g a Server Certificate for this Server

280

After you receive the certificate from the Internet CA, you need to copy the signed
server certificate to a text file that DCM can access when you perform the
Receive server certificate task. Perform the following steps:

1. Copy the signed server certificate presented to you by the Internet CA to your
clipboard. Start at ----- BEGIN CERTIFICATE REQUEST-----, and end at

2. Paste the signed server certificate in your clipboard into a .txt file. Use a text
editor of your choice, for example Notepad, to create a .txt file and paste the
server certificate issued by the Internet CA.

3. Save the file in your AS/400 system IFS. Use a mapped network drive and
save the .txt file that contains the server certificate issued by the Internet CA
in the following path (enter a file name of your choice):

IQIBM/USERDATAVICSS/CERT/SERVER/rcveert.ixt

4. In DCM, click Receive a server certificate and complete the Receive a
Server Certificate page (Figure 263).

Digital Certificate Manager

Receive a Server Certificate

b Certificats Authonty (Ch) Use this formm to receive a serwer certificate into a server key ring file after the certificate has been signed by a Centificate Authority. Before
n Registered Certificates using thiz form, you must copy the signed certificate into a file which you specify below.
wServer Certificates
= Creaie a server certificate
= Update a server cetificate

Specify the fully qualified path and file name for the files requested below.

m Delete a server key ring

= Receive a server Signed certificate path and file name: IQIBM/USERDATA/ ICSS/CERT/ SERVER/ roveert . txt (required)
certificate
= Receive a Clh certificate i)
w K e Key ring path and file name: [otBn/ USERDATA/ TCSS/ CERT/ SERVER/ Ver iSign. kyr (required)
F Client Certificates Key ring password: Imm— (required)
Return to £5/400 Tasks
Ok Cancel Help

Figure 263. Receiving a Server Certificate Issued by an Internet CA

5. The Certificate Received page is displayed. You have the option to use the
received certificate with the ADMIN or LDAP server. Do not select these
options. Click OK.

6. You should receive a Server Configuration Status message indicating the
server certificate operations are complete. Click Done.

7. You must now set the key as the default key. In DCM, click Key management.
Complete the Key Management page and select Work with ke ys (see Figure
264 on page 281).

Building AS/400 Internet-Based Applications with Java

Digital Certificate Manager

Key Management
P Certificate Authority (C4)
= Registered Certificates Current key ring file: |f QIEM/USERDATA/ ICSS/CERT/ SERVER

wServer Certificates
m Create a server certificate
u Update a server certificate
m Delete a server ke ring
u Beceive a server certificate
m Beceive a Ch centificate

= Key management
p Client Certificates
Betum to 450400 Taske

Key ring password: I””“‘f

Select a key management task.
© Change key ring password

& Worl with keys

© Ezport keys

© Trnport. keys

© Designate trusted root keys
© Remove trusted root keys

ﬂl Done Help |

Figure 264. Key Management Page

8. Select the key with the label corresponding to the certificate you received from
the Internet CA (VeriSign_Cert in our example). Select Set key to be the
default and click OK.

8.5.3 Configuring the HTTP Server to Use SSL

This task is described in Section 8.4.3, “Configuring the Web Server to Use SSL
with Server Authentication” on page 275.

8.6 Applying Security to the A pplications

8.6.1 Servlets

In this section, we run an application using digital certificates and SSL. Since we
are using the security support provided by the IBM HTTP Server for AS/400, the
benefits apply directly to servlets. For applets, we can use the HTTP server to
initiate the applet, but once the applet starts and is communicating with the
AS/400 system, it uses its own sockets connection to interface with the AS/400
system. In this case, you have to provide your own encryption to protect
information going across an Internet connection. As discussed in Chapter 3,
“Introduction to AS/400 Applets” on page 51, you can use the browser’s security
classes to provide digital certificate support.

In Section 8.3, “AS/400 Implementation of Digital Certificate Management” on
page 268, we show configuring the test AS/400 system. We use this configuration
to run the servlet discussed in Chapter 4, “Introduction to AS/400 Servlets” on
page 159, using Netscape Communicator. If you run the application under
another browser, you use similar dialogs to help you control the security of the
application. To start the servlet, we enter:

https://AS400ABC/apptest/Parts.html
Before the servlet starts, we are presented with security dialogs. Since we did not
obtain a digital certificate from a universally recognized Internet Certificate

Authority, the browser displays the warning dialog shown in Figure 265 on page
282.

Security Considerations 281

ew Site Certificate - Netscape

& New Site Certificate

ASADDABC is a site that uses encryption to protect transmitted
information. However, Netscape does not recognize the authority who
signed its Certificate.

although Metscape does not recognize the signer of this Certificate, you may
decide to accept it anyway so that you can connect to and exchange
infarmation with this site.

This assistant will help you decide whether or not you wish to accept this
Certificate and to what extent,

Mext= Cancel

Figure 265. New Site Certificate

Clicking on the Next button causes the dialog shown in Figure 266 to appear. This
dialog allows us to display more information about the certificate that is being
presented.

Mew Site Certificate - Netscape

4 New Site Certificate

Here is the Certificate that is being presented:

Certificate for: IBM
Signed by: IBM

Encryption: Export Grade (RC4-40 with 40-hit secret
ke Maore Infa.. .

The signer of the Certificate promises you that the holder of this Certificate is
who they say they are. The encryption level is an indication of how difficult it
would be for someone to eavesdrop on any information exchanged between
wou and this web site,

=Back Mext= Cancel

Figure 266. New Site Certificate Information

Clicking on the More Info... button shows a dialog which contains information
about the issuer of the certificate.

282 Building AS/400 Internet-Based Applications with Java

3 View A Certificate - Netscape

This Certificate belongs to: This Certificate was issued by:
AS400ABC MY COMPANY , COM ITSOSIGN(1)
ITSOROCH [TSO
IBM [BM
Rochester, MIM, US Rochester, MIN, LS

Serial Number: 36: 59 ED: A4
This Certificate is valid from Mon Mov 23, 1998 to Tue Mov 23, 1999
Certificate Fingerprint:

37 :BE:D2: 200 B7 IEEG 22 9F 5466 190 F1: AL 9D 45

Dk

Figure 267. View a Certificate

Clicking on the Next button in the dialog displayed in Figure 266 on page 282,

causes the dialog shown in Figure 268 to appear.

% New Site Certificate - Netscape

3 New Site Certificate

Are you willing to accept this certificate for the purposes of receiving
encrypted information from this web site?

This means that vou will be able to browse through the site and receive
documents from it and that all of these documents are protected from
observation by a third party by encryption.

* asccept this certificate for this session
" Do not accept this certificate and do not connect
" accept this certificate forever Cuntil it expires)

<Back Mext= Cancel

Figure 268. New Site Certificate Acceptance Dialog

The dialog shown in Figure 268 allows us to choose how we want to deal with the
certificate received from the remote site. In this case, we recognize that it is a site
that we can trust, so we set the Accept this certificate for this session radio
button on and click on the Next button. This causes the dialog shown in Figure

269 on page 284 to appear.

Security Considerations

3 Mew Site Certificate - Netscape

3 New Site Certificate

By accepting this certificate you are ensuring that all information you
exchange with this site will be encrypted. However, encryption will not
protect you from fraud.

To protect yourself from fraud, do not send information (especially personal
information, credit card numbers, or passwords) to this site if you have any
doubt about the site's integrity.

For your own protection, Metscape can remind you of this at the appropriate
time,

[warn me before [send information to this site

<Back Mext= Cancel

Figure 269. Netscape Certificate Warning Dialog

After we accept the certificate, the browser displays a final warning that allows us
to choose to be reminded with further warning messages. Clicking on the Next
button starts the SSL session with the remote system. If this is the first time that
we have requested a secure document, we are presented with the dialog shown
in Figure 270.

S ecurity Information

“i'ou have requested a secure document. The document and any
information vou send back are encrepted far privacy while in
tranzit. For mare information on securnty choose Document
Information from the Yiew mernu.

