
Building AS/400 Internet-Based Applications
with Java

Bob Maatta, Markus Abegglen, Craig Pelkie, Brian Skaarup, Daniel Stucki

International Technical Support Organization

SG24-5337-00

http://www.redbooks.ibm.com

International Technical Support Organization SG24-5337-00

Building AS/400 Internet-Based Applications
with Java

January 1999

© Copyright International Business Machines Corporation 1999. All rights reserved
Note to U.S Government Users - Documentation related to restricted rights - Use, duplication or disclosure is subject to restrictions
set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (January 1999)

This edition applies to Version 3 Release 2 and later of OS/400

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JLU Building 107-2
3605 Highway 52N
Rochester, Minnesota 55901-7829

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in Appendix C,
“Special Notices” on page 303.

Take Note!

Contents

Figures . vii

Tables . xiii

Preface . xv
The Team That Wrote This Redbook . xv
Comments Welcome . xvi

Chapter 1. AS/400 Internet Application Development Overview 1
1.1 From Server to Browser and Back—Fundamental Concepts1

1.1.1 The Requesting Web Page .2
1.1.2 The Web Serving Application .2

1.2 AS/400 Internet Application Development Techniques 5
1.2.1 Other Approaches for Internet Applications .5
1.2.2 Four Tools for Internet Development on the AS/400 System6

1.3 Net.Data .6
1.3.1 Why Use Net.Data. .7
1.3.2 Net.Data Processing .7
1.3.3 How Net.Data Macros are Invoked .9
1.3.4 A Sample Net.Data Macro .10
1.3.5 Source Code for the Net.Data Sample Macro 12
1.3.6 When to Use Net.Data .14

1.4 Common Gateway Interface (CGI) Programming 15
1.4.1 Why Use CGI Programming .15
1.4.2 CGI Processing .16
1.4.3 APIs Used for CGI Programming. .17
1.4.4 A Sample RPG-CGI Program .20
1.4.5 Source Code for the CG_PARTS CGI Program21
1.4.6 Summary of the CGI Sample Program .28
1.4.7 When to Use CGI Programs .28

1.5 Java Applets .28
1.5.1 The Scripting Alternative .29
1.5.2 How Applets are Different from Scripting .30
1.5.3 Applet Processing .31
1.5.4 How Applets are Different from Net.Data and CGI Programs.32
1.5.5 A Sample Applet .32
1.5.6 When to Use Applets. .34
1.5.7 Applet Development .34

1.6 Java Servlets .34
1.6.1 Why Use Servlets .34
1.6.2 Servlet Processing .35
1.6.3 A Sample Servlet .37
1.6.4 When to Use Servlets .39
1.6.5 Servlet Development .40

Chapter 2. IBM HTTP Server for AS/400 .41
2.1 Product Packaging .41
2.2 HTTP 1.1 Protocol .42

2.2.1 Persistent Connections .42
2.2.2 Virtual Hosts .43

2.3 Proxy, Cache, and Local Memory Cache .43
© Copyright IBM Corp. 1999 iii

2.3.1 Proxy Caching . 43
2.3.2 Proxy Logging . 44
2.3.3 Local Memory Cache . 44

2.4 CGI Programming . 44
2.4.1 Java and REXX CGI . 44
2.4.2 Non-parsed Headers CGI . 45
2.4.3 QzhbCgiParse API . 45

2.5 Persistent CGI . 45
2.5.1 How Persistent CGI Works . 46
2.5.2 Controlling Persistent CGI . 47

2.6 Cryptographic Support, Certificates, and Digital ID 47
2.6.1 Cryptographic Access Provider . 47
2.6.2 Digital Certificate Manager. 47
2.6.3 Digital ID . 48

2.7 WebSphere Application Server for AS/400 . 48
2.7.1 What WebSphere Provides . 48
2.7.2 Accessing the WebSphere Server . 48

2.8 Summary . 49

Chapter 3. Introduction to AS/400 Applets . 51
3.1 The PartsView Applet . 51

3.1.1 Importing the Source Code for the Applet to the Workbench 52
3.1.2 Resolving Problems in the Imported Applet 57
3.1.3 Overview of Classes Used in the PartsView Applet 61
3.1.4 Working with the Applet in the Visual Composition Editor 62
3.1.5 Testing the Applet in the VisualAge for Java Applet Viewer 69

3.2 Detailed Review of Java Classes Used in the Applet 79
3.2.1 Design of the Applet . 79
3.2.2 Testing and Debugging Features in the PartsView Applet 80
3.2.3 The PartsView Class . 81
3.2.4 The DataAccessor Interface. 89
3.2.5 The JDBCPartsCatalog Class . 90
3.2.6 The TestPart Class . 94
3.2.7 The Part Class . 96
3.2.8 The PartsCatalog Class . 100

3.3 Running the Applet in a Browser . 105
3.3.1 Test Environment. 105
3.3.2 Serving the Applet from the PC Drive. 106
3.3.3 Creating a Signed Cabinet File for Microsoft Internet Explorer 4.01 114
3.3.4 Using the CLASSPATH Environment Variable 125
3.3.5 Considerations for Using CLASSPATH . 128
3.3.6 Serving Applets from the HTTP Server for AS/400. 129

3.4 Working with the Sun Java Plug-in . 133
3.4.1 Java Plug-in Basics . 133
3.4.2 Working with the Java Plug-in—A Step-by-Step Approach 134
3.4.3 Summary of the Java Plug-in . 156

3.5 Conclusion . 156

Chapter 4. Introduction to AS/400 Servlets . 159
4.1 Introduction to the Servlet Support . 160

4.1.1 Why Use Servlets . 161
4.1.2 Servlets versus CGI.BIN . 162

4.2 How to Use Servlets . 163
iv Building AS/400 Internet-Based Applications with Java

4.2.1 Communication with an HTTP Server .164
4.2.2 Invoking a Servlet .165

4.3 A Simple Servlet .165
4.4 Developing the Servlet Application .166
4.5 Migrating the Applet to a Servlet .169

4.5.1 Enhancing the Servlet .172
4.6 Executing the Servlet .174

4.6.1 Running under the Domino Go Webserver 175
4.6.2 Running under the IBM HTTP Server for AS/400.177
4.6.3 Running Servlets on the AS/400 System .177
4.6.4 Running the PartsServlet Servlet on the AS/400 System178

Chapter 5. Overview of the Order Entry Application179
5.1 Overview of the Order Entry Application .179

5.1.1 The ABC Company .179
5.1.2 The ABC Company Database .179
5.1.3 A Customer Transaction .180
5.1.4 Application Flow .180
5.1.5 Customer Transaction Flow. .181
5.1.6 Database Table Structure .188
5.1.7 Order Entry Application Database Layout .188
5.1.8 Database Terminology .191

Chapter 6. Developing AS/400 Java Applets .193
6.1 Shopping Application User Interface .193
6.2 Shopping Application Objects and Classes .196
6.3 The SelectedItems Class .198

6.3.1 Writing the Class .199
6.3.2 Writing the Methods .199

6.4 The ItemsDb Class .200
6.4.1 Common Methods All Applets Use .202
6.4.2 Methods Used by the Toolbox Applet .204
6.4.3 Methods Used by CartApplet .206
6.4.4 Methods Used by the StatusApplet .208

6.5 The Toolbox Applet .209
6.5.1 The addAllRows Method .210
6.5.2 The getSelectedIndexes Method .210
6.5.3 Checking the Connections. .210

6.6 The Cart Applet. .211
6.6.1 Writing the Class .212
6.6.2 Viewing the Methods .212

6.7 The Order Status Applet .215
6.8 Testing the Applets .217
6.9 Serving the Applets from the AS/400 System .219

Chapter 7. Developing AS/400 Java Servlets .221
7.1 Running the Application .222
7.2 Application Programs .234

7.2.1 How the Application Works .235
7.3 The Java Application Programs. .242

7.3.1 System Performance Servlet .242
7.3.2 Database Query .243

7.4 Running the Application .257
7.4.1 Domino Go Webserver .257
 v

7.4.2 IBM HTTP Server for AS/400 . 259

Chapter 8. Security Considerations . 261
8.1 Internet Security Elements. 261

8.1.1 Transaction Security and Secure Sockets Layer 262
8.1.2 HTTP Server Over SSL (HTTPS) . 265

8.2 Digital Certificates and Certificate Authority . 267
8.3 AS/400 Implementation of Digital Certificate Management. 268

8.3.1 Configuring a Digital Certificate Environment 269
8.4 Creating a Self-Signed Certificate . 269

8.4.1 Creating an Intranet Certificate Authority . 270
8.4.2 Creating a Server Certificate with Your Intranet CA 272
8.4.3 Configuring the Web Server to Use SSL with Server Authentication 275

8.5 Requesting a Server Certificate from an Internet CA 277
8.5.1 Requesting a Server Certificate from an Internet CA 278
8.5.2 Receiving a Server Certificate for this Server. 280
8.5.3 Configuring the HTTP Server to Use SSL 281

8.6 Applying Security to the Applications . 281
8.6.1 Servlets . 281
8.6.2 Additional Resources . 285

Chapter 9. HTTP Server Configuration . 287
9.1 Domino Go Webserver . 287
9.2 ServletExpress . 289
9.3 IBM HTTP Server for AS/400. 293
9.4 IBM WebSphere Application Server for AS/400 296

Appendix A. Example Programs .299
A.1 Downloading the Files from the Internet Web Site .299
A.2 Setting up VisualAge for Java .299

A.2.1 The AS/400 Toolbox for Java Classes. .300
A.2.2 IBM Enterprise Data Access Libraries .300
A.2.3 Sun JSDK Class Libraries .300
A.2.4 Netscape Security .300

Appendix B. IBM HTTP Server for AS400 Configuration 301

Appendix C. Special Notices .303

Appendix D. Related Publications .305
D.1 International Technical Support Organization Publications305
D.2 Redbooks on CD-ROMs .305
D.3 Other Publications .305

How to Get ITSO Redbooks . 307
How IBM Employees Can Get ITSO Redbooks .307
How Customers Can Get ITSO Redbooks .308
IBM Redbook Order Form .309

List of Abbreviations . 311

Index . 313

ITSO Redbook Evaluation . 317
vi Building AS/400 Internet-Based Applications with Java

Figures

1. How an HTTP Server Processes a Request for a Dynamic Web Page. 2
2. Form Data in HTTP Encoded Format . 3
3. How Net.Data Processes a Macro and Generates a Response 8
4. Prompting Page Displayed by the Net.Data Macro . 11
5. Parts File Listing Generated by the Net.Data Macro . 11
6. How CGI Processing Works. 16
7. HTML Code Used to Display the Prompting Page for the CGI Program 21
8. Applet Processing . 31
9. PartsView Applet Running in the Netscape Browser . 33
10. Java Security Message Displayed under Netscape. 33
11. Servlet Processing . 36
12. Servlet Example Prompting Page . 38
13. Servlet Example Output . 39
14. PartsView Applet . 52
15. Starting the Import Process . 53
16. Import SmartGuide. 54
17. Import from another Repository SmartGuide . 55
18. Projects Import Dialog . 56
19. Add Project Menu. 56
20. Add Projects SmartGuide. 57
21. Problems Indicated in the Workbench . 57
22. All Problems Tab . 58
23. Add Project Menu. 59
24. Add Project SmartGuide . 60
25. Workbench with Added Projects . 61
26. ServletExamples Project . 62
27. PartsView Applet in the Visual Composition Editor . 63
28. Clicking the Choose Bean Icon . 64
29. Choose Bean Dialog . 64
30. Choose Class Dialog . 65
31. Choose Bean Dialog with PartsCatalog Selected . 66
32. PartsCatalog Added to the PartsView Applet. 66
33. VisualAge for Java IDE Options Menu. 67
34. Design Time Options Dialog . 68
35. Saving a Bean . 69
36. Checking the Class Path . 70
37. Setting the Width and Height Attributes . 71
38. Setting the Class Path . 72
39. Select the Projects to be Included in the Class Path . 73
40. Project Path and Complete Class Path . 74
41. Running the PartsView Applet . 75
42. PartsView Applet in the Applet Viewer. 75
43. Applet Viewer Properties Dialog . 76
44. Applet Viewer Properties . 76
45. Displaying the AS/400 Parts Data Using the PartsView Applet 77
46. The Java Console Messages. 78
47. The Applet/Servet Three-Tier Design . 79
48. The Views Package . 81
49. The PartsView Class . 82
50. The actionPerformed Method in the PartsView Class 83
© Copyright IBM Corp. 1999 vii

51. The connEtoC1 Method in the PartsView Class .83
52. The getAppletInfo Method in the PartsView Class .84
53. The getbtnGetParts Method in the PartsView Class. .84
54. The getData Method in the PartsView Class .85
55. The getIMulticolumnListbox Method in the PartsView Class 86
56. The getPartsCatalog method in the PartsView Class .87
57. The handleException Method in the PartsView Class 87
58. The init Method in the PartsView Class .88
59. The initConnections Method in the PartsView Class .88
60. The dataAccess Package .89
61. The DataAccessor Interface in the dataAccess Package90
62. The JDBCPartsCatalog Class. .91
63. The connectToDB Method in the JDBCPartsCatalog Class92
64. The getAll Method in the JDBCPartsCatalog Class .94
65. The TestPart Class .95
66. The connectToDB Method in the TestPart Class .95
67. The getAll Method in the TestPart Class. .96
68. The Domain Package .97
69. The Part Class .98
70. The Part Constructor in the Part Class .98
71. The getAttributeString Method in the Part Class. .99
72. The get Methods in the Part Class .99
73. The set Methods in the Part Class .100
74. The PartsCatalog Class .101
75. The connectToDB Method in the PartsCatalog Class.101
76. The defaultDataAccessor Method in the PartsCatalog Class102
77. The getAll Method in the PartsCatalog Class .103
78. The getDataAccessor Method in the PartsCatalog Class104
79. The getParts Method in the PartsCatalog Class .104
80. The set Methods in the PartsCatalog Class .105
81. Exporting the Applet Packages .107
82. Export SmartGuide .108
83. The Export to a Jar File Dialog .109
84. Opening the Netscape Java Console .110
85. Netscape Java Console when the PartsView Applet is Running 111
86. Opening the PartsView.html File in the Browser. .111
87. Java Security Dialog .112
88. PartsView Applet in the Netscape Browser. .113
89. Microsoft Internet Explorer List of Certificate Authorities 115
90. Enable Tracing of the Applet at Runtime .117
91. Export to a Directory Dialog .118
92. The chkjava Command Security Warning Panel. .119
93. Java Console with the Trace Messages .121
94. Selecting the Missing Classes in the .class Export Dialog123
95. Removing Unwanted Entries from the Export List .124
96. Resource Export Dialog .124
97. Setting the Windows NT 4.0 CLASSPATH Environment Variable127
98. Setting the Name of the jar File. .131
99. PartsView.html Code before Conversion for the Java Plug-in 134
100.PartsView.html File after Conversion for Use with the Java Plug-in.135
101.Java Plug-in HTML Converter Options. .137
102.Java Plug-in HTML Converter Dialog .138
103.Sample Output of the Generate Log File .139
viii Building AS/400 Internet-Based Applications with Java

104.Advanced Options Dialog . 140
105.Microsoft Internet Explorer Security Warning . 141
106.Code in the Converted HTML File . 141
107.Select Java Plug-in Installation Dialog. 142
108.Code in the Converted HTML File that is Processed by Netscape Navigator 143
109.Netscape Navigator Plug-in Not Loaded Panel . 143
110.Java Plug-in Download Page. 144
111.Revised Advanced Options Settings for the HTML Converter. 146
112.Netscape Plug-in HTML File . 147
113.Java Plug-in Software License Agreement . 148
114.Java Plug-in Choose Destination Location Dialog. 149
115.Java Console . 149
116.Windows 95/NT Add/Remove Programs Dialog . 150
117.Plug-in Not Loaded Panel . 151
118.Netscape Plug-in.html File. 152
119.About:plugins Feature . 153
120.Basic Tab of the Java Plug-in Control Panel . 154
121.Advanced Tab in the Java Plug-in Control Panel . 155
122.Proxies Tab in the Java Plug-in Control Panel . 155
123.Servlet Application . 159
124.Servlet Architecture . 160
125.Servlet Hierarchy . 161
126.Servlets versus CGI.BIN . 163
127.Calling a Servlet Directly . 165
128.Calling a Servlet Using HTML Files . 165
129.Calling a Servlet Using SHTML Files. 165
130.HelloWorldServlet . 166
131.ServletExamples Project . 167
132.Java Applet/Servlet Design . 168
133.PartsServlet Class . 169
134.Servlet init Method . 169
135.The doGet Method. 170
136.The outputHeader Method. 170
137.The outputPartsInformation Method . 171
138.The doGet Method Output . 171
139.Enhanced Servlet . 172
140.The doPost Method . 173
141.Servlet HTML File (Parts.html) . 174
142.Three-Tier Servlet Architecture . 175
143.Enhanced Servlet . 177
144.Two-Tier Servlet Architecture . 177
145.The Company Structure. 179
146.RPG Application Flow . 181
147.Parts Order Entry. 182
148.Select Customer . 183
149.Parts Order Entry. 184
150.Select Part . 185
151.Parts Order Entry. 185
152.Parts Order Entry. 186
153.Change Selected Order . 186
154.Completed Order . 187
155.Printed Order . 187
156.Table Relationships . 188
 ix

157.Toolbox Applet .194
158.Cart Applet .194
159.Placing an Order. .195
160.Order Confirmation .195
161.Status Applet .196
162.Shopping Application Design .197
163.ToolboxApplet Package .198
164.SelectedItems Class Definition. .199
165.The getVector Method .199
166.The clear Method .200
167.The addSelectedRow Method .200
168.The ItemsDb Class Definition .201
169.The connect Method. .203
170.The disconnect Method .203
171.The finalize Method .204
172.The fetchNextItem Method .205
173.The getItem Method .205
174.The getItems Method .206
175.The quantityInHand Method .207
176.The verifyCustomer Method .207
177.The checkOrderStatus Method. .209
178.ToolboxAppletExample Class Definition. .209
179.The AddAllRows Method .210
180.The getSelectedIndexes Method .210
181.Toolbox Applet in the VCE .211
182.CartApplet Class Definition. .212
183.The showCart Method .213
184.The Cart Applet in the VCE .214
185.OrderStatus Class Definition .215
186.The fillListbox Method. .216
187.Order Status Applet .216
188.The apptest\ToolboxApplet Directory .217
189.The apptest Directory .218
190.Order.htm .219
191.Order1.htm .219
192.Status.htm .219
193.Shopping Applet Running under Netscape Navigator 220
194.Servlet Sign On Window. .222
195.Servlet Application Menu Window .223
196.Query Recall Window .224
197.Query Builder Window .224
198.Query Results. .225
199.Query Wizard Table Prompt .226
200.Select Fields Prompt Window. .226
201.Select Conditions Prompt Window .227
202.Select Order Prompt Window .228
203.Query Results. .229
204.User ID Prompt. .230
205.Print Jobs By User .230
206.Output Queues Display .231
207.Print Jobs By Output Queue. .231
208.AS/400 Integrated File System Directories. .232
209.Directory Listing .232
x Building AS/400 Internet-Based Applications with Java

210.AS/400 Performance Information . 233
211.AS/400 Command . 233
212.AS/400 Command Output . 234
213.Change Password . 234
214.SignOn doGet Method . 236
215.SignOn genSignonForm Method . 237
216.Generated Sign On HTML. 238
217.SignOn doPost Method . 239
218.SignOn genMain Method. 240
219.Application Menu HTML . 240
220.Application Menu . 241
221.The PerfMon Class doGet Method . 242
222.System Performance Information . 243
223.HTML Generated by the getSavedQueries Method 244
224.Saved Queries Window . 245
225.HTML Generated by the queryPrompt Method . 246
226.Query Statement Window . 247
227.Query Results . 248
228.HTML File Generated by the wizPrompt Method. 249
229.Enter Table Name Prompt . 249
230.HTML Generated By the wizColInfo Method . 250
231.SQLWizard Applet . 251
232.HTML File Generated by the wizWhere Method . 252
233.SQLWhere Applet . 253
234.HTML File Generated by the wizOrder Method . 254
235.SqlOrder Applet . 254
236.HTML File for the queryPrompt Method . 255
237.Query AS/400 Database . 256
238.SQL Result . 257
239.ServletExpress\servlets Directory . 258
240.Applet Directory . 258
241.apptest Directory . 258
242.\QIBM\ProdData\IBMWebAS\servlets Directory . 259
243.Applet Directory . 260
244.The apptest Directory . 260
245.Internet Security Elements. 262
246.Transaction Security . 262
247.Verifying Identity—Digital Certificates and Digital Signatures 264
248.HTTP Server Using SSL . 266
249.Accessing a Secure HTTP Session. 267
250.AS/400 Tasks Page. 270
251.Create an Intranet Certificate Authority . 271
252.CA Certificate Created Successfully . 271
253.Certificate Authority Policy. 272
254.Create a Server Certificate Page. 273
255.Server Certificate Created Successfully Page. 273
256.Create a Server Certificate with an Existing Intranet CA 274
257.HTTP Server Configuration . 275
258.Security Configuration Page . 276
259.Work with Server Instances . 277
260.Requesting a Certificate from VeriSign or other Internet Certificate Authority278
261.Request a Server Certificate from an Internet CA . 279
262.Server Certificate Request Generated by DCM. 279
 xi

263.Receiving a Server Certificate Issued by an Internet CA280
264.Key Management Page .281
265.New Site Certificate .282
266.New Site Certificate Information .282
267.View a Certificate .283
268.New Site Certificate Acceptance Dialog .283
269.Netscape Certificate Warning Dialog .284
270.Netscape Security Information Dialog .284
271.PartsServlet Running under SSL .285
272.Domino Go Webserver Initial Screen .287
273.Configuration and Administration Window .288
274.Domino Go Routing Table .289
275.ServletExpress Services Dialog .290
276.ServletExpress Setup Window .291
277.ServletExpress Add Servlet Dialog. .292
278.ServletExpress Servlet Configuration Dialog .293
279.Browser-based HTTP Server Configuration Program 295
280.HTTP Server Directives to Enable WebSphere .296
281.JVM Properties File .297
282.WebSphere Sign On Screen .298
xii Building AS/400 Internet-Based Applications with Java

Tables

1. Parameters Used with the QzhbCgiParse API. 18
2. The CGII0200 Format . 19
3. Parameters Used with the QtmhWrStout API . 20
4. Summary of OS/400 Pre-V4R3 and V4R3 HTTP Server Components 42
5. ServletExamples Packages, Classes, and Interfaces 62
6. Methods Used in the PartsView Class . 82
7. Methods Defined in the DataAccessor Interface . 89
8. Methods Used in the JDBCPartsCatalog Class . 90
9. Methods Used in the TestPart Class . 95
10. Methods Used in the Part Class. 97
11. Methods Used in the PartsCatalog Class . 100
12. Operating Systems and Browser Versions Supported by the Java Plug-in . . 134
13. Summary of Packages, Classes, and Interfaces Used for the PartsServlet . 167
14. District Table Layout (Dstrct) . 189
15. Customer Table Layout (CSTMR) . 189
16. Order Table Layout (ORDERS) . 190
17. Order Line Table Layout (ORDLIN)r . 190
18. Item Table Layout (ITEM) . 191
19. Stock Table Layout (Stock) . 191
20. Database Terminology . 192
21. ItemsDb Class Variables . 202
22. Applet HTML Files . 218
© Copyright IBM Corp. 1999 xiii

xiv Building AS/400 Internet-Based Applications with Java

Preface

The AS/400 system, the Internet, and Java. What a powerful combination! If you
are interested in enabling your company for the world of e-business, this redbook
is for you. It is intended for anyone who wants to design and build AS/400
Internet- or intranet-based applications using Java.

This redbook focuses on building applets and servlets that access AS/400
resources. It provides many practical programming examples with detailed
explanations of how they work. These examples are also available for you to
download from our Internet site. This redbook gives you a fast start on your way
to using Java, the Internet, and the AS/400 system.

The Team That Wrote This Redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization Rochester Center.

Bob Maatta is a Senior Software Engineer from the United States at the
International Technical Support Organization, Rochester Location. He writes
extensively and teaches IBM classes worldwide on all areas of AS/400
client/server and application development. Before joining the ITSO in 1995, he
worked in the U.S. AS/400 National Technical Support Center as a Consulting
Market Support Specialist. He has over 20 years of experience in the computer
field and has worked with all aspects of personal computers since 1983. He is a
Sun Certified Java Programmer and a Sun Certified Java Developer.

Markus Abe gg len is a Project Leader at DV Bern AG, an IBM Business Partner
in Switzerland. He has eight years of experience in the AS/400 area, as well in
object technology. He holds a higher national degree in Economics and Computer
Science. He has worked on several projects that are based on VisualAge for
Java.

Craig Pelkie is a consultant based in Southern California. He is the editor of the
NEWS/400 newsletter Client Access & Windows Solutions, and the past editor of
Midrange Computing’s Client Access Expert. He frequently leads seminars on
Client Access, AS/400 web-enablement techniques and AS/400 client/server
programming using Visual Basic. He is the author of the training manual Using
Microsoft Visual Basic with the AS/400 (http://www.vb400.com) which was used
in labs at IBM Rochester Partners In Development.

Brian Skaarup is a software developer for EDB Gruppen Systems A/S, a Danish
business partner. He has worked in the R&D department for the last eight years.
His areas of expertise include client/server application design and development
using C, C++, and Java.

Daniel Stucki is a Systems Engineer at DV Bern AG, an IBM Business Partner in
Switzerland. He has nine years of experience in the AS/400 area as well in object
technology. He also holds a degree in Computer Science from the Berne Institute
of Technology. He has worked on several projects that are based on VisualAge
for Smalltalk and VisualAge for Java.
© Copyright IBM Corp. 1999 xv

Thanks to the following people for their invaluable contributions to this project:

Marcela Adan
ITSO Rochester

Chi Lam
IBM Rochester Laboratory

Gary Mullen-Schultz
IBM Rochester - Partners in Development

Schuman Shao
IBM Rochester Laboratory

Comments Welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

 • Fax the evaluation form found in “ITSO Redbook Evaluation” on page 317 to
the fax number shown on the form.

 • Use the electronic evaluation form found on the Redbooks Web sites:

For Internet users http://www.redbooks.ibm.com

For IBM Intranet users http://w3.itso.ibm.com

 • Send us a note at the following address:

redbook@us.ibm.com
xvi Building AS/400 Internet-Based Applications with Java

Chapter 1. AS/400 Internet Application Development Overview

Let’s put our business on the Internet! Those words, spoken by the company
president to the chief information officer (CIO), the CIO to the systems analysts,
and the analysts to the programmers, are sure to cause a great deal of
excitement, concern, confusion, and doubt. After all, it is one thing to surf the
Web and find many examples of good and not-so-good sites to emulate. It is quite
another issue to know where to start with your Internet development project and
how to proceed.

There are many technical problems that must be resolved to reach the point
where your customers can successfully use your corporate Web site to interact
with your company. Some of the issues you need to address are:

 • What hardware and software do you need on your AS/400 system so that it
can be connected to the Internet and function as a Web server?

 • What do you need to know about securing your AS/400 system, given that you
need to allow access to data stored on the system?

 • What skills are required to create dynamic Web pages that work with the
AS/400 system? If you do not have the skills, what direction should you take to
learn what you need to know?

 • Where does Java fit into all of this? How does Java make it easier to work with
Internet applications?

Although the answers to all of those questions are not in this redbook, this
document shows you how Java can be used with the AS/400 system to create
highly functional, dynamic Web pages. You learn how you can use Java in
client-side applets and how Java servlets can be used on the AS/400 system to
access the database and send responses to the client.

In this chapter, you explore four Internet application development approaches to
use with the AS/400 system:

 • Net.Data
 • Common Gateway Interface (CGI) programming
 • Java applets
 • Java servlets

Upon finishing this chapter, you gain a better idea of which technique to use when
you develop your Internet application.

1.1 From Server to Browser and Back—Fundamental Concepts

Before you can start coding an Internet application for the AS/400 system, you
need to clearly understand how a request is sent from the browser to the IBM
HTTP Server for AS/400, how the server invokes a program to process the
request, and how the response from the program is returned to the browser.
Although there are hundreds of configuration decisions that must be addressed,
we assume that you already have the IBM HTTP Server for AS/400 connected to
the Internet and configured to serve Web pages.
© Copyright IBM Corp. 1999 1

See how a Web serving request is processed. Figure 1 on page 2 shows how the
request flows from the browser to the server, where the Web serving application
accesses the database, prepares the response, and sends it back to the browser.

Figure 1. How an HTTP Server Processes a Request for a Dynamic Web Page

1.1.1 The Requesting Web Page
The user starts at the requesting Web page. The page appears when a user
enters a URL in the browser’s location or address field, or clicks a link on another
Web page.

Web pages that allow user input are called forms. A form contains one or more
elements that the user interacts with, for example, text fields, list boxes, check
boxes, and buttons. When the user clicks a submit button, the browser formats a
stream of data that contains the data the user entered or selected on the form.
The stream of data is sent to the IBM HTTP Server for AS/400.

1.1.2 The Web Serving Application
Along with the data, the browser sends the name of the application that is to be
invoked on the AS/400 system to process the data. The application name is
included in the Hypertext Markup Language (HTML) code that was originally sent
to the browser to display the Web page. The IBM HTTP Server for AS/400
invokes the application.

1.1.2.1 Input Data from the Form
There are two different methods used to make input data from the form available
to the Web serving application program. The HTML form is coded to indicate
which method to use.

" S how me X"" S how me X"

IBM HTTP Server IBM HTTP Server
for AS/400for AS/400

DB2/400DB2/400

Some ProcessSome Process

" Her e's X"" Her e's X"
2 Building AS/400 Internet-Based Applications with Java

The first method is the Get method. All of the data from the form is available to
the Web serving application program in an environment variable called
QUERY_STRING. The Web serving application program retrieves the contents of the
environment variable so that it has access to the data. The Get method is limited
to return 1024 bytes of data from the browser to the Web serving application
program. Because the data also contains field names to identify each data
element, the actual length of the data that can be entered by the user is less than
1024.

The second method is the Post method. With this method, data from the browser
is available to the Web serving application program in a stream file called
Standard Input (STDIN). Because the data is in a file, there is no limit to the
length of the data that can sent from the browser. The Post method is the
preferred method for returning form data from the browser.

Regardless of the method used, the data is HTTP encoded. Figure 2 shows a
sample of data returned from a name and address Web form.

Figure 2. Form Data in HTTP Encoded Format

There are a few points to notice about the data in HTTP encoded format:

 • The IBM HTTP Server for AS/400 takes care of the required ASCII to EBCDIC
translation. Data that the user enters in the browser is sent to the server using
the ASCII character set. Because the AS/400 works with the EBCDIC
character set, there needs to be a translation between the two.
AS/400 Internet Application Development Overview 3

 • The field names used on the form are included in the data and precede the
value that the user entered. The field name and value are separated by an
equals sign.

 • Blank spaces that the user entered are replaced with plus signs (+).

 • The end of each data field is delimited by the ampersand (&) character.

 • Special characters are encoded with hexadecimal values. For example, the
area code in the telephone number (line beginning 121 in Figure 2) has
hexadecimal values for the parentheses:

 – %4D is used for the (character
 – %5D is used for the) character

One of the main jobs of the Web serving application program is to make sense of
the HTTP encoded data. Because all AS/400 Web programmers have to deal with
this requirement, Web programming tools that are available with the IBM HTTP
Server for AS/400 include functions to interpret the HTTP encoded data and
return it to the Web serving application program in data fields with which the
program can work.