¥ Show This &lert Mext Time

Figure 270. Netscape Security Information Dialog

We can use the check box shown in Figure 270 to control whether we want to see
this warning dialog in the future. If we click on the Continue button, the servlet
application starts as shown in Figure 271 on page 285. The lock Icon shown in
the lower left corner of the browser indicates that we are running under a SSL
session.

284 Building AS/400 Internet-Based Applications with Java

3 Parts Retrieval - Netscape

Stap
B} apptest/Parts.htrl]7| gl

Figure 271. PartsServlet Running under SSL

8.6.2 Additional Resources
For additional information, consult the following resources:

e HTTP Server for AS/400 Webmaster's Guide

Securing Your AS/400 from Harm on the Internet, SG24-4929
http://publib.boulder.ibm.com/pubs/html/as400/ic2924/info/index.htm

Click Internet—>Digital certificate management

http://www.software.ibm.com/webservers/
http://www.ibm.com/security

http://www.ics.raleigh.com
http://www.internet.ibm.com/commercepoint/registry/
http://www.verisign.com/products/doc.html
http://home.netscape.com/assist/security/ssl/index.html
http://www.rsa.com

Security Considerations

285

286 Building AS/400 Internet-Based Applications with Java

Chapter 9. HTTP Server Configuration

This chapter shows the HTTP server configurations that we use for this redbook.
The chapter explains:

» Domino Go Webserver

e ServletExpress

e IBM HTTP Server for AS/400

* IBM WebSphere Application Server for AS/400

9.1 Domino Go Webserver

For more information about Domino Go Webserver, see the Web site:
http://www.software.ibm.com/webservers/dgw.

+t— Lotus Domino Go Webserver - Hetscape

Edit ‘iew Go Communicator Help

| 4 9 2 A a2 @ 3 & @

Brach Foppad Feload }-Tume Search Metscape PFrint Security Stop
j @'What‘s Related

J'Eookmarks A Lozation: |
i &Instanth‘lessaga Internet D" Lookup L‘i NewtCool RealFlayer

y darn/no
Go Webserver

-

Secure and Complete
Web Publishing for Business

Release 4.6.2

@ 1007 Lotus Davelopment Corpsration
1997 International Business Machines Corperation
All rights reserved.

; Thiz coltaate ; Sabjit 15 e Lo SRt A3 A et
Roctited Rhic feell th lalims. Lotis &

t lons & 3
and amira G Veiasrent 8 rademaikef Lotu: Dsvekanmt eparien,

CONFIGURATION AND ADMINISTRATION FORMS
The Configuration and Administration Forms allow you to set up and configure the Lotus Dotnino Go Webserver,

=
22 2| 2

E| | Document: Done

Figure 272. Domino Go Webserver Initial Screen

To see the initial Domino Go Webserver screen, enter the following URL in the
browser Location field:

http://server.0080

If you are physically on the server system, you can replace the server name with
localhost. Perform the following steps:

1. Select CONFIGURATION AND ADMINISTRATION FORMS.

2. You are prompted for security information. The default user ID and password
are both admin .

© Copyright IBM Corp. 1999 287

onfiguration and Administration Forms - Netscape
File Edit “iew Go Communicator Help

< @ A A 2 W 3 & G N

Back Fopward Reload Home Seach Metscape Frint Security Gloy

v wt' Bookmarks £ Localion:Ihttp:Nlocalhost:DUSDx’admin—bin.’cfgin#initia\ j @'What's Related
A ﬁ Instant Message Internet L‘i Lookup |’_|" MewCoal RealPlayer
@ Languages =
Logging and Reporting - Customize access log and error log and generate access log reports
@ Global Log File Confisuration @ Access Log File Confisuration @Error Log File Confisuration
Settings
@ Access Log Beport Templates @ A ccess Beport File Confipuration @ Access Reports
Meta-Information - Name meta-information files and directories
PICS Services Configuration - Manage Platform for Internet Content Selection (PICS) rating services
@E.egister Third-Party Rating @Eequest Label Entries from Third-Party @ faintain PICE Label Entries for Your
Setvices Eating Service ek Site
@Eemster Tour Own Rating Service @ Mantam PICS Tabel Entries for Other
Web Sites
Proxy Settings - Configure server as a proxy
D Proxy Server Sethmes @ Caching Settings @ Caching Filters
@ Cached File Expiration @ Time Limit Cached Files @Titne Litnit for Unused Cached HTTE
Files
@ Expiration Settings for Cached @ Proxy chaining and Mon-Prosy Domains @ Cache Storage Reuse
ETE Files
Request Processing - Specify how the server responds to an incoming request
@TWAPT Application Processing @ Methods @ Eecuest Rosiins request rauiing
Security - Set up security for the server b
9 Secunty Confisuration 9 Create Keys PEecerwe Certficate
PE ey Management

E| |Document: Done

Figure 273. Configuration and Administration Window

3. On the Configuration and Administration Form Screen, select Request
Routing .

288 Building AS/400 Internet-Based Applications with Java

#£ Request Routing - Nelscape
File Edit “iew Go Communicator Help
4 ¥ A 4 s 5 & @
Back, Forward Reload Home Seaich Metzcape Frint Security Stop
— Nf' Bookmarks JL Locatlnn:Ihtlp:#\oca\hosl:EIEIEEI.fadm|n—b|n#cfg|nfmpfru\e j @' What's Related
ﬁ Instant Message Internet D" Laokup D" MNewéCool RealPlayer
[
‘Index Action |Request Template Replacement File Path f{irs\;eggn?ddress or
‘Exampfe: |Map l/siuﬁ"* Vgoodsfuﬂ}f* |9. 8312587
‘ 1 |Service |st age™ |]:NTERNAL UsageFn*
‘2 |serv1|:e |f|:g1-bnvfhhmagex |]:NTERNAL HTTmage™*
‘3 |serv1|:e |1’|:g1-b111.;’1magemap"c |]:NTERNAL HTTmage™*
‘4 |Service |f * jhtrnl |C \ServietExpressiplugins\ntladpter. dll A dapterService
‘5 |Service |f * jsp |C \ServietExpressiplugins\ntladpter. dll A dapterService
‘6 |Service |1' servlet’® |C \ervietExpressipluginsntiadpter. dll A dapterService
7 [Bzec |fadmin-bin* |V A dmint*
2 [Ezec |icai-bin* |C A CGL-Bin
‘9 |P ass |1'rep ortsfjaval™® |C VIRTWRNHTIL weportsjaval*
10 [Pass [ireportsi* | R HTM reports*
i¥ [Pass |[Docsi | R Docs*
2 [Pass |Mtpd-internal-icons™ |[CAWW W Tcons*
‘ 13 |P ass |f1c ons/* |C VITWW cons'* o
14 [Pass |wsdppletr [CrwwRApplets*
15 [Pass [Admin™ gf |V A dmint* gif
15 [Pass i dmint himl |C VA drmin* el
‘ 17 |P ass |1'ServletExpressfresourcesf* |C \ervietExpressiweblresourcesien TTEV*
‘ 18 |P ass |fServletExpressf* |C \ServietEuapressiweb*
‘ 18 |P ass |1' serviets/™ himl |c:\www\html\s ervlets\™* html
‘20 |Pass |1'appletsf* |c:\ServletExpress\servlets\applets*
‘21 |P ass |J'apptestl"* |E.\apptes1:\"C
22 [Pass [+ AW T =
[P | Document: Done 4

Figure 274. Domino Go Routing Table

Figure 274 shows the Domino Go Webserver routing table used for this redbook.
The entries added were:

* Pass /apptest/* \apptest*
This directive allows us serve the gif files from the apptest directory
« Pass /applets/* c:\ServletExpress\servlets\applets*

This directive allows us to serve applets from the applets subdirectory

9.2 ServletExpress

ServletExpress allows you manage the servlets running under the control of the
Web server. You do not have to use ServletExpress to run servlets under the
Domino Go HTTP server if they are stored in the default directory. For the
PartsServlet class, it is stored in a package named servlets. When you export it, it
is exported to a subdirectory named servlets in the default directory. You need to
configure ServletExpress so it can find the PartsServlet class. ServletExpress
also makes it easy for you to load and unload servlets without stopping the Web
server.