1.1.2.2 Processing the Request
Once the data is parsed into fields, the program can begin working on the
request. At this point, conventional AS/400 programming techniques can be used.
For example, the Web serving application program can:

 • Use native database access techniques to retrieve records from the database.

 • Use SQL statements to query the database or perform database updates.

 • Call other programs on the AS/400 system to perform additional functions
required to construct the response.

 • Issue communications requests to other AS/400 systems or other database
platforms to get additional data.

The Web serving application program has complete access to all of the AS/400
system facilities to which it is authorized.

1.1.2.3 Returning a Response to the Browser
Assume that the user’s request to the IBM HTTP Server for AS/400 was accepted
by the server and that the server did not send an error response to the browser. It
is now up to the Web serving application program to prepare a response that the
browser understands and send it to the browser.

The response is HTML code. HTML is simply text that includes tags to identify
elements on a Web page, such as the title, headers, tables, and graphics, and the
data that is displayed on the page. Although most Web pages that you view when
Web surfing are made up of static HTML, it is entirely possible and quite feasible
to generate HTML on an "as-requested" basis, as in the example described in this
chapter. It is a relatively easy programming job to construct HTML since it only
requires simple string handling operations to put together the combination of
HTML tags and data.

The response HTML and data can be as simple or as complex as required. For
example, a simple listing of items can be done using the monospacing HTML
tags. Or, you may choose to present the list in a nicely formatted table. The
4 Building AS/400 Internet-Based Applications with Java

response may be another form to prompt the user for additional information. You
can also include graphics, scripting, or applets in the response.

As each line of HTML code is constructed, it is written to the Standard Output
(STDOUT) file. The STDOUT file is used by the Web serving application program
as a conduit back to the browser, which is waiting for the response from the
program. The IBM HTTP Server for AS/400 translates the response HTML in
STDOUT from EBCDIC to ASCII and sends it back to the browser.

At this point, the cycle is complete. The user sent their request, which was
successfully interpreted and responded to. The Web serving application program
retrieved and formatted the requested data. The IBM HTTP Server for AS/400
sent the response back to the browser. The user is now free to review the
response and make additional requests with their browser.

1.2 AS/400 Internet Application Development Techniques

Before you start working on your Internet application, you need to be clear about
what your options are. If you are somewhat uncertain about what the best option
is, you are not alone. Many developers are in the same position, trying to assess
what is the best technique to use.

As with any other programming job, there is no definitive "best" technique, but
rather a series of trade-offs. The technique you choose should be based on:

 • Your understanding of the trade-offs
 • The ability of the selected technique to let you accomplish what must be done
 • The amount of effort it will take to develop the application
 • The anticipated usage of the application
 • The availability of other approaches that may be used to develop the

application

We address the last point first, so that it is no longer a factor in your decision.

1.2.1 Other Approaches for Internet Applications
In addition to directly programming the AS/400 system for Web serving, which is
the focus of this redbook, there are two other approaches to consider:

 • Locating the application on a different server
 • Using the Lotus Domino server available for the AS/400 system

1.2.1.1 Locating the Application on a Different Server
It is not unusual for a company to place their Web serving application on an
entirely different host from the production database. For example, many
companies use Windows NT Server or UNIX servers for Web applications. It is
also possible to use another AS/400 system as the Web serving host. Since you
are then developing the application on an AS/400 system, we consider that
solution to be the same as developing the application on the AS/400 system that
hosts the database.

When you introduce an entirely different type of server, you need to resolve the
problem of making your production database available to that server. For
real-time access, your application may use ODBC or communications
programming to retrieve data from the AS/400 system database to the Web
AS/400 Internet Application Development Overview 5

serving application. For applications that do not require real-time access to the
database, you can replicate the database from the AS/400 system to the Web
serving host as required.

If you adopt this approach, your programming tasks are simply relocated to the
other server. Also, you probably need to perform more programming and certainly
more management of the servers to coordinate access to the database.
Nevertheless, you may choose to implement your Web serving application on
another type of server because of capacity, availability of programming skills, or
for security reasons.

1.2.1.2 Using the Lotus Domino Server for the AS/400 System
The AS/400 system now supports a native implementation of the Lotus Domino
server. This provides a very attractive option. This is because performance and
the ability to access the AS/400 system database is much enhanced compared to
the implementation of Domino on the Integrated PC Server (IPCS).

Domino includes a full-featured application development environment, in addition
to the rich functionality provided in the product itself. For many AS/400 system
Web applications, Domino is the best choice.

An important point to note is that Domino and other AS/400 system Web
development techniques are not mutually exclusive. If you choose to implement
Domino for AS/400 system Web serving applications, you may still find the
material in this redbook useful for applications that run outside of the Domino
environment.

1.2.2 Four Tools for Internet Development on the AS/400 System
At this point, you can consider the tools that are available for developing an
Internet application on the AS/400 system, using the IBM HTTP Server for
AS/400. The tools that are examined include:

 • Net.Data, included with the IBM HTTP Server for AS/400

 • CGI programs, which can be written in traditional AS/400 system programming
languages such as RPG and COBOL

 • Java applets, which can use the AS/400 Toolbox for Java to communicate from
an applet running in a browser to the AS/400 system

 • Java servlets, which are available with OS/400 V4R3

Each of these tools require programming skills. In addition, you need to know
enough HTML to achieve the effect you want, since you will use a tool to generate
HTML to present the data retrieved from the AS/400 system.

1.3 Net.Data

Net.Data is a Common Gateway Interface (CGI) program provided with the
AS/400 TCP/IP Connectivity Utilities (5769-TC1). Net.Data uses macros that you
develop as input to the CGI program. The CGI program uses the macro to:

 • Send HTML to your browser
 • Run SQL commands
 • Call system services such as programs compiled in other languages
6 Building AS/400 Internet-Based Applications with Java

Net.Data is the follow-on product to what was originally known as DB2WWW. The
Net.Data CGI program itself is named DB2WWW. You occasionally see
references to the DB2WWW product in the Net.Data documentation.

1.3.1 Why Use Net.Data
If you already know RPG, COBOL, C, or Java, you may wonder why you would
use Net.Data, since you can develop AS/400 CGI programs using traditional
AS/400 programming languages. However, when you use those languages, you
are responsible for programming some of the low-level details required by the
HTTP protocol. For example, you need to parse the input data that is sent to the
server from an HTML form. You also need to take special care to send any
required HTML headers back to the browser along with your application HTML
and data, so that the browser knows how to work with the server response.

For RPG, COBOL, and C, you need to compile the programs before you can test
them. If you need to make even minor changes, you need to repeat the edit,
compile, and test cycle.

You may find that Net.Data provides a more simple alternative to working with
AS/400 languages, especially if you simply want to retrieve and display data from
the AS/400 database. Some of the characteristics of Net.Data that make it easier
to use are:

 • Net.Data is interpreted, not compiled. You can develop a Net.Data macro more
rapidly than the equivalent compiled program. You can also make changes
much more quickly. For example, adding or changing HTML statements in a
Net.Data macro is trivial, and you can test the change immediately.

 • Net.Data provides tremendous built-in support for working with the results of
SQL queries. For example, Net.Data can automatically format the results of an
SQL SELECT statement into an HTML table. You do not have to code the
HTML for the table. You simply code the SELECT statement.

 • Net.Data takes care of getting and parsing requests from the browser and
preparing output to return to the browser. You simply code the HTML that you
want sent to the browser and indicate what data is to be displayed. You do not
have to code the lower-level HTML to deal with headers.

1.3.2 Net.Data Processing
To work with Net.Data effectively, you must understand how the CGI program
DB2WWW interacts with:

The primary documentation for working with Net.Data on the AS/400 system is
available at the AS/400 Net.Data Web site located at:
http://www.as400.ibm.com/netdata

The following manuals are available at that site:

 • Net.Data Administration and Programming Guide
 • Net.Data Language Environment Reference
 • Net.Data Reference

Note
AS/400 Internet Application Development Overview 7

 • Your incoming request from the browser
 • The IBM HTTP Server for AS/400
 • Net.Data INI file
 • The macro itself
 • The DB2/400 database and other system services

Figure 3. How Net.Data Processes a Macro and Generates a Response

Assuming that Net.Data is properly configured and you have a macro that you
want to run, here is the process that occurs when you invoke a Net.Data macro.
The following numbers correspond to the steps shown in Figure 3:

1. A Net.Data macro is requested on an incoming URL.

You start a Net.Data macro by entering the URL containing the request in your
browser's address entry area or you click on a link on a Web page that
contains the request. The request is sent to the IBM HTTP Server for AS/400
the same as any other request.

2. The DB2WWW CGI program is invoked.

The IBM HTTP Server for AS/400 determines from the incoming URL that the
request is for Net.Data. At this point, the IBM HTTP Server for AS/400 invokes
the DB2WWW CGI program.

As with other requests to the IBM HTTP Server for AS/400, you need HTTP
Server configuration directives so that the IBM HTTP Server for AS/400 knows
how to handle the incoming request. To process Net.Data macros, you need at
least one EXEC directive and you usually have at least one MAP directive.

3. Net.Data configuration options are retrieved from the INI file.

Upon starting, the DB2WWW CGI program retrieves initialization options from
the optional INI file, which is located in the same library as the DB2WWW

Net.Data Processin g

Browser

1. Request URL

IBM HTTP Server for AS/400

10. Returns to Browser

DB2WWWDB2WWW

http://myAS400/netdata/hello.mbr/input

4. Macro/Section
hello.mbr/input

2. DB2WWW
invoked

INI

3. Retrieve
INI settin gs

Macro
source

5. Retrieve Macro

6. Go to INPUT
section, start
processin g

DB2/400

7. Get requested data

8. Other AS/400
services as requested

Other
Services

9. Generated HTML
8 Building AS/400 Internet-Based Applications with Java

program. If you do not create an INI file, the URLs that you use to invoke a
Net.Data macro are considerably more complicated.

4. The macro and start-at section within the macro are identified.

When the IBM HTTP Server for AS/400 invokes the DB2WWW CGI program, it
passes the part of the incoming URL that identifies the macro to be invoked
and the start-at section within the macro to the program. At this point, the
DB2WWW program determines where on the system the macro source file is
located. If you are using an INI file, the DB2WWW program uses the
MACRO_PATH definition within the INI file to resolve the location of the macro.

5. The macro is retrieved.

The DB2WWW CGI program now retrieves the macro. All Net.Data macros are
stored in text format.

6. DB2WWW starts the execution of the macro at the start-at section.

The DB2WWW CGI program parses the macro. Any global function calls and
definitions in the macro are processed. Next, the DB2WWW CGI program
goes to the start-at section that was specified on the incoming URL and starts
processing the directives that are in that section.

The start-at section is typically an HTML block that contains statements
describing the initial page to be sent to the browser. For example, for a
database query application, the start-at section may contain HTML that
prompts the user for selection criteria.

7. DB2/400 data is processed with SQL statements.

If there are any SQL statements or Net.Data function calls to other AS/400
system services, those statements or function calls are now processed.

8. Other system services are invoked.

In a typical Net.Data macro, you embed SQL statements or function calls
within HTML statements. Net.Data runs the SQL statement or function call at
the point where it is encountered. The resulting HTML sent to the browser can
include your headings and footings with the merged output of an SQL
statement or function call.

9. The resulting HTML is returned to the IBM HTTP Server for AS/400.

After processing the section and running SQL statements or other functions,
the resulting HTML is returned from the DB2WWW CGI program to the IBM
HTTP Server for AS/400.

10.The resulting HTML is sent back to the browser.

The IBM HTTP Server for AS/400 sends the completed HTML page back to
the browser. At this point, the process is complete. The user can request
another Net.Data macro invocation, which starts the process over again.

1.3.3 How Net.Data Macros are Invoked
Net.Data macros are invoked from conventional URLs. The URL can be entered
directly into the browser's address entry area or can be provided in the form of a
link on an HTML page.

Here is a sample URL used to invoke the Net.Data sample application:

http://myAS400/netdata/nd_parts.mbr/input
AS/400 Internet Application Development Overview 9

There are three parts of the URL that are particularly important for Net.Data:

 • Location of DB2WWW CGI program —In the sample URL, the /netdata part
points to the location of the DB2WWW CGI program. The IBM HTTP Server
for AS/400 expands this part of the URL using the MAP directive in the HTTP
Server configuration file:

Map /netdata/* /QSYS.LIB/NETDATA.LIB/DB2WWW.PGM/*

The final asterisk character for both the source and replacement strings
indicates that any input on the incoming URL following the /netdata/ string is
to be appended to the end of the expanded directory string. The expanded
URL now looks like this:

http://myAS400/QSYS.LIB/NETDATA.LIB/DB2WWW.PGM/nd_parts.mbr/input

 • Name of macro to invoke —The string /nd_parts.mbr identifies the name of
the macro file that the DB2WWW CGI program is to load and process. Since
the Net.Data macro is stored in an AS/400 source file in the AS/400 library file
system, the .MBR suffix is required. If you request a macro that is stored in an
AS/400 IFS directory, the suffix is the file extension. For example, if you store
your Net.Data macros as .TXT files, include the .TXT suffix in the URL you use
to invoke the macro.

 • Start-at section in macro —Because a Net.Data macro can be quite long and
include several different sections, you need to indicate to the DB2WWW CGI
program where it is to start processing. In the sample URL, this is indicated
with the /input string. It is conventional, although not required, that you start
processing a Net.Data macro at a section labeled INPUT.

1.3.4 A Sample Net.Data Macro
The following sample Net.Data macro shows how you can use Net.Data to
present a prompting page to the requester. Then, you can use input from the
page to retrieve and display database records from the AS/400 system.

Figure 4 on page 11 shows the prompting page that is displayed when the user
initially enters the URL.
10 Building AS/400 Internet-Based Applications with Java

Figure 4. Prompting Page Displayed by the Net.Data Macro

The user can accept the default of *ALL for the part number selection or enter a
specific part number and then the Get Parts Information button. The Net.Data
macro responds by querying the database and displaying the page shown in
Figure 5.

Figure 5. Parts File Listing Generated by the Net.Data Macro
AS/400 Internet Application Development Overview 11

1.3.5 Source Code for the Net.Data Sample Macro
The following source code is the complete Net.Data macro used to generate the
prompting page and the parts list shown in Figure 4 and Figure 5 on page 11. If
this is your first look at Net.Data, you probably think this is a strange language.
However, if you glance through the code, you can start identifying different types
of language elements and constructs:

 • Comment lines start with the %{ characters and end with the %} characters.

 • Code blocks begin with %define , %message, %function , and %html .

 • SQL statements are embedded in the macro and can include substitution
variables (for example, $(partno)).

 • HTML statements are embedded in the macro. Net.Data function calls can
also be included with the HTML to generate additional HTML as the macro is
processed.

Although we do not explain every detail of the macro in this redbook, we look at
some of the sections of the macro so that you have an understanding of how it
works.

%{---%}
%{ Net.Data macro ND_PARTS -- display Parts in HTML table %}
%{---%}
%define{
 DATABASE = "*LOCAL"
 DTW_HTML_TABLE = "YES"
%}

%message {
 -204 : "Error -204: Table not found"
 100 : "Warning 100: Record not found" : Continue
 +default : "Warning $(RETURN_CODE)" : Continue
 -default : "Unexpected SQL error $(RETURN_CODE)" : Exit
%}

%{---%}
%{ Function RUNSQL - Called from GETDATA, get a part %}
%{---%}
%function(DTW_SQL) RUNSQL() {

 select * from apilib.parts where partno = $(partno)

%}

%{---%}
%{ Function RUNSQLALL - Called from GETDATA, get all parts %}
%{---%}
%function(DTW_SQL) RUNSQLALL() {

 select * from apilib.parts order by partno

%}

%{---%}
%{ HTML section INPUT - loaded by initial URL %}
%{---%}
%html (INPUT) {

<HTML>
<HEAD>
 <TITLE>Parts Retrieval</TITLE>
</HEAD>

<BODY BGCOLOR="lightgrey">
<FORM action="GETDATA" method="POST">

<CENTER>
 Enter *ALL to get all parts from the catalog

12 Building AS/400 Internet-Based Applications with Java

 or

 Enter the part number to get only one part from the catalog

 Press the Button to retrieve the parts
</CENTER>

Part Number or *ALL
<INPUT TYPE="text" NAME="partno" VALUE="*ALL" SIZE=10>

<INPUT TYPE="submit" NAME="Submit" VALUE="Get Parts Information">
<p>
<HR SIZE="5">

This file uses the Net.Data macro <I>ND_PARTS</I>
to retrieve data from the AS/400.
<p>

<HR SIZE=5>
</FORM>
</BODY>
</HTML>
%}

%{---%}
%{ HTML section GETDATA - called when Submit button is clicked. %}
%{---%}
%html (GETDATA) {

<html>
 <center>
 <h1>
 Parts File Listing
 </h1>

 %if ($(partno) == "*ALL")
 @RUNSQLALL()
 %else
 @RUNSQL()
 %endif
 </center>
</html>

%}

1.3.5.1 The HTML INPUT Section
Macro processing starts at the INPUT section. This is because the requesting URL
identified the INPUT section as the start-at section (see the URL in Figure 4 on
page 11).

Because this section is an HTML section (indicated by the %html block type
identifier), the macro includes HTML statements that are sent to the browser. The
HTML in the INPUT section is used to format the prompting Web page.

The INPUT section includes three statements that are used to process the
prompting form:

 • <FORM action="GETDATA" method="POST">

 • <INPUT TYPE="text" NAME="partno" VALUE="*ALL" SIZE=10>

 • <INPUT TYPE="submit" NAME="Submit" VALUE="Get Parts Information">

The FORM statement indicates two operations to the browser:

 • Data entered on the prompting Web page is to be sent to the server using the
POST method. The data is available to the server in the STDIN file.
AS/400 Internet Application Development Overview 13

 • Processing the macro is to continue at the GETDATA section when the submit
button is clicked.

The INPUT TYPE="text" statement is used to define the input field where the user
requests all parts or a specific part. Note that the name of this field is partno .

The INPUT TYPE="submit" statement is used to define the button that the user
clicks to submit the form for processing. When the submit button is clicked, the
browser refers to the FORM statement to determine what it should do next.

1.3.5.2 The HTML GETDATA Section
The GETDATA section is used to retrieve the requested part data and format it for
display. The section includes a mixture of HTML statements and Net.Data
functions.

Because the user can request a listing of all parts or an individual part, the
Net.Data %if construct is used to determine which to use. The value that was
entered by the user is available in the $(partno) variable, which was defined in the
INPUT section on the INPUT TYPE="text" statement.

Depending on the value of the $(partno) variable, the RUNSQLALL or RUNSQL function
is invoked. The functions are defined near the beginning of the Net.Data macro.
The important point to note here is that you can mix function calls with the HTML.
The function call can generate additional HTML, which is substituted at the point
of the function call.

1.3.5.3 The RUNSQL and RUNSQLALL Functions
The macro uses two SQL function blocks to process the user request. The
function blocks start with the %function(DTW_SQL) identifier, which means that the
function can contain only SQL statements and Net.Data functions.

The RUNSQL function is called if the user requests a particular part. The SQL SELECT
statement uses the $(partno) variable to limit the query to the requested part. If
the user requests a part that is not in the database, the resulting SQL error
message is trapped by the %message block near the beginning of the macro. You
can use the %message block to format your own messages to display to the user,
rather than use the default error messages generated by Net.Data.

The RUNSQLALL function is called if the user requests a listing of all parts. In this
function, there is no WHERE clause, so there is no limitation on the parts that are
retrieved.

If you examine the code in these sections and the GETDATA section, look at the
generated Web page shown in Figure 5 on page 11. You see that there are no
HTML statements that define the table. This clearly illustrates one of Net.Data’s
strengths, which is its ability to automatically format queried data into a usable
Web page.

1.3.6 When to Use Net.Data
Now that you have seen how Net.Data works on the AS/400 system and reviewed
a sample Net.Data macro, you may wonder when you should consider using
Net.Data. Here are some general guidelines about selecting Net.Data for your
Web application.
14 Building AS/400 Internet-Based Applications with Java

1.3.6.1 You Need a Query Front-End to Run SQL Statements
Net.Data is a superb tool for creating simple HTML forms that act as front-ends to
database queries. Using HTML in which you hand-code the Net.Data macro or
HTML code that you include from an HTML editor of your choice, you can have a
complete macro by simply adding an SQL section to run your query and
automatically display tabular results.

In addition to the default behavior of Net.Data (display SQL results in an HTML
table), you can customize the resulting table or use Net.Data functions to add
other HTML options to the table, such as listbox fields and checkbox fields.

1.3.6.2 You Have Limited or No CGI Programming Support
If you do not have AS/400 programming skills (usually RPG, COBOL or C) or if
you are uncomfortable with using the CGI APIs required to get, parse, and return
data to the browser, you may find Net.Data easier to work with. Net.Data provides
support for retrieving input from the browser and sending generated HTML back
to the browser. You can concentrate on the application, rather than the mechanics
of communicating with the browser.

1.3.6.3 One-Time or Short-Term Need
If the Web page that you need is not expected to have a long useful life, it does
not make any sense to devote the effort required to create a CGI program or
servlet. In this case, you may be willing to trade performance (generally better
with CGI programs and servlets) for ease of creation and implementation
(generally better with Net.Data).

1.4 Common Gateway Interface (CGI) Programming

On most non-AS/400 system Web serving platforms, CGI programming implies
working with scripts written in the PERL language. Although there is an
unsupported version of PERL available for the AS/400 system, most AS/400 CGI
programs are created using ILE RPG, ILE COBOL, or ILE C. Because AS/400
CGI programs are compiled, they typically performs better than interpreted CGI
programs such as Net.Data or PERL scripts.

All compiled AS/400 CGI programs must be invoked from the AS/400 library file
system. CGI programs are created with traditional CRTxxxPGM commands using the
AS/400 command line.

1.4.1 Why Use CGI Programming
The primary reason to use CGI programming on the AS/400 system is that you or
your staff may already be familiar with one of the AS/400 system programming
languages. For example, if you already know RPG, it is relatively simple to learn
how to incorporate CGI processing techniques into an RPG program, compared
with learning Net.Data or Java.

When you write a CGI program, you have access to all of the AS/400 system
programming tools and constructs with which you are used to working. For
example, you can use native database operations in your CGI programs. You can
also use string handling operations in the language to create the exact HTML
statements that you need. Finally, you can use the same debugging tools that you
work with for other types of application programs to help you quickly put your CGI
program into production.
AS/400 Internet Application Development Overview 15

1.4.2 CGI Processing
To work with CGI programs effectively, you must understand the following:

 • How a CGI program is invoked in response to a request in the browser
 • How form data is sent from the browser to the CGI program
 • The IBM HTTP Server for AS/400
 • How form data is made available to the CGI program while it is running
 • How HTML generated in the CGI program is returned to the browser

Figure 6. How CGI Processing Works

Assuming that your IBM HTTP Server for AS/400 is properly configured with the
required MAP, PASS, and EXEC directives, here is the process that occurs when you
invoke a CGI program. The step numbers correspond to the steps shown in
Figure 6.

1. A CGI program is requested on an incoming URL.

You start a CGI program by entering a URL containing the request in your
browser’s address entry area or you click on a link on a Web page that
contains the request. The request is sent to the IBM HTTP Server for AS/400
along with any form data that was entered on the Web page.

2. The CGI program is invoked.

The IBM HTTP Server for AS/400 uses the path on the incoming URL to locate
the CGI program. The program is located based on a MAP, PASS, or EXEC directive
that matches the /cgibin part of the URL.

Note: You need at least one EXEC directive in your HTTP Server configuration
file to enable CGI programs to be invoked. The EXEC directive may contain the
replacement URL string that points to the library where the CGI program is
located, or a MAP or PASS directive may contain the replacement URL.

CGI Processin g

Browser

1. Request URL

IBM HTTP Server for AS/400

6. Returns to Browser

CGI-RPGCGI-RPG

http://myAS400/cgibin/hello.pgm

2. CGI program
invoked DB2/400

3. Get requested data

4. Other AS/400
services as
requested

Other
Services

5. Generated HTML
16 Building AS/400 Internet-Based Applications with Java

For example, the following two directives in the HTTP Server configuration file
may be used to allow the HELLO CGI program to be invoked:

Pass /cgibin/* /QSYS.LIB/CGIPGMS.LIB/*
Exec /QSYS.LIB/CGIPGMS.LIB/*

3. The CGI program gets requested data.

Now that the CGI program is invoked, it runs like any other AS/400 program. It
can open files, work with the DB2/400 database, run SQL statements, or call
other AS/400 system services such as other programs, commands or APIs.

At this point, the CGI program is conceptually similar to an AS/400 system
workstation program in that it has received input from the browser form and is
preparing a response to be sent back to the browser.

4. The resulting HTML is returned to the IBM HTTP Server for AS/400.

After constructing the response HTML, the CGI program uses API calls to
send the resulting HTML to the IBM HTTP Server for AS/400.

5. The resulting HTML is sent back to the browser.

The IBM HTTP Server for AS/400 sends the completed HTML page back to
the browser. At this point, the process is complete. The user can request
another CGI program which starts the process over again.

1.4.3 APIs Used for CGI Programming
Section 1.1.2.1, “Input Data from the Form” on page 2 and Section 1.1.2.3,
“Returning a Response to the Browser” on page 4 describe two files, STDIN and
STDOUT, which are used with CGI programs. To review, remember these points:

 • Form data sent from the browser is available to the CGI program in the STDIN
file.

 • Generated HTML to be sent from the CGI program back to the browser is
written to the STDOUT file.

If you create an ILE C CGI program, you can work directly with the STDIN and
STDOUT files. You do not need to work with the APIs described in this section.

However, if you use ILE RPG or ILE COBOL for your CGI programs, you cannot
directly open files STDIN and STDOUT. You need to use APIs provided with the IBM
HTTP Server for AS/400 to allow your CGI program to have access to the form
data and to send its response.

1.4.3.1 The QHTTPSVR/QZHBCGI Service Program
Starting with OS/400 V4R3, the IBM HTTP Server for AS/400 product
(5769-DG1) provides a Service Program (*SRVPGM), which includes several APIs
that you use for CGI programming. The service program is QHTTPSVR/QZHBCGI. This
is a complete replacement for the previously available service program
QTCP/QTMHCGI.

The QHTTPSVR/QZHBCGI service program includes the following APIs:

 • QtmhGetEnv —Get Environment Variable
 • QtmhPutEnv —Put Environment Variable
 • QtmhRdStin —Read from Stdin
 • QtmhWrStout —Write to Stdout
 • QtmhCvtDb—Convert using DB format
AS/400 Internet Application Development Overview 17

 • QzhbCgiParse —Parse QUERY_STRING environment variable or POST data
 • QzhbCgiUtils —Produce Full HTTP Response

If you create new CGI programs on a V4R3 AS/400 system, use service program
QHTTPSVR/QZHBCGI. That service program includes all of the APIs that were
previously available in QTCP/QTMHCGI, plus the new QzhbCgiParse API described in
the following section.

1.4.3.2 The QzhbCgiParse API
Figure 2 on page 3 shows a sample of the form data that is available to your CGI
program. The form data is in file STDIN and is in HTTP encoded format. To work
with the form data, your CGI program needs to perform two tasks:

1. Read the data from the STDIN file.

2. Parse the data so that it can be used in the program. As you can see in the
figure, the form field names are included with the data. Special characters are
encoded using hexadecimal values.

Even though service program QHTTPSVR/QZHBCGI includes an API called QtmhRdStin

to read from STDIN, you no longer need to use that API. Instead, you can use the
new QzhbCgiParse API which both reads from STDIN and parses the data into field
name and field value pairs.

The QzhbCgiParse API uses the six parameters, which are described in Table 1.

Table 1. Parameters Used with the QzhbCgiParse API

Parameter Usage Type Description

Command string Input CHAR(20) A list of flags and modifiers
used to indicate the operation
to be performed by the API. For
example, to read form data
from STDIN, the -POST flag is
used.

Output format Input CHAR(8) Specifies the format of the data
to be returned to the target
buffer. Must be one of these
values:

CGII0100 Free-form format
(not parsed)

CGII0200 CGI form variable
output. Must be used with the
-POST command string.

Target Buffer Output CHAR(*) The output buffer that contains
the POST data.

Length of Target Buffer Input BINARY(4) Length of target buffer.

Length of Response Output BINARY(4) The actual length of the POST
data in the target buffer.
18 Building AS/400 Internet-Based Applications with Java

1.4.3.3 How the QzhbCgiParse API Makes Form Data Available
The QzhbCgiParse API is similar to other OS/400 list APIs. With a list API, the data
is written to a buffer along with information about where the data is located in the
buffer. Using the location information, your program can iterate through the buffer
and retrieve the data.

The advantage of the list processing technique is that variable length data can be
easily accommodated. You do not have to know in advance how long a particular
data element is, which is especially useful for character string data. The location
information in the list not only indicates where each data element begins, but also
how long the data element is. After extracting the data element from the list, it is
available for use in your program.

The API retrieves both the field names and field values. The field names are
based on the field names used on the HTML form. By default, the field names are
returned to your program with the prefix FORM_. By appending the prefix, the field
values do not replace current values in your program for fields that have the same
name.

When you use the QzhbCgiParse API, the CGII0200 format is "overlaid" on top of the
target buffer. Your program works with the information available in the CGII0200
format to determine where data elements can be located in the target buffer.

Table 2 shows the contents of the CGII0200 format.

Table 2. The CGII0200 Format

Error Code Input/Output CHAR(*) The standard AS/400 system
API error structure. See "Error
Code Parameter" in the
System API Reference
manual for additional
information about this
parameter.

Offset
Decimal

Offset
Hexadecimal

Type Description

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(20) Continuation handle

28 1C BINARY(4) Offset to first variable entry

32 20 BINARY(4) Number of variable entries returned

36 24 CHAR(*) Reserved

BINARY(4) Length of variable entry (see note)

BINARY(4) Length of variable name (see note)

CHAR(*) Variable name (see note)

BINARY(4) Length of variable value (see note)

CHAR(*) Variable value (see note)

Parameter Usage Type Description
AS/400 Internet Application Development Overview 19

1.4.3.4 The QtmhWrStout API
After retrieving form data with the QzhbCgiParse API, your CGI program prepares
its response. The response typically includes many lines of HTML code that must
be sent from the CGI program back to the browser. You need to send a response
since the browser is locked, waiting for the response. If your CGI program does
not respond, the browser eventually times-out so that the user can continue with
other work.

Response HTML is sent from your CGI program to the browser in the STDOUT file.
Because an ILE RPG or ILE COBOL program cannot directly open and write to
STDOUT, CGI programs written in those languages must use the system API
QtmhWrStout to send the response HTML back to the browser.

You can call the QtmhWrStout API as many times as needed to send a buffer of
HTML to the browser.

Table 3 shows the parameter list used with the QtmhWrStout API.

Table 3. Parameters Used with the QtmhWrStout API

1.4.4 A Sample RPG-CGI Program
To help you compare using CGI programming with the other techniques described
in this manual (Net.Data, Java Servlets), the sample RPG-CGI program uses the
same prompting form and queries the same database as the Net.Data macro.
The user initially requests an HTML file that loads the prompting form, similar to
Figure 4 on page 11. After selecting a part and clicking the submit button, the CGI
program is invoked. The response sent back to the browser from the CGI program
appears as shown in Figure 5 on page 11.

1.4.4.1 The Initial HTML File
Unlike the Net.Data macro sample, which includes the initial prompting page as
part of the macro, the prompting page for the RPG-CGI program is a separate
HTML file. The HTML code is shown in Figure 7.

CHAR(*) Reserved (see note)

Note : These fields are repeated for each variable returned.

Parameter Usage Type Description

Data variable Input CHAR(*) Variable containing the data to
write to STDOUT.

Length of data variable Input BINARY(4) Length of the data to be written
to STDOUT. Must be greater than
1.

Error Code Input/Output CHAR(*) The standard AS/400 system
API error structure. See "Error
Code Parameter" in the
System API Reference
manual for additional
information about this
parameter.

Offset
Decimal

Offset
Hexadecimal

Type Description
20 Building AS/400 Internet-Based Applications with Java

Figure 7. HTML Code Used to Display the Prompting Page for the CGI Program

There are three HTML statements used to process the form:

<FORM action="http://myas400/cgibin/cg_parts.pgm" method="POST">
<INPUT TYPE="text" NAME="partno" VALUE="*ALL" SIZE=10>
<INPUT TYPE="submit" NAME="Submit" VALUE="Get Parts Information">

The form statement indicates the following information to the browser:

 • Data entered on the prompting Web page is sent to the server using the POST
method. The data is available to the server in the STDIN file.

 • The program CG_PARTS is to be invoked. The IBM HTTP Server for AS/400
locates the program using the /cgibin part of the ACTION URL.

The INPUT TYPE="text" statement is used to define the input field where the user
requests all parts or a specific part. Note that the name of this field is partno .

The INPUT TYPE="submit" statement is used to define the button that the user
clicks to submit the form for processing. When the submit button is clicked, the
browser refers to the FORM statement to determine what it should do next.

1.4.5 Source Code for the CG_PARTS CGI Program
The following source code is the complete ILE RPG program that is used to work
with the input from the HTML prompting page and return the part data as shown
in Figure 5 on page 11.

<HTML>
<HEAD>
 <TITLE>Parts Retrieval</TITLE>
</HEAD>

<BODY BGCOLOR="lightgrey">
<FORM action="http://myas400/cgibin/cg_parts.pgm" method="POST">

<CENTER>
 Enter *ALL to get all parts from the catalog

 or

 Enter the part number to get only one part from the catalog

 Press the Button to retrieve the parts
</CENTER>

Part Number or *ALL
<INPUT TYPE="text" NAME="partno" VALUE="*ALL" SIZE=10>

<INPUT TYPE="submit" NAME="Submit" VALUE="Get Parts Information">
<p>
<HR SIZE="5">

This file uses the CGI-RPG program <I>CG_PARTS</I>
to retrieve data from the AS/400.
<p>

<HR SIZE=5>
</FORM>
</BODY>
</HTML>
AS/400 Internet Application Development Overview 21

 * CGI-RPG program CG_PARTS -- display Parts in HTML table

 * Use externally described data structure for field names

 D parts e ds

 **
 * CGI APIs - from *SRVPGM QHTTPSVR/QZHBCGI
 **
 D CGIParse c 'QzhbCgiParse'
 D CGIWrite c 'QtmhWrStout'

 **
 * Parameter values for QzhbCgiParse API
 **
 D zhbBuffer s 1024
 D zhbCommand s 20 inz('-POST')
 D zhbFormat s 8 inz('CGII0200')
 D zhbLen s 9b 0 inz(%len(zhbBuffer))
 D zhbRspLen s 9b 0 inz(0)

 **
 * CGII0200 format
 *
 * d2ybtrtn - bytes returned
 * d2bytavl - bytes available
 * d2conhnd - continuation handle
 * d2offset - offset to first variable entry
 * d2count - number of variable entries returned
 **
 D ds0200 ds based(ptr)
 D d2bytrtn 9b 0
 D d2bytavl 9b 0
 D d2conhnd 20
 D d2offset 9b 0
 D d2count 9b 0

 D ptr s *

 **
 * Parameter values for QtmhWrStout API
 **
 D tmhOut s 256
 D tmhOutLen s 9b 0 inz(%len(tmhOut))

 **
 * API error structure
 **
 D QUSEC ds
 D qusbprv 9b 0
 D qusbavl 9b 0
 D qusmsg 7
 D qusrsvd 200

 **
 * Other constants/variables
 **
 D aFtrsize c 4
 D aHdrsize c 16
 D crlf c x'15'

 D aHdr s 80 dim(aHdrsize) perrcd(1) ctdata
 D aFtr s 80 dim(aFtrsize) perrcd(1) ctdata
 D getAllParts s like(partno) inz(-1)
 D PartRequest s like(partno)

 **
 * HTML constants
 **
 D htTdB c '<td>'
 D htTdE c '</td>'
 D htTrB c '<tr>'
 D htTrE c '</tr>'

 **
22 Building AS/400 Internet-Based Applications with Java

 * Prototype for InitQUSEC procedure
 **
 D InitQUSEC pr

 **
 * Prototype for MakeFooter procedure
 **
 D MakeFooter pr

 **
 * Prototype for MakeHeader procedure
 **
 D MakeHeader pr

 **
 * Prototype for MakeHTML procedure
 **
 D MakeHTML pr
 D StringIn 254 value

 **
 * Prototype for MakeTblDta procedure
 **
 D MakeTblDta pr
 D StringIn 80 value

 **
 * Prototype for ParseForm procedure
 **
 D ParseForm pr like(partno)

 **
 * Prototype for RunSQL procedure
 **
 D RunSQL pr
 D sqPartno like(partno) value

 **
 * Program mainline routine
 **

 C callp MakeHeader
 C eval PartRequest = ParseForm
 C callp RunSQL(PartRequest)
 C callp MakeFooter

 C movel *on *inlr

 **
 * Procedure InitQUSEC
 *
 * Initialize bytes provided/available for QUSEC
 **
 P InitQUSEC b

 C eval qusbprv = %len(QUSEC)
 C eval qusbavl = 0

 P InitQUSEC e

 **
 * Procedure MakeFooter
 *
 * Write HTML for the page footer
 **
 P MakeFooter b
 D N s 5 0

 C do aFtrsize N
 C callp MakeHTML(%trim(aFtr(N)))
 C enddo

 P MakeFooter e

 **
 * Procedure MakeHeader
 *
 * Write HTML for the page header. First line output is
AS/400 Internet Application Development Overview 23

 * the Content-Type header, which must be followed by the
 * newline character.
 **
 P MakeHeader b
 D N s 5 0

 C do aHdrsize N

 C if N = 1
 C callp MakeHtml(%trim(aHdr(N)) + crlf + crlf)
 C else
 C callp MakeHTML(%trim(aHdr(N)))
 C endif

 C enddo

 P MakeHeader e

 **
 * Procedure MakeHTML
 *
 * Write the generated HTML string to STDOUT
 **
 P MakeHTML b

 D MakeHTML pi
 D StringIn 254 value

 *---
 * Calculate length of HTML string
 *---

 C eval tmhOut = %trim(StringIn)
 C eval tmhOutLen = %len(tmhOut)

 *---
 * Use system API to write to STDOUT, send HTML to browser
 *---

 C callp InitQUSEC

 C callb CGIWrite 99
 C parm tmhOut
 C parm tmhOutLen
 C parm QUSEC

 P MakeHTML e

 **
 * Procedure MakeTblDta
 *
 * Make a table data element, write HTML string to STDOUT.
 **
 P MakeTblDta b

 D MakeTblDta pi
 D StringIn 80 value

 C callp MakeHTML(htTdB +
 C StringIn +
 C htTdE)

 P MakeTblDta e

 **
 * Procedure ParseForm
 *
 * Get data from incoming request and parse
 **
 P ParseForm b

 D ParseForm pi like(partno)

 D p1 s *
 D p2 s *
 D lenVE s 9b 0
 D lenVN s 9b 0
 D lenVV s 9b 0
24 Building AS/400 Internet-Based Applications with Java

 D lenWork s 9b 0 based(p2)
 D rtnVar s like(partno)
 D varName s 50
 D varValue s 50
 D work s 1024 based(p2)

 C callb CGIParse 99
 C parm zhbCommand
 C parm zhbFormat
 C parm zhbBuffer
 C parm zhbLen
 C parm zhbRspLen
 C parm QUSEC

 C if (qusmsg = *blanks) and
 C (*in99 = *off)

 * store offset to first variable (part request)

 C eval ptr = %addr(zhbBuffer)
 C eval p1 = ptr + d2offset

 * get length of variable entry

 C eval p2 = p1
 C eval lenVE = lenWork

 * get variable name

 C eval p2 = p2 + 4
 C eval lenVN = lenWork
 C eval p2 = p2 + 4
 C eval varName = %str(p2 : lenVN)

 * get variable value

 C eval p2 = p2 + lenVN
 C eval lenVV = lenWork
 C eval p2 = p2 + 4
 C eval varValue = %str(p2 : lenVV)

 * if variable entered on Web page is blank or *ALL,
 * set value to -1 to request *ALL parts

 C if (varValue = *blanks) or
 C (varValue = '*ALL') or
 C (varValue = '*all')
 C eval rtnVar = getAllParts

 C else
 C eval varValue = %trim(varValue)
 C movel varValue rtnVar
 C endif

 C return rtnVar
 C endif

 P ParseForm e

 **
 * Procedure RunSQL
 *
 * Run SQL for requested part(s)
 **
 P RunSQL b

 D RunSQL pi
 D sqPartno like(partno) value

 C if (sqPartno = getAllParts)
 C/exec sql
 C+ declare c1 cursor for
 C+ select * from apilib/parts order by partno
 C/end-exec
 C else
 C/exec sql
 C+ declare c2 cursor for
 C+ select * from apilib/parts where PARTNO = :sqpartno
AS/400 Internet Application Development Overview 25

 C/end-exec
 C endif

 C if (sqPartno = getAllParts)
 C/exec sql open c1
 C/end-exec
 C else
 C/exec sql open c2
 C/end-exec
 C endif

 C/exec sql whenever not found goto EndOfFile
 C/end-exec

 *---
 * Create HTML table rows for part data
 *---

 C dow sqlcod = 0

 C if (sqPartno = getAllParts)
 C/exec sql
 C+ fetch c1 into :partno, :partds, :partqy, :partpr, :partdt
 C/end-exec
 C else
 C/exec sql
 C+ fetch c2 into :partno, :partds, :partqy, :partpr, :partdt
 C/end-exec
 C endif

 C callp MakeHTML(htTrB)

 C callp MakeTblDta(%trim(%editc(partno : 'X')))
 C callp MakeTblDta(partds)
 C callp MakeTblDta(%trim(%editc(partqy : 'Z')))
 C callp MakeTblDta(%trim(%editc(partpr : 'J')))
 C callp MakeTblDta(%char(partdt))

 C callp MakeHTML(htTrE)
 C enddo

 C EndOfFile tag

 C if (sqPartno = getAllParts)
 C/exec sql close c1
 C/end-exec
 C else
 C/exec sql close c2
 C/end-exec
 C endif

 P RunSQL e
** CTDATA aHdr
Content-Type: text/html
<html>
<head>
 <title>Query response from CG_PARTS</title>
</head>
<body>
 <center>
 <h1>Parts File Listing</h1>
 <table border cellpadding=2>
 <tr>
 <th>PARTNO</th>
 <th>PARTDS</th>
 <th>PARTQY</th>
 <th>PARTPR</th>
 <th>PARTDT</th>
 </tr>
** CTDATA aFtr
 </table>
 </center>
</body>
</html>
26 Building AS/400 Internet-Based Applications with Java

1.4.5.1 Understanding the Program Flow
When the program is invoked, it starts in the mainline routine:

**
 * Program mainline routine
 **

 C callp MakeHeader
 C eval PartRequest = ParseForm
 C callp RunSQL(PartRequest)
 C callp MakeFooter

 C movel *on *inlr

The MakeHeader and MakeFooter routines write the contents of the aHdr and aFtr
arrays to STDOUT. Because the response Web page header and footer contain
HTML that does not change, that HTML can be coded as array elements and
output without further processing.

The ParseForm procedure is invoked to parse data from file STDIN. The part number
that the user entered on the prompting Web page is passed to the RunSQL
procedure.

1.4.5.2 The ParseForm Procedure
The ParseForm procedure calls the QzhbCgiParse API to retrieve the input stream
from file STDIN. After retrieving the input stream, the procedure works through the
returned buffer to extract the value for the first field. That field contains the part
number that the user wants to review or the special value *ALL to review all parts.

In this example, there is only one input field used on the prompting form. The field
is named partno on the prompting form (see the HTML used for the prompting
form in Figure 7 on page 21). The field name in the buffer is FORM_partno , since the
default field name prefix is used when the QzhbCgiParse API is called.

Because the part number is defined as a numeric field in the program, the value
-1 is used to indicate that the user entered the special value *ALL .

Since there is only one field on the prompting form, the code does not iterate
through the buffer. When you work with a form that has multiple input fields, you
can use a program loop to parse all of the fields in the buffer. The CGII0200 format
includes a count field that indicates how many fields are available in the buffer.

1.4.5.3 The RunSQL Procedure
After parsing the input buffer, the program knows which part the user wants to
review. When this procedure is called, the part number is either a specific part
number or the special value -1 to indicate that the user wants to review all parts.

Based on the part selection, one of the SQL declare cursor statements is used.
After opening the selected cursor, the procedure loops and fetches one row at a
time from the result set. As each row is retrieved, the procedures MakeHTML and
MakeTblDta are called:

 • Procedure MakeHTML is used to write the HTML tags <TR> and </TR> to delimit
the beginning and end of the table row.

 • Procedure MakeTblData is used to write the HTML tags <TD> and </TD> and the
actual field values from the row.
AS/400 Internet Application Development Overview 27

The result of using those two procedures is that a complete HTML table row is
written to STDOUT for each of the data rows fetched from the result set.

1.4.6 Summary of the CGI Sample Program
As you can see, there is considerably more code required for an RPG CGI
program as compared to the Net.Data sample. As with any programming project,
once you create a working RPG CGI program, you can easily copy code from one
program to another.

The most difficult part of the RPG CGI program is the code that parses the buffer
returned from the QzhbCgiParse API. You may find that after you develop several
programs using this API, you can extract the routines and create your own service
program to generalize and encapsulate the processing required for the API.

1.4.7 When to Use CGI Programs
CGI programming, using either ILE RPG or ILE COBOL, is a natural fit for many
enterprises that have AS/400 systems. If you are familiar with ILE RPG or ILE
COBOL, you can easily see how you can substitute HTML forms processing for
traditional green-screen display file applications. The advantage of using HTML
forms is that your application can be run in a browser on any number of client
workstations without needing 5250 emulation support.

CGI programs typically have better performance than equivalent Net.Data
macros. The overhead of invoking the CGI program is less than Net.Data. Also,
because the CGI program is a compiled program, it runs faster than the
interpreted Net.Data macro.

In short, CGI programming is a way to Web-enable your AS/400 system
applications using existing programming skills. You need to learn only a few
additional skills (HTML and the use of the APIs) to create CGI programs.

1.5 Java Applets

Java applets are programs that run inside a Java-capable browser. Browsers that
provide support for applets include:

 • Netscape Navigator version 4.04 or later
 • Microsoft Internet Explorer version 4.01
 • Sun Microsystems HotJava

Because an applet is an executable program, the interaction between the browser
and the server is quite different from the Net.Data and CGI programming
techniques. With Net.Data and CGI programming, the program running on the
server is responsible for generating and sending HTML code to the browser. The
browser simply displays the HTML.

Java applets are delivered to the browser in HTML files that contain a reference
to the applet. Upon arriving in the browser, the applet begins execution. The
applet usually displays what appears to the user as a Web page. However, all of
the user interface elements are contained within the applet itself and are not
rendered by HTML.
28 Building AS/400 Internet-Based Applications with Java

Most importantly, the applet can communicate directly back to the server. When
the server responds, it is up to the applet to display the response. Because the
applet is in control of its user interface elements, it can update them to display the
server response, again without requiring HTML.

1.5.1 The Scripting Alternative
You may have heard of scripting languages that can be used for Web pages. The
two most popular scripting languages are:

 • JavaScript, which is syntactically similar to Java but does not provide as many
features as Java

 • VBScript, which is a subset of Microsoft Visual Basic

Scripting languages were introduced into browsers by Netscape and Microsoft as
a method of providing more capabilities to Web pages displayed with HTML. The
HTML on a Web page can include several user-interface components, such as
push buttons, check boxes, lists, and clickable links. Scripting can be used to
control animation effects on the page and also to provide edits of user-entered
data.

1.5.1.1 JavaScript
JavaScript can have only limited interaction with the browser host or the server.
For example, JavaScript is limited to storing only small amounts of information in
"cookie" files on the browser host; JavaScript cannot store information in a text
file for example. JavaScript also cannot access any files other than cookies on the
browser host. These limitations are obviously required because of the risk
inherent in running JavaScript code from unknown or untrusted Web servers.

Although JavaScript is generally regarded as "safe", it is possible to disable it in
the browsers that support it. For example, both Netscape Navigator and Microsoft
Internet Explorer let you disable JavaScript.

1.5.1.2 VBScript and ActiveX
Microsoft initially pushed a technology called ActiveX when they introduced
VBScript with their Internet Explorer browser. The idea is that ActiveX
components can be delivered to a Windows PC as part of the Web content
associated with a page. ActiveX components are essentially the same as and
extend other Windows components that are already present on a Windows PC.
By having these additional components in place or delivered as part of the Web
page when required, the VBScript on the Web page can present the viewer with a
more Windows-like page, as opposed to the relatively less active HTML page.

However, the capabilities that give ActiveX its power also make it undesirable for
most Web users. There is nothing to prevent an ActiveX component from
accessing all areas of a user’s PC. The ActiveX component can possibly damage
files or transmit data from a file to the server without the user’s consent. Microsoft
tried to make ActiveX more acceptable by introducing a concept of digitally
signed components. When you go to a Web site that tries to download an ActiveX
component along with the HTML, the Internet Explorer browser prompts you to
ask if you want to accept the component. Netscape browsers, which need a
plug-in to provide ActiveX support, simply ignore ActiveX components. Part of the
prompt includes information about the originator of the ActiveX component and
whether the component possesses a signed digital certificate. At that point, you
AS/400 Internet Application Development Overview 29

can accept or reject the component, based on the information that it presents to
you.

Although it is possible to see how ActiveX components can provide you with
greater Web interaction possibilities, ActiveX has not and most likely will not
become a favored technique on the Internet for these reasons:

 • ActiveX is currently only supported natively in the Microsoft Internet Explorer
series of browsers. Users of other browsers, such as Netscape Navigator,
cannot use ActiveX at all or need to install a plug-in to provide ActiveX
support.

 • ActiveX is a Microsoft Windows-based technology. Web users on other
platforms cannot benefit from ActiveX components.

 • Most people are leery of allowing unrequested components to install
themselves on their PCs when they access the Internet.

1.5.2 How Applets are Different from Scripting
Java applets are delivered to your browser when you request an HTML file that
includes the APPLET tag. The Web server sends the applet to your browser, which
starts the applet. At that point, the browser acts as a container for the applet,
which has control of the Web page.

There are two important concepts about browsers and applets that you should
understand:

 • Because an applet is written in Java, it requires the supporting Java runtime
environment. That environment is provided by the browsers. Because the Java
runtime environment is already on the browser host, the only code that needs
to be transmitted from the server to the browser host is the code required for
the application.

 • Within the browser, the applet is constrained to run in the sandbox. The
sandbox is an environment that limits what the applet can do. For example, the
applet cannot access files on the browser host other than cookies. It cannot
start network connections to hosts other than the server from which it was
loaded. And, it cannot examine or change any configuration options on the
browser host. The applet is limited to user-interaction within the browser and
communication with the server.

Because applets are Java programs, they have the benefit of transportability.
Since there is a base Java runtime environment that all browser vendors are
required to implement to claim Java compliance, the applet can be served to Web
users on completely different platforms. In all cases, the applet should appear the
same to the user and should have the same interactions with the user and the
server.

Both Netscape Navigator and Microsoft Internet Explorer provide browser
configuration options to let the user loosen the restrictions imposed by the
sandbox. However, it is up to the user to change the default configuration. Applets
themselves cannot override the security that is imposed by the sandbox.
30 Building AS/400 Internet-Based Applications with Java

1.5.3 Applet Processing
One of the most important features of applets for AS/400 system developers is
the capability of the applet to interact with the AS/400 system. When you create
an applet, you can include Java classes from the AS/400 Toolbox for Java that let
you access objects on the AS/400 system. For example, you can:

 • Get records from the AS/400 system database using SQL statements or
record-level access techniques.

 • Call programs or invoke commands on the AS/400 system.
 • Send and receive entries from data queues on the AS/400 system.

Figure 8. Applet Processing

Assume that your IBM HTTP Server for AS/400 is properly configured with the
required MAP and PASS directives and that your browser has Java support enabled.
Here is the process that occurs when you invoke an applet. The step numbers
correspond to the steps shown in Figure 8.

1. An HTML page that contains an APPLET tag is requested on an incoming
URL and returned to the browser.

You start an applet by requesting an HTML file that contains an APPLET tag. As
the page is sent to your browser, the Java classes that are used in the applet
are also sent to the browser. After receiving the applet, the browser starts it
and passes control to the applet.

2. A request is sent from the applet to the AS/400 system.

Once the applet has started, you interact with it as you would with other forms
displayed in the browser. The applet may require that you enter data or make
selections. You usually have one or more buttons in the applet that you can
click. The buttons are not associated with a FORM statement in an HTML form,
but rather are used to invoke methods in the applet’s Java code. It is up to the
Java code in the applet to use methods to send requests to the AS/400
system.

Applet Processin g

Browser

1. Request URL

IBM HTTP Server for AS/400

6. Applet dis plays response,
handles user interaction

http://myAS400/applet/Parts.html

2. HTML with APPLET
tag sent to browser

DB2/4003. Applet requests
AS/400 data/services

4. Database, other AS/400
services as re quested

Other
Services

5. Response sent
back to A pplet
AS/400 Internet Application Development Overview 31

3. The AS/400 system services the request from the applet.

The request from the applet is serviced the same as other types of program
requests running on the AS/400 system. For example, if the request was to
create an SQL result set, the SQL processor is invoked to query the AS/400
system database.

4. The response is sent back to the applet.

After the AS/400 system processes the request, the results of servicing the
request are sent back to the applet. The results are in the format that pertains
to the request. For example, an SQL request generates a result set. A data
queue read operation generates a packet of bytes that contains the data
queue entry. The applet receives the results using the Java class and methods
appropriate to the request.

5. The applet displays the response data.

Once the results are available to the applet, it can display those results using
any of the user interface components that were included in the applet when it
was designed. The display is not limited to HTML only. After formatting and
displaying the results, the applet is available for additional user interaction,
which may include additional requests to the applet for more data from the
AS/400 system.

1.5.4 How Applets are Different from Net.Data and CGI Programs
Earlier in this chapter, you learned how Net.Data and CGI programs can be used
with the AS/400 system. The examples used SQL statements to query the
AS/400 system database and return results to the browser in HTML forms. In
each case, you worked with an initial HTML page that prompted you for the query
to run, invoked the query on the AS/400 system, and received an HTML page in
response to the query.

With applets, you do not need to invoke a program on the AS/400 system.
Instead, the Java classes in the applet go more directly to the AS/400 system
resource with which you want to work. The results of your request return directly
to the applet, rather than returning as an HTML page. Because the applet is not
limited to working with HTML as the browser is, the applet can display the results
using any number of visual components, not only those supported by the browser
in HTML.

An applet can also be used for the initial editing of user input before sending a
request to the AS/400 system. If you wanted to edit user input when using
Net.Data or CGI, you need to include scripting (JavaScript or VBScript) on your
Web page. The alternative is to send the user input to the Net.Data macro or CGI
program, which then performs edits and returns error notifications as required.

1.5.5 A Sample Applet
Figure 9 on page 33 shows a sample applet in the Netscape Navigator browser.
At this point, the applet has sent a query request to the AS/400 system for the list
of parts and formatted the returned part data into a multicolumn listbox.

When the applet starts, the Netscape Navigator browser displays the Java
Security message box shown in Figure 10 on page 33. Even with the sandbox in
place, the browser gives you the chance to deny the applet from starting on your
computer.
32 Building AS/400 Internet-Based Applications with Java

Figure 9. PartsView Applet Running in the Netscape Browser

Figure 10. Java Security Message Displayed under Netscape
AS/400 Internet Application Development Overview 33

1.5.6 When to Use Applets
Applets are useful when you need to work with AS/400 system resources and you
do not want to create Net.Data or CGI programs on the AS/400 system. You can
also choose to work with applets because of the greater control you have in
designing the user interface and interacting with the user at runtime.

Another reason to use applets is because you can use the industry-standard Java
language, rather than the proprietary AS/400 system Net.Data or CGI
programming languages. Although the Java classes to access the AS/400 system
are proprietary, the classes are readily usable by any Java programmer with basic
knowledge of the AS/400 system.

1.5.7 Applet Development
Rather than review the applet code and development process at this point, read
Chapter 3, “Introduction to AS/400 Applets” on page 51 in this redbook. That
chapter presents a complete overview of the applet development process and
describes different options you have for hosting and deploying applets.

1.6 Java Servlets

Starting with OS/400 V4R3, an exciting new technique is available for AS/400
system Web serving—Java servlets. Based on specifications and Java classes
developed by Sun Microsystems, Inc., Java servlets provide an alternative to
Net.Data, CGI programming, and applets. Using servlets, you can parse requests
from HTML forms and use simple print and println methods to send response
HTML back to the browser.

Servlets run entirely on the AS/400 system as part of the IBM HTTP Server for
AS/400. Because servlets run on the AS/400 system, they have ready access to
the AS/400 system database and other system resources.

1.6.1 Why Use Servlets
There are several reasons why you should consider using servlets for your
AS/400 system Web applications:

 • Few browser dependencies

One of the problems that is described in Section 1.5, “Java Applets” on page
28, is the differences between browsers. This includes differences in versions
from the same companies. Since Java servlets are primarily tasked with
generating and returning HTML as their output, servlets can be used with
"least common denominator" browsers. With applets, you need several
prerequisites in place in the browser to ensure that your applet runs correctly.

 • Uses industry-standard Java

The AS/400 system has traditionally been perceived as a proprietary platform,
which limited its appeal as a choice for Web serving. Although using Net.Data
and CGI programming techniques for Web serving is fine for AS/400 system
users who have those skills, there was little to attract Java programmers to the
AS/400 system as a Web serving platform. With Java servlet support, the
AS/400 system is now in the mainstream as a powerful Web serving system. It
is far easier to present the traditional AS/400 system strengths, such as its
34 Building AS/400 Internet-Based Applications with Java

integrated database and security when there is a widely accepted
programming language available for working with the system.

 • Handles form parsing, GET/POST processing, and STDOUT processing

In comparison to CGI programming, Java servlets are much easier to work
with. Most of the work in CGI programming is concerned with getting the input
data from the Web form, parsing the data into discrete field name and value
pairs, and writing response HTML back to STDOUT. In contrast, Java servlets
provide two simple input/output stream objects to get the data and write the
response, and two simple methods to parse field name/value pairs.

 • Runs in a multi-threaded pool as a prestarted thread

One side effect of having a popular Web site is that the response time of your
AS/400 system may be adversely affected. When a request for Net.Data or
CGI processing is received at the AS/400 system, a new job is started.
Because Net.Data and CGI programs are typically short-lived, there is little
that can be done to optimize their performance, since most of the work
associated with the programs is in job initiation and termination. In contrast,
Java servlets take advantage of the multi-threaded job capability available with
the V4R3 version of the IBM HTTP Server for AS/400. In fact, your servlets
can optionally be started when the IBM HTTP Server for AS/400 is started, so
that they are available and waiting for incoming requests. Servlets also do not
necessarily end when they are done servicing a request. They remain active
and can service additional requests as they arrive at the AS/400 system. If you
create an equivalent Net.Data or CGI application and a Java servlet, you
typically see much better response time with the Java servlet.

1.6.2 Servlet Processing
Servlet processing is similar to CGI processing. The primary difference is that the
servlet can be prestarted in the multi-threaded job pool so that there is no
start-up overhead when it is invoked.

If a servlet is not currently active when it is invoked, you incur the start-up
overhead on its first usage. After that point, the servlet is available for subsequent
invocations.
AS/400 Internet Application Development Overview 35

Figure 11. Servlet Processing

The following steps describe how a servlet is invoked, how it services an
incoming request, and how it returns results to the browser. The numbers
correspond to the steps shown in Figure 11.

1. The Servlet is invoked from a URL or FORM statement.

The servlet is identified either in a URL that you type into the browser or click
as a link. Or, it can be specified on an HTML FORM statement that is used when
a SUBMIT button is clicked. The request is sent using the HTTP protocol to the
IBM HTTP Server for AS/400, which identifies the servlet to invoke. If the
servlet is not currently active, the IBM HTTP Server for AS/400 starts an
instance of the servlet in the multi-threaded job pool reserved for Java
servlets. If the servlet is currently active, the IBM HTTP Server for AS/400
passes control to the servlet.

2. The Servlet uses the doGet or doPost method to read form data.

The Java servlet API includes the doGet and doPost methods that correspond
to the HTML METHOD="GET" and METHOD="POST" techniques of sending data from
the browser to the IBM HTTP Server for AS/400. You do not have to do
anything in your servlet program to determine which method to use. The
servlet chooses the correct method (doGet or doPost) depending on the METHOD
used in the form.

Regardless of the method used, the input data is available to the servlet in the
HttpServletRequest input stream.

3. The getParameter methods are used to parse field name/value pairs.

Now that the form data is available in the HttpServletRequest stream, it can be
parsed into field name/value pairs that correspond to the data fields used on
the HTML form. The Java servlets API includes the getParameterNames and
getParameterValues methods to retrieve the list of field names and values from
the input stream. After retrieving the name/value pairs, the values are
available in enumerations within the servlet.

Servlet Processin g

Browser

1. Servlet invoked from request
URL or FORM statement

IBM HTTP Server for AS/400

7. Browser displays resultin g
HTML web page

http://myAS400/servlet/Parts.html
2. doGet or doPost
method used DB2/400

3. getParameterNames, getParameterValues
methods used to parse form input

4. Servlet performs
Database, other AS/400
services as requested

Other
Services

6. Response sent
back to browser

5. Response HTML generated
with HttpServletResponse
36 Building AS/400 Internet-Based Applications with Java

4. The Servlet processes database and other requests

At this point, all of the data from the form is available to the servlet. The
servlet can now run the functions that are required to service the request. For
example, the servlet may run an SQL query against the AS/400 database, or
use other Java classes in the AS/400 Toolkit for Java to work with other
AS/400 system resources.

5. The response HTML is generated.

The servlet can start generating response HTML to send to the browser at any
point. Typically, the servlet generates HTML headers, followed by the actual
form heading, then one or more lines of data, and finally a page footer.

The Java servlets API provides the HttpServletResponse output stream to
transport generated HTML statements from the servlet back to the browser.
You create well-formed HTML statements as simple strings, using
concatenation as necessary to build a string of HTML tags and the response
data. To actually send the HTML, you simply use the print or println methods
on the HttpServletResponse stream object.

6. The IBM HTTP Server for AS/400 sends the response HTML to the
browser.

As the HTML is written in the servlet, it is sent from the IBM HTTP Server for
AS/400 to the browser. The STDOUT file is used, as is common for all server
to browser communication.

7. The resulting Web page is displayed in the browser.

The browser now displays the resulting Web page. Because the page is
composed of standard HTML elements, there are no special requirements or
security considerations for the browser.

1.6.3 A Sample Servlet
The servlet sample developed for this redbook performs the same function as the
Net.Data macro described in Section 1.3, “Net.Data” on page 6 and the RPG-CGI
program described in Section 1.4, “Common Gateway Interface (CGI)
Programming” on page 15.