HTTP Server Configuration 289

290

We also use ServletExpress to configure the classpath environment variable that
we use. In this case, we use ServiletExpress to add the AS/400 Toolbox for Java
to the classpath variable.

Start your Web browser, perform the following steps:

1. Enter http://server:9090/ for the URL.
2. Make sure you add :9090 after the server name since the administration tool
server listens to the port 9090.

Note

If you are physically on the server, you can replace the server name with
localhost .

3. Login with the administrator user ID and password (the default is
admin/admin). You should see a window similar to the one shown in Figure
275.

Servletlixpress 1.0

EA 2
Fraparizs Lag Out Help
Services Status Wersion J
6_‘} IEM ServietExpress Running
=Y SerletExpress - Lotus Domina Running 1.0
Manage Restart Stop Shut Down

Figure 275. ServletExpress Services Dialog

4. Click on the Manage button.

Building AS/400 Internet-Based Applications with Java

Il IBM ServletExpress - ServietExpress - Lotus Domino Go Webserver/4.6.2.1

Serv h.‘rl.ExI:‘)rf:SS 1.0
"

Sernvlets

Security

&

Monitar

"?’SETUP Elasic] JIT]

Uzer Profile

- Session Tracker
- LogFiles Use Systern Classpath? Yes (& Mo

2

Java Classpath:l cljdkl. 1. Blinclasses.zip, CiSerh

Java Lihpath:l cijdk1 .1 Bbin

Java Path:l cyjdk1.1.Bhin

ErEvE EEvEr Defaults

E | Ungigned Java Applet Window

Figure 276. ServletExpress Setup Window

5. In the Setup Window, use the Basic menu option to set the Classpath
environment variable. Use the system Classpath or set your own. Be sure that
the directory where the AS/400 Toolbox for Java zip file is stored is included in
the Classpath.

6. After setting how the Classpath is resolved, select the Servlets button from
the toolbar. A window appears as shown in Figure 277 on page 292.

HTTP Server Configuration 291

1 IBM ServletExpress - ServietExpress - Lotus Domino Go Webserver - North American Editio... [H[=] E3

dery lt.‘:l.ExI:‘)r(:SS 1.0

bl A

* serviets =]
e Add Add a Mew Servlet

#

Setup

&

b onitor

Sacurity

Servlet Aliases

- Filtering

2~ Configure SeNIetCIass:ISBNIBTS.PaﬁSSBNIe'ﬂ
- CheckMessage

- GetMessage

- GetvariahleText

- hello Bean Sendet { Yes (@ Ko

- invaker

- pageCaompile

- PartsServiet

- ParsServietddbo

- gamhap

Servlet Name:l FParsServlet

Bean Servlet

JarFile:|

- samiisy - Add | Clear |
K| ;lJ

E | Unzigned Java Applet ‘Window

Figure 277. ServletExpress Add Servlet Dialog

7. You can use this window to add any new servlets. For example, to add the
PartsServlet, complete these tasks:
a. Select the Add Servlet options from the Servlets tree and add the
information: Specify PartsServlet in the Serviet Name: text field
b. Specify servlets.PartsServlet in the Servlet Class: text field.

Note: Do not add the .class extension

c. Press the Add button

8. In the next window that appears, you can see that there are options or buttons
to load or unload servlets without the need for shutting down the whole HTTP
server.

292 Building AS/400 Internet-Based Applications with Java

M IBEM ServiletExpress - ServletExpress - Lotus Domino Go ‘Webserver - North American E ditio._. [l[=] [E3
ServletE 1.0
a2 324 Fa? AV N OO
vervietkxpress LA

Setup Monitar | Security || Semwlets Help

Rk servets = configuration] Properties]
Add
Servlet Aliases _ Mame: PartsServiet

= Filtering 5 - I

ascription:

= Configure P
- CheckiMessage Class Name:l semvlets.PartsServiet
= e Load at Startup: © Yes & Mo
- GetMessage
.. GetvariablaTaxt Loaded Mow: (8 es (C Mo
- hella Load Serdet Glass Remotely
- invaker
.. pageCompile Load Remately: Yes (& No
- ParttsServiet Class File URL:I
- PartsSenvlet/dbc
- sammap
- samMsg = Unload | Rernove... | Save Revert

Al ;IJ

E | Unsigned Java Spplet 'Window

Figure 278. ServletExpress Servlet Configuration Dialog

9.3 IBM HTTP Server for AS/400

For more information about the IBM HTTP Server for AS/400, see the Web site:
http://www.as400.ibm.com/http

We store the class files, jar files, gif files, and HTML files used to run the applets
and servlets discussed in this redbook in an Integrated File System (IFS)
directory named apptest

By default, IBM HTTP Server for AS/400 serves servlets from the following
directory:

/QIBM/ProdData/IBMWebAS/serviets
We also use three applets as part of the servlet discussed in Chapter 7,

“Developing AS/400 Java Servlets” on page 221. To keep access to the applets
secure and separate from the servlets, we export them to the following directory:

/QIBM/ProdData/IBMWebAS/serviets/applets

To run the applets and servlets discussed in this redbook, you need to configure
the HTTP Server for AS/400 so it can serve the servlets and applets from these
directories.

HTTP Server Configuration 293

294

— Note

It is beyond the scope of this redbook to describe in detail how to use the
configuration programs for the HTTP Server for AS/400. You can find additional
information about how to configure and work the HTTP Server for AS/400 in the
following manuals:

e HTTP Server for AS/400 Quick Beginnings, GC41-5433
e HTTP Server Webmaster’s Guide, GC41-5434

The configuration task requires that you add directives to the HTTP Server
configuration file for the server configuration that will be used for applet and
servlet serving. The directives to be added are PASSdirectives:

PASS /apptest*
PASS /applets/* /IQIBM/ProdData/IBMWebAS/senvlets/applets

If you want to run servlets on the AS/400 system, you must also add special
directives to the HTTP configuration, see Section 9.4, “IBM WebSphere
Application Server for AS/400” on page 296, for details.

There are two techniques that you can use to add the directives to the server
configuration file:

» Use the browser-based configuration program. You start this program by
entering one of the following URLSs in your browser (substitute your server
name or IP address in the URL):

— http://server_name:2001
— http:/fip_address:2001

Figure 279 on page 295 shows the V4R3 version of the browser-based
configuration program. You need to navigate to the Configurations—>Request
Processing—>Request Routing section of the configuration program to arrive at
the page where you can enter the PASSdirective.

» Use the OS/400 command Work with HTTP Configuration (WRKHTTPCHGT his
command is used in a 5250 session to invoke a line editor that can be used to
add the PASSdirective to a selected configuration file member.

Building AS/400 Internet-Based Applications with Java

a IBM HTTP Server Configuration and Administration - Microsoft Internet Explorer
J File Edit Yiew Go Faworites Help |
= - - 0 fa e e B A 5 |
Back Fanyard Stop Riefresh Home Search Fevorites History Channels | Fullscreen bail Fonts Print Edit
JAddress IE httpef f5103d64g: 2001/ QIBM/HTTPEVR/Admin/gzharmain ndm /rainpage
connguration | N N . N
*Delete Configuration and Administration
configuration R
»Diractories and 20 PASS /QIBM/ProdData/HTTP/Public/lib/* =
Welcome Page 21 Map /it400/% /QIBM/ProdData/HTTP/Public/it400/lib,/*
= Display 22 PASS /QIBM/ProdData/HTTP/Public/utilities/*
configuration 23 PASS /QIBM/ProdData/HTTR/Public/*
= Error message 24 Pass SHTML* SHTML/*
customization 25 Pass JIFS/* JHTMLA*
= Java servlets 26 Pass fifss* JHTML/*
e e 27 Pass /IFS JHTML
REadue 28 Pass fifs JHTML
= Meta-information 22 Pass / L
¥ Erotection
»Proxy Settings Index: |21 x| © Insert before © Replace
~Eeguest @ Insert after ¢ Remove
Processing
= Server APL
application Action: Pass :I'
processing
= Methods URL template: /apptest*
fcuica: Replacement file path: (not valid for action Fail)
routing
= Security Server IP address or host name:
configuration
b System — CGI conversion mode: NONE A
Management
FInternet Uszers |
N = Apply Reset =
= Access control lists
=4 | o
‘@ Daone | | ’7’7@ Local infranet zone &

Figure 279. Browser-based HTTP Server Configuration Program

— Note

Regardless of the technique you use to add the PASSdirective to the HTTP
Server configuration file, be sure that you place the PASSdirective for the
apptest directory before the PASS / directive.