Figure 12 on page 38 shows the initial prompting form that is displayed when you
start the servlet application. You enter the part number selection and click the Get
Parts Information button. When you click the button, the FORM statement in the
HTML form invokes the servlet on the AS/400 system.
AS/400 Internet Application Development Overview 37

Figure 12. Servlet Example Prompting Page

The servlet uses your part number selection to run an SQL query on the Parts
database. After running the SQL statement, the servlet iterates through the result
set. For each part retrieved, the servlet generates the HTML to display the part
data in an HTML table. Figure 13 on page 39 shows the resulting table that the
servlet returns to the browser in response to the query.
38 Building AS/400 Internet-Based Applications with Java

Figure 13. Servlet Example Output

1.6.4 When to Use Servlets
If you have not yet started creating AS/400 Web serving applications, seriously
consider adopting Java servlets as the technique you will use, even if you do not
yet use Java. In fact, learning Java by working with servlets is ideal, since
servlets are basically batch processes that do not have to deal with user interface
issues found in client-side programs.

There are only a few classes and methods that you need to work with to create
functional servlets. As with Net.Data and CGI, you may find that most of the work
involved in creating a servlet is actually spent creating HTML code.

If you anticipate having a lot of activity on your IBM HTTP Server for AS/400 for
dynamic Web pages, consider using servlets as opposed to the other techniques.
Servlets allow your Web site to scale-up much better than the other server-side
techniques.

In summary, Java servlets are currently the best alternative for Web serving from
the IBM HTTP Server for AS/400. They provide an easy to learn and use,
industry-standard, and highly scalable architecture on which to build your AS/400
system Web presence.
AS/400 Internet Application Development Overview 39

1.6.5 Servlet Development
Rather than review the servlet code and development process at this point, read
Chapter 4, “Introduction to AS/400 Servlets” on page 159 in this redbook. That
chapter presents a complete overview of the servlet development process and
describes the different options you have for hosting and deploying servlets.
40 Building AS/400 Internet-Based Applications with Java

Chapter 2. IBM HTTP Server for AS/400

Although IBM has included a no-charge HTTP server with OS/400 since V3R2
and V3R7, the IBM HTTP Server for AS/400 introduced with OS/400 V4R3 is a
significantly different product than the previous versions. Some of the changes
are immediately apparent, such as the product name and number, and the
browser-based administration program. From the point of view of an AS/400
system Web programmer, the most important enhancements include:

 • Support for the HTTP 1.1 protocol

 • Support for proxy, cache, and local memory cache for selected Web pages

 • Greatly improved CGI programming techniques, including Java CGI, PERL,
REXX, and new APIs for traditional AS/400 system programming languages

 • Persistent CGI, which enables a CGI program to remain active and span
multiple Web pages

 • Integration of Secure Sockets Layer (SSL) support, Certificates and Digital ID
authentication

 • Integration of the WebSphere Application Server for AS/400, which provides
support for Java servlets on the AS/400 system

This chapter provides an overview of those enhancements. You can find
information on how to install, configure, maintain, monitor, and program the IBM
HTTP Server for AS/400 in the following publications:

 • HTTP Server for AS/400 Quick Beginnings, GC41-5433
 • HTTP Server Webmaster’s Guide, GC41-5434

2.1 Product Packa gin g
Prior to OS/400 V4R3, the HTTP server provided with OS/400 is known as the
Internet Connection Server (ICS). It is part of the TCP/IP Connectivity Utilities
(5769-TC1) Licensed Program Product (LPP). A chargeable companion LPP, the
Internet Connection Secure Server (ICSS, 5769-NC1 or 5769-NCE) is available
for OS/400 V4R1 and V4R2 to provide SSL support.

Starting with V4R3, the HTTP server provided with OS/400 is called the IBM
HTTP Server for AS/400. The HTTP Server is provided as a separate no-charge
LPP (5769-DG1). SSL support is provided in the no-charge Cryptographic
Access Provider LPP (5769-AC1, 5769-AC2 or 5769-AC3).

Another packaging change is the separation of the Digital Certificate Manager
from the Web server itself. In V4R3, the Digital Certificate Manager is installed as
option 34 of the base operating system (5769-SS1). By installing the Digital
Certificate Manager as a separate component, other AS/400 system servers can
use its services without requiring that the HTTP Server component be installed.

Table 4 on page 42 is a cross reference between pre-V4R3 and V4R3
components. When you install OS/400 V4R3 on your AS/400 system, you can
either manually install the new LPPs for the HTTP Server, Cryptographic Services
and Digital Certificate Manager. Or, you can use the "Prepare for install" option
© Copyright IBM Corp. 1999 41

on the GO LICPGM menu to identify and install the new components from your
installation media.

Table 4. Summary of OS/400 Pre-V4R3 and V4R3 HTTP Server Components

2.2 HTTP 1.1 Protocol
The IBM HTTP Server for AS/400 implements the HTTP version 1.1 protocol.
This is the current version of the HTTP protocol.

Two of the more significant enhancements supported by the IBM HTTP Server for
AS/400 are:

 • Persistent connections
 • Virtual hosts

2.2.1 Persistent Connections
When you enter a URL into your browser’s address line or click on a link on a
Web page, you open a connection between your browser and the HTTP server.
Prior to the availability of persistent connections, each file referenced on the Web
page was retrieved using a separate connection. This type of retrieval is
tremendously costly for the HTTP server and the network since there is overhead
required to establish and terminate each connection.

Persistent connections are the default behavior for an HTTP server that
implements the HTTP 1.1 protocol. Persistent connections provide the following
advantages:

OS/400 Pre-V4R3 OS/400 V4R3

Internet Connection Server (ICS), part of
TCP/IP Connectivity Utilities (5769-TC1)

IBM HTTP Server for AS/400 (5769-DG1)

Internet Connection Secure Server (ICSS),
chargeable LPP

5769-NC1 – US/Canadian version
5769-NCE – Export version

Cryptographic Access Provider, no-charge
LPP

5769-AC1 – 40 bit strength
5769-AC2 – 56 bit strength
5769-AC3 – 128 bit strength

Note : The installation media includes only
one of these providers, based on the
country where the AS/400 system is
located.

Digital Certificate Manager, part of ICS
(5769-TC1)

OS/400 Digital Certificate Manager
(5769-SS1, option 34)

All HTTP server tasks run in subsystem
QSYSWRK.

All HTTP server tasks run in subsystem
QHTTPSVR.

You can find more information about the HTTP 1.1 protocol and other Internet
standards at the Web site for the Internet Engineering Task Force:
http://www.ietf.org

Note
42 Building AS/400 Internet-Based Applications with Java

 • Because there is less opening and closing activity, CPU and memory
utilization on the HTTP Server is reduced.

 • Network congestion is minimized because of the fewer number of TCP/IP
packets that are required to request the files.

 • HTTP requests and responses can be pipelined on the connection. Using
pipelining, a client can make several requests to the server without waiting for
the responses to the requests.

2.2.2 Virtual Hosts
In previous versions of the AS/400 system HTTP server, the only way to host
multiple Web sites on the AS/400 system and use the default HTTP port (80) is to
use different communications adapters in the AS/400 system. If you want to host
multiple Web sites through the same communications adapter, only one of the
sites can use the default HTTP port. All other Web sites need a separate port
assignment. To request those Web sites, the unique port assignment is included
as part of the requesting URL.

Starting with the V4R3 IBM HTTP Server for AS/400, you can enable virtual
hosting. This allows you to host any number of Web sites through one
communications adapter. With virtual hosting, you do not need to assign a unique
port to each Web site.

Virtual hosting is useful if you need to provide multiple "top-level" URLs for your
Web sites or if you are providing Internet Service Provider (ISP) services to
clients.

2.3 Prox y, Cache, and Local Memor y Cache
The IBM HTTP Server for AS/400 can be configured as a non-caching or caching
proxy server. When used as a non-caching proxy, the primary benefit of enabling
proxy services is that the IP addresses used on your internal network are not sent
out of your network. The proxy service forwards the request from your internal
network using the IP address of the proxy server, not the address of the original
requester. When the proxy server receives the response, it forwards the response
to the original requester.

2.3.1 Prox y Cachin g
With caching enabled, the proxy server can act as a high-speed local store of
previously accessed Web pages. For example, if you frequently access the same
set of Web pages from one or more sites, it may be advantageous to activate the
caching feature. The retrieved Web page is stored locally on your AS/400 system.
Any subsequent accesses to the page occur at LAN speed, rather than Internet
speed.

Web pages can be encoded with a "no-cache" attribute or a specific expiration
date. You can also configure the IBM HTTP Server for AS/400 proxy service so
that it periodically performs "garbage collection" to remove expired files from the
cache. The cache is located in the QOpenSys file system, which provides support
for case sensitivity in file names. You configure the maximum size of the cache
(which uses AS/400 system disk storage), protocols and URLs to cache or not
cache.
IBM HTTP Server for AS/400 43

2.3.2 Prox y Lo gg in g
Another use of the proxy service (with or without caching) is to log client
requests. Some of the data available includes:

 • Client IP address
 • Date and time
 • URL requested
 • Byte count

 • Success code

2.3.3 Local Memor y Cache
A proxy cache is traditionally most beneficial to clients on your network since it
lets you store files that were retrieved from other Web sites. You can provide a
caching service for files on your site using the local memory cache configuration
options.

To use a local memory cache, you identify an amount of memory to allocate and a
set of files to be cached. When the IBM HTTP Server for AS/400 is started, the
files are read into the local memory cache, up to the limit of the amount of
memory allocated or the limit of the number of files that you allow to be cached.
When a request is received at your IBM HTTP Server for AS/400, the local
memory cache is checked first to determine if it has a copy of the requested file. If
so, the file is served from the cache, which is significantly faster than if the file is
retrieved from disk storage.

2.4 CGI Pro grammin g
As described in Chapter 1, there are several techniques available to you to create
Common Gateway Interface (CGI) programs for use with the IBM HTTP Server for
AS/400. The V4R3 IBM HTTP Server for AS/400 provides the following
enhancements for GCI programming:

 • Java and REXX CGI
 • Non-parsed headers CGI
 • QzhbCgiParse API

2.4.1 Java and REXX CGI
In addition to traditional AS/400 system languages used for CGI programming
(ILE RPG, ILE COBOL and ILE C), you can now use Java and REXX to create
CGI programs. Java, in this case, means Java applications that use AS/400
system support for working with files STDIN and STDOUT or the CGI APIs, not Java
servlets. Support for Java servlets is provided with the WebSphere server, which
is an add-on to the IBM HTTP Server for AS/400.
44 Building AS/400 Internet-Based Applications with Java

2.4.2 Non- parsed Headers CGI
Most CGI programs generate response headers and HTML and return the data to
the requesting client through the IBM HTTP Server for AS/400. However, there
may be occasions when you want to generate a response in your CGI program
and return it directly to the requesting client.

If the name of your CGI program begins with nph_ or nph- , its output is not
converted by the IBM HTTP Server for AS/400. You are responsible in your
non-parsed header CGI program for creating a complete HTTP response
message, including the HTTP return code and status information.

2.4.3 QzhbC giParse API
Prior to the V4R3 IBM HTTP Server for AS/400, CGI programs written in ILE RPG
or ILE COBOL needed to use several APIs to work with HTML form data:

 • QtmhGetEnv to get the value of the QUERY_STRING environment variable and other
environment variables

 • QtmhRdStin to read data from file STDIN for a POST request

 • QtmhCvtDb to parse data from the QUERY_STRING environment variable or the data
retrieved from STDIN

Although the QtmhGetEnv and QtmhRdStin APIs are easy to work with and relatively
straightforward, the QtmhCvtDb API is somewhat cumbersome to use.

The IBM HTTP Server for AS/400 provides the QzhbCgiParse API, which combines
the functionality of the three Qtmh APIs into one. Some of the features of this API
include:

 • Support for both GET and POST data
 • Parses form data into field name/field value pairs
 • Uses a list technique similar to other AS/400 system APIs. Rather than

determine the format of the data to be retrieved in advance (that is, while
coding the CGI program), you can simply call the API and walk through the list
of retrieved values. If your HTML form changes, you do not necessarily need
to recode and recompile your CGI program to accommodate the changes.

2.5 Persistent CGI
One of the most significant enhancements in the V4R3 IBM HTTP Server for
AS/400 for CGI programs is the introduction of persistent CGI, or persistency. To
understand the benefit of persistency, you can compare it with what happens in a
non-persistent CGI application:

Perl version 5.003 is also available for the AS/400 system. Although IBM
provides a version of Perl ported to the AS/400 system, IBM does not provide
any support for the Perl environment or Perl script execution problems on the
AS/400 system. You can download the Perl execution environment and related
files in the Web Builder’s Workshop area from the Web site at:
http://www.as400.ibm.com/techstudio.

Note
IBM HTTP Server for AS/400 45

1. The requester makes entries on an HTML form and clicks a submit button on
the form. The submit button has an associated URL that invokes a CGI
program on the HTTP Server. A connection is created between the HTML form
and the CGI program.

2. The CGI program is invoked and retrieves the form data (using either the GET
or POST method). The CGI program processes the data, prepares a response,
and returns the response to the requester using the STDOUT file.

3. After completing the output to STDOUT, the connection between the requester
and the CGI program is terminated when the end-of-file indication is sent
through STDOUT. At this point, the CGI program ends, since there is no way for
any subsequent requests to reconnect to that instance of the CGI program.

4. Subsequent requests start at step 1 again. A new connection must be
established between the HTML form and the HTTP Server.

Although this scheme is fine for HTML forms that can be processed in a single
invocation of a CGI program, most Web transactions involve more than one HTML
form or multiple interactions with the same form.

For example, a "shopping cart" application is a form that is continuously added to
as the requester selects items from other Web pages. As items are added to the
cart, the list of items must be maintained somewhere because in a non-persistent
application, there is no program running on the HTTP Server that can retain the
list. Some solutions for maintaining this state information include temporary files
on the HTTP Server or "cookies" that are written to the requester’s local storage.

2.5.1 How Persistent CGI Works
In contrast, a Web application that uses persistent CGI does not need to rely on
temporary storage schemes to maintain state information. A persistent CGI
application may work as described in the following series of events:

1. The requester fills in an HTML form and clicks the submit button. The
requesting URL invokes a CGI program. The connection between the
requester and the HTTP Server is now active.

2. The CGI program prepares output to send back to the requester. However, a
special header record (Accept-HTSession) is returned to the requester along
with a "handle" to identify the persistent CGI program that services the
requester.

3. Output from the CGI program is sent to the requester in file STDOUT. As with
non-persistent CGI, the connection between the requester and the CGI
program is terminated after end-of-file. However, the CGI program itself
remains active, since the HTTP Server can identify and use it for additional
requests from the same requester.

4. Subsequent requests send the handle along with data from the form. The
HTTP Server recognizes the incoming request as belonging to the particular
instance of the CGI program. The new connection between the requester and
the HTTP Server is linked to the already executing CGI program. Because the
program never ended, any internal data structures that it had created on
previous requests are still available.
46 Building AS/400 Internet-Based Applications with Java

2.5.2 Controllin g Persistent CGI
Since there is no way to guarantee that a requester completes a transaction, the
IBM HTTP Server for AS/400 includes directives that let you specify the amount
of time a persistent CGI application can be inactive before being terminated. The
time-out value can be specifed at both the server level and the application level
so that you can allow some applications more time to complete.

No indication is sent to the requester when the timeout is reached. Also, any
database and file processing is your responsibility. For database applications
where changes occurred, you typically want to perform a ROLLBACK operation when
a persistent CGI timeout occurs.

2.6 Cryp to graphic Su pp ort, Certificates, and Di gital ID
Prior to the V4R3 IBM HTTP Server for AS/400, cryptographic support for the
HTTP Server was provided in the Internet Connection Secure Server (ICSS) LPP
(5769-NC1 and 5769-NCE). ICSS is a chargeable item and is required if you
need to provide SSL support and server authentication.

2.6.1 Cryp to graphic Access Provider
Starting with V4R3, IBM includes the Cryptographic Access Provider as a
no-charge LPP with OS/400. There are three versions of the Cryptographic
Access Provider:

 • 5769-AC1 provides 40-bit encryption
 • 5769-AC2 provides 56-bit encryption
 • 5769-AC3 provides 128-bit encryption

Only one version is shipped with your OS/400 installation media. The version
shipped is based on the country where the AS/400 system is installed to comply
with United States export laws for computer encryption products and local laws of
the country.

By providing the Cryptographic Access Provider along with OS/400, it is now
possible to use the support provided by this LPP even if the IBM HTTP Server for
AS/400 is not installed.

2.6.2 Dig ital Certificate Mana ger
Another change introduced with OS/400 V4R3 is the Digital Certificate Manager
option. This is installed as option 34 of the OS/400 base installation.

Digital Certificate Manager provides support for generating and maintaining
digital certificates. Certificates are used for both server and client authentication.
Although you can generate certificates for your HTTP Server to attest to its
authenticity, you most likely need to apply for and receive a certificate from a
well-known certificating authority if you intend to conduct e-commerce with your
AS/400 system. Both the Netscape Navigator and Microsoft Internet Explorer
browsers include a list of well-known certificating authorities that will be accepted
by the browsers to authenticate Web pages from your HTTP Server.
IBM HTTP Server for AS/400 47

2.6.3 Dig ital ID
Another feature introduced with the V4R3 IBM HTTP Server for AS/400 is using
digital IDs to provide client certification. Although we traditionally think of digital
IDs to provide verification of the server’s authenticity, it is also useful for clients to
provide the server with a guarantee of their authenticity.

Client authentication using digital IDs can be used as an alternative to prompting
for a user ID and password.

2.7 WebSphere A pp lication Server for AS/400
One of the most significant additions to the V4R3 IBM HTTP Server for AS/400 is
the WebSphere Application Server for AS/400 ("WebSphere"). WebSphere is
installed as part of the IBM HTTP Server for AS/400 (5769-DG1).

2.7.1 What WebS phere Provides
WebSphere provides a Java-based environment in which Java servlets are
hosted and execute. Servlets are based on Sun Microsystems’ Servlets API and
include complete support for working with an incoming HTTP data stream and
writing a response HTTP data stream.

WebSphere servlets run in a multi-threaded environment. That means that a
servlet can potentially use additional threads so that it can service requests more
quickly. Servlets can also be started when the WebSphere server is started, so
there is no overhead associated with starting the servlet from the requester’s
point of view, as there is with CGI programs.

2.7.2 Accessin g the WebS phere Server
The WebSphere server is configured using an applet specifically designed for it.
You must invoke the applet from a Java-capable browser, such as Sun
Microsystems’ HotJava browser, Netscape Navigator 4.x, or Microsoft Internet
Explorer 4.x. To invoke the applet, enter a URL similar to this:

http://myServer:9090

One of the most widely known and used certificating authorities is VeriSign,
Inc. You can learn more about certificates and digital IDs at their Web site:
http://www.verisign.com

Note

As of October 1998, there are several PTFs that you must obtain and apply to
your AS/400 system prior to working with WebSphere. You can obtain the list of
required PTFs at this Web site:
http://www.as400.ibm.com/tstudio/http/services/WASInfo.htm

You can also find additional information about configuring and using
WebSphere at this site.

Attention
48 Building AS/400 Internet-Based Applications with Java

By default, port 9090 is used to identify the WebSphere configuration page.

2.8 Summar y
Although it is possible to develop highly-functional Web serving applications on
the AS/400 system prior to V4R3, it is advantageous to install OS/400 V4R3 and
the associated LPPs for Internet enablement before starting any serious
development efforts. It is important to understand that the underlying HTTP
Server has undergone major changes, and that the V4R3 version of the IBM
HTTP Server for AS/400 is the foundation for the future.

In several informal tests, we have not found any cases where configurations or
CGI programs written for pre-V4R3 need to be significantly changed to work on
the V4R3 IBM HTTP Server for AS/400. In one test, a complete upgrade to
OS/400 V4R3 was performed over an OS/400 V4R2 system. When the upgrade
was complete, the IBM HTTP Server for AS/400 started without incident and
could use the existing configurations.

If you are just getting started with developing Internet applications for your
AS/400 system, you may want to immediately investigate Java servlets, rather
than create CGI programs using traditional AS/400 system programming
languages. The new Java servlet support provided by the WebSphere Application
Server for AS/400 provides better performance, scalability, and maintainability
than the CGI techniques.
IBM HTTP Server for AS/400 49

50 Building AS/400 Internet-Based Applications with Java

Chapter 3. Introduction to AS/400 A pp lets

In Chapter 1, “AS/400 Internet Application Development Overview” on page 1 of
this redbook, you learned that Java applets are a special type of Java program
that runs inside a browser. Because the applet is delivered to the browser in an
HTML file, you can use applets to provide additional functionality for your Web
pages. After the Web page containing the applet is downloaded, the browser
starts running the applet. At that point, it is an active program, although it does
have to comply with the security constraints imposed by the sandbox and the
browser.

You can include classes from the IBM AS/400 Toolbox for Java in your applets.
Using Toolbox classes, you can access resources on the AS/400 system. Some
of the resources available to your applet using the Toolbox include:

 • AS/400 system database
 • Data queues
 • Compiled AS/400 system programs
 • Record-level access using the AS/400 system Distributed Data Management

(DDM) server
 • Printers and output queues
 • Directories and files in the AS/400 system Integrated File System (IFS)

This chapter describes a simple applet that retrieves information from the AS/400
system database using SQL. Records from a sample Parts database are
displayed in a multi-column listbox in the applet. The chapter includes these
sections:

 • An overview of the applet as constructed in the IBM VisualAge for Java
(Enterprise) version 2.0 Integrated Development Environment (IDE)

 • A description of how to import, prepare and test the applet in the VisualAge for
Java IDE

 • A review and description of the classes and Java source code used in the
applet

 • Instructions on how to deploy the applet to the local hard drive of a PC

 • Instructions on how to deploy the applet from the IBM HTTP Server for AS/400

 • Instructions on how to use the Java Plug-in to deploy applets

3.1 The PartsView A pp let
Figure 14 on page 52 shows a sample of the PartsView applet running in the
Applet Viewer that is included in the VisualAge for Java IDE. As you can see, the
applet is simple and performs only one task: retrieve records from an AS/400
system database and display them in a multi-column listbox. Nevertheless, if you
follow the steps described in this chapter to create and deploy the sample applet,
you can spend your programming time creating more interesting applets.
© Copyright IBM Corp. 1999 51

Figure 14. PartsView Applet

3.1.1 Importin g the Source Code for the A pp let to the Workbench
The source code for the applet is provided in both source files and in a VisualAge
for Java repository file. To work with the applet in the VisualAge for Java IDE, you
must import the project from the download repository file into your repository.
Then, import the project from your repository into your workspace. The following
instructions assume that you have downloaded the VisualAge for Java repository
file from the redbooks Web site and that the repository file is in a directory named
code5337 on your PC’s disk.

The example programs discussed in this chapter are available for download
from the redbook Web site. Refer to Appendix A.1, “Downloading the Files from
the Internet Web Site” on page 299 for details.

Note
52 Building AS/400 Internet-Based Applications with Java

3.1.1.1 Startin g the Im port Process
Start the import process by right-clicking on the All Projects pane in the
Workbench. Select the Import item on the pop-up menu, as shown in Figure 15.

Figure 15. Starting the Import Process

The Import SmartGuide window appears (Figure 16 on page 54). Select the
Repository option, and click the Next button.
Introduction to AS/400 Applets 53

Figure 16. Import SmartGuide
54 Building AS/400 Internet-Based Applications with Java

3.1.1.2 Workin g with the Im port from a Director y Panel
As shown in Figure 17, the SmartGuide now shows the Import from another
repository screen. Click on the Browse button and find the red5337.dat
repository that you downloaded from the redbook Web site. In this example, it is
found in the code5337 directory. Click on the Details button.

Figure 17. Import from another Repository SmartGuide

As shown in Figure 18 on page 56, the Project import dialog allows you to select
which projects you want to import into your repository. The following projects are
available:

 • Advanced Servlet —Contains the examples discussed in Chapter 7,
“Developing AS/400 Java Servlets” on page 221.

 • App letWorksho p—Contains the examples discussed in Chapter 6,
“Developing AS/400 Java Applets” on page 193.

 • Servlet Exam ples—Contains the applet examples discussed in this chapter
and the servlet examples discussed in Chapter 4, “Introduction to AS/400
Servlets” on page 159.

After you select the projects to import, click on OK and then click on the
Finish button.
Introduction to AS/400 Applets 55

Figure 18. Projects Import Dialog

After you click the Finish button, the selected projects are imported from the
download repository into your repository. You can now add them into your
workspace. To add a project, from the menu, follow this path:
Selected—>Add—>Project (see Figure 19).

Figure 19. Add Project Menu

As shown in Figure 20 on page 57, click on the Add Projects from the
repository radio button and then select the projects that you want to add to your
workspace. In this case, we add the Servlet Examples Project. Click on the
Finish button to add the project.
56 Building AS/400 Internet-Based Applications with Java

Figure 20. Add Projects SmartGuide

3.1.2 Resolvin g Problems in the Im ported A pp let
While the import process is running, you see a message indicating that a number
of problems were found in the imported Java classes. When the import is
complete, you see the project in the VisualAge for Java Workbench, with the
packages expanded to indicate classes that have problems. The problems are
indicated with an X to the left of the class or method name (Figure 21).

Figure 21. Problems Indicated in the Workbench
Introduction to AS/400 Applets 57

You can review all of the problems by clicking the All Problems tab. The
Workbench view shown in Figure 22 appears.

Figure 22. All Problems Tab

There are two types of problems in the imported Java source code:

 • Missin g types—This means that there are additional classes required in the
project to provide the code for the missing types.

 • Deprecated methods —A deprecated method is a method that has been
superseded by a new method. This is a warning to help you identify methods
that will be obsolete in the future. You can change the code to use the
superseding method when it is convenient for you.

3.1.2.1 The Missin g Typ es Problems
The missing types problems occur because the example Java source code uses
two classes that are not available in the workspace:

 • Multi-column list box used in the a pp let (see Figure 14 on page 52).

This is in class com.ibm.ivj.eab.dab . This class is provided in the VisualAge for
Java Enterprise Edition in the IBM Enterprise Data Access Libraries project.

 • JDBC class for the AS/400

This is in class com.ibm.as400.access.AS400JDBCDriver . This class is provided in
the VisualAge for Java Enterprise Edition in the IBM Enterprise Toolkit for
AS400. This class is also provided in the AS/400 Toolbox for Java that is
installed on the AS/400 system as part of Licensed Program Product
5763-JC1.
58 Building AS/400 Internet-Based Applications with Java

3.1.2.2 Importin g the Pro jects to Resolve the Missin g Typ es
You need to import the two IBM provided projects into the VisualAge for Java
workspace. You also need to import the Netscape Security project, since you will
use that in the applet.

To start the import process, right-click in the All Projects panel in the Projects
tab (Figure 23). Select the Add item on the pop-up menu, and select the Project
item on the next pop-up menu, as shown in the following figure.

Figure 23. Add Project Menu

The Add Project SmartGuide appears (Figure 24 on page 60). Follow these steps
to select the required projects for the applet:

1. Click the Add pro jects from the re positor y selection.

2. Scroll through the list of available project names. Check the following projects:

 – IBM Enterprise Data Access Libraries
 – IBM Enterprise Toolkit for AS400
 – Netscape Security

3. If there are multiple available editions for either project, select the highest
numbered edition as the edition to add.

4. Click the Finish button to add the projects to the workspace.
Introduction to AS/400 Applets 59

Figure 24. Add Project SmartGuide

As the projects are added into the workspace, the missing types problems are
resolved. The All Projects pane should appear as shown in Figure 25 on page 61
when the project addition is complete. If you do not see the two projects in the list,
or if you still have the missing types problems, you need to run the Add Project
SmartGuide again to select the correct projects to add.
60 Building AS/400 Internet-Based Applications with Java

Figure 25. Workbench with Added Projects

3.1.3 Overview of Classes Used in the PartsView A pp let
The PartsView applet was created in VisualAge for Java. Because the applet will
be converted to run as a servlet on the AS/400 system, a project named
ServletExamples was started to contain the packages and classes used in the
applet. Figure 26 on page 62 shows a view of the ServletExamples project with
the packages used for the applet expanded.
Introduction to AS/400 Applets 61

Figure 26. ServletExamples Project

Table 5 briefly describes the packages, classes, and interfaces used in the applet.

Table 5. ServletExamples Packages, Classes, and Interfaces

3.1.4 Workin g with the A pp let in the Visual Com position Editor
The classes in the dataAccess and domain packages do not contain any user
interface code. All of the user interface code for the applet is contained in the
views package. The PartsView applet was designed in the Visual Composition
editor in VisualAge for Java. Figure 27 on page 63 shows the applet with the
multi-column listbox and push button in place. In this section of the chapter, we

ServletExamples Project

Packa ge Class/Interface Description

dataAccess DataAccessor Interface used to define methods that must be
implemented by classes in this package.

JDBCPartsCatalog Used to connect to the AS/400 system
database, returns a vector of parts.

TestPart Used to simulate a connection to a database,
returns a vector of parts.

domain Part Represents a row of part data retrieved from the
database.

PartsCatalog Determines which data source to get part data
from, gets parts from the selected data source,
and returns a vector of parts data.

views PartsView The visible part of the applet, includes the parts
listbox and the button to start the query.
62 Building AS/400 Internet-Based Applications with Java

show how a PartsCatalog bean, which provides access to data, is added to the
PartsView class.

Figure 27. PartsView Applet in the Visual Composition Editor

3.1.4.1 Addin g the PartsCatalo g Bean to the A pp let
The PartsCatalog bean contains the code that is responsible for obtaining records
from the data source and making them available to the PartsView class. To
complete the PartsView applet, the PartsCatalog bean(or class) must be added to
the applet.

To add a bean to the applet, click the Choose Bean icon located in the palette, as
shown in Figure 28 on page 64.
Introduction to AS/400 Applets 63

Figure 28. Clicking the Choose Bean Icon

VisualAge for Java now displays the Choose Bean dialog (Figure 29). Enter the
package and class name, or click the Browse button to select the class.

Figure 29. Choose Bean Dialog

When you click Browse , the Choose a valid class dialog is displayed (Figure 30
on page 65). The Class Names list in the middle of the dialog initially contains all
classes in the VisualAge for Java workspace.
64 Building AS/400 Internet-Based Applications with Java

Figure 30. Choose Class Dialog

As you start typing the pattern, the list of classes is reduced so that it includes
only those classes that start with the pattern. When you locate the class you
need, click the class name to display the package in which the class is contained.

When you click OK in the Choose a valid class dialog, the selected class name
returns to the Choose Bean dialog (Figure 31 on page 66).
Introduction to AS/400 Applets 65

Figure 31. Choose Bean Dialog with PartsCatalog Selected

Click OK on the Choose Bean dialog to add the PartsCatalog bean to the
workspace in the Visual Composition editor (Figure 32). Now that the
PartsCatalog bean is part of the applet, you can use its methods to work with the
data sources.

Figure 32. PartsCatalog Added to the PartsView Applet
66 Building AS/400 Internet-Based Applications with Java

3.1.4.2 Settin g an Option for Ex port to Source Files
Although you can develop the entire applet within the VisualAge for Java IDE,
there may be occasions where you need to export the Java source code from the
applet so that you can work with the Java source code in another environment.
For example, you may want to work with the Java source files in another editor or
in a source-code version control system. Also, you may want to work with the
Java source files in the VisualAge for Java IDE on another computer.

If you do plan to export and import Java source code files that were generated in
the VisualAge for Java Visual Composition Editor (VCE), you need to set an
option to indicate that an additional method is to be added to the bean (the bean
in this case is the PartsView class). The getBuilderData method contains
hexadecimal data that is used by the VCE to construct the view of the bean when
the Java source code files are imported to the VisualAge for Java IDE and
opened in the VCE.

To set the option, select Windows—>Options (Figure 33). The Window menu is
available on most dialogs in VisualAge for Java, including the VCE shown in the
following figure and the Workbench.

Figure 33. VisualAge for Java IDE Options Menu
Introduction to AS/400 Applets 67

Figure 34. Design Time Options Dialog

On the Options dialog, click the Design Time item in the left column. Click the
Generate meta data method option at the top of the Design Time panel (Figure
34). By enabling that option, you instruct VisualAge for Java to automatically
generate a getBuilderData method for each bean that you create in the VCE.

You may want to leave the Generate meta data method checked for all beans
that you create in the VisualAge for Java Visual Composition Editor. This
creates an extra method in each of the beans that you create. However, it
provides the only available technique to export/import Java source files from
VisualAge for Java so you can view the bean again in the Visual Composition
Editor.

Since you may not be able to predict in advance if you need to export or import
the Java source files, you may find it easier to check this option and leave it
checked.

Tip
68 Building AS/400 Internet-Based Applications with Java

3.1.4.3 Savin g the Bean
Before running the bean, save it. Saving the bean incorporates all of the settings
and options from the Visual Composition Editor. To save the bean, click
Bean—>Save Bean (Figure 35).

Figure 35. Saving a Bean

3.1.5 Testin g the A pp let in the VisualA ge for Java A pp let Viewer
VisualAge for Java includes a built-in Applet Viewer that you can use to view and
test the applet before launching it from within a browser. As you develop an
applet, you may want to test it frequently so that you can see if it is working
correctly.

Note: Although it is convenient to test the applet from within the VisualAge IDE,
there is no guarantee that the applet will run in a browser because it runs
successfully in the Applet Viewer. Even so, the Applet Viewer is useful for initial
testing and debugging.
Introduction to AS/400 Applets 69

3.1.5.1 Settin g App let Attributes and Class Path
Before testing the Applet, you need to apply these additional settings:

 • Attributes —To specify the height and width of the Applet (in pixels) when it is
displayed.

 • Class Path —To indicate which additional projects are used in the Applet.

You set both of those values in the Properties for PartsView dialog. To get to that
dialog, click the Bean—>Run—>Check Class Path in the Visual Composition
Editor (Figure 36).

Figure 36. Checking the Class Path

The applet can display data retrieved from the AS/400 system or it can display
data retrieved from local test data. The version that is available from the
redbooks Web site is set to access an AS/400 system.

Before you can test the applet and access your AS/400 system, you must
update the JDBCPartsCatalog class variables to include a valid system name,
user ID and password. See Section 3.2.5.2, “JDBCPartsCatalog Class Code”
on page 91 for details about the JDBCPartsCatalog class.

If you want to test using the local test data, you need to change the
defaultDataAccessor method so that the qualifiedClassName variable is set to
"dataAccess.TestPart ." See Section 3.2.8.4, “The defaultDataAccessor
Method in the PartsCatalog Class” on page 101, for details.

Note
70 Building AS/400 Internet-Based Applications with Java

Setting Applet Attributes
Click the Applet tab on the Properties for PartsView dialog (Figure 37). Change
the value for Width to 700 and Height to 350.

Figure 37. Setting the Width and Height Attributes

Setting the Class Path
Click the Class Path tab. The tab initially appears as shown in Figure 38 on page
72. You use this part of the Properties dialog to indicate the following information:

 • If the current directory is to be included in the Class Path

 • The names of any other projects that are in the VisualAge for Java workspace
and are to be included in the Class Path

 • Any additional directories where .jar or .zip files are located that contain
classes used in the project
Introduction to AS/400 Applets 71

Figure 38. Setting the Class Path

The VisualAge for Java version 2.0 Help system states the following about using
class paths in the IDE:

"In VisualAge for Java, each runnable class is responsible for its own class
path. The class path is necessary when running a class in order for the class
loader to properly find the classes that your class references and the classes
that they in turn reference."

Click the Edit button next to the Project path field to go to the Class Path dialog
(Figure 39 on page 73). On that dialog, select the following projects to include in
the Applet’s class path:

 • IBM Enterprise Data Access Libraries
 • IBM Enterprise Toolkit for AS400
 • Netscape Security

A runnable class is a class that can be launched in the VisualAge for Java IDE
using the Run menu item. Runnable classes are indicated in the Workbench
with a small "running-man" icon next to the class name. You can see an
example of this icon for the PartsView class in Figure 26 on page 62.

Note
72 Building AS/400 Internet-Based Applications with Java

Figure 39. Select the Projects to be Included in the Class Path

Click the OK button to return to the Class Path tab. You now see the additional
projects that you selected in both the Project Path and the Complete class path
(Figure 40 on page 74).

Click OK on the Class Path tab to close the Properties for PartsView dialog.
Introduction to AS/400 Applets 73

Figure 40. Project Path and Complete Class Path

3.1.5.2 Launchin g the A pp let Viewer
To launch the Applet Viewer, click Bean—>Run—>In Applet Viewer (Figure 41
on page 75). That menu item starts the Applet Viewer, at which point you can see
the applet and start working with it (Figure 42 on page 75).

Although the Class Path tab includes a Compute Now button (see Figure 40),
it did not correctly determine all of the additional projects that need to be
included in the PartsView applet’s class path. The Compute Now function only
returned the IBM Enterprise Data Access Libraries project to the list.

If you are using classes from multiple additional projects, click the Edit button
and manually select the additional projects.

Attention
74 Building AS/400 Internet-Based Applications with Java

Figure 41. Running the PartsView Applet

Figure 42. PartsView Applet in the Applet Viewer

3.1.5.3 Settin g App letViewer pro perties
Before you can get data from the AS/400 system, you may need to change the
AppletViewer properties to allow the applet to access resources in the network. In
the AppletViewer, click Applet—>Properties (Figure 43 on page 76).
Introduction to AS/400 Applets 75

Figure 43. Applet Viewer Properties Dialog

The AppletViewer Properties dialog shown in Figure 44 appears. Set the
AppletViewer properties as follows:

 • Network access: Unrestricted
 • Class access: Unrestricted
 • Allow unsi gned app lets: Yes

Figure 44. Applet Viewer Properties
76 Building AS/400 Internet-Based Applications with Java

3.1.5.4 Runnin g the A pp let
After changing the AppletViewer properties, you can run the applet. When you
click the Get all parts button, a Java Database Connectivity (JDBC) query request
is sent to the AS/400 system. The AS/400 system responds by creating a result
set of Parts data that is returned to the applet. The applet fills the multi-column
listbox with the returned Parts data, as shown in Figure 45.

Figure 45. Displaying the AS/400 Parts Data Using the PartsView Applet

The sample applet also sends status messages to the Java Console so that you
can track the execution of the applet (Figure 46 on page 78). If the applet
generates any unhandled exceptions, the Java stack trace is also written to the
Console. Using the Console and the VisualAge for Java Debugger, you can locate
and correct any coding errors in the applet.
Introduction to AS/400 Applets 77

Figure 46. The Java Console Messages
78 Building AS/400 Internet-Based Applications with Java

3.2 Detailed Review of Java Classes Used in the A pp let
Now that you know the steps required to create the applet and test it in the
VisualAge for Java Applet Viewer, you review the code in the Java classes. As
described in Section 3.1.1, “Importing the Source Code for the Applet to the
Workbench” on page 52, there are three packages, five classes, and one
interface used in the applet. Before reviewing the code, it is helpful to understand
the overall design of the applet and the testing and debugging features that are
included in the applet.

3.2.1 Desi gn of the A pp let
Although the application was initially designed, tested, and used as an applet, the
intention was to create a body of reusable code that can be used when the
application is migrated to a servlet. By adopting the three-tier architecture shown
in Figure 47, the application can be easily changed.

Figure 47. The Applet/Servet Three-Tier Design

In fact, it is quite easy to change the application at any of the three tiers. In
addition to changing the end-user interface code to support an applet or a servlet
presentation, the data source can be changed in the data access layer without
affecting the other two layers. Also, if any of the application logic needs to be
changed, the changes can be made at that layer without affecting either the data
access or end user interface layers.

The application is well positioned for change if a different data access technique
is used. For example, the IBM Toolkit for Java supports record-level access using

Java Applet/Servlet Desi gn

servlet
Package

views
Package End User Interface

domain
Package Application Logic

dataAccess
Package

Data Access

JDBCPartsCatalog
class TestPart

class

 Other data sources:
 -- DDM
 -- Stored Procedures
 -- Data Queues
© Copyright IBM Corp. 1999 79

the AS/400 system Distributed Data Management (DDM) server, program call,
and data queues. If you decide to change from the Java Database Connectivity
(JDBC) technique, all you need to do is code your new data access class so that
it returns the same type and format of data to the application logic layer.

The applet uses the JDBCPartsCatalog and TestPart classes. The TestPart class is
used to simulate a connection to a data source.

3.2.2 Testin g and Debu gg in g Features in the PartsView A pp let
The PartsView applet includes code to help develop, test, and debug the applet.
You may want to incorporate some of the same techniques in applets that you
create.

3.2.2.1 Internal Test Data
The primary test feature is the DataAccessor interface in the dataAccess package.
Using the DataAccessor interface, we created an internal (to the applet) data
source that provides test data to the other classes. The reason for the internal
data source is that it is relatively difficult to debug network and database
connection issues when you develop an applet. Because you can test with and
view the internal data, you can verify that the main parts of the applet work
correctly before trying to connect to the AS/400 system database. Also, because
there is no overhead associated with connecting to the applet’s internal data, you
can test the applet more quickly in the applet viewer. This way, you do not have to
wait for the database connection to be established each time you start a test.

The most obvious benefit of the test data is that it exposes errors in the rest of
your applet at an early stage in its development. If your applet cannot correctly
obtain and display the internal test data, it obviously cannot work with data from
the AS/400 system database.

Deferring the network connection until after all of the other parts of applet are
tested is one of the most productive techniques you can adopt. Although the
applet includes "extra code", not only for the test data but also to select the
connection, the small amount of time and effort required to include the test code
is quickly repaid.

3.2.2.2 Lo gg in g to the Console
The applet includes several calls to the System.out.println method to write
messages to the Java console. The messages are written before major sections
of the applet are executed. Although it may be argued that console logging is
unnecessary, since you can use the Debugger to follow the applet’s flow, the
console log is useful in helping you isolate a failing section of code. If an expected
message does not appear in the console, you know that you need to start
debugging in the code after the last displayed message and before the expected
message.

3.2.2.3 Exce ption Handlin g
The applet uses try / catch blocks for sections of code where there is a known
possibility of an error occuring. In some classes, the catch exception handling
code writes a message to the console with the System.out.println method. In the
PartsView class, the handleException method is invoked. That method uses the
exception.printStackTrace method to write the Java stack trace to the Java
console.
80 Building AS/400 Internet-Based Applications with Java

VisualAge for Java automatically includes the handleException method in the
PartsView class since that class was created in the Visual Composition editor.
However, the code inside the method is commented out. You need to remove the
comments from the code before testing the applet to get the benefit of the stack
trace logging.

3.2.3 The PartsView Class
The PartsView class is used to display the user interface components of the
applet. This class contains code to instantiate the components, respond to the
click event on the button, and put records retrieved from the data source into the
multicolumn listbox.

Figure 48 shows the views package, which contains the PartsView class in the
VisualAge for Java workbench.

Figure 48. The Views Package
 81

3.2.3.1 Methods Used in the PartsView Class
Table 6 summarizes the methods used in the PartsView class.

Table 6. Methods Used in the PartsView Class

3.2.3.2 PartsView Class Code
The code shown in Figure 49 is used to define the PartsView class. Note that the
class extends the Applet class.

Figure 49. The PartsView Class

Method Description

getBuilderData Added by the VisualAge for Java Visual Composition Editor
(VCE). This method is used to instruct the VCE how to display
the bean if the PartsView class is imported from a Java source
file.

The code for this method is not shown in the following sections,
since it is simply a large comment block of hexadecimal
characters.

actionPerformed Invoked when an event occurs in the applet (Java 1.1 event
model event handler).

connEtoC1 Event handler for the button click event (method name
generated in Visual Composition editor).

getAppletInfo Returns text describing the class.

getbtnGetParts Adds the button to the applet.

getData Get parts from the data source; add to the multicolumn listbox.

getIMulticolumListbox Adds the mutlicolumn listbox to the applet.

getPartsCatalog Adds the PartsCatalog bean to the applet.

handleException Generic exception handler; logs Java stack to console.

init Invoked when the applet is loaded; adds listbox, and button;
initializes connections (database and event handler).

initConnections Connects to the data source; adds event listener to the button.
82 Building AS/400 Internet-Based Applications with Java

3.2.3.3 The actionPerformed Method in the PartsView Class
The code shown in Figure 50 is used to define the actionPerformed method. This
method is invoked whenever there is an action event on the applet. The source of
the action is compared with the user interface components that are registered as
event listeners. For this applet, the only event listener is for the button. When the
button is clicked, the connEtoC1 method is invoked.

Figure 50. The actionPerformed Method in the PartsView Class

3.2.3.4 The connEtoC1 Method in the PartsView Class
The code shown in Figure 51 is used to define the connEtoC1 method. This method
is invoked when the button on the applet is clicked (the method is invoked from
within the actionPerformed method in this class). The connEtoC1 method invokes
the getData method in this class, which retrieves records from the data source that
is opened for this execution of the applet in the initConnections method in this
class.

The method name connEtoC1 was automatically generated by the VisualAge for
Java Visual Composition editor when the connection from the button to the
getData method was drawn.

Figure 51. The connEtoC1 Method in the PartsView Class
 83

3.2.3.5 The getA pp letInfo Method in the PartsView Class
The code shown in Figure 52 is used to define the getAppletInfo method. This
method is automatically generated by the VisualAge for Java Visual Composition
editor. Its purpose is to return a brief text identifier that describes the applet. This
method is not otherwise used in this project.

Figure 52. The getAppletInfo Method in the PartsView Class

3.2.3.6 The getbtnGetParts Method in the PartsView Class
The code shown in Figure 53 is used to define the getbtnGetParts method. This
method is invoked in the init method in this class when the applet starts. If the
ivjbtnGetParts object was not previously instantiated (the button on the applet
has not yet been created), the code inside the try block is executed. That code
instantiates a java.awt.Button object and sets its properties.

If there is an existing instance of the ivjbtnGetParts button, the code in the if
block is skipped, and the reference to the existing button object is returned.

Figure 53. The getbtnGetParts Method in the PartsView Class
84 Building AS/400 Internet-Based Applications with Java

3.2.3.7 The getData Method in the PartsView Class
The code shown in Figure 54 is used to define the getData method. This method
is invoked in the connEtoC1 method in this class when the button is clicked on the
applet.

The method creates a Vector and an Enumeration object. The data vector is used
to hold the rows retrieved from the data source. The parts enumeration is used to
access each of the elements within the vector so that each part can be accessed
individually.

The while block is used to iterate over the parts enumeration. For each element in
the enumeration, object aPart is instantiated, which is an instance of the Part
class. The getAttributeString method for the aPart object is invoked, which
returns the list of column values for the part. The values are added as a row to the
multicolumn listbox.

Figure 54. The getData Method in the PartsView Class
 85

3.2.3.8 The getIMulticolumnListbox Method in the PartsView Class
The code shown in Figure 55 is used to define the getIMulticolumnListbox
method. This method is invoked in the init method in this class when the applet
starts. If the ivjIMulticolumnListbox object was not previously instantiated (the
multicolumn listbox on the applet is not yet created), the code inside the try block
is executed. That code instantiates a com.ibm.ivj.eab.dab.IMulticolumnLibstbox
object and sets its properties.

If there is an existing instance of the ivjIMulticolumnListbox listbox, the code in
the if block is skipped, and the reference to the existing listbox object is returned.

Figure 55. The getIMulticolumnListbox Method in the PartsView Class
86 Building AS/400 Internet-Based Applications with Java

3.2.3.9 The getPartsCatalo g Method in the PartsView Class
The code shown in Figure 56 is used to define the getPartsCatalog method. This
method is invoked in the initConnections method when the applet starts and in
the getData method in this class when the button is clicked on the applet.

The method returns a reference to the ivjPartsCatalog object, which points to the
data source being used. The data source is either the internal test data source for
the applet or the connection to the AS/400 system.

Figure 56. The getPartsCatalog method in the PartsView Class

3.2.3.10 The handleExce ption Method in the PartsView Class
The code shown in Figure 57 is used to define the handleException method. This
method is invoked within several catch blocks in this class. The method logs a
message to the Java console followed by the Java stack trace.

This method is added to the applet automatically in the VisualAge for Java Visual
Composition editor. The two lines of code that log to the Java console are
commented out. To enable the logging, you must remove the comments before
testing the applet.

Figure 57. The handleException Method in the PartsView Class
 87

3.2.3.11 The init Method in the PartsView Class
The code shown in Figure 58 is used to define the init method. This method is
automatically invoked for the applet when it is started in either the VisualAge for
Java AppletViewer or in a browser.

The super.init() method call is used to initialize the Applet class that the
PartsView class extends. Inside the try block, the user interface for the applet is
constructed. Finally, the initConnections method is called to initialize the
connection to the selected data source and to add an action listener to the button.

Figure 58. The init Method in the PartsView Class

3.2.3.12 The initConnections Method in the PartsView Class
The code shown in Figure 59 is used to define the initConnections method. This
method is used to instantiate a PartsCatalog object and open the connection to
the selected data source. It also adds an action listener to the button on the
applet.

Figure 59. The initConnections Method in the PartsView Class
88 Building AS/400 Internet-Based Applications with Java

3.2.4 The DataAccessor Interface
The DataAccessor interface is used to define methods that must be included in
classes that implement the DataAccessor interface. The interface does not contain
any code to indicate how the methods must be implemented. It simply lists the
required methods and their parameters.

Figure 60 shows the dataAccess package in the VisualAge for Java workbench.
That package contains the DataAccessor interface, the JDBCPartsCatalog class, and
the TestPart class.

Figure 60. The dataAccess Package

3.2.4.1 Methods defined in the DataAccessor interface
Table 7 summarizes the methods defined in the DataAccessor interface.

Table 7. Methods Defined in the DataAccessor Interface

Method Description

connectToDB Defines the connectToDB method that must be included in
classes that implement the DataAccessor interface. This
method is used to create a connection to a data source.

getAll Defines the getAll method that must be included in classes
that implement the DataAccessor interface. This method is
used to return all data from the selected data source in a
Vector.
 89

3.2.4.2 DataAccessor Interface Code
The code shown in Figure 61 is used to define the DataAccessor interface.

Figure 61. The DataAccessor Interface in the dataAccess Package

3.2.5 The JDBCPartsCatalo g Class
The JDBCPartsCatalog class is used to connect to the AS/400 system using the
Java Database Connectivity (JDBC) driver. This class also returns all records
from a query run over the connection to the applet. Figure 60 on page 89 shows
the dataAccess package, which contains the JDBCPartsCatalog class in the
VisualAge for Java workbench.

3.2.5.1 Methods Used in the JDBCPartsCatalo g Class
Table 8 summarizes the methods used in the JDBCPartsCatalog class. Note that
these methods are required because the JDBCPartsCatalog class implements the
DataAccessor interface.

Table 8. Methods Used in the JDBCPartsCatalog Class

Method Description

connectToDB This method is used to create a connection to the AS/400
system database using JDBC. The method performs the
following functions:

– Sets properties for the JDBC connection
– Enables security for the Netscape Navigator browser
– Registers the AS/400 JDBC driver with the Driver Manager
– Gets a connection to the AS/400 system
– Creates the prepared statement object that defines the SQL
query statement to be run

getAll This method is used to execute the query and return the query
results in a Vector object.
90 Building AS/400 Internet-Based Applications with Java

3.2.5.2 JDBCPartsCatalo g Class Code
The code shown in Figure 62 on page 91 is used to define the JDBCPartsCatalog
class. Note that the class implements the dataAccess.DataAccessor interface.
Therefore, it is required to implement the two methods defined in the interface.

The class uses static final String variables to hold the values required to make
the connection to the AS/400 system. If you run the sample applet, you need to
change the SYSTEMNAME, USERID, and PASSWORD variables to the required
values for your AS/400 system. In a production applet, you would allow the user
to enter the values, rather than hard-code them into the code for the applet.

The class also defines the java.sql.Connection and java.sql.PreparedStatement
objects that will be used in the query.

Figure 62. The JDBCPartsCatalog Class

3.2.5.3 The connectToDB Method in the JDBCPartsCatalo g Class
The code shown in Figure 63 on page 92 is used to define the connectToDB
method. This method is invoked from the domain.PartsCatalog connectToDB method
when the applet needs to make the connection to the AS/400 system.

This class includes three main sections:

 • Instantiation and setting of a Properties object used for the JDBC connection
 • Enabling security for the Netscape Navigator browser
 • Instantiating and setting the Connection and PreparedStatement objects for the

query
 91

Figure 63. The connectToDB Method in the JDBCPartsCatalog Class
92 Building AS/400 Internet-Based Applications with Java

The Properties Object for the JDBC Connection
A properties object named jdbcProperties is created to contain the property
settings that are associated with the JDBC connection to the AS/400 system. The
advantage of setting the JDBC connection properties is that you can assign a
value to each setting individually, rather than code all of the properties in a
lengthy string. It is much easier to review and change the individual settings.

Enable Security for the Netscape Navigator Browser
When you try to make a connection to the AS/400 system from the applet, the
Netscape browser throws a security exception. To enable the Netscape Navigator
browser to connect from the applet to the AS/400 system, you need to include the
line of code shown in the method.

The applet was tested in the Netscape Navigator browser, version 4.07 for
Windows 95/NT.

Instantiate the Connection and PreparedStatement Objects
The code in this section of the method is used to get a Connection object to the
AS/400 system and to initialize a PreparedStatement object with the SQL statement
that will perform the query.

The java.sql.DriverManager.registerDriver method is used to load the AS/400
JDBC driver for the applet. The DriverManager.getConnection method is used to
identify the AS/400 system name and library that the applet will use and also to
associate the JDBC Properties object with the Connection object.

After instantiating the Connection object, the Connection object’s prepareStatement
method is used to instantiate and initialize the PreparedStatement object that
contains the SQL statement.

3.2.5.4 The getAll Method in the JDBCPartsCatalo g Class
The code shown in Figure 64 on page 94 is used to define the getAll method.
This method is invoked from the domain.PartsCatalog getAll method when the
applet needs to get database records from the AS/400 system.

The code defines a Vector and a ResultSet object. The ResultSet object is filled
with the result set of the query executed on the PreparedStatement object from the

You can find documentation about the JDBC properties and values in the
VisualAge for Java Help system. To get to the Help page for JDBC properties,
perform the following steps:

1. Click Help on the VisualAge for Java workbench menu.

2. Click Tools—>AS/400 Toolbox for Java . A Web page, which is the Help
index, opens.

3. On the Web page, click the Access Classes link.

4. Click the JDBC link.

5. Click the Connection link.

6. Scroll down on the Connections page, and click the JDBC Pro perties link.

Note
 93

connectToDB method (see “Instantiate the Connection and PreparedStatement
Objects” on page 93).

After executing the query, the code loops through the result set. Column data in
each row retrieved from the result set is put into a String array. The String array is
added to the Vector object.

The Vector object is returned from this method. It is up to the invoking class to
retrieve the results from the Vector object.

Figure 64. The getAll Method in the JDBCPartsCatalog Class

3.2.6 The TestPart Class
The TestPart class is used to simulate a connection to the AS/400 system. The
class also returns sample records that are hard-coded into the class. This class is
used early in the development and test cycle for the applet to help you debug the
user interface layer of the applet and the application logic layer.

Figure 60 on page 89 shows the dataAccess package, which contains the TestPart
class in the VisualAge for Java workbench.
94 Building AS/400 Internet-Based Applications with Java

3.2.6.1 Methods Used in the TestPart Class
Table 9 summarizes the methods used in the TestPart class. Note that these
methods are required because the TestPart class implements the DataAccessor
interface.

Table 9. Methods Used in the TestPart Class

3.2.6.2 TestPart class Code
The code shown in Figure 65 is used to define the TestPart class. Note that the
class implements the dataAccess.DataAccessor interface, and is, therefore,
required to implement the two methods defined in the interface.

Figure 65. The TestPart Class

3.2.6.3 The connectToDB Method in the TestPart Class
The code shown in Figure 66 is used to define the connectToDB method. This
method is invoked from the domain.PartsCatalog connectToDB method when the
applet needs to make the connection to the AS/400 system.

Because this class is used for testing, the method immediately returns. As far as
the invoking class is concerned, there is now a valid connection to a data source.

Figure 66. The connectToDB Method in the TestPart Class

3.2.6.4 The getAll Method in the TestPart Class
The code shown in Figure 67 on page 96 is used to define the getAll method.
This method is invoked from the domain.PartsCatalog getAll method when the
applet needs to get database records from the data source.

The code defines a Vector and a String array object. Elements of the string array
are filled with data to simulate column values in a database row. After filling each
column value, the simulated row is added as an element of the Vector .

The class returns the Vector to the invoking class. To the invoking class, it
appears as if a query was performed against a data source.

Method Description

connectToDB This method is used to simulate a connection to the AS/400
system.

getAll This method is used to simulate the execution of a query. Test
data is returned in a Vector object.
 95

Figure 67. The getAll Method in the TestPart Class

3.2.7 The Part Class
The Part class is used to define the data and methods that are used to represent
a part in the database. The Part class is used in the PartsView class, getData
method so that the method can work with the Vector of parts returned from the
JDBCPartsCatlog or TestPart classes.

Figure 68 on page 97 shows the domain package, which contains the Part class
and the PartsCatalog class in the VisualAge for Java workbench.
96 Building AS/400 Internet-Based Applications with Java

Figure 68. The Domain Package

3.2.7.1 Methods Used in the Part Class
Table 10 summarizes the methods used in the Part class.

Table 10. Methods Used in the Part Class

Method Description

Part Constructor for the class.

getAttributeString Returns a string array containing part data.

getDate Returns the value of the data associated with the part.

getDescription Returns the value of the description associated with the part.

getNumber Returns the value of the part number associated with the part.

getPrice Returns the value of the price associated with the part.

getQuantity Returns the value of the quantity associated with the part.

setDate Sets the value of the date associated with the part.

setDescription Sets the value of the description associated with the part.

setNumber Sets the value of the part number associated with the part.

setPrice Sets the value of the price associated with the part.

setQuantity Sets the value of the quantity associated with the part.
 97

3.2.7.2 Part Class Code
The code shown in Figure 69 is used to define the Part class. The class defines
five private variables that are used to hold the data for the part record retrieved
from the data source.

Figure 69. The Part Class

3.2.7.3 Part Constructor in the Part Class
The code shown in Figure 70 is used to define the constructor used for the Part
class. When the class is instantiated, a String array is passed to the constructor.
The String array contains elements for each of the data fields contained in the
Part class. The constructor extracts the data field values from the String array
and uses the set methods in the class to store the values.

Figure 70. The Part Constructor in the Part Class

3.2.7.4 The getAttribute Method in the Part Class
The code shown in Figure 71 on page 99 is used to define the getAttribute
method. This method is used to return all of the field values associated with the
instance of the Part class in a String array. By using this class, you do not have to
invoke each of the get methods in your higher-level classes that use the Part
class when you need to work with the field values.
98 Building AS/400 Internet-Based Applications with Java

Figure 71. The getAttributeString Method in the Part Class

3.2.7.5 The get Methods in the Part Class
The code shown in Figure 72 is used to define the five get methods used in the
Part class. These methods are used to obtain the current value of a field
associated with this instance of the Part class.

Figure 72. The get Methods in the Part Class

3.2.7.6 The set Methods in the Part Class
The code shown in Figure 73 on page 100 is used to define the five set methods
used in the Part class. These methods are used to store the current value of a
field for this instance of the Part class.
 99

Figure 73. The set Methods in the Part Class

3.2.8 The PartsCatalo g Class
The PartsCatalog class is used for the following purposes:

 • To select the data accessor that will be used, which indicates which data
source will provide part data to the applet

 • To connect to the selected data source

 • To retrieve all of the parts from the data source and return a Vector object
containing the part data

Figure 68 on page 97 shows the domain package which contains the PartsCatalog
class in the VisualAge for Java workbench.

3.2.8.1 Methods Used in the PartsCatalo g Class
Table 11 summarizes the methods used in the PartsCatalog class.

Table 11. Methods Used in the PartsCatalog Class

Method Description

connectToDB Makes the connection to the selected data source.

defaultDataAccessor Determines which data source to use and returns a Class that
points to the data source.

getAll Initiates the query of the data source and returns all data in a
Vector .

getDataAccessor Returns a Class that points to the selected data source.

getParts Returns a Vector containing the parts data.

setDataAccessor Sets the value of the data accessor associated with this class.

setParts Sets the value of the parts Vector associated with this class.
100 Building AS/400 Internet-Based Applications with Java

3.2.8.2 PartsCatalo g Class Code
The code shown in Figure 74 is used to define the PartsCatalog class. The class
defines a Vector , which is used to contain parts data retrieved from the data
source, and a DataAccessor , which points to the currently selected data source.

Figure 74. The PartsCatalog Class

3.2.8.3 The connectToDB Method in the PartsCatalo g Class
The code shown in Figure 75 is used to define the connectToDB method. This
method is invoked from the applet in the initConnections method (see Section
3.2.3.12, “The initConnections Method in the PartsView Class” on page 88).

The method first determines which data source to use by invoking the
getDataAccessor method in this class. After determining which data source to use,
the connectToDB method in the data source’s class is invoked:

 • If the data accessor is the JDBCPartsCatalog , the connectToDB method in the
JDBCPartsCatalog is invoked (see Section 3.2.5.3, “The connectToDB Method
in the JDBCPartsCatalog Class” on page 91).

 • If the data accessor is the TestPart , the connectToDB method in the TestPart
class is invoked (see Section 3.2.6.3, “The connectToDB Method in the
TestPart Class” on page 95).

Figure 75. The connectToDB Method in the PartsCatalog Class

3.2.8.4 The defaultDataAccessor Method in the PartsCatalo g Class
The code shown in Figure 76 on page 102 is used to define the
defaultDataAccessor method. This method is invoked from the getDataAccessor
method in this class.

The method includes two lines of code that are used to select the data accessor
to use. When you initially test the applet, comment out the line that assigns the
dataAccess.JDBCPartsCatalog class and remove the comment from the
dataAccess.TestPart line. When you want to test the applet with the connection to
the AS/400 system, remove the comment from the dataAccess.JDBCPartsCatalog
line and comment out the dataAccess.TestPart line.
 101

In a production applet that needs to work with multiple data sources, you can
make the selection of the data accessor a user selectable option.

After assigning the class name, the Class.forName method is used to instantiate
the selected data accessor class, which is returned to the invoking method.

Figure 76. The defaultDataAccessor Method in the PartsCatalog Class

3.2.8.5 The getAll Method in the PartsCatalo g Class
The code shown in Figure 77 on page 103 is used to define the getAll method.
This method is used to get the part data from the selected data source and return
the data to the invoking method in a Vector . This method is invoked from the
applet’s getData method (see Section 3.2.3.7, “The getData Method in the
PartsView Class” on page 85).

The method instantiates a Vector used to return the part data. It instantiates and
fills an Enumeration with the part data by invoking the getAll method for the
selected data accessor (see Section 3.2.5.4, “The getAll Method in the
JDBCPartsCatalog Class” on page 93 and Section 3.2.6.4, “The getAll Method in
the TestPart Class” on page 95).

After filling the Enumeration , the method iterates through it. Each element in the
Enumeration is cast to a Part object, which is added to the Vector . The Vector is
then returned from the method to the invoking method.
102 Building AS/400 Internet-Based Applications with Java

Figure 77. The getAll Method in the PartsCatalog Class

3.2.8.6 The getDataAccessor Method in the PartsCatalo g Class
The code shown in Figure 78 on page 104 is used to define the getDataAccessor
method. This method is invoked in the connectToDB method in this class to
determine which data source is to be used (see Section 3.2.8.3, “The
connectToDB Method in the PartsCatalog Class” on page 101).