ThePASS / directive is considered to be a "catch-all" directive. If that directive
is encountered before your PASSdirective, the HTTP Server attempts to serve
the requested HTML file from the directory associated with the PASS /
directive.

Start or Restart the HTTP Server Configuration Instance
After adding your PASS directive to the HTTP Server configuration file, you need
to start or restart the HTTP Server configuration instance.

If the HTTP Server instance is not active, use the following OS/400 command to
start the server instance:

STRTCPSVR SERVER(*HTTP) HTTPSVR(DEFAULT)

If the HTTP Server instance is already active, use the following OS/400 command
to restart the server instance:

STRTCPSVR SERVER(*HTTP) RESTART(*HTTP) HTTPSVR(DEFAULT)

For either of those commands, substitute your server instance name if you need

to start or restart a server instance other than DEFAULT For example, we use the
name JAVAS for our configuration file.

HTTP Server Configuration 295

9.4 IBM WebSphere Application Server for AS/400

The IBM WebSphere Application Server for AS/400 provides the same
functionality of what the product provides on the other shipped platforms. On the
AS/400 system, it enables servlet support. Please refer to the official WebSphere
Web site for complete product information. It can be found at:
http://www.software.ibm.com/webservers/appserv/index.html

—— Attention

A number of PTFs are required to enable the WebSphere support on the
AS/400 system. The PTFs are not part of a cumulative tape at this point, so you
need to order them. To see the current list of PTFs, go the Web page
http://www.as400.ibm.com/http and click on the WebSphere Application
Server link.

The AS/400 version has the same installation structure as the other platforms:
<INSTALL_ROQOT>...

In this case, for the AS/400 system, <INSTALL_ROOT> is
/QIBM/ProdData/IBMWebAS/ .

You can configure a server instance of the IBM HTTP Server for AS/400 to run
WebSphere. It is enabled through the Server API of the HTTP Server. Figure 280
shows the configuration directives you need to add to the HTTP server
configuration file to enable WebSphere. For the entire listing of the IBM HTTP
Server for AS/400 configuration file used for this redbook, refer to Appendix B,
“IBM HTTP Server for AS400 Configuration” on page 301.

Enable WehSphere support
Senice /seniet /QSYS LIBIQHTTPSVR.LIBIQZHISVLT.SRVPGM:AdapterService*

Senvice Fjsp /QSYSLIBIQHTTPSVR LIBIQZHISVLT.SRVPGM:AdapterService
Serverinit/QSYS LIBIQHTTPSVR LIBIQZHISVLT.SRVPGM:Adapterinit
1QIBM/ProdData/IBMWebAS/properties/server/seniet'senetservicejvm.properties
ServerTerm /QSYS LIBIQHTTPSVR LIBIQZHISVLT.SRVPGM:AdapterExit
Pass /BMWebAS/samples* /QIBM/ProdData/BMWebAS/samples/*

Pass /BMWebASidoc* /QIBM/ProdData/iIBMWebAS/doc/

Pass IBMWebAS/systerm/admin/* /QIBM/ProdData/IBMWebAS/systermadminf
Pass /BMWebASH /QIBM/ProdData/IBMWebASiveb*

#end - WebSphere support

Figure 280. HTTP Server Directives to Enable WebSphere

In the near future, you can use the Administration and Configuration form of the
HTTP Server to add those directives automatically when you select to enable the
Java Servlet support.

Note: Today, the form is there, but the directives added are not correct for the
WebSphere support.

Once you select the configuration file and add the directives shown in Figure 280
to enable WebSphere, you need to change the jvm.properties files under the
/QIBM/ProdData/IBMWebAS/properties/server/servlet/servietservice/

directory. Change the following line in the file to point to your configuration file,

296 Building AS/400 Internet-Based Applications with Java

the shipped default is CONFIG. In this case, we use a configuration file named
JAVAS.

Properties for Domino Go
#ncf.native httpd.cnf.path=c\winnthttpd.cnf
ncf native.hitpd.cnf path=/QSYS.LIBIQUSRSYS.LIBIQATMHTTPC.FILE/ JAVAS.MBR

Figure 281. JVM Properties File

Once you change this line, you are ready to start the IBM WebSphere Application
Server on the AS/400 system. Start the HTTP server instance that points to the
configuration file that you have configured for WebSphere.

Note

It may take a little longer than you expect for your HTTP server instance to
come up due to the fact that it needs to create a Java Virtual Machine for
WebSphere to run under. Watch the server instance on WRKACTJOB until you
see it finish bring coming up and going into TIMW status.

9.4.0.1 Verifying the Installation

To verify that you have WebSphere set up correctly, try to run the
HelloWorldServlet as your first servlet on the AS/400 system. Set the URL on
your browser to:

http:/fyourAS400Server:xoxd/servietHellowWorldSenviet

yourServer:xxxx is your server name and the corresponding port number you
used for this server.

If you "Hello World" appears as the result, your WebSphere Application Server is
set up and ready. Again, you need to be patient here to allow the servlet to be
loaded into the Java Virtual Machine.

9.4.0.2 WebSphere Administration Graphical User Interface

The IBM WebSphere Application Server also provides its own Web-based GUI for
configuration, called the Application Server Manager. To get to the GUI, point
your browser to the following URL:

http:/iyourAS400Server:9090

The WebSphere Signon window appears as shown in Figure 282 on page 298.

HTTP Server Configuration 297

298

M WebSphere Application Server Manager - Nelscape

File Edit “iew Go Communicator Help

- s w . e
“ » A 3 = 5 & @
Back Forward Reload Hame Search Metscape Print Security Stop
Y w‘ T Bookmarks \)& Go ko Ihtlp:#.fyourAS 4005k rver: 3090/ j @' “what's Related
i J% Instant Message Internet D" Lookup ['_|" WNewiCool FiealPlayer

IBM WebSphere

Application Server 14}

IBM WehSphere Application Server Manager - Computer yourasS400Server

User Name:l

Password:|

Log In | Help | About |

Ifyou have justinstalled
type "admin" for user and passwaord

,E| | Applet com. sun.server. admin.toolkit.AdminApplet unning

Figure 282. WebSphere Sign On Screen

The graphical user interface provides configuration screens that allow you to
configure servlets. The screens and the configuration scenario is the same as for
ServletExpress used with the Domino Go Webserver. Please see Section 9.2,
“ServletExpress” on page 289 for details about configuring servlets. You do not
need to use the Application Server Manager to run servlets on the AS/400 system
from the default directory. For the PartsServlet class, it is stored in a package
named servlets. When you export it, it is exported to a subdirectory named
servlets in the default directory. You need to configure WebSphere so it can find
the PartsServlet class. The WebSphere graphical user interface also makes it
easy for you to load and unload servlets without stopping the Web server.

We also use the Application Server Manager to configure the classpath
environment variable that we use. In this case, we use the Application Server
Manager to add the AS/400 Toolbox for Java to the classpath variable.

The Application Server Manager also makes it easy for you to load and unload
servlets without starting and stopping the HTTP server.

Building AS/400 Internet-Based Applications with Java

Appendix A. Exam ple Programs

The Java programs and the AS/400 programs and libraries used in this redbook
are available for you to download from the Internet. These examples were
developed using VisualAge for Java Version 2.0 Enterprise edition. 0S/400 V3R2
or later is required. To run the servlet examples on the AS/400 system, OS/400
V4R3 or later is required. The following VisualAge for Java projects are available:

» AdvancedServlet —Advanced servlet example. See Chapter 7, “Developing
AS/400 Java Servlets” on page 221.

« AppletWorksho p—Advanced applet example. See Chapter 6, “Developing
AS/400 Java Applets” on page 193.

» ServletExamples —Beginning applets and servlet examples. See Chapter 3,
“Introduction to AS/400 Applets” on page 51 and Chapter 4, “Introduction to
AS/400 Servlets” on page 159.

Important Information

These example programs have not been subjected to any formal testing. They
are provided "as is". Use them for reference only. Please refer to Appendix C,
“Special Notices” on page 303, for more information.

A.1 Downloadin g the Files from the Internet Web Site

To use these files, you must download them to your personal computer from the
Internet Web site. A file named README.TXT is included. It contains instructions
for restoring the AS/400 libraries, the VisualAge for Java examples and runtime

notes. The URL to access is: www.redbooks.ibm.com

Click on Additional Materials and select the directory SG245337. In the
SG245337 directory, click on readme.txt .

A.2 Settin g up VisualA ge for Java

VisualAge for Java, Enterprise Edition, Version 2.0 requires the following
software and hardware for development with the IDE:

* Windows 95 or Windows NT 4.0 with service pack 3
e TCP/IP communication protocol
« Pentium processor or higher recommended
SVGA 800x600 display or higher (1024x768 recommended)
* 64 MB RAM minimum (80 MB recommended)
« Frames-capable Web browser
— Netscape Navigator 4.04 or higher, or
— Microsoft Internet Explorer 4.01 or higher
« Java Development Kit (JDK) 1.1 for deploying applications or
JDK 1.1.2 for deploying applications using Swing components

The Java support classes described in the following sections are required:

© Copyright IBM Corp. 1999 299

A.2.1 The AS/400 Toolbox for Java Classes

The example programs require that the AS/400 Toolbox for Java classes be
inside the VisualAge for Java Integrated Development Environment. You must
import these classes inside the IDE. Enterprise Edition simplifies this process.
After you install VisualAge for Java 2.0 Enterprise edition, the Toolbox classes
are available in the repository as part of the IBM Enterprise Toolkit for AS/400
project. If you want to use the Toolbox classes, perform the following steps:

1. From the workbench, click on File—>Quick Start .
2. Click on Features—>Add Feature—>0OK .
3. Select IBM Enterprise Toolkit for AS/400—>0K

This adds the toolbox classes to your workspace. The IBM Enterprise Toolkit for
AS400 is listed under All projects.

The alternative is to perform the following steps:

1. Install LPP 5763-JC1 on an AS/400 system.
2. Download the classes to your workstation.
3. Import the classes into the VisualAge for Java IDE.

A.2.2 IBM Enterprise Data Access Libraries

The example programs use these supporting classes. To add them, perform
these tasks:

1. From the workbench, click on File—>Quick Start .
2. Click on Features—>Add Feature—>0OK .
3. Select IBM Enterprise Data Access Libraries—>0K

A.2.3 Sun JSDK Class Libraries

The example programs use these supporting classes. To add them, perform
these steps:

Select Selected from the Workbench menu.

Select Add—>Project from the pulldown menu.

Click on the Add projects from the repository radio button.
Select the Sun JSDK class libraries project

Click on the Finish button.

aogrwnpE

A.2.4 Netscape Security

300

The example programs use these supporting classes. To add them:

Select Selected from the Workbench menu.

Select Add—>Project from the pulldown menu.

Click on the Add projects from the repository radio button.
Select the Netscape Security project

Click on the Finish button.

OrwDdE

Building AS/400 Internet-Based Applications with Java

Appendix B. IBM HTTP Server for AS400 Configuration

This appendix contains the configuration file used for the IBM HTTP Server for
AS/400. The name of the configuration file is JAVAS. It uses port 1040.

mlo #***************************

00020 # IBMHTTP Server for AS/400
...‘4. #***************************
00200 #
00210 # ** PORT DIRECTIVES **
00220 #
00230 #The defautt portfor HTTPis 80. If you change this
00240 #use aportnumber greater than 1024.
00250 #
00260 #
00270 #Syntax:
00280 # Port <port number>
00290 #
00300 Port 1040
01090 Pass/ /QIBM/ProdDatae/HT TP/PublicHT TPSVRHTMLAVelcome himl
01100 Pass/samplef /QIBM/ProdData/HT TPPublicHT TPSVRHTMLA
01110 Serice /[senviet* IQSYS.LIBIQHTTPSVR LIBIQZHISVLT.SRVPGM:AdapterService*
01120 Senice fjhiml /QSYSLIBIQHTTPSVR LIBIQZHISVLT.SRVPGM:AdapterService
01130 Senice f*jsp /QSYSLIBQHTTPSVR.LIBIQZHISVLT.SRVPGM:AdapterService
01140 Map /netdata’* /QSYS.LIB/A9BOSO1ALIBIDB2WWW PGMA
01710 IconPath /QIBMMHTTPSVR/cons/
01720 Addicontextgif text text*
01730 Addiconhtmlgf html texthiml
01740 Addicon binary.gif bin application/*
01750 Addicon compressgifZ application/x-compress
01760 Addicon compress.gifgzip application/x-gzip
01770 Addiconimagegif img image/*
01780 Addiconmoviegif vid video*
01790 Addiconsoundgf au audio®
H

01810 # ** AddType #*

01820 #

01830 #Tobind fles with a particular suffix toa MIME

01840 #typelsubtype, use AddType. Muliple occurences

01850 #are alowed.

01860 AddType javatext/plain binary 1.0

01870 AddType htmltexthtml 8bit 1.0

01830 AddType htm texthtml 8bit 1.0

01890 AddType gif image/gif binary

02330 Map /BMWebAS/samples* /QIBM/ProdData/IBMWebAS/samples/*

02340 Map /BMWebAS/dock /QIBM/ProdData/lBMWebAS/doc

02350 Map /BMWebAS/systerm/admin/ /QIBM/ProdData/lBMWebAS/systerm/admin/

02360 Map /BMWebASH /QIBM/ProdDaia/IBMWebASAvelh

02370 Pass /apptestt

02380 Pass /applets* /Qibm/proddataibmwebasisenets/applets

02390 Exec /QSYSLIB/A9BOS01ALIBA

02400 Serverlnit/QSYS.LIBIQHTTPSVR LIBIQZHISVLT.SRVPGM:Adapterinit
/QIBM/ProdData/IBMWebAS/properties/server/senietisenietservicevm.properties

02410 ServerTerm /QSYS.LIBIQHTTPSVR LIBIQZHISVLT.SRVPGM:AdapterExit

02420 Enabe GET

02430 Enabe HEAD

02440 Enable POST

02450 Enable OPTIONS

02460 Enable TRACE

02470 Disable CONNECT

02480 nomamode On

02490 ssimode On

02500 sslport 443

02510 SSLClentAuth Off

02520 keyfile QIBMUSERDATAICSS/ICERT/SERVERDEFAULTKYR

© Copyright IBM Corp. 1999 301

302 Building AS/400 Internet-Based Applications with Java

Appendix C. Special Notices

© Copyright IBM Corp. 1999

This publication is intended to help anyone who want to build AS/400 Internet
based applications with Java. The information in this publication is not intended
as the specification of any programming interfaces that are provided by VisualAge
for Java or the AS/400 Toolbox for Java. See the PUBLICATIONS section of the
IBM Programming Announcement for VisualAge for Java and the AS/400 Toolbox
for Java for more information about what publications are considered to be
product documentation.

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent program that does not infringe any of IBM's intellectual property rights
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any formal
IBM test and is distributed AS IS. The information about non-IBM ("vendor")
products in this manual has been supplied by the vendor and IBM assumes no
responsibility for its accuracy or completeness. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been reviewed by
IBM for accuracy in a specific situation, there is no guarantee that the same or
similar results will be obtained elsewhere. Customers attempting to adapt these
techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of these
Web sites.

Any performance data contained in this document was determined in a controlled
environment, and therefore, the results that may be obtained in other operating
environments may vary significantly. Users of this document should verify the
applicable data for their specific environment.

303

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of including
these reference numbers is to alert IBM customers to specific information relative
to the implementation of the PTF when it becomes available to each customer
according to the normal IBM PTF distribution process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

AFP IBM O

AIX 0S/390

AS/400 0S/2

Client Access 0S/400

DB2 VisualAge
400

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.
Java and HotJava are trademarks of Sun Microsystems, Incorporated.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks
or registered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used
by IBM Corporation under license.