The method invokes the defaultDataAccessor method in this class, which returns a
Class pointing to the selected data accessor (see Section 3.2.8.4, “The
defaultDataAccessor Method in the PartsCatalog Class” on page 101). That class
value is used by the setDataAccessor method in this class to store the value of the
selected data accessor (see Section 3.2.8.8, “The set Methods in the
PartsCatalog Class” on page 105).
 103

Figure 78. The getDataAccessor Method in the PartsCatalog Class

3.2.8.7 The getParts Method in the PartsCatalo g Class
The code shown in Figure 79 is used to define the getParts method. The method
is used to return the Vector of parts data for this instance of the PartsCatalog
class.

Figure 79. The getParts Method in the PartsCatalog Class
104 Building AS/400 Internet-Based Applications with Java

3.2.8.8 The set Methods in the PartsCatalo g Class
The code shown in Figure 80 is used to define the set methods used in the class.
The methods are used to store the values of the parts Vector and DataAccessor
object that are local to the class.

Figure 80. The set Methods in the PartsCatalog Class

3.3 Runnin g the A pp let in a Browser
Now that you tested the applet in the AppletViewer included with VisualAge for
Java and reviewed all of the classes used in the applet, it is time to run the applet
in a browser. The applet is loaded into a browser from an HTML file. The HTML
code includes the APPLET tag, which identifies the applet to run and its location in
the network.

You have several options for packaging and serving the applet. You need to
carefully assess how your applet will be used before deciding how to deploy the
applet. For example, the deployment considerations are different if you are
developing the applet for use on your enterprise’s intranet, as opposed to making
the applet publicy available over the Internet.

3.3.1 Test Environment
While writing this redbook, we tested the applet in the following environment:

 • AS/400 system at OS/400 V4R2 and OS/400 V4R3
 • AS/400 Toolbox for Java, V3R2 level (5763-JC1)
 • Windows NT 4 with Service Pack 3
 • Microsoft Windows NT 4 TCP/IP stack with Token-Ring connection to the

AS/400 system
 • VisualAge for Java Enterprise edition, version 2.0
 • Netscape Navigator 4.07
 • Microsoft Internet Explorer 4.01 with Service Pack 1 (SP1)

Other test environments should work as well. For example, the Netscape
Navigator browser can be used on a Windows 95 or Windows 98 PC.
 105

3.3.2 Servin g the A pp let from the PC Drive
For your first test, try serving the applet from the PC drive. This test is
recommended because there are no dependencies on the network for serving the
applet. The steps used in this test are:

1. In the VisualAge for Java workbench, export all of the required classes to a
Java Archive (Jar) file on the PC drive.

2. Create or work with the generated HTML file that contains the APPLET tag and
add the ARCHIVE tag.

3. Start the browser. This includes opening the Java Console and the HTML file.

4. Respond to the browser’s Java Security alert.

5. Work with the applet in the browser.

Each of these steps is explained in detail in the following sections.

3.3.2.1 Exportin g Classes to the PC Drive
To run the applet in the browser, you need to get the Java classes used by the
applet into a Jar file. The process is called exporting. It is supported by several
options in the VisualAge for Java environment.

To begin the process, select the three packages that are used in the applet in the
VisualAge for Java workbench, as shown in Figure 81 on page 107. To select
multiple packages, press and hold the Ctrl key, while clicking the required
packages.
106 Building AS/400 Internet-Based Applications with Java

Figure 81. Exporting the Applet Packages

After making your selections, right-click to display the pop-up menu. Click Export
on the menu. The Export SmartGuide shown in Figure 82 on page 108 appears.
 107

To export the classes to the PC drive, select Jar file as the export destination.
After selecting the export option, click Next to continue.

Figure 82. Export SmartGuide

3.3.2.2 Specif y in g Export O ptions
The SmartGuide now displays the Export to a jar file dialog (see Figure 83 on
page 109). The following selections were made in the dialog:

 • The directory to export to is c:\AppletTest . The drive and directory are not
important. You can export to any directory you want on your PC.

 • The class, resource, beans, and html options are selected by default. The six
selected classes are the classes defined in the dataAccess , domain , and views
packages used in the project. The HTML file is generated by VisualAge for
Java so that you can test the applet.

Click the Finish button to complete the export. VisualAge for Java writes the jar
file into the AppletTest directory and also generates file PartsView.html . The name
of the HTML file is based on the runnable class in the project.
108 Building AS/400 Internet-Based Applications with Java

Figure 83. The Export to a Jar File Dialog

3.3.2.3 Copy in g the j t400. jar File to the A pp letTest Director y
The PartsView applet uses several Java classes that are provided in the AS/400
Toolbox for Java. When you exported the Java classes in the project, you only
exported the classes that are specific to the applet.

For the applet to work, it needs access to the classes in the AS/400 Toolbox for
Java. There are several techniques you can use to provide access to those
classes. In this example, you copy the Jar file that contains the Toolbox to the
directory where the applet’s jar file is located.

The AS/400 Toolbox for Java is located in the AS/400 system Integrated File
System (IFS). Use a Client Access for Windows 95/NT connection or the AS/400
system NetServer to get to the following IFS directory on your AS/400 system:

QIBM\ProdData\HTTP\Public\jt400\lib

That directory contains files jt400.jar and jt400.zip . Copy the jt400.jar file to
the c:\AppletTest directory.

3.3.2.4 Copy in g the dab. jar File to the A pp letTest Director y
The PartsView applet uses several Java classes that are provided in the IBM
Enterprise Data Access Libraries project. They are available in a jar file that you
download from the redbook Web site. They are in a jar file named dab.jar . The
classes in this jar file support the multi-column listbox. Copy the dab.jar file to
the AppletTest directory.
 109

3.3.2.5 Addin g the ARCHIVE Parameter to the HTML file

Now that you have the jt400.jar and dab.jar file in the AppletTest directory, you
need to modify the generated HTML file so that the applet can use the classes in

jt400.jar . and dab.jar . Perform these steps:

1. Use NotePad or another editor to open file c:\AppletTest\PartsView.html .

2. Change the line ARCHIVE=PartsView.jar so that it includes the reference to
jt400.jar and dab.jar , as shown in the following code.

3. Save the changed HTML file to the c:\AppletTest directory.

<HTML>
<HEAD>
<TITLE>PartsView</TITLE>
</HEAD>
<BODY>
<H1>PartsView</H1>
<APPLET CODE=views.PartsView.class

ARCHIVE=PartsView.jar,jt400.jar,dab.jar
WIDTH=700
HEIGHT=350>

</APPLET>
</BODY>
</HTML>

3.3.2.6 Startin g the Browser; O penin g the Java Console
You can now start the Netscape 4.07 or later browser. Adjust the size of the
browser so that it does not occupy the entire screen space on your monitor.

You can follow the progress of the applet as it executes by opening the Java
Console. Use the Window—>Java Console menu item to open the Java console
(see Figure 84).

Figure 84. Opening the Netscape Java Console

A sample of the Java Console at runtime is shown in Figure 85 on page 111.

When using Netscape Navigator, you need version 4.07 or later to use multiple
jar files. In our tests with earlier Netscape Navigator browsers, we could not
use multiple jar files.

Attention

Be sure there are no blank spaces in the ARCHIVE tag. If you leave a blank after
the comma that separates the two jar files, the applet will fail.

Note
110 Building AS/400 Internet-Based Applications with Java

Figure 85. Netscape Java Console when the PartsView Applet is Running

3.3.2.7 Openin g the PartsView.html file
You need to load the PartsView.html file to start the applet. When you load the
HTML file, the APPLET tag in the file is processed:

 • The CODE parameter on the APPLET tag is used to identify the runnable class in
the applet.

 • The ARCHIVE parameter on the APPLET tag is used to identify the jar files that
contain the applet classes and the AS/400 Toolbox for Java classes used in
the applet.

Click on File—>Open Page to open the HTML file (see Figure 86). Use the file
dialogs to navigate to the c:\AppletTest directory and select file PartsView.html
within that directory.

Figure 86. Opening the PartsView.html File in the Browser

Soon after opening the HTML file, you should see the status messages from the
applet displayed in the Java console. It may take several seconds before you see
the first message. The delay is because the Java Virtual Machine in the browser
is analyzing the Java bytecodes from the applet and Toolbox classes.
 111

3.3.2.8 Respondin g to the Netsca pe Securit y Prom pt
Because the applet includes the enablePrivilege code in the connectToDB method
(see Figure 75 on page 101), the browser displays the Java Security dialog (see
Figure 87). You can accept or reject the applet’s attempt to connect to the AS/400
system using the dialog.

To continue processing, click the Grant button.

Figure 87. Java Security Dialog

3.3.2.9 Workin g with the A pp let
After granting authorization to the applet to connect to the AS/400 system, the
applet runs the JDBC code to retrieve records from the AS/400 database. The
records are displayed in the multi-column listbox in the applet.

Figure 88 on page 113 shows how the PartsView applet appears in the Netscape
browser.
112 Building AS/400 Internet-Based Applications with Java

Figure 88. PartsView Applet in the Netscape Browser

3.3.2.10 Testin g the A pp let Usin g Microsoft Internet Ex plorer 4.01
If you have Microsoft Internet Explorer version 4.01 available, you should also
test the applet using that browser. When you create an applet for
general-purpose use, you need to test it extensively in all of the browsers that
your applet’s users may have. As you see, there are many deployment
considerations you have to accommodate, based on the selection of browser
used to work with the applet.

Before you open the HTML file to start the applet in Microsoft Internet Explorer,
open the Java console. Click on View—>Java Console . You can now click
File—>Open to open the HTML file in the browser.

The level of Microsoft Internet Explorer used in the tests described in this
redbook is version 4.01 with Service Pack 1. If you are uncertain what version
of Microsoft Internet Explorer you have, click on Help—>About Internet
Explorer in the browser.

If you need to update your version of Microsoft Internet Explorer, open a
connection to the Internet from your PC, select Help—>Product Updates in
the browser. This takes you to a Microsoft update Web site where you can
install the Service Pack and additional features of Microsoft Internet Explorer.

Note
 113

Applet Failure
When you start the applet in Microsoft Internet Explorer, it fails with a
SecurityExceptionEx exception. You get the failure first at the enablePrivilege code
for the Netscape browser. You can ignore that failure. The more critical failure for
the applet is the failure when the JDBC connection is attempted.

Netscape and Microsoft use different techniques to implement browser security
for Java applets. With the Netscape browser, you can simply include the
enablePrivilege code to indicate to the Java Virtual Machine (JVM) the types of
privileges that your applet needs. For each requested privilege, a Java Security
dialog (similar to Figure 87 on page 112) is displayed.

Microsoft implements applet security by using a signed cabinet file. The cabinet
file is used instead of the jar file and is "signed" with a digital certificate. Digital
Certificates are explained in greater detail in Section 8.2, “Digital Certificates and
Certificate Authority” on page 267 of this redbook. When Microsoft Internet
Explorer starts an applet in a signed cabinet file, the browser presents one
security dialog where you can review all of the requested privileges.

The reason for the applet failure is to protect your PC from harmful actions that
may be coded into applets that you download from the Internet. If the applet is
allowed to freely access your PC, it can perform any number of actions that can
damage data on your PC and compromise security.

3.3.3 Creatin g a Signed Cabinet File for Microsoft Internet Ex p lorer 4.01
There are a number of steps you need to follow to create a signed cabinet file that
can be used in Microsoft Internet Explorer. You need a signed cabinet file for
either of the following conditions:

 • The applet is installed on your PC and you do not set the CLASSPATH
environment variable (see Section 3.3.4, “Using the CLASSPATH Environment
Variable” on page 125). Since you have to explicitly set the CLASSPATH
environment variable, the assumption is that if you did change it, you did
intend to allow applets to run on your PC and have access to the classes
identified in the CLASSPATH.

 • The applet is in a cabinet file that is served from the IBM HTTP Server for
AS/400. Since the cabinet file can be downloaded and installed on your PC as
part of its invocation from a Web page, there needs to be some mechanism to
let you accept or reject the applet from running. If you attempt to run an applet
in an unsigned cabinet file, Microsoft Internet Explorer rejects the request.

3.3.3.1 Signed Cabinet Files at Runtime
When you open a Web page that loads an applet in a signed cabinet file, the
Microsoft Internet Explorer JVM presents a Security Warning panel, similar to
Figure 92 on page 119. You can review information about the applet and the
signer in the tabs on the panel. Note the following points:

 • If you recognize and trust the signer of the applet, you may choose to let it
execute.

 • If you do not recognize the signer, you should carefully review the permissions
that the applet is requesting. Let the applet execute only if you are certain that
it will not harm your system.
114 Building AS/400 Internet-Based Applications with Java

3.3.3.2 Dig ital Certificate Conce pts
The signed cabinet technique is based on digital certificates. A digital certificate
is an encrypted string of bytes that can be attached to a cabinet file.

If you intend to conduct e-business over the Internet, you need to obtain a
certificate from a Certification Authority (CA). You apply to the CA of your choice
and submit required information about your enterprise or organization. The CA
examines the credentials you present and, for a fee, issues a digital certificate
that is unique to you. The certificate can be used to identify your Web server and
also to "sign" applets.

When a signed applet is loaded into the browser, the signature is compared with
a list of known CAs that are configured as part of the browser. Figure 89 shows a
list of CAs that are provided with Microsoft Internet Explorer. Click on
Views—>Internet Options to open the dialog. Click the Content tab, then the
Authorities button).

Figure 89. Microsoft Internet Explorer List of Certificate Authorities

If you do not intend to conduct public e-business or if you simply need to test
signed applets, you can use tools provided with the Microsoft Java Software
Development Kit (SDK) to generate test certificates. It is unlikely that you can use
these "free" certificates for e-business and avoid paying a fee to a Certification
Authority. As shown in Figure 92 on page 119, the Security Warning panel
displays information about the certificate attached to a signed applet. If the
Security Warning indicates that the applet was signed with a certificate issued
from an unknown CA, it is unlikely that anyone will choose to allow the applet to
execute in their browser.

3.3.3.3 Obtainin g the Microsoft Java Software Develo pment Kit
The programming tools you need to create signed cabinet files are contained in
the Microsoft Java SDK. You can freely obtain the SDK from Microsoft’s Web site
at the following address: http://www.microsoft.com/java
 115

Follow the links on that page to the Downloads section. At the time this redbook
was written, Microsoft had three versions of the Java SDK available for download:

 • 3.1
 • 2.02
 • 1.5.1

Unless you have specific reasons for working with the earlier versions, you should
download version 3.1. The instructions in this redbook assume that you are
working with the Microsoft Java SDK version 3.1.

The SDK is provided as a self-extracting EXE file. Simply run the EXE file to
create the setup procedure. The setup procedure prompts you for the additional
steps required to install the SDK on your PC.

3.3.3.4 Locatin g the Certificate Tools in the SDK
The programs you use to create a test digital certificate and sign your applet are
in subdirectories of the SDK. Assuming that you install the Microsoft Java SDK to
a directory named SDK, the tools are in the directory:

c:\sdk\Bin\PackSign

You should add that directory to your PC’s PATH environment variable so that you
can access the programs from any other directory on your PC. The programs you
will use are:

 • makecert —Used to create (make) a test digital certificate

 • cert2spc —Used to convert the test certificate into a Software Publisher
Certificate (SPC)

 • signcode —Used to sign your applet with the SPC file

 • chkjava —Used to display information about the signed applet

You need to consult Microsoft’s documentation for a complete description of all of
the options available with those programs. You can review documentation for the
tools at the Microsoft Java SDK Web site or optionally download the
documentation. The instructions in this redbook simply show the parameters to
use for each of the programs.

3.3.3.5 Creatin g the Test Certificate
If you have the makecert and cert2spc tools available, you can create the test
certificate that you will attach to the applet. Follow these steps to create the test
certificate:

1. Open a MS-DOS Prompt window (Windows 95/98) or a Command Prompt
window (Windows NT).

2. Set the PATH environment variable so that it includes the path to the SDK
PackSign directory. You can add the SDK directory to the existing path by
entering this command in the window:

PATH=c:\sdk\Bin\PackSign;%PATH%

3. Change the directory in the window to c:\AppletTest .

4. Enter the makecert command and parameters as shown. This command
creates a test certificate with a name and a test key.

makecert -sk TestKey -n "CN=ITSO-Applet" TestCert.cer
116 Building AS/400 Internet-Based Applications with Java

5. Enter the cert2spc command and parameters as shown in the following
example. This command converts the test certificate from makecert into a
Software Publisher Certificate, which is required to sign the cabinet file that
will contain the applet:

cert2spc TestCert.cer TestCert.spc

6. Leave the window open. You return to the window to create the cabinet file
and sign the cabinet file after exporting the applet in VisualAge for Java.

3.3.3.6 Addin g Trace Statements to the connectToDB Method
To create the cabinet file, you need to export the applet packages from VisualAge
for Java. However, there is a problem in the export process, in that not all of the
referenced classes used in the applet are exported. This problem does not
become evident until you try to run the applet from the signed cabinet file in the
browser.

To help locate the missing classes, you can add trace statements to the Java
source code in the applet’s connectToDB method. The trace statements write to the
Java Console when the applet is invoked. Using the trace statements, it is
relatively easy to determine which of the referenced classes do not get exported.
Without the trace statements, there is little debugging information available to
help identify and resolve the problem.

Go to the dataAccess.connectToDB method in VisualAge for Java. Add the Trace
statements as shown in Figure 90.

Note: Several lines of code that are already in the method are shown for
reference to help you locate where to add the Trace statements.

//***

// connectToDB method - connect to JDBC data source
//***

public void connectToDB () {

System.out.println("into connectToDB");

com.ibm.as400.access.Trace.setTraceErrorOn(true);
com.ibm.as400.access.Trace.setTraceWarningOn(true);
com.ibm.as400.access.Trace.setTraceDiagnosticOn(true);
com.ibm.as400.access.Trace.setTraceInformationOn(true);
com.ibm.as400.access.Trace.setTraceOn(true);

//***

// Create a properties object for JDBC connection

//***

Properties jdbcProperties = new Properties();

Figure 90. Enable Tracing of the Applet at Runtime
 117

3.3.3.7 Exportin g the A pp let in VisualA ge for Java
In Section 3.3.2.1, “Exporting Classes to the PC Drive” on page 106, you saw
how to use the Export option in VisualAge for Java to export the packages used in
the applet to a jar file. Follow the instructions in that section to start the export
process again. Instead of selecting Jar file as the export destination (see Figure
82 on page 108), select Directory as the export destination.

Figure 91 shows the Export to a directory dialog. Follow these steps to complete
the export of the applet to a directory:

1. Enter c:\AppletTest\ for the directory.

2. Click the .html checkbox so that an HTML file is generated for the applet.

3. Click the Select referenced t ypes and resource button so that VisualAge for
Java gets the list of additional classes and resources used.

4. After generating the references, click the Finish button to write the classes
and resources to the directory.

Figure 91. Export to a Directory Dialog

3.3.3.8 Creatin g a Signed Cabinet File Based on the A pp let Directories
Now that the classes and resources used in the applet are available in the
c:\AppletTest directory and subdirectories, you can create a cabinet file of those
files. A cabinet file is similar to a jar file, in that it is a compressed collection of
other files and is intended to be transported in a network.

The reason why you export to a directory, rather than to a jar file, is so that the
cabinet creation program has the correct files and directory structure to add to
118 Building AS/400 Internet-Based Applications with Java

the cabinet. When Microsoft Internet Explorer opens the cabinet file, it locates
classes and resources based on the directory information stored in the cabinet
file. If you create a cabinet file based on a jar file, the browser cannot open the
files correctly in the cabinet file.

Go back to the MS-DOS or Command Prompt window and follow these steps to
create, sign, and test the cabinet file:

1. Verify that the current directory is c:\AppletTest .

2. Enter the cabarc command to create the cabinet file. Be sure you enter the /p
and /r parameters, to preserve directory names and to recurse directories:

cabarc /p /r n PartsView.cab *.*

3. Verify that file PartsView.cab is in the c:\AppletTest directory. If not, repeat the
steps in this section.

4. Enter the signcode command to sign the cabinet file with the test certificate you
generated in Section 3.3.3.5, “Creating the Test Certificate” on page 116. The
-jp low parameter is used to assign a security level of "low" to the applet:

signcode -j javasign.dll -jp low -spc TestCert.spc -k TestKey PartsView.cab

5. Enter the chkjava command to check the signature on the cabinet file. When
you enter the command, the display in Figure 92 appears. You should spend a
few minutes in the panel to examine all of the options used to identify and
describe the signed applet.

chkjava PartsView.cab

Figure 92. The chkjava Command Security Warning Panel

3.3.3.9 Modif y in g the HTML File to Point to the Cabinet File
Open the PartsView.html file that VisualAge for Java generated in the
c:\AppletTest directory. Add the PARAM statement to the HTML file so that it points
to the cabinet file. Save the file in the c:\AppletTest directory.

<HTML>
<HEAD>
<TITLE>PartsView</TITLE>
</HEAD>
<BODY>
<H1>PartsView</H1>
 119

<APPLET CODE=views.PartsView.class
WIDTH=700
HEIGHT=350>

<PARAMNAME=cabbase
VALUE=PartsView.cab>

</APPLET>
</BODY>
</HTML>

3.3.3.10 Testin g the Cabinet File in Microsoft Internet Ex plorer
You can now test the signed cabinet file in Microsoft Internet Explorer. Follow
these steps to run the test:

1. Start Microsoft Internet Explorer version 4.01 (SP1). Adjust the browser so
that it does not take up the entire display space on your monitor.

2. Click on View—>Java Console to open the Java Console.

3. Click on File—>Open to open the file c:\AppletTest\PartsView.html

4. The Security Warning panel appears (see Figure 92 on page 119). Click Yes
to allow the applet to run.

5. The applet fails because of the classes that are missing. Figure 93 on page
121 shows a portion of the Java Console with the trace messages written
during execution of the applet. The next to last line in the figure identifies the
missing class as com.ibm.as400.access.SocketContainerInet .

6. Close the Microsoft Internet Explorer browser. You need to add classes to the
cabinet file to make the applet work correctly.
120 Building AS/400 Internet-Based Applications with Java

Figure 93. Java Console with the Trace Messages
 121

3.3.3.11 Correctin g the Missin g Classes Problem
There are actually two missing classes in the applet:

 • com.ibm.as400.access.NLSImplRemote

 • com.ibm.as400.access.SocketContainerInet

To add the missing classes to the cabinet file, perform the following tasks:

1. Delete file c:\AppletTest\PartsView.cab .

2. Delete the following directories:

c:\AppletTest\com
c:\AppletTest\dataAccess
c:\AppletTest\domain
c:\AppletTest\netscape
c:\AppletTest\views

You should leave these files in the c:\AppletTest directory:

PartsView.html
TestCert.cer
TestCert.spc

Note: Although you can simply export the two missing classes to the directory,
you will start the entire export process over in these steps so that you can
remove some of the unnecessary classes and resources that VisualAge for
Java exported. By removing the unnecessary classes and resources, you
reduce the size of the cabinet file. As with any files that are transmitted in a
network, the smaller the file size is, the better the performance is.

3. Re-export the applet packages in VisualAge for Java.

4. On the Export to a directory panel (see Figure 91 on page 118), remove the
check from the .html option.

5. Click the Select referenced t ypes and resource button.

After VisualAge for Java generates its list of referenced classes and resources,
manually add the two classes listed above:

1. Click the Details button that is to the right of the .class check box (see Figure
91 on page 118).

2. In the .class export dialog (Figure 94 on page 123), click the IBM Enter prise
Toolkit for AS/400 entry in the Projects list (on the left).

3. Scroll through the Types list (on the right) to the NLSImplRemote entry. Click
in the box next to the name to add that class to the list of classes to be
exported.

4. Continue scrolling through the Types list to the SocketContainerInet entry.
Select that entry also.

5. Click the OK button to return to the Export to a directory dialog.
122 Building AS/400 Internet-Based Applications with Java

Figure 94. Selecting the Missing Classes in the .class Export Dialog

3.3.3.12 Removin g Unnecessar y Classes and Resources
This step is optional, although as explained in the previous section, it helps
reduce the size of the cabinet file.

When VisualAge for Java generates its list of referenced types and resources, it
includes many hundreds of types and resources that are not used in the applet.
Although it is difficult to identify every unneeded type or resource, there are some
large groups that can be removed from the export list.

Follow these steps to remove some of the unnecessary types and resources:

1. Click the Details button next to the resource check box in the Export to a
directory panel (see Figure 91 on page 118).

2. In the Resource Ex port dialog, expand the IBM Enter prise Data Access
Libraries listing to its lowest level (com/ibm/ivj/eab/dab). See Figure 95 on
page 124.

3. The list of resources in the dab branch are listed in the right list.

4. You can remove the check mark from any of the entries with the .gif
extension. If there are several sequential .gif entries, you do not have to click
each entry individually to remove the check mark. Instead, position the mouse
pointer over the first .gif that you want to uncheck, left-click and hold, then
move the mouse down through the list of .gif entries. The check mark is
removed or added for each of the check boxes that the mouse moves over.

5. Remove the check for the .gif entries only. Leave the .properties entries
checked.

6. Now expand the top-level listing for IBM Enterprise Toolkit for AS/400. The
expansion of that item is shown in Figure 96 on page 124.

7. Uncheck the vaccess entry (com/ibm/as400/vaccess).

8. Uncheck the ivj entry (com/ibm/ivj). Unchecking ivj also unchecks et400 and
examples , which are under ivj .

9. Click the OK button to close the dialog.

10.When you return to the Export to a directory panel, you should notice that the
count of types and resources to be exported is much less than before.
 123

Figure 95. Removing Unwanted Entries from the Export List

Figure 96. Resource Export Dialog
124 Building AS/400 Internet-Based Applications with Java

3.3.3.13 Com pletin g the Ex port; Makin g the New Cabinet File
Now that you have manually added the two addition required classes and
removed some of the unneeded resources, you can complete the export to the
directories. Click the Finish button on the Export to a directory panel (see Figure
91 on page 118).

After the export is complete, go back to the MS-DOS or Command Prompt
window. You need to run the steps shown in Section 3.3.3.8, “Creating a Signed
Cabinet File Based on the Applet Directories” on page 118 again to create and
sign the cabinet file.

After creating the signed cabinet file, start Microsoft Internet Explorer again and
load the cabinet file, as described in Section 3.3.3.10, “Testing the Cabinet File in
Microsoft Internet Explorer” on page 120.

3.3.4 Usin g the CLASSPATH Environment Variable
As an alternative to the Netscape enablePrivilege or Microsoft signed cabinet file,
you can set your PC’s CLASSPATH environment variable to point to the location of
the AS/400 Toolbox for Java. When the applet starts, it refers to the CLASSPATH to
determine where the AS/400 Toolbox for Java is located. The AS/400 Toolbox for
Java can be located on any of the following locations:

 • Your PC
 • A server in your network
 • The AS/400 system IFS

In this example, you copy the AS/400 Toolbox for Java to your PC and set the
CLASSPATH to point to the location on your PC.

Because you must manually set the CLASSPATH on your PC, the browser assumes
that you are explicitly allowing applets hosted inside the browser to have access
to all of the classes in the AS/400 Toolbox for Java. By using the CLASSPATH, you
do not need to add a reference to the AS/400 Toolbox for Java to the ARCHIVE
parameter of the APPLET tag in the HTML file.

3.3.4.1 Creatin g the JT400 Director y
In the tests, we created directory c:\jt400 on the PC. This directory contains the
AS/400 Toolbox for Java. By using this directory, every applet that is installed on
the PC can use the common copy of the AS/400 Toolbox for Java contained in this
directory.

3.3.4.2 Copy in g the j t400.zi p File to the JT400 Director y
In Section 3.3.2.3, “Copying the jt400.jar File to the AppletTest Directory” on page
109, you copied file jt400.jar from the AS/400 system IFS to the applet test
directory on your PC. You now need to copy the jt400.zip file from the IFS
directory to the c:\jt400 directory on your PC.

Use a Client Access for Windows 95/NT connection or the AS/400 system
NetServer to get to the following IFS directory on your AS/400 system:

QIBM\ProdData\HTTP\Public\jt400\lib

This directory contains the jt400.jar and jt400.zip file. Copy the jt400.zip file to
the c:\jt400 directory.
 125

3.3.4.3 Add/Modif y CLASSPATH in AUTOEXEC.BAT (Windows 95/98)
If you are working with Windows 95 or Windows 98, you need to add or modify the
CLASSPATH statement in file AUTOEXEC.BAT. Consider the following points:

 • If you have VisualAge for Java installed on your PC, you already have a
CLASSPATH statement in AUTOEXEC.BAT that was written when you installed
VisualAge for Java. You need to modify that statement.

 • If you do not have VisualAge for Java installed on your PC, add the CLASSPATH
statement to file AUTOEXEC.BAT.

Use NotePad or another editor to open file c:\autoexec.bat .

 • If there is already a CLASSPATH statement in the file, change it so that the first
directory referenced is jt400 . Leave all of the other paths as they were,
following the new reference to jt400 :

CLASSPATH=c:\jt400\jt400.zip;...

 • If there is no CLASSPATH statement in the file, add the following statement. It
does not matter where it is located in the file:

CLASSPATH=c:\jt400\jt400.zip;

Save file c:\autoexec.bat after making the change. Reboot the PC so that the
CLASSPATH change take affect, and set the environment variable.

3.3.4.4 Add/Modif y CLASSPATH Environment Variable (Windows NT)
If you are working with Windows NT 4.0, set the CLASSPATH in the System
Properties dialog. Follow these steps to set the CLASSPATH for a Windows NT 4.0
PC:

1. Right-click on the My Computer icon on the Windows NT 4.0 desktop.

2. Click the Properties item in the pop-up menu.

3. In the System Pro perties dialog, click the Environment tab.

4. If there is an existing CLASSPATH variable in the System Variables list, click to
select and modify it. Add the new path c:\jt400\jt400.zip to the front of the
CLASSPATH list (see Figure 97 on page 127).

5. If there is no CLASSPATH variable in the System Variables list, enter the variable
name CLASSPATH and the value as c:\jt400\jt400.zip;

6. Click the Set button to set the value.

7. Click the App ly button.

8. Click the OK button to close the System Properties dialog.

You do not need to reboot Windows NT 4.0 for the change to take affect.

In Section 3.3.2.3, “Copying the jt400.jar File to the AppletTest Directory” on
page 109, you copied file jt400.jar . For the CLASSPATH setting, you need to copy
the jt400.zip file (the files contain equivalent Java classes).

If you use file jt400.jar instead of jt400.zip in the CLASSPATH, Netscape
Navigator fails when it attempts to retrieve classes from the jar file.

Note
126 Building AS/400 Internet-Based Applications with Java

Figure 97. Setting the Windows NT 4.0 CLASSPATH Environment Variable

3.3.4.5 Commentin g Out the EnablePrivile ge Statement
Now that you have a CLASSPATH statement in affect, you can comment out the
enablePrivilege statement in the connectToDB method. You can review the method
in Figure 75 on page 101.

This step is optional. If you leave the enablePrivilege statement in the method,
you get an exception in Microsoft Internet Explorer. However, the exception does
not terminate the applet.

3.3.4.6 Chan gin g the ARCHIVE Ta g in the HTML File
Because the CLASSPATH now points to the location of the AS/400 Toolbox for Java,
you no longer need the reference to the Toolbox in the ARCHIVE tag. To change the
ARCHIVE tag, perform the following steps:

1. Use NotePad or another editor to open file c:\AppletTest\PartsView.html .

2. Change the line ARCHIVE=PartsView.jar so that it no longer includes the
reference to jt400.jar . The only jar files that needs to be specified are
PartsView.jar and dab.jar .