Pentium, MMX, ProShare, LANDesk, and ActionMedia are trademarks or
registered trademarks of Intel Corporation in the U.S. and other

countries.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or
service marks of others.

304 Building AS/400 Internet-Based Applications with Java

Appendix D. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

D.1 International Technical Su pport Or ganization Publications

For information on ordering these ITSO publications see “How IBM Employees
Can Get ITSO Redbooks” on page 307.

 Building AS/400 Applications with Java, SG24-2163
» Application Development with VisualAge for Java Enterprise, SG24-5081
» Securing Your AS/400 from Harm on the Internet, SG24-4929

D.2 Redbooks on CD-ROMs

Redbooks are also available on CD-ROMs. Order a subscription and receive
updates 2-4 times a year at significant savings.

CD-ROM Title Subscription Collection Kit
Number Number
System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection = SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038
Lotus Redbooks Collection SBOF-6899 SK2T-8039
Tivoli Redbooks Collection SBOF-6898 SK2T-8044
AS/400 Redbooks Collection SBOF-7270 SK2T-2849
RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RS/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
RS/6000 Redbooks Collection (PDF Format) SBOF-8700 SK2T-8043
Application Development Redbooks Collection SBOF-7290 SK2T-8037

D.3 Other Publications
These publications are also relevant as further information sources:
» HTTP Server for AS/400 Quick Beginnings, GC41-5433
e HTTP Server Webmaster’s Guide, GC41-5434
« Java in a Nutshell 1ISBN 1-56592-183-6
« Java Developer's Reference, ISBN 1-57521-129-7
Object Oriented Technology: A Manager's Guide, ISBN 0-201-56358-4

© Copyright IBM Corp. 1999 305

306 Building AS/400 Internet-Based Applications with Java

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks, CD-ROMs,
workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The latest information
may be found at htip:/Avww.redbooks.ibm.com/

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKSs, and CD-ROMSs) and information about
redbooks, workshops, and residencies in the following ways:

* Redbooks Web Site on the World Wide Web
http://w3.itso.ibm.com/
* PUBORDER - to order hardcopies in the United States
* Tools Disks
To get LIST3820s of redbooks, type one of the following commands:

TOOLCAT REDPRINT
TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get BookManager BOOKSs of redbooks, type the following command:
TOOLCAT REDBOOKS
To get lists of redbooks, type the following command:
TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT
To register for information on workshops, residencies, and redbooks, type the following command:
TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1998
« REDBOOKS Category on INEWS
e Online — send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

— Redpieces

For information so current it is still in the process of being written, look at "Redpieces" on the Redbooks Web Site
(http:/Amww.redbooks.ibm.com/redpieces.html). Redpieces are redbooks in progress; not all redbooks become
redpieces, and sometimes just a few chapters will be published this way. The intent is to get the information out
much quicker than the formal publishing process allows.

© Copyright IBM Corp. 1999 307

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMSs) and information about
redbooks, workshops, and residencies in the following ways:

¢ Online Orders - send orders to:

IBMMAIL Internet
In United States usib6fpl at ibmmail usib6fpl@ibmmail.com
In Canada caibmbkz at ibmmail Imannix@vnet.ibm.com
Outside North America dkibmbsh at ibmmail bookshop@dk.ibm.com

e Telephone Orders

United States (toll free)
Canada (toll free)

1-800-879-2755
1-800-IBM-4YOU

Outside North America (long distance charges apply)

(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch

(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(+45) 4810-1020 - German
(+45) 4810-1620 - Italian

(+45) 4810-1270 - Norwegian

(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

¢ Mail Orders — send orders to:

IBM Publications IBM Publications IBM Direct Services
Publications Customer Support 144-4th Avenue, S.W. Sortemosevej 21
P.O. Box 29570 Calgary, Alberta T2P 3N5 DK-3450 Allergd
Raleigh, NC 27626-0570 Canada Denmark

USA
¢ Fax — send orders to:

United States (toll free) 1-800-445-9269
Canada 1-800-267-4455
Outside North America (+45) 48 14 2207 (long distance charge)

¢ 1-800-IBM-4FAX (United States) or (+1) 408 256 5422 (Outside USA) — ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

¢ On the World Wide Web

Redbooks Web Site
IBM Direct Publications Catalog

http://www.redbooks.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl

—— Redpieces

For information so current it is still in the process of being written, look at "Redpieces" on the Redbooks Web Site
(http:/Amww.redbooks.ibm.com/redpieces.html). Redpieces are redbooks in progress; not all redbooks become
redpieces, and sometimes just a few chapters will be published this way. The intent is to get the information out
much quicker than the formal publishing process allows.

308 Building AS/400 Internet-Based Applications with Java

IBM Redbook Order Form

Please send me the following:

Title

Order Number

Quantity

First name Last name

Company

Address

City Postal code

Country

Telephone number Telefax number

O Invoice to customer number

VAT number

O Credit card number

Credit card expiration date Card issued to

Signature

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

309

310 Building AS/400 Internet-Based Applications with Java

List of Abbreviations

AFP
APA
AWT
cPW

EAB
DAX
DDM
DPC
FFST

GUI
HTML
IBM

IDE

ITSO

JAR
JDBC
JDK

© Copyright IBM Corp. 1999

advanced function printing
all points addressable
Abstract Windowing Toolkit

Commercial Processing
Workload

Enterprise Access Builder
Data Access Builder
Distributed Data Management
Distributed Program Call

First Failure Support
Technology

Graphical User Interface
Hypertext Markup Language

International Business
Machines Corporation

Integrated Development
Environment

International Technical
Support Organization

Java archive
Java Database Connectivity

Java Development Toolkit

JFC
JIT
JVM
Mi
OOA
ooD
ooP
PTF
RAD

RMI
SCS
SLIC

SSL
TIMI

UML

URL
VCE
www

Java Foundation Classes
Just in Time Compiler

Java Virtual Machine
Machine Interface

Object Oriented Analysis
Object Oriented Design
Object Oriented Programming
Program Temporary Fix

Rapid Application
Development

Remote Method Invocation
SNA Character Set

System Licensed Internal
Code

secure sockets layer

Technology Independent
Machine Interface

Unified Methodology
Language

Universal Resource Locator
Visual Composition Editor
World Wide Web

311

312 Building AS/400 Internet-Based Applications with Java

Index

Numerics
5763-JC1 58, 300
5769-AC1 41, 47, 269
5769-AC2 41, 47
5769-AC3 41, 47
5769-DG1 41, 269
5769-NC1 41, 47
5769-NCE 41, 47
5769-SS1 41, 269

A

abbreviations 311
acronyms 311
ActiveX 29, 133, 142
Add projects from the repository 59
All Problems tab 58
APPLET tag 30, 111, 217
Applet Viewer 51, 69, 74, 75, 79
applets 1, 6, 28, 51, 221
applet development scenario 193
applet processing 31
how applets are different from Net.Data and CGlI pro-
grams 32
sample applet 32
scripting 29
serving applets from the AS/400 system 130
serving the applet from the PC drive 106
when to use 34
AppletViewer Properties dialog 76
ARCHIVE 131
ARCHIVE tag 106, 110
AS/400 Toolbox for Java 6, 51, 133, 168, 218, 222, 291,
300
ASCll 3
ASCIl to EBCDIC 3
authenticity 263
AUTOEXEC.BAT. 126

B
bibliography 305

C
Cart applet 194
CartApplet class 197
cert2spc 116
Certificate Authority (CA) 115, 261, 264, 268, 281
CGl 1,6,15,41,44
APIs 17
Processing 16
sample RPG-CGI 20
when to use 28
why use 15
chkjava 116
Choose Bean 65
Choose Beanicon 63

© Copyright IBM Corp. 1999

Class Path 70, 71
CLASSPATH 128, 129, 132
Windows 95/98 126
Windows NT 126
CLASSPATH environment variable 125
com.ibm.as400.access.AS400JDBCDriver 58
com.ibm.ivj.eab.dab 58
Common Gateway Interface 1
Company Database
Customer 179
District 179
Item 179
Order 179
Order Line 179
Stock 179
Compute Now button 74
confidentiality 263
configure a digital certificate environment 269
CPW databases 193
cryptographic support 47
Customer Table Layout (CSTMR) 189

D
dataAccess 62
DataAccessor interface 80, 89
methods 89
DB2WWW 7
DbSelectServlet 243
digital certificate 114, 267
Digital Certificate Manager 41, 47, 261
Digital Certificate Manager (DCM) 268, 270, 272, 277,
278
Digital certificates 115, 263, 281
digital signature 263
Distributed Data Management (DDM) 80
District Table Layout (Dstrct) 189
doDelete 164
doDelete() 161
doGet() 161
domain 62
domino Go Webserver 174, 221, 222, 257, 287
routing table 289
doPost() 161
doPut 164
doPut() 161

E

EBCDIC 3
EBCDIC to ASCIl 5
encryption 263

F
FORM 31
forms 2

313

G Netscape Navigator 142

Generate meta data method 68 network access 154
Get method 3 running 137
getParameter() 165 show Java Console 154
getParameterNames() 165 summary 156
getParameterValues 173 Java serylets 1
getParameterValues() 165 JavaScript 29

gif files 258, 260 JDBC 58, 80, 168

properties object 93
JDBCPartsCatalog class 90

H methods 90
HelloWorldServiet 166 jt400.jar 109, 128, 130
HotJava 28 jt400.zip 109, 125, 128, 129, 132

HTML 2, 4, 106, 133, 172
HTTP 3, 42, 164, 270

HTTP 1.1 42,164 L]]
HTTPS 263, 265 launching the Applet Viewer 74
HttpServletResponse 37 LDAP 280
Hypertext Markup Language 2 Lotus Domino server 5
| M
IBM Enterprise Access Libraries 198 makecert 116
IBM Enterprise Data Access Libraries 58, 59, 72, 300 Microsoft Internet Explorer 28, 113, 156, 221
IBM Enterprise Toolkit for AS/400 project 300 _ signed cabinet file 114 _
IBM Enterprise Toolkit for AS400 59, 72 Microsoft Java Software Development Kit (SDK) 115
IBMHTTP Server for AS/400 1, 3,5, 31, 41, 43,51, 114,
132, 174, 177, 178, 221, 260, 261, 287, 296 N
serving applets frqm _129 NetData 1,6
IBM WebSphere Application Server for AS/400 41, 48, Net.Data macros 9

177, 287 . Net.Data Processing 7
Application Server Manager 297 sample Net.Data macro 10
import 52 whentouse 14

import dialog 55 Netscape 110, 112

Import SmartGuide 53 enablePrivilege code 112
Integrated PC Server (IPCS) 6 Java console 110

Internet Connection Secure Server (ICSS) 47 security prompt 112

Internet Connection Server (ICS) 41 Netscape Navigator 28, 156, 221

Internet shopping application 193 security 93
CartApplet applet 211, 215
IltemsDb class 200
Selectedltems class 198
ToolboxApplet" applet 209

Netscape Security 59, 72
Netscape Security project 59, 300

ltem Table Layout (ITEM) 191 O
ltemsDb 197 OoDBC 5
IltemsDb class 197 ORDENTR 181
Order Line Table Layout (ORDLIN) 190
J Order Status applet 196

Order Table Layout (ORDERS) 190
JarMaker 157

Java and REXX CGl 44

Java applets 1 P
Java Console 110 Part class 96
Java Plug-in 51, 133, 156 methods 97
a step-by-step approach 134 PartsCatalog bean 63
cache JARs in memory 154 PartsCatalog class 100
control panel 154 defaultDataAccessor method 101
enable Java Plug-in 154 methods 100
HTML converter 136 PartsServlet servlet 167
Internet Explorer 140 PartsView applet 51, 61, 112
Java run time parameters 154 running 77

314 Building AS/400 Internet-Based Applications with Java

PartsView class 81 init method 163

handleException 87 introduction to the servlet support 160
methods 82 invoking 165

persistent CGI 41, 45 javax.servlet 169

persistent connections 42 javax.servlet.http 169

Plug-in 133 lifecycle 163

Post method 3 parameters 164

Project path field 72 running on the AS/400 system 177

Proxy caching 43 sample servlet 37

Proxy logging 44 service method 163

PRTODERR 181 servlet processing 35

servlets versus CGl 162
three tier implementation 175

two tier implementation 177
QOpenSys 43 when to use 39

QTMHHTTP 274 why use 34, 161

QtmhWrStout 20 set Applet attributes 71

QZHBCC_':" 17 setting AppletViewer properties 75

QzhbCgiParse 18, 44 Setting up VisualAge for Java 299
shopping application 193

R signcode 116
redbook.dat repository 55 signed cabinet file 114, 120
repository 55 creating 114

SLTCUSTR 181

requesting a server certificate 277
SLTPARTR 181

resolving problems in the imported applet 57

RPG application flow 181 SQLOrder 243
RPG order entry application 179 SQLWhere 243
customer transaction flow 181 SQLwizard 243
ORDENTR 181 SSL 267
PRTODERR 181 Configure the Web Server to Use 275
SLTCUSTR 181 Standard Input (STDIN) 3
SLTPARTR 181 Standard Output (STDOUT) 5
tables 189 StatusApplet 197
runnable class 72 StatusApplet class 197
STDIN 27
STDOUT 28, 37
S Stock Table Layout (Stock) 191
Secure Sockets Layer (SSL) 41, 221, 261, 272 STRTCPSVR 295
Selectedltems 197 Sun Java Plug-in 133
Selectedltems class 197, 198 Sun JSDK 169
self-signed certificate 269 class libraries 300
servlet package 169 Sun JSDK class libraries 300

ServletExpress 175, 257, 287
add servlet dialog 292

configure 176, 289 T

services dialog 290 TCP/IP 263

servlet configuration dialog 293 TestPart class 94

setting the Classpath 291 methods 95

setup window 291 Thawte 268, 277
ServletRequest 164 Toolbox applet 194
ServletResponse 164 ToolboxApplet class 197
servlets 1, 6, 34, 41, 159, 221 Tools for Internet Development on the AS/400 6

communication with an HTTP server 164

destroy method 163 Vv

developing a servlet application 166 VBScript 29

doGet 164, 170 vector 85, 198

doPost 164, 172 VectorEnumeration 198

HelloWorldServlet 166, 297 VeriSign 268, 277
how to use 163 virtual hosts 42, 43
HTML 172

Visual Composition editor 66

315

VisualAge for Java IDE 52
VisualAge for Java workspace 64

W

WebSphere Administration Graphical User Interface 297

WebSphere Application Server 41, 48, 177

WebSphere Application Server for AS/400 177, 257, 259
Application Server Manager 297
what it provides 48

WebSphere Sign On screen 298

WRKHTTPCFG 294

316 Building AS/400 Internet-Based Applications with Java

ITSO Redbook Evaluation

Building AS/400 Internet-Based Applications with Java
SG24-5337-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete this
questionnaire and return it using one of the following methods:

* Use the online evaluation form found at http://www.redbooks.ibm.com
» Fax this form to: USA International Access Code + 1 914 432 8264
« Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
_ Customer _ Business Partner _ Solution Developer __IBM employee
__None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction
Please answer the following questions:
Was this redbook published in time for your needs? Yes_ __ No

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

© Copyright IBM Corp. 1999 317

SG24-5337-00

Building AS/400 Internet-Based Applications with Java

Printed in the U.S.A.