3. Save the changed HTML file to the c:\AppletTest directory.

<HTML>
<HEAD>
<TITLE>PartsView</TITLE>
</HEAD>
<BODY>
<H1>PartsView</H1>

<APPLET CODE=views.PartsView.class
ARCHIVE=PartsView.jar,dab.jar
WIDTH=700

HEIGHT=350>
</APPLET>
</BODY>
</HTML>
 127

3.3.4.7 Testin g the A pp let in Both Browsers
You should now test the applet in Netscape Navigator and Microsoft Internet
Explorer. Remember to open the Java Console for both browsers before opening
the HTML file.

The Netscape Navigator browser presents the Java Security dialog (see Figure
87 on page 112), even if you have commented out the enablePrivilege statement.
Click the Grant button to continue the applet.

Microsoft Internet Explorer should now be able to run the applet. If you did not
comment out the enablePrivilege statement, you see several security exception
messages. You can ignore those, since the applet continues running.

3.3.5 Considerations for Usin g CLASSPATH
Using the CLASSPATH environment variable seems to be an "easy fix" to the
problem of the applet failure in Microsoft Internet Explorer. Some other
advantages of using CLASSPATH are that you do not have to add the jt400.jar
reference to the ARCHIVE parameter of the APPLET tag. You can use the same
jt400.zip file for all of your applets (you do not need to copy jt400.jar into each
applet’s directory).

However, you need to manually set the CLASSPATH for each PC where you want to
use this technique. This is obviously not feasible if your applet is used by the
general public. You may be able to use this technique in a corporate intranet
environment.

You may also need to install file jt400.zip on each PC that uses the CLASSPATH.
Again, this is probably not possible for publicly accessed applets, but it may be
possible in your own environment.

If you are using applets in an intranet, you do not necessarily need to install
jt400.zip on each PC. As an alternative, you can install jt400.zip on a server or
point to the version of the file in the AS/400 system IFS. Using this technique, you
do not have multiple versions of jt400.zip on different PCs. By pointing to a
common version of the file, all users have access to the same version. It is much
easier to maintain the common version rather than all of the copies.

The disadvantage of pointing the CLASSPATH to a server or the AS/400 system IFS
is network performance. If you make extensive use of applets, you encounter
significant network traffic as each applet loads classes from jt400.zip across the
network. For infrequently used applets, the network traffic factor may not be of
much concern. It would make sense in that case to locate jt400.zip on a server
or the AS/400 system IFS.

In the next series of tests, you serve the applet from the IBM HTTP Server for
AS/400. When you serve the applet from the Web server, you usually serve the
AS/400 Toolbox for Java classes from the Web server.
128 Building AS/400 Internet-Based Applications with Java

3.3.6 Servin g App lets from the HTTP Server for AS/400
Up to this point, you have worked with the applet on your PC. Even though the
applet uses JDBC to work the AS/400 system database, there is nothing in the
deployment of the applet that requires the services of the HTTP Server for
AS/400.

In this part, you see what is required to configure your HTTP Server for AS/400 to
serve applets from the AS/400 system. Serving applets from the AS/400 system
is actually easier to implement than serving applets from your PC. You do not
need to create signed cabinet files for Microsoft Internet Explorer, nor do you
need to set the CLASSPATH environment variable. There are a few configuration
steps you need to take to allow the applet to be served from the HTTP Server for
AS/400.

Your main deployment consideration is performance. As you may have noticed,
the jar and cabinet files that you created on the PC are hundreds or thousands of
kilobytes in size. If you are using applets in an intranet, the applet file sizes are of
some concern. They are not extraordinary in terms of files that are sent through a
network.

If you are using the applet for public access to your HTTP Server for AS/400, for
example, to provide support for dial-in users to access your AS/400 system, the
applet files may be too large to be practical.

This part of the redbook describes two scenarios for serving applets from the
HTTP Server for AS/400.

3.3.6.1 App let and Su pp ortin g Files on the AS/400 S ystem
For this method, the entire applet and all supporting jar files are served from the
AS/400 system. This is the easiest technique to use to deploy the applet, but also
the most expensive in terms of network performance and response time in the
browser.

3.3.6.2 App let on the AS/400 S ystem; j t400.zi p on the PC
The code for the applet is served from a jar file on the AS/400 system, and the
jt400.zip file is located on the PC. This method requires that the CLASSPATH
environment variable be set on the PC to point to the local copy of the jt400.zip
file. You also need to develop a plan to update jt400.zip as changes are made to
it by IBM.

This method is probably impractical for public deployment because of the
requirement to distribute the jt400.zip file and set the CLASSPATH. It may be the
best solution for intranet or extranet applets. An extranet is an extension of an
intranet, which usually includes other companies or organizations with which you
have an on-going relationship.

When used appropriately, this method offers a good compromise between ease of
deployment and performance. As you will see, the size of the jar file for the applet
itself is quite small. By moving jt400.zip to the PC, you avoid the necessity of
transmitting it to the browser every time the applet is invoked.
 129

3.3.6.3 Confi gurin g the AS/400 S ystem for A pp let Servin g
To test serving applets from the AS/400 system, there are several steps you need
to take to configure the AS/400 system. After following the steps, you will use
VisualAge for Java to export the applet to the AS/400 system.

Creating a Directory to Contain the Applet
Although you can use any of the existing directories in the AS/400 system
Integrate File System (IFS), you may find it easier to create a new directory for
testing. For our tests, we created directory apptest as an IFS root directory (not
contained in any other directories).

You can use the OS/400 command Create Directory (CRTDIR) to create the
directory. Enter the following command on a 5250 display:

CRTDIR DIR(’apptest’)

Configuring the HTTP Server for AS/400 to Serve from Apptest
The applet jar files and the HTML file that invokes the applet are located in
directory apptest . To load the HTML file in a browser using the HTTP protocol,
you need to configure the HTTP Server for AS/400 so that it can serve Web
pages from the apptest directory. For details about how to configure the IBM
HTTP Server for AS/400, see Section 9.3, “IBM HTTP Server for AS/400” on
page 293.

3.3.6.4 Copy in g the j t400. jar File to the a pp test Director y
If you have a Client Access for Windows 95/NT connection to the AS/400 system,
use the Windows 95/NT Explorer program. You can also choose to use the
AS/400 NetServer in the Windows 95/NT Explorer to copy file jt400.jar to the
apptest directory.

Copy file jt400.jar from this directory on your AS/400 system IFS:

\QIBM\ProdData\HTTP\Public\jt400\lib\jt400.jar

Copy file dab.jar to the apptest directory located in the AS/400 integrated file
system.

3.3.6.5 Exportin g the A pp let from VisualA ge for Java
You can now go into VisualAge for Java and export the applet as a jar file to the
AS/400 apptest directory. Follow the instructions in Section 3.3.2.1, “Exporting
Classes to the PC Drive” on page 106. When you get to Section 3.3.2.2,
“Specifying Export Options” on page 108, click the Browse button on the Export
to a jar file dialog (see Figure 83 on page 109) and navigate to the apptest
directory on your AS/400 system.

Be certain that the name of the jar file to export to (PartsView.jar) includes the
.jar extension, as shown in Figure 98 on page 131. The export process does not
append the extension, even though it suggests the extension in the File Selection
dialog.
130 Building AS/400 Internet-Based Applications with Java

Figure 98. Setting the Name of the jar File

On the Export to a jar file dialog (see Figure 83 on page 109), be sure the .html
option is checked, so that VisualAge for Java generates the HTML file required to
serve the applet. Do not click the Select referenced types and resources button,
since you will use the jt400.jar file to provide the required AS/400 Toolbox for
Java classes and resources.

Click the Finish button on the Export to a jar file dialog. When the export is done,
use the Windows 95/NT Explorer to verify that file PartsView.jar and
PartsView.html are in the apptest directory on your AS/400 system.

3.3.6.6 Addin g the ARCHIVE Parameter to the HTML File
You need to modify the generated HTML file to add the ARCHIVE parameter to the
APPLET tag. The ARCHIVE parameter includes the references to the PartsView.jar
dab.jar and jt400.jar files.

Follow the instructions in Section 3.3.2.5, “Adding the ARCHIVE Parameter to the
HTML file” on page 110. Be certain that you edit file PartsView.html from the
apptest directory on the AS/400 system, and not the .html file on your PC.

3.3.6.7 Loadin g the HTML file in the Browser
You can now start either the Netscape Navigator or the Microsoft Internet
Explorer browser. After starting the browser, open the Java Console so that you
can follow the progress of the applet.

Instead of using the browser File-->Open command to load the HTML file, enter a
URL to load the Web page. Enter the URL as shown in the following example.
Substitute the name of your AS/400 system as known in your TCP/IP network, or
enter your AS/400 system IP address in place of system name AS400ABC:

http://AS400ABC/apptest/PartsView.html
 131

As the applet is loaded from the AS/400 HTTP Server, you may notice that the
start-up time is longer than when you loaded the applet from your PC. This is
because the browser has to load the jt400.jar file from the AS/400 HTTP Server
in addition to the start-up time associated with the browser’s JVM.

3.3.6.8 Usin g j t400.zi p on the PC, PartsView. jar on the AS/400 S ystem
Use the following steps to implement the applet serving as described in Section
3.3.6.2, “Applet on the AS/400 System; jt400.zip on the PC” on page 129. If you
have followed all of the other steps in this chapter, you have essentially already
used this method. The only differences are that the PartsView.jar file is located
on the AS/400 system and the HTTP Server for AS/400 is used to provide the
HTML file to the browser.

Follow these steps to implement this technique:

1. Verify or create directory JT400 on your PC (see Section 3.3.4.1, “Creating the
JT400 Directory” on page 125).

2. Copy the jt400.zip file to the JT400 directory on your PC (see Section 3.3.4.2,
“Copying the jt400.zip File to the JT400 Directory” on page 125).

3. Set the CLASSPATH environment variable and reboot your PC (Windows 95/98)
(see Section 3.3.4.3, “Add/Modify CLASSPATH in AUTOEXEC.BAT (Windows
95/98)” on page 126 and Section 3.3.4.4, “Add/Modify CLASSPATH
Environment Variable (Windows NT)” on page 126).

4. Modify the HTML file in the apptest directory on the AS/400 system (see
Section 3.3.4.6, “Changing the ARCHIVE Tag in the HTML File” on page 127).

You can now load the HTML file using the URL shown in Section 3.3.6.7,
“Loading the HTML file in the Browser” on page 131. This time, you should notice
that the applet loads about as quickly as when you deployed it on the PC. This is
because the jt400.zip file is now available to the browser locally. The download
time for the PartsView.jar file is trivial. In our tests, that file was only 8KB in size.

This technique provides a good combination of download time with ease of
maintenance of the applet itself. If you need to make corrections or add features
to the applet, you only need to update the applet’s jar file on the AS/400 system,
not on all of the PCs. However, you must balance this against the requirement to
initially load (and subsequently maintain) the jt400.zip file on each PC, and also
the requirement to set the PCs CLASSPATH environment variable.

The apptest string in the URL is case-sensitive. You must enter apptest exactly
as specified in the PASS directive (see Section 3.3.6.3, “Configuring the AS/400
System for Applet Serving” on page 130).

If you want to allow various cases for the directory (for example, apptest and
Apptest), you need to enter additional PASS directives for each variation.

If the browser responds with a 403 error message, check the entire URL
carefully. The 403 message is usually sent when you mistype any portion of the
URL.

Note
132 Building AS/400 Internet-Based Applications with Java

3.4 Workin g with the Sun Java Plu g-in
Throughout this chapter, you may have noticed that it is far easier to work with the
Java source code for the applet than it is to understand all of the issues
surrounding the actual deployment of the applet. Getting your applet to run in
different browsers or different versions of the same browser can be incredibly
difficult. Not only do the browsers work with different file types (jars or cabinets),
but they are also sensitive to the AS/400 Toolbox for Java files (jar or zip). Also,
there are inconsistencies in the Java runtime environments implemented in the
browsers that you must be aware of and for which you may have to write
"work-around" code.

The easiest solution for applet deployment is to mandate that all users of your
applet use a specific browser, at a specific release level with whatever required
service packs, patches, or plug-ins you require. That obviously rules out
deployment of your applet over the Internet, since users who choose not to
conform to your requirements may simply take their browser (and their business)
elsewhere.

In an intranet environment, you may be able to constrain a small user community
to a certain browser environment. If you do not "lock down" your user’s
configurations, you will soon have "browser creep", with different versions of
browsers in your intranet.

Sun Microsystems, Inc., who has a great interest in the advancement of Java as a
corporate platform, has developed what may be your best choice for applet
deployment. You can freely obtain the Sun Java Plug-in, which provides a
common Java runtime environment for the Internet Explorer and Netscape
Navigator series of browsers. Although there is additional setup work that you
need to do to implement the Java Plug-in, you will may find it easier to use the
Java Plug-in, rather than attempt to resolve all of the problems you encounter
trying to support the different browsers.

3.4.1 Java Plu g-in Basics
The Java Plug-in is provided in a file that you download from one of Sun
Microsystems, Inc. Web sites. Upon installing the plug-in on a PC, you have the
following options are available:

 • A Java Plug-in Properties control panel lets you indicate how the plug-in is to
behave when invoked. You can specify which Java runtime environment is to
be used, if you have more than one installed on your PC.

 • For Microsoft Internet Explorer, an ActiveX object provides a link to the
selected Java runtime environment.

 • For Netscape Navigator, a plug-in provides a link to the selected Java runtime
environment.

You control the invocation of the Java Plug-in in the HTML for the Web page that
contains the applet. Because the required changes to the HTML can be rather
complicated, Sun Microsystems, Inc. also provides a no-charge HTML Converter
that you can use to convert your existing HTML file to a version that invokes the
Java Plug-in for either Microsoft Internet Explorer or Netscape Navigator.
© Copyright IBM Corp. 1999 133

Table 12 shows the operating systems and browsers supported by the Java
Plug-in.

Table 12. Operating Systems and Browser Versions Supported by the Java Plug-in

3.4.2 Workin g with the Java Plu g-in—A Ste p-by-Step App roach
The best way to learn about the capabilities and deployment considerations for
the Java Plug-in is to work through a complete example, using both Internet
Explorer and Netscape Navigator. In the following sections, you learn how to:

 • Obtain the required programs for the Java Plug-in from Sun Microsystems,
Inc.

 • Convert the HTML file to invoke the Java Plug-in

 • Install the Java Plug-in on the AS/400 system so that the Java Plug-in can be
installed as part of the applet invocation

 • Customize the Java Plug-in install process for Microsoft Internet Explorer and
Netscape Navigator

 • Test and verify the operation of the Java Plug-in in both browsers

3.4.2.1 Downloadin g the Java Plu g-in HTML Converter
To understand why you should get the Java Plug-in HTML Converter ("the
Converter" from this point on), review both the original PartsView.html file and a
converted version of PartsView.html that invokes the Java Plug-in when the applet
is loaded.

The following example shows the original PartsView.html code before it is
converted to invoke the Java Plug-in.

<HTML>
<HEAD>
<TITLE>PartsView</TITLE>
</HEAD>
<BODY>
<H1>PartsView</H1>
<APPLET CODE=views.PartsView.class

ARCHIVE=PartsView.jar
WIDTH=700
HEIGHT=350>

</APPLET>
</BODY>
</HTML>

Figure 99. PartsView.html Code before Conversion for the Java Plug-in

Internet Explorer Netscape Navi gator

Operatin g System 3.02 4.x 3.x 4.x

Windows 95 Yes Yes Yes Yes

Windows 98 Yes Yes Yes

Windows NT 4.0 Yes Yes Yes Yes

Solaris/SPARC Yes Yes

Solaris/x86 Yes
134 Building AS/400 Internet-Based Applications with Java

The following example shows the converted PartsView.html file with the code
required to invoke the Java Plug-in in either Microsoft Internet Explorer or
Netscape Navigator.

<HTML>
<HEAD>

<TITLE>PartsView</TITLE>
</HEAD>

<BODY>
<H1>PartsView</H1>

<!--"CONVERTED_APPLET"-->
<!-- CONVERTER VERSION 1.0 -->

<OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
WIDTH=700
HEIGHT=350
codebase="http://java.sun.com/products/plugin/1.1.1/jinstall-111-win32.c
ab#Version=1,1,1,0">

<PARAM NAME=CODE VALUE=views.PartsView.class >
<PARAM NAME=ARCHIVE VALUE=PartsView.jar >
<PARAM NAME="type" VALUE="application/x-java-applet;version=1.1">

<COMMENT>
<EMBED type="application/x-java-applet;version=1.1"

java_CODE=views.PartsView.class
java_ARCHIVE=PartsView.jar
WIDTH=700
HEIGHT=350
pluginspage="http://java.sun.com/products/plugin/1.1.1/plugin-install.ht
ml">

<NOEMBED>
</COMMENT>
</NOEMBED>
</EMBED>
</OBJECT>

<!--
<APPLET CODE=views.PartsView.class

ARCHIVE=PartsView.jar
WIDTH=700
HEIGHT=350>

</APPLET>
-->
<!--"END_CONVERTED_APPLET"-->

</BODY>
</HTML>

Figure 100. PartsView.html File after Conversion for Use with the Java Plug-in

The Converter takes as input your original HTML file (for example, the file shown
in Figure 99 on page 134) and outputs the version shown in Figure 100. Although
you can certainly create the code shown in the converted file, it should be
obvious that using the Converter is preferred to hand-coding the Java Plug-in
enabled HTML file.
 135

The Java Plug-in HTML Converter is available at the following Web site:
http://java.sun.com/products/plugin/converter.html

The file to download for Windows 95/NT is htmlconv111-win32.exe . You can
download the file to a temporary directory on your PC. The file that we
downloaded for testing was 3367KB in size.

3.4.2.2 Installin g the Java Plu g-in HTML Converter
After downloading the Java Plug-in HTML Converter file, you must run it to launch
the installation process. When you run it, a conventional installation process is
started, which leads you through a series of prompts.

The only significant prompt is the selection of a Java VM for the use of the
Converter (Figure 101 on page 137). Unless you have specific reasons for
selecting another Java VM, select the default option and let the Converter install a
JavaSoft Java runtime environment (JRE) as shown in Figure 101 on page 137.

Please note that the URLs shown for the Java Plug-in are provided by Sun
Microsystems, Inc. or its Javasoft subsidiary, and are not controlled by IBM. As
with any URL, the URL, Web pages available, or downloads available from a
particular page are subject to change.

If any of the URLs given for the Java Plug-in do not take you to the referenced
Web page, try a less-specific version of the URL. For example, the following
URL may not work:

http://java.sun.com/products/plugin/converter.html

If not, enter this URL instead:

http://java.sun.com/products/plugin

You may find links on the less-specific Web page that take you to the
referenced Web page.

If these options fail, start at the top-level URLs and look for links to the lower
level pages from there. Two top-level URLs that you can use are:

http://java.sun.com
http://www.javasoft.com

Note
136 Building AS/400 Internet-Based Applications with Java

Figure 101. Java Plug-in HTML Converter Options

When you install the Java Plug-in HTML Converter, you are also given several
choices to start the Converter. For example, you can add an item to a new or
existing program group or create a shortcut on the WIndows desktop. It does not
matter which of the choices you select, as long as you can locate the Converter
so that you can start it.

3.4.2.3 Runnin g the Java Plu g-in HTML Converter for PartsView.html
You have already seen the sample input to the Converter (Figure 99 on page 134)
and the sample output of the Converter (Figure 100 on page 135). In this part,
you review how to run the Converter and the options that are available to you.

When you start the Converter, you work with the dialog shown in Figure 102 on
page 138. In the upper half of the dialog, you have the following choices:

 • If you have multiple HTML files to convert, select the All Files in Folder
option. Then, specify the folder, file extensions, and if you want to include
subfolders.

 • If you have just one HTML file to convert, select the One File option. Then,
specify the complete path and file name of that HTML file.

For the test, select One File and specify the path to file PartsView.html in the
apptest directory on your AS/400 system.
 137

Figure 102. Java Plug-in HTML Converter Dialog

As soon as you specify the HTML file to be converted, the Converter proposes a
directory to use for a backup copy of the HTML file (the Backup Files to Folder
option in the lower half of the dialog). You can change the proposed directory if
you want, but you should not make the backup directory the same as the directory
where the original HTML file is located.

The backup process works as follows:

 • When you start the conversion, the backup directory is created if it does not
already exist.

 • If there is not a file in the backup directory with the same name as the HTML
file being converted, the HTML file is copied from the originating directory to
the backup directory. When the conversion is completed, the converted file is
in the originating directory.

 • If there is a file in the backup directory with the same name as the HTML file
being converted, the HTML file in the originating directory is not copied to the
backup directory. When the conversion is completed, the converted file is in
the originating directory as temp.conv . The original HTML file remains in the
originating directory and is not altered.

In other words, your original HTML file is always maintained. If you specify a valid
backup directory, the original HTML file is copied there if possible. If you do not
specify a valid backup directory or if the HTML file cannot be copied (because of
duplication), the original HTML file is kept in the originating directory. You then
have to manually rename the temp.conv file, which is the output of the Converter.

In our tests, the AS/400 system name S103D64G is a test system. In all cases
where you see that system name S103D64G, substitute the name of your
AS/400 system .

Note
138 Building AS/400 Internet-Based Applications with Java

The Generate Log File option is of most used when you convert multiple HTML
files. Figure 103 shows a sample of the log file data. The summary information is
also displayed in a summary panel when you run the Converter.

Applet Conversion November 28, 1998 9:14:51 PM PST
\\S103d64g\apptest\PartsView.html Processing...Done Applets Found: 1
All Done Files Processed: 1 Applets Found: 1

Figure 103. Sample Output of the Generate Log File

The Template File option lets you select which browsers you want to generate
Java Plug-in compatible code for. The Converter uses template files to create the
required additional HTML. The templates provided with the Converter work with
the following targets:

 • Standard (IE & Navi gator) for Windows and Solaris onl y—Generates
HTML that will be processed by Microsoft Internet Explorer and Netscape
Navigator browsers on Windows and Sun Solaris platforms.

 • Extended (Standard + All Browsers/Platforms)—Generates HTML that will
be processed by the standard browsers and other browsers. The generated
HTML includes JavaScript that uses browser detection to determine which
browser opened the HTML file. However, because a user may disable
JavaScript in their browser, the generated HTML from this template may fail to
load the Java Plug-in. The HTML generated by the Standard template (above)
does not include any JavaScript for browser detection. Standard is the
preferred template unless you know that you need to support other browsers
or platforms.

 • Internet Ex plorer for Windows and Solaris onl y—Generates the HTML that
will be processed by Microsoft Internet Explorer. The "Solaris" reference
seems to be an error in the selection list in the Converter, since Sun
Microsystems, Inc. does not support the Java Plug-in for Microsoft Internet
Explorer on the Solaris platform, as shown in Table 12 on page 134. See the
description of the next template.

 • Navigator for Windows onl y—Generates the HTML that will be processed by
Netscape Navigator. This template includes the Solaris platform that was
mistakenly coded in the previous template.

We noticed in our testing that the automatic backup to a directory does not
seem to work if the originating directory is mapped to a network drive. For
example, the network path \\s103d64g\apptest was mapped to drive letter G:

The automatically proposed backup directory was G:_BAK. Upon completing the
conversion, directory _BAK was located in the apptest directory on the AS/400
system. However, the original HTML file was not copied into the _BAK directory.
Instead, the original HTML file remained in the apptest directory and the
converted file was available as temp.conv .

Suggestion : Specify the full network path to be used for the backup directory.
Do not use a mapped network drive.

Note
 139

 • Other Tem plate—You can also create a customized template. When you
install the Converter, there is a readme.txt file in the program directory where
the Converter program is located. That file contains information about the
variables you can use in a template file and additional information about
creating a custom template.

The Advanced Options Button
If you click the Advanced Options button on the Java Plug-in HTML Converter
dialog (Figure 102 on page 138), the Advanced Options dialog is displayed
(Figure 104). You use this dialog to specify what action Microsoft Internet
Explorer or Netscape Navigator should take when an HTML file that requires the
Java Plug-in is loaded.

Leave the settings on this dialog as they are for now. You return to this dialog later
to change the settings for use in your intranet environment.

Figure 104. Advanced Options Dialog

Running the Converter
If you have not already done so, run the Converter now to convert the
PartsView.html file. You should end up with these versions:

 • A backup version of PartsView.html in the directory specified in the Backu p
Files to Folder directory.

 • A converted version of PartsView.html in the apptest directory on the AS/400
system.

3.4.2.4 Openin g the Converted PartsView.html in Internet Ex plorer
This part assumes that you have Microsoft Internet Explorer version 3.02, 4.0, or
4.01 installed on your computer. If you do not, go to the next step and open the
file in the Netscape Navigator browser.

Load the converted PartsView.html file by entering one of the following URLs that
point to your AS/400 system:

http://AS400_name/apptest/PartsView.html

or

http://AS400_ipaddress/apptest/PartsView.html

Instead of loading the applet directly, you see the Security Warning panel shown
in Figure 105 on page 141.
140 Building AS/400 Internet-Based Applications with Java

Figure 105. Microsoft Internet Explorer Security Warning

This panel appears because Microsoft Internet Explorer processes the following
lines of code in the converted HTML file (see Figure 100 on page 135 for the
complete listing of the converted HTML file):

<OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
WIDTH=700
HEIGHT=350
codebase="http://java.sun.com/products/plugin/1.1.1/jinstall-111-win32.cab#
Version=1,1,1,0">

<PARAM NAME=CODE VALUE=views.PartsView.class >
<PARAM NAME=ARCHIVE VALUE=PartsView.jar >
<PARAM NAME="type" VALUE="application/x-java-applet;version=1.1">

Figure 106. Code in the Converted HTML File

The OBJECT tag is used to identify an ActiveX control that Microsoft Internet
Explorer uses to provide Java Plug-in support. The ActiveX control is uniquely
identified by the classid parameter. When you load the converted HTML file,
Microsoft Internet Explorer uses the classid to determine if that particular ActiveX
control is already loaded and available on the PC (the Windows 95/NT Registry
contains a list of installed ActiveX controls).

The first time you load the converted HTML file, the ActiveX control is not on the
PC, so the codebase parameter is used to indicate where Microsoft Internet
Explorer can find a copy of the control. The URL in the codebase parameter is set
in the Converter Advanced Options (see Figure 104 on page 140). The control is
available on a Sun Microsystems, Inc. Web site.

Upon contacting that site and starting the download of the control, the Security
Warning panel is displayed (Figure 105 on page 141). This is the default behavior
of Microsoft Internet Explorer, since downloading an ActiveX control is a
potentially harmful activity (ActiveX controls are not subject to the same security
constraints as Java applets). After downloading the ActiveX control, it prompts
you to download the Java Plug-in (Figure 107 on page 142).
 141

Figure 107. Select Java Plug-in Installation Dialog

There are two important points you should note about the Java Plug-in installation
process in Microsoft Internet Explorer, using the defaults from the Converter:

 • The ActiveX control is not the Java Plug-in itself. Its only purpose is to create
a connection to a Web site where you can download the Java Plug-in from.

 • The Java Plug-in file that is downloaded is 4779KB in size. If you are using a
dial-up connection to the Internet, it may take quite a long time to download
the Java Plug-in.

The good news is that you only need to download and install the Java Plug-in
once for each PC. The next time you load the HTML file, the ActiveX control is
located on your PC, so the download process is not required.

The bad news is that most people using a dial-up connection to the Internet may
cancel the download of the Java Plug-in. The other consideration is that if you are
using this technique in an intranet environment, it is wasteful for every PC to
download the Java Plug-in from the Sun Microsystems, Inc. Web site.

In Section 3.4.2.6, “Downloading the Java Plug-in for an Intranet Environment” on
page 145, you see how to install the Java Plug-in using an intranet environment.
For now, you can cancel the download and close the Microsoft Internet Explorer
browser.

3.4.2.5 Openin g the Converted PartsView.html in Netsca pe Navi gator
This part assumes that you have Netscape Navigator version 3.x or 4.x installed
on your computer. If you do not, go to the next step to set up the Java Plug-in to
run in an intranet environment.

You load the converted PartsView.html file by entering one of the following URLs
that point to your AS/400 system:

 • http://AS400_name/apptest/PartsView.html

 • http://AS400_ipaddress/apptest/PartsView.html
142 Building AS/400 Internet-Based Applications with Java

When you load the HTML file, the PartsView page appears in the browser with an
icon in the middle of the page. If you click on the icon, you see the Plug-in Not
Loaded panel, as shown in Figure 109. That panel appears because Netscape
Navigator processes the following lines of code in the converted HTML file (see
Figure 100 on page 135 for the complete listing of the converted HTML file):

<EMBED type="application/x-java-applet;version=1.1"
java_CODE=views.PartsView.class
java_ARCHIVE=PartsView.jar,dab.jar
WIDTH=700
HEIGHT=350
pluginspage="http://java.sun.com/products/plugin/1.1.1/plugin-install.html"
>

Figure 108. Code in the Converted HTML File that is Processed by Netscape Navigator

The EMBED tag is used to identify the plug-in that is used to process the Java
applet. If the plug-in is not installed, the pluginspage parameter is used to indicate
where Netscape Navigator can go to retrieve the plug-in. The URL in the
pluginspage parameter is set in the Converter Advanced Options (see Figure 104
on page 140). The page is available on a Sun Microsystems, Inc. Web site.

Figure 109. Netscape Navigator Plug-in Not Loaded Panel
 143

When you click the Get the Plug-in button in the Plug-in Not Loaded panel (Figure
109 on page 143), another browser window is open to display the Web page
identified in the pluginspage parameter. Figure 110 shows a view of part of the
page. You can download the Java Plug-in from the page.

Figure 110. Java Plug-in Download Page

The file that you download from the Java Plug-in page is the same file that is
downloaded for Microsoft Internet Explorer. The primary difference between the
Microsoft Internet Explorer download and the Netscape Navigator download is
that Microsoft Internet Explorer automatically installs the Java Plug-in after the
download completes. With Netscape Navigator, you need to close the browser,
navigate to the directory where you stored the downloaded file, run the
installation program, and restart the browser.

As with the Microsoft Internet Explorer test (see Section 3.4.2.4, “Opening the
Converted PartsView.html in Internet Explorer” on page 140), you do not
144 Building AS/400 Internet-Based Applications with Java

download the Java Plug-in at this time. Close the download window (Figure 110
on page 144) and the applet window (Figure 109 on page 143).

3.4.2.6 Downloadin g the Java Plu g-in for an Intranet Environment
As you saw in the previous two sections, the default behavior of the converted
HTML file is to connect to the Internet and download the Java Plug-in the first
time it is required on each PC. Because of the size of the file (4779KB), it is far
better to download the Java Plug-in once to a server, and install it on each PC in
your intranet as required from the server. There are two primary advantages to
installing the Java Plug-in from your intranet:

 • The download time for each PC is considerably less than if those PCs
retrieved the Java Plug-in from the Internet. Also, if you block downloads
through your firewall, you can still install the Java Plug-in on your PCs that are
behind the firewall.

 • You control the version of the Java Plug-in that is installed on the PCs. If Sun
Microsystems, Inc. posts a new version of the Java Plug-in, you can download
and test it on your test PCs, rather than potentially have different versions of
the Java Plug-in downloaded to PCs in your organization.

To download the Java Plug-in to a server, go to the following Web site:

http://java.sun.com/products/plugin/1.1.1/index-1.1.1.html

You are prompted to select a directory to which download the file. The name of
the file is:

plugin-111-win32.exe

The file size is approximately 4779KB (at the time we tested this process).

Download the file to the apptest directory on your AS/400 system. You serve the
Java Plug-in from your AS/400 system, along with the applet.

3.4.2.7 Chan gin g the Converter to the Local Version of the Java Plu g-in
Now that you have a version of the Java Plug-in on your AS/400 system, you need
to change the Java Plug-in HTML Converter so that the converted HTML that it
outputs points to your copy of the Java Plug-in.