SG24-5337-00

s

	Contents
	Figures
	Tables
	Preface
	The Team That Wrote This Redbook
	Comments Welcome

	Chapter 1. AS/400 Internet Application Development Overview
	1.1 From Server to Browser and Back—Fundamental Concepts
	1.1.1 The Requesting Web Page
	1.1.2 The Web Serving Application

	1.2 AS/400 Internet Application Development Techniques
	1.2.1 Other Approaches for Internet Applications
	1.2.2 Four Tools for Internet Development on the AS/400 System

	1.3 Net.Data
	1.3.1 Why Use Net.Data
	1.3.2 Net.Data Processing
	1.3.3 How Net.Data Macros are Invoked
	1.3.4 A Sample Net.Data Macro
	1.3.5 Source Code for the Net.Data Sample Macro
	1.3.6 When to Use Net.Data

	1.4 Common Gateway Interface (CGI) Programming
	1.4.1 Why Use CGI Programming
	1.4.2 CGI Processing
	1.4.3 APIs Used for CGI Programming
	1.4.4 A Sample RPG-CGI Program
	1.4.5 Source Code for the CG_PARTS CGI Program
	1.4.6 Summary of the CGI Sample Program
	1.4.7 When to Use CGI Programs

	1.5 Java Applets
	1.5.1 The Scripting Alternative
	1.5.2 How Applets are Different from Scripting
	1.5.3 Applet Processing
	1.5.4 How Applets are Different from Net.Data and CGI Programs
	1.5.5 A Sample Applet
	1.5.6 When to Use Applets
	1.5.7 Applet Development

	1.6 Java Servlets
	1.6.1 Why Use Servlets
	1.6.2 Servlet Processing
	1.6.3 A Sample Servlet
	1.6.4 When to Use Servlets
	1.6.5 Servlet Development

	Chapter 2. IBM HTTP Server for AS/400
	2.1 Product Packaging
	2.2 HTTP 1.1 Protocol
	2.2.1 Persistent Connections
	2.2.2 Virtual Hosts

	2.3 Proxy, Cache, and Local Memory Cache
	2.3.1 Proxy Caching
	2.3.2 Proxy Logging
	2.3.3 Local Memory Cache

	2.4 CGI Programming
	2.4.1 Java and REXX CGI
	2.4.2 Non-parsed Headers CGI
	2.4.3 QzhbCgiParse API

	2.5 Persistent CGI
	2.5.1 How Persistent CGI Works
	2.5.2 Controlling Persistent CGI

	2.6 Cryptographic Support, Certificates, and Digital ID
	2.6.1 Cryptographic Access Provider
	2.6.2 Digital Certificate Manager
	2.6.3 Digital ID

	2.7 WebSphere Application Server for AS/400
	2.7.1 What WebSphere Provides
	2.7.2 Accessing the WebSphere Server

	2.8 Summary

	Chapter 3. Introduction to AS/400 Applets
	3.1 The PartsView Applet
	3.1.1 Importing the Source Code for the Applet to the Workbench
	3.1.2 Resolving Problems in the Imported Applet
	3.1.3 Overview of Classes Used in the PartsView Applet
	3.1.4 Working with the Applet in the Visual Composition Editor
	3.1.5 Testing the Applet in the VisualAge for Java Applet Viewer

	3.2 Detailed Review of Java Classes Used in the Applet
	3.2.1 Design of the Applet
	3.2.2 Testing and Debugging Features in the PartsView Applet
	3.2.3 The PartsView Class
	3.2.4 The DataAccessor Interface
	3.2.5 The JDBCPartsCatalog Class
	3.2.6 The TestPart Class
	3.2.7 The Part Class
	3.2.8 The PartsCatalog Class

	3.3 Running the Applet in a Browser
	3.3.1 Test Environment
	3.3.2 Serving the Applet from the PC Drive
	3.3.3 Creating a Signed Cabinet File for Microsoft Internet Explorer 4.01
	3.3.4 Using the CLASSPATH Environment Variable
	3.3.5 Considerations for Using CLASSPATH
	3.3.6 Serving Applets from the HTTP Server for AS/400

	3.4 Working with the Sun Java Plug-in
	3.4.1 Java Plug-in Basics
	3.4.2 Working with the Java Plug-in—A Step-by-Step Approach
	3.4.3 Summary of the Java Plug-in

	3.5 Conclusion

	Chapter 4. Introduction to AS/400 Servlets
	4.1 Introduction to the Servlet Support
	4.1.1 Why Use Servlets
	4.1.2 Servlets versus CGI.BIN

	4.2 How to Use Servlets
	4.2.1 Communication with an HTTP Server
	4.2.2 Invoking a Servlet

	4.3 A Simple Servlet
	4.4 Developing the Servlet Application
	4.5 Migrating the Applet to a Servlet
	4.5.1 Enhancing the Servlet

	4.6 Executing the Servlet
	4.6.1 Running under the Domino Go Webserver
	4.6.2 Running under the IBM HTTP Server for AS/400
	4.6.3 Running Servlets on the AS/400 System
	4.6.4 Running the PartsServlet Servlet on the AS/400 System

	Chapter 5. Overview of the Order Entry Application
	5.1 Overview of the Order Entry Application
	5.1.1 The ABC Company
	5.1.2 The ABC Company Database
	5.1.3 A Customer Transaction
	5.1.4 Application Flow
	5.1.5 Customer Transaction Flow
	5.1.6 Database Table Structure
	5.1.7 Order Entry Application Database Layout
	5.1.8 Database Terminology

	Chapter 6. Developing AS/400 Java Applets
	6.1 Shopping Application User Interface
	6.2 Shopping Application Objects and Classes
	6.3 The SelectedItems Class
	6.3.1 Writing the Class
	6.3.2 Writing the Methods

	6.4 The ItemsDb Class
	6.4.1 Common Methods All Applets Use
	6.4.2 Methods Used by the Toolbox Applet
	6.4.3 Methods Used by CartApplet
	6.4.4 Methods Used by the StatusApplet

	6.5 The Toolbox Applet
	6.5.1 The addAllRows Method
	6.5.2 The getSelectedIndexes Method
	6.5.3 Checking the Connections

	6.6 The Cart Applet
	6.6.1 Writing the Class
	6.6.2 Viewing the Methods

	6.7 The Order Status Applet
	6.8 Testing the Applets
	6.9 Serving the Applets from the AS/400 System

	Chapter 7. Developing AS/400 Java Servlets
	7.1 Running the Application
	7.2 Application Programs
	7.2.1 How the Application Works

	7.3 The Java Application Programs
	7.3.1 System Performance Servlet
	7.3.2 Database Query

	7.4 Running the Application
	7.4.1 Domino Go Webserver
	7.4.2 IBM HTTP Server for AS/400

	Chapter 8. Security Considerations
	8.1 Internet Security Elements
	8.1.1 Transaction Security and Secure Sockets Layer
	8.1.2 HTTP Server Over SSL (HTTPS)

	8.2 Digital Certificates and Certificate Authority
	8.3 AS/400 Implementation of Digital Certificate Management
	8.3.1 Configuring a Digital Certificate Environment

	8.4 Creating a Self-Signed Certificate
	8.4.1 Creating an Intranet Certificate Authority
	8.4.2 Creating a Server Certificate with Your Intranet CA
	8.4.3 Configuring the Web Server to Use SSL with Server Authentication

	8.5 Requesting a Server Certificate from an Internet CA
	8.5.1 Requesting a Server Certificate from an Internet CA
	8.5.2 Receiving a Server Certificate for this Server
	8.5.3 Configuring the HTTP Server to Use SSL

	8.6 Applying Security to the Applications
	8.6.1 Servlets
	8.6.2 Additional Resources

	Chapter 9. HTTP Server Configuration
	9.1 Domino Go Webserver
	9.2 ServletExpress
	9.3 IBM HTTP Server for AS/400
	9.4 IBM WebSphere Application Server for AS/400

	Appendix A. Example Programs
	A.1 Downloading the Files from the Internet Web Site
	A.2 Setting up VisualAge for Java
	A.2.1 The AS/400 Toolbox for Java Classes
	A.2.2 IBM Enterprise Data Access Libraries
	A.2.3 Sun JSDK Class Libraries
	A.2.4 Netscape Security

	Appendix B. IBM HTTP Server for AS400 Configuration
	Appendix C. Special Notices
	Appendix D. Related Publications
	D.1 International Technical Support Organization Publications
	D.2 Redbooks on CD-ROMs
	D.3 Other Publications

	How to Get ITSO Redbooks
	How IBM Employees Can Get ITSO Redbooks
	How Customers Can Get ITSO Redbooks
	IBM Redbook Order Form

	List of Abbreviations
	Index
	ITSO Redbook Evaluation