Go back into the Converter (Figure 102 on page 138) and click the Advanced
Options button. Specify the following information for the two entries in the
Advanced Options dialog:

 • Source location for ActiveX CAB file . This is used in the codebase parameter
for the OBJECT tag (Figure 106 on page 141):

file://AS400_name/apptest/plugin-111-win32.exe

 • Source location for Netsca pe plug-in . This is used in the pluginspage
parameter for the EMBED tag (Figure 108 on page 143):

http://AS400_name/apptest/NetscapePlugin.html

When you are finished, your Advanced Options dialog should appear as shown in
Figure 111 on page 146 (with your AS/400 system name in place of s103d64g).
 145

Figure 111. Revised Advanced Options Settings for the HTML Converter

The ActiveX CAB File
For Microsoft Internet Explorer, you can specify a file URL to point to the actual
Java Plug-in file that you downloaded from Sun Microsystems, Inc. Microsoft
Internet Explorer can directly open the Java Plug-in file and install it using the file
URL. You can see what happens with the revised HTML file in Section 3.4.2.10,
“Testing the Revised HTML File in Microsoft Internet Explorer” on page 148.

The Netscape Plug-in
Netscape Navigator cannot directly load the Java Plug-in file that you
downloaded. You need to point the browser to an HTML file that contains a link to
the Java Plug-in file. You create the HTML file referenced in this setting in the
next section.

3.4.2.8 Creatin g the Netsca pePlu gin.html File
Enter the code shown in Figure 112 on page 147 using NotePad or another
editor, then save the file as NetscapePlugin.html in the Applet directory on the
AS/400 system. This HTML is referenced in the Advanced Options dialog in the
HTML Converter (Figure 111 on page 146).

The most important line in this HTML file is the line with the <a href> tag. The
code in that line points to a file URL that identifies the Java Plug-in on the AS/400
system. Change the AS/400 system name to the name of your AS/400 system.
You can change any of the other lines that you like. If you do, remember to follow
the steps listed in this version of the HTML file.

<html>

<head>
<title>Install Java Plug-In 1.1.1 for Netscape Navigator</title>

</head>

<body bgcolor="white">

<h1>Install Java Plug-In 1.1.1</h1>

Click here
to download the Java Plug-In installer program.

Follow these steps to download and install the Java Plug-In:

146 Building AS/400 Internet-Based Applications with Java

Download file plugin-111-win32.exe to a temporary directory on your
PC.
Exit your browser.
Run plugin-111-win32.exe in the temporary directory.
Restart the applet in your browser.

</body>
</html>

Figure 112. Netscape Plug-in HTML File

3.4.2.9 Regeneratin g the Converted HTML
Now that you downloaded the Java Plug-in to your AS/400 system and changed
the Converter to point to that version of the plug-in, you need to regenerate the
HTML file. Follow these steps to create an updated version of the HTML file:

1. Using the Windows 95/NT Explorer, go to directory APPTEST_BAK on your
AS/400 system (or the directory that you specified for the Backu p Files in
Folder directory in Figure 102 on page 138).

2. Right-click on file PartsView.html in the backup directory. Select the Cut option
from the pop-up menu.

3. Right-click on directory apptest on your AS/400 system and select Paste from
the pop-up menu. Select the option to overwrite file PartsView.html with the
backup version of the file.

4. Run the Converter again to create a new version of PartsView.html (see
Section 3.4.2.3, “Running the Java Plug-in HTML Converter for
PartsView.html” on page 137).

5. Examine the generated PartsView.html file in directory apptest . You should
specifically check the codebase parameter in the OBJECT tag and the pluginspage
parameter in the EMBED tag to verify that the values are the same as those you
entered in the Advanced Options dialog (Figure 111 on page 146). If any of the
parameters are incorrect, review the steps in Section 3.4.2.7, “Changing the
Converter to the Local Version of the Java Plug-in” on page 145 and the steps
in this section.

Be especially careful to specify and verify the file name for the ActiveX CAB file
correctly. The file name is:

plugin-111-win32.exe

In one of our tests, we mistakenly entered the file name in the Advanced
Options dialog as:

plugin-win32.exe

When Microsoft Internet Explorer opened the Web page with the applet, it
simply did nothing. It did not load the plug-in because of the incorrect file name,
and it did not display any type of error or warning message.

Note
 147

3.4.2.10 Testin g the Revised HTML File in Microsoft Internet Ex plorer
Enter the URL to load the applet from the AS/400 system, as shown in Section
3.4.2.4, “Opening the Converted PartsView.html in Internet Explorer” on page
140. This time, when the browser realizes that the Java Plug-in is not installed, it
goes to the file URL and starts to download the Java Plug-in from the apptest
directory on the AS/400 system. Because the ActiveX control is not being
downloaded from the Sun Microsystems, Inc. Web site, you do not see the
Security Warning panel (Figure 105 on page 141).

After downloading the Java Plug-in (over 4MB), the browser launches the
installation part of the program. The installation program is a conventional
InstallShield installation. The first panel displayed is the Software License
Agreement (Figure 113).

Figure 113. Java Plug-in Software License Agreement

The panel in Figure 114 on page 149 is the Choose Destination Location panel.
You can accept the default destination or click the Browse button to select or
specify another destination.
148 Building AS/400 Internet-Based Applications with Java

Figure 114. Java Plug-in Choose Destination Location Dialog

After specifying the destination location, the Java Plug-in is installed. The
browser continues loading the applet, which invokes the Java runtime
environment from the Java Plug-in.

You can tell if the Java runtime environment is provided by the Java Plug-in in the
Java Console (Figure 115). As shown in Figure 115, the first two lines in the Java
Console identify the Java Plug-in and the version of the Java runtime environment
in use (1.1.6).

Figure 115. Java Console
 149

3.4.2.11 Uninstallin g the Java Plu g-in for the Netsca pe Navi gator Test
If you have Netscape Navigator 3.x or 4.x on your PC, test its ability to install the
Java Plug-in using the NetscapePlugins.html page that you created (see Section
3.4.2.8, “Creating the NetscapePlugin.html File” on page 146). To test the
installation process, you need to uninstall the Java Plug-in from your PC,
assuming that you completed the test with Microsoft Internet Explorer (see
Section 3.4.2.10, “Testing the Revised HTML File in Microsoft Internet Explorer”
on page 148). The reason why you need to uninstall the Java Plug-in is because
Netscape Navigator considers the Java Plug-in to be installed, even if it was
initially installed by Microsoft Internet Explorer. If the Java Plug-in is already
installed, Netscape Navigator does not try to run its version of the installation
process, but simply loads the applet.

To uninstall the Java Plug-in, go to the Windows 95/NT Control Panel and start
the Add/Remove Programs program. Scroll to the entry for the Java Plug-in
1.1.1 in the Install/Uninstall tab (Figure 116). Click the Add/Remove button to
remove the Java Plug-in from you PC. Close the Add/Remove Programs
program. You can now run the test with Netscape Navigator. It attempts to install
the Java Plug-in.

Figure 116. Windows 95/NT Add/Remove Programs Dialog

3.4.2.12 Testin g the Revised HTML File in Netsca pe Navi gator
Enter the URL to load the applet from the AS/400 system, as shown in Section
3.4.2.5, “Opening the Converted PartsView.html in Netscape Navigator” on page
142. Because the Java Plug-in is not installed, Netscape Navigator displays the
icon in place of the applet. Click the icon to display the Plug-in Not Loaded panel,
as shown in Figure 117 on page 151.

This time, the Plug-in Not Loaded panel should refer to the NetscapePlugin.html
file that you created in Section 3.4.2.8, “Creating the NetscapePlugin.html File”
150 Building AS/400 Internet-Based Applications with Java

on page 146. You indicated that you wanted to use that HTML file, rather than the
Sun Microsystems, Inc. Web page (see Figure 109 on page 143) in the Advanced
Options dialog (see Figure 111 on page 146).

Figure 117. Plug-in Not Loaded Panel

When you click the Get the Plug-in button in the Plug-in Not Loaded panel, the
Web page that you created is displayed (Figure 118 on page 152). Click the link
to start downloading the Java Plug-in file from the AS/400 system to your PC.

Unlike Microsoft Internet Explorer, Netscape Navigator does not automatically
start the Java Plug-in installation procedure. Instead, you need to follow the steps
as shown on the NetscapePlugin.html page. You need to manually start the Java
Plug-in installation procedure. You work with the same panels that are used in the
Microsoft Internet Explorer install (see Figure 113 on page 148 and Figure 114 on
page 149).

After completing the Java Plug-in installation procedure, you can restart the
Netscape Navigator browser and reload the PartsView.html file to start the applet.
After starting, you should see the same Java Console as is used in the Microsoft
Internet Explorer version of the applet (Figure 115 on page 149).
 151

Figure 118. Netscape Plug-in.html File

3.4.2.13 Verif y in g Netsca pe Navi gator Plu g-ins
Netscape Navigator includes a feature you can use to easily verify the presence
or absence of any plug-ins used with the browser. In the browser’s Location entry
space, enter:

about:plugins

The browser responds with a page similar to Figure 119 on page 153, which lists
all of the plug-ins that are currently available to the browser. Microsoft Internet
Explorer does not provide a feature similar to this.
152 Building AS/400 Internet-Based Applications with Java

Figure 119. About:plugins Feature
 153

3.4.2.14 Java Plu g-in Control Panel
Regardless of which browser is used to install the Java Plug-in on your PC, the
Java Plug-in Control Panel is also installed. The Control Panel is available from
the Start—>Programs menu in Windows 95/NT.

Figure 120. Basic Tab of the Java Plug-in Control Panel

Figure 120 shows the Basic panel of the Control Panel. The options on this panel
are:

 • Enable Java Plu g-in —If checked, the Java Plug-in is used to provide the
Java runtime environment for applets. If not checked, the Java runtime
environment is provided by the browser. You can use this option to test
differences in browser Java support compared with the Java Plug-in, rather
than uninstall the Java Plug-in. The default for this option is checked.

 • Show Java Console —If checked, the Java Console is displayed when an
applet runs (see Figure 115 on page 149). As shown throughout this chapter,
the Java Console is one of the best tools you have for debugging applets. The
default setting for this option is unchecked, which is appropriate for users
other than the applet programmers.

 • Cache JARs in memor y—If checked, applet classes are cached and reused
when the applet is reloaded. This improves memory usage and performance.
However, you should uncheck this option when you are developing and testing
an applet so that the most recent classes are always loaded.

 • Network access —This option lets you choose the level of permission you
grant an applet in your network. The options are:

 – None—The applet cannot access any resources in the network, not even
the host server it was loaded from.

 – App let Host —The applet can connect back to the server it was loaded
from. This is the default setting for this option.

 – Unrestricted —The applet can access any resources in the network. This
is considered to be a security hazard.

Note : This option can only be changed if the Java runtime environment in use
is a 1.1.x version. If you use the 1.2 runtime environment, you must use the
new security architecture to select the level of network access the applet is
allowed.

 • Java Run Time Parameters —This option is used to enter startup parameters,
similar to those you can provide for the java.exe command line.
154 Building AS/400 Internet-Based Applications with Java

The Control Panel has two additional tabs:

 • Advanced (Figure 121)—The main feature on this tab is the Java Run Time
Environment selection. When you install the Java Plug-in, a version of the
Java runtime environment is installed with the plug-in. If you want to use a
different runtime environment, you can select any of the versions that are
installed on your PC.

 • Proxies (Figure 122)—If you need to use different proxy settings than those in
your browser, you can uncheck the Use browser settin gs check box and
enter the proxy information required.

Figure 121. Advanced Tab in the Java Plug-in Control Panel

Figure 122. Proxies Tab in the Java Plug-in Control Panel
 155

3.4.3 Summar y of the Java Plu g-in
Although it may seem like a lot of work to use the Java Plug-in, we found in our
testing that the Java Plug-in actually makes it much easier to develop, test, and
deploy an applet. For example, some of the early Netscape Navigator 4.x
browsers (4.01 and 4.04) do not provide stable Java runtime environments.
Rather than code the work-arounds required for those versions of the browsers,
try to accommodate the later versions (4.05, 4.06, 4.07 and most recently 4.5),
and provide support for Microsoft Internet Explorer (3.02 and 4.01), it is far easier
to install the Java Plug-in and learn how to work with its Java runtime
environment. There are some browser Java runtime environments that are simply
not worth the effort to develop for and support.

Although it may be argued that imposing the installation of the Java Plug-in on
users is an extra burden, keep in mind that the installation is a one-time event.
Given that the installation process requires minimal user intervention and no
entries other than a few mouse clicks, even the most hesitant user should be able
to successfully negotiate the installation process.

The primary advantage of deploying the Java Plug-in to provide applet support is
that you can debug any problems with much greater confidence and accuracy
than if you have multiple browser versions. Based on our testing and the
problems we encountered trying to get applets to work successfully with different
browsers, the only realistic alternative to the Java Plug-in is to adopt one browser
at one specific release level and support it. You then need to "lock-down" the
users so that they cannot upgrade or alter their browser configuration. Using the
Java Plug-in alternative, it does not matter which browser or which version is
used. When the browser hosts an applet, the same Java runtime environment is
called upon.

3.5 Conclusion
As you have seen throughout this chapter, there are a number of factors that are
involved in developing and deploying applets. In our tests, one of the main factors
in the success or failure of the applet was the version of the browser being used.
Generally speaking, the more recent versions of Netscape Navigator and
Microsoft Internet Explorer are more "applet friendly".

Because of the browser dependencies, it is difficult to guarantee that an applet
using the AS/400 Toolbox for Java classes is suitable for use by the general
public. The jt400.jar file is approximately 2MB in size. The jt400.zip file is
approximately 4MB. Those sizes alone rule out the use of applets served over a
dial-up connection, except by the most dedicated or desperate of users.

It may be possible to reduce the size of the required Toolbox jar file by careful
study of the classes and resources required to be exported. However, you may
find that, in practice, the resulting jar file is still several hundred kilobytes in size.
The classes and resources required go far beyond those that you directly
reference in your Java code. As is, you need to rely on VisualAge for Java to
discover classes and resources. Otherwise, if you try to select just the classes
and resources you think are required, you may need to iteratively debug the
applet many times.
156 Building AS/400 Internet-Based Applications with Java

There is a tool named JarMaker available as a beta release on the AS/400
Toolbox for Java homepage. In your browser, enter the URL
www.as400.ibm.com/toolbox . Click on Downloads to find it.

The JarMaker class speeds download through its ability to create a smaller jar file
from a larger one. You can use this tool to help reduce the size of jar files that
want to serve over a network.

The test described in Section 3.3.6.8, “Using jt400.zip on the PC, PartsView.jar
on the AS/400 System” on page 132, seems to provide the best combination of
performance and ease of deployment. That being said, that test requires the
installation of the jt400.zip file on the PC and a modification to the CLASSPATH
environment variable. Those requirements may not be overly burdensome for
PCs that you can directly control.

Although applets provide access to GUI elements in the AWT or with Swing that
you may really want to use, you may find that deployment issues render applets
impractical. You can still take advantage of the AS/400 Toolbox for Java by using
servlets, which are described in the following chapters in this redbook.
 157

158 Building AS/400 Internet-Based Applications with Java

Chapter 4. Introduction to AS/400 Servlets

The objective of this chapter is to provide an introduction to Java servlets. It
explains:

 • An introduction to Java servlet support
 • How to use servlet support within VisualAge for Java
 • How to change the application discussed in Chapter 3, “Introduction to AS/400

Applets” on page 51, from an applet to a servlet
 • How to configure an HTTP server to run servlets
 • How to run servlets using HTML files

In Chapter 3, “Introduction to AS/400 Applets” on page 51, we discuss an applet
that displays data retrieved from an AS/400 database. In this chapter, you see
how to add servlet functionality by simply replacing the front end. Instead of using
a Graphical User Interface to display the data, we use HTML.

The objective of this chapter is to build a servlet that accesses a database file on
the AS/400 system. The output from the servlet is shown in Figure 123.

Figure 123. Servlet Application

The example programs discussed in this chapter are available for you to
download from the redbook Web site. Refer to Appendix A.1, “Downloading the
Files from the Internet Web Site” on page 299, for details.

Note
© Copyright IBM Corp. 1999 159

4.1 Introduction to the Servlet Support

Before starting with the development of the servlet application, this section
explains briefly the basic idea behind servlets. Figure 124 shows an overview of
the servlet architecture.

Figure 124. Servlet Architecture

Servlets are modules that run inside request or response-oriented servers, such
as Java-enabled Web servers, and extend them in some manner. For example, a
servlet may be responsible for taking data in an HTML order-entry form and apply
the business logic used to update a company's order database. Servlets relate to
servers as applets relate to browsers.

Servlets can provide services or extensions to HTTP servers, performing
functions equivalent to CGI programs, server side includes and server side APIs
(NSAPI and ISAPI). Although servlets also provide services outside of the HTTP
environment, it is the HTTP servlet is of most interest to the AS/400 system at
this point. Servlets can also be used as a powerful substitution for CGI-Scripts.

As shown in Figure 124, communication between a browser and a servlet
application follows this sequence:

1. The client (browser) sends a request to the HTTP server.
2. The HTTP server forwards the request to the servlet.
3. The servlet receives the request and generates a response by accessing

resources and passes the response back to the HTTP server. The response
usually contains HTML or other data that can be processed by the client.

4. The HTTP server sends the response to the calling client (browser).
5. The browser renders the data.

Servlet support is provided in two packages:

javax.servlet.* Provides basic servlet classes and interfaces
javax.servlet.http.* Provides classes and interfaces for use with HTTP

The classes and interfaces are organized as shown in Figure 125 on page 161.
160 Building AS/400 Internet-Based Applications with Java

Figure 125. Servlet Hierarchy

Servlet support for Java is provided as part of JDK 1.2. However, the support can
be used in JDK 1.1. Two packages are required, javax.servlet and
javax.servlet.http. They can be obtained at the Javasoft Web site. In VisualAge
for Java 2.0, these packages are available in the Sun JSDK class libraries
project.

When we start writing servlets, we usually use HTTP for communication between
the browser and the server. For that reason, we normally extend the class
HttpServlet, which extends the GenericServlet class. To react to a client request,
we must extend HttpServlet and override one or more of the following methods:

 • doGet()—To support HTTP GET requests
 • doPost()—To support HTTP POST requests
 • doDelete()—To support HTTP DELETE requests
 • doPut()—To support HTTP PUT requests

4.1.1 Why Use Servlets
Java applets have many restrictions. Servlets offer alternatives for some of these
restrictions. Servlets do not offer a "better" solution than applets. They simply
provides an alternative solution. The "better" solution depends on the user
environment and requirements.

You normally store applets and their associated classes at a central location, and
download them as needed. As a result, the classes are downloaded as needed by
the browser. Depending on the size and number of classes, and the speed of the
communications line, the download time can be expensive. There are various
solutions available and proposed. Nearly all implement a "download the first time,
check, and synchronize changes" scheme. For an infrequent user, this may result
Introduction to AS/400 Servlets 161

in synchronization and downloading for each access. An analogy for this is the
infrequent AOL or Prodigy user that receives software updates every time they
signs on.

Servlets run on the server, which eliminates the class download time. Since an
HTTP servlet can output HTML, relatively small amounts of data can be
transferred between the Web server and the Web browser. A high speed link
between the Web server and the data server should provide reasonable
performance for users that are connected using modems or over the Internet.

Applets running in a browser cannot access system resources and can only open
a socket to the server that served the applet. This restriction is relaxed in the
newer browsers, which allows the user to grant signed applets to perform some of
the restricted tasks. However, this is up to the individual user, not the
administrator. The user may not have the necessary knowledge to know if this
authority should be granted. To simplify the decision process for the end users,
the administrator may choose to store the applets, the depending classes, and
the pages on the same system as the data. In an enterprise where the data is
stored on multiple servers, the administrator maintains applets, classes, and
HTML pages on each server.

Not all browsers run applets in the same way. For example, security is handled
differently in Netscape Navigator than it is handled in Microsoft Internet Explorer.
Different versions of the same browser may also handle applets differently. This
can make implementing an applet solution difficult. Most browsers are capable of
rendering HTML. Running a servlet on a server and using HTML to control input
and output can help solve these browser compatibility problems.

Servlets offer these important advantages:

 • Servlets have full access to local resources.
 • They are easy to develop.
 • Servlets are portable.
 • Servlets are multi-threaded.
 • Since servlets run on a server, no downloading is necessary.
 • Servlets can be dynamically loaded and unloaded without shutting down the

HTTP server.
 • Once installed, servlets can be compiled using a JIT or native compiler.

4.1.2 Servlets versus CGI.BIN
Servlets provide functionality similar to cgi-bin programs. Servlets offer a number
of advantages of cgi-bin. These include:

 • Servlets are written in Java and are easy to develop.
 • Cgi-bin programs are platform dependent. For example if you write a cgi-bin

program in RPG, it can only run on an AS/400 system. Since servlets are
written in Java, they can run on any platform that supports Java.

 • Java programs support threads. You can take advantage of this to write
multi-threaded servlets to increase functionality and efficiency.

For a more complete discussion of cgi.bin programs on the AS/400 system, see
Section 1.4, “Common Gateway Interface (CGI) Programming” on page 15.
162 Building AS/400 Internet-Based Applications with Java

Figure 126. Servlets versus CGI.BIN

4.2 How to Use Servlets

This section introduces you to the basics of how servlets work. For detailed
information about servlets, refer to the Javasoft Web site at: www.javasoft.com

Servers load and run servlets, which then accept requests from clients and return
data to them. They can also remove servlets. Servlets follow the lifecycle
described in the following text.

When a server loads a servlet, it runs the servlet's init method. Even though most
servlets run in multi-threaded servers, there are no concurrency issues during
servlet initialization. The server calls the init method once when it loads the
servlet, and does not call it again unless it reloads the servlet. The server cannot
reload a servlet until after it removes the servlet by calling the destroy method.
Initialization is allowed to complete before client requests are handled (before the
service method is called) or the servlet is destroyed.

After the server loads and initializes the servlet, the servlet can handle client
requests. It processes them in its service method. Each client's request has its
call to the service method run in its own servlet thread. The method receives the
client's request, and sends the client its response.

Servlets can run multiple service methods at a time. It is important, therefore, that
service methods be written in a thread-safe manner. For example, if a service
method updates a field in the servlet object, that access should be synchronized.
If, for some reason, a server does not run multiple service methods concurrently,
the servlet should implement the SingleThreadModel interface. This interface
guarantees that no two threads run the servlet's service methods concurrently.

During a servlet's lifecycle, it is important to write thread-safe code for destroying
the servlet. It is also important for servicing client requests, unless the servlet
implements the SingleThreadModel interface. In general, you need three
methods to run a servlet:
Introduction to AS/400 Servlets 163

 • init()
 • service()
 • destroy()

For HTTP servlets, these methods can also be used:

 • doGet()

This method is called by the service method to handle HTTP GET operations.
This operation allows the client to "get" a response from an HTTP server. It is
the default method executed when running an HTTP servlet. This method is
generally used for query type requests, where no changes to stored data are
made.

 • doPost()

This method is called by the service method to handle HTTP POST
operations. This operation includes data in the request body that should be
acted upon by the servlet.

4.2.1 Communication with an HTTP Server
Servlets implement the javax.servlet.Servlet interface. While servlet writers can
develop servlets by implementing the interface directly, this is usually not
required. Because most servlets extend Web servers that use the HTTP protocol
to interact with clients, the most common way to develop servlets is by extending
the javax.servlet.http.HttpServlet class.

The HttpServlet class implements the Servlet interface by extending the
GenericServlet base class, and provides a framework for handling the HTTP
protocol. Its service method supports standard HTTP/1.1 requests by dispatching
each request to a method designed to handle it. By default, servlets written by
specializing the HttpServlet class can have multiple threads concurrently running
its service method.

Several methods are provided to allow HTTP servlets to interface with a client:

 • doGet —For handling GET, conditional GET and HEAD requests
 • doPost —For handling POST requests
 • doPut —For handling PUT requests
 • doDelete —For handling Delete requests

When you write a servlet, you override these method with application specific
code. Each method has two parameters that are passed in:

 • ServletRequest—Encapsulates the request to the servlet
 • ServletResponse—Encapsulates the response from the servlet

By using the ServletRequest interface or its subclass HttpServletRequest,
servlets can access protocol specific header information such as the scheme of
the URL used in the request or the value of the specified parameters. After
retrieving the data from the HttpServletRequest, the servlet performs the
requested task and sends the information back to the client using the
ServletResponse object. It allows the servlet to set the MIME content type and a
Writer, through which the servlet can pass the information back to the client.

Parameters passed by the client can be accessed using these methods of the
ServletRequest class:
164 Building AS/400 Internet-Based Applications with Java

 • getParameterNames()
 • getParameter()
 • getParameterValues()

4.2.2 Invoking a Servlet
There are three different methods to invoke a servlet:

 • Using the servlet's URL:

Figure 127. Calling a Servlet Directly

 • Using the HTML <form> tag:

Figure 128. Calling a Servlet Using HTML Files

 • Using the HTML <servlet> </servlet> tags:

Figure 129. Calling a Servlet Using SHTML Files

In this case, you have to use the file extension .shtml instead of .html or .htm.

4.3 A Simple Servlet

The servlet example in Figure 130 on page 166 displays "Hello world" in a
browser.

http://<yourServer>/servlet/ServletToCall

<form method=GET action=/servlet/ServletToCall> ... </form>

<form method=POST action=/servlet/ServletToCall> ... </form>

<servlet name=ServletToCall code=ServletToCall.class>
..
</servlet>
Introduction to AS/400 Servlets 165

Figure 130. HelloWorldServlet

To call the servlet directly, you can specify the servlet name directly in the URL as
shown in the following example:

http://<YourServer>/servlet/HelloWorldServlet

The HelloWorldServlet demonstrates some of the basic concepts, as shown in
the following sequence, that are used when creating HTTP servlets:

1. We import support classes from the javax.servlet and javax.servlet.http
packages.

2. The HelloWorldServlet extends the HttpServlet class, which implements the
Servlet interface.

3. The doGet method is called when a client makes a GET request (the default
HTTP request method). If the servlet is called directly, the doGet method is
called.

4. We override the doGet method to handle application processing.
5. Two parameters are passed in to the doGet method:

 • HttpServletRequest req—Encapsulates the input
 • HttpServletResponse res—Encapsulates the output

6. Because text data is returned to the client, the reply is sent using a print writer
object obtained from the HttpServletResponse object:
a. We declare a PrintWriter object named out.
b. We set the response content to "text/html".
c. We use the HttpServletResponse getWriter method to create the print

writer named out.
d. We use the println method to write HTML tags.

7. The HMTL tags are rendered by the browser.

4.4 Developing the Servlet Application

This section explains the conversion of the applet (discussed in Chapter 3,
“Introduction to AS/400 Applets” on page 51) to a servlet.

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class HelloWorldServlet extends HttpServlet{

public void doGet (HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException
 {
 PrintWriter out;

 res.setContentType("text/html");
 out = res.getWriter();

 out.println("<html>");
 out.println("<head><title>Hello World</title></head>");
 out.println("<body>");
 out.println("<h1>Hello World</h1>");
 out.println("</body></html>");
 }
}

166 Building AS/400 Internet-Based Applications with Java

The PartsServlet servlet was created in VisualAge for Java. Figure 131 shows a
view of the ServletExamples project with the servlets package expanded.

Figure 131. ServletExamples Project

Table 13 briefly describes the packages, classes and interfaces used.

Table 13. Summary of Packages, Classes, and Interfaces Used for the PartsServlet

ServletExamples Project

Package Class/Interface Description

dataAccess DataAccessor Interface used to define methods that must be
implemented by classes in this package.

JDBCPartsCatalog Used to connect to AS/400 system database.
Returns a vector of parts.

TestPart Used to simulate a connection to a database.
Returns a vector of parts.

domain Part Represents a row of part data retrieved from the
database.

PartsCatalog Determines which data source to get part data
from. Gets parts from the selected data source
and returns a vector of parts data.
Introduction to AS/400 Servlets 167

Although the application was initially designed, tested, and used as an applet, the
intention was to create a body of reusable code that can be used when the
application is migrated to a servlet. By adopting the three-tier architecture shown
in Figure 132, the application can be easily changed.

Figure 132. Java Applet/Servlet Design

In fact, it is quite easy to change the application at any of the three tiers. In
addition to changing the end user interface code to support an applet or a servlet
presentation, the data source can be changed in the data access layer without
affecting the other two layers. Also, if any of the application logic needs to be
changed, the changes can be made at that layer without affecting either the data
access or end user interface layers.

The application is well positioned for change if a different data access technique
is used. For example, the IBM AS/400 Toolbox for Java supports record-level
access using the AS/400 system Distributed Data Management (DDM) server,
program call, and data queues. If you decide to change from the Java Database
Connectivity (JDBC) technique, you only need to code your new data access
class so that it returns the same type and format of data to the application logic

views PartsView The visible part of the applet. Includes the parts
listbox and the button to start the query.

servlets PartsServlet Provides the servlet support.

ServletExamples Project

Package Class/Interface Description

Java Applet/Servlet desi gn

servlet
Package

views
Package End User interface

domain
Package Application Logic

dataAccess
Package

Data Access

JDBCPartsCatalog
class TestPart

class

 Other data sources:
 -- DDM
 -- Stored Procedures
 -- Data Queues
168 Building AS/400 Internet-Based Applications with Java

layer. The applet uses the JDBCPartsCatalog and TestPart classes. The TestPart
class is used to simulate a connection to a data source.

For detailed information about the dataAccess package, the views package, and
the domain package, refer to Chapter 3, “Introduction to AS/400 Applets” on page
51. This chapter covers the servlet package.

4.5 Migrating the Applet to a Servlet

The servlet application is contained in a class named PartsServlet, which resides
in the servlet package.

Figure 133. PartsServlet Class

Note the following points in Figure 133:

 • A private instance variable named partsCatalog is in the class definition.
Because of our object-oriented design, we can use the same domain package
and dataAccess package that we used for the applet. Here, we declare a
PartsCatalog object from the domain package.

 • We also import the javax.servlet and javax.servlet.http packages. To use
these packages inside VisualAge for Java, we restore the Sun JSDK class
libraries project from the repository.

Figure 134. Servlet init Method

The init method is called when the servlet is started. Note the following steps:

1. We instantiate the PartsCatalog object named partsCatalog .
2. We call the connectToDB method. This loads the JDBC driver into the JVM

and performs any required JDBC initialization.
3. We use the log method to write messages to the log. This may be useful for

debugging an application.

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.*;
public class PartsServlet extends HttpServlet {
private domain.PartsCatalog partsCatalog;
}

public void init (ServletConfig config) throws ServletException {
super.init(config);
log("PartsServlet: init()...");
partsCatalog = new domain.PartsCatalog();
partsCatalog.connectToDB();
log("PartsServlet: init() executed.");
return;
Introduction to AS/400 Servlets 169

Figure 135. The doGet Method

The doGet method is used to retrieve all the records from the Parts database file
and display them in a browser.

Figure 136. The outputHeader Method

The outputHeader() method is called to create the HTML tags, which, when sent
to the browser, produce the heading.

We call the partsCatalog object’s getAll method to retrieve all the records from
the database. The getAll method returns a Vector.

public void doGet(HttpServletRequest request, HttpServletResponse response) throws IOException {
log("PartsServlet: doGet()...");
// set the MIME type to text/html
response.setContentType("text/html");
// create the output stream
ServletOutputStream out = response.getOutputStream();
Vector parts = null;
try {
 log("PartsServlet: doGet(), try{} block ...");
 // write the HTML header to the output stream
 outputHeader(out);

 parts = partsCatalog.getAll();
 log("after get all...");
 // write the HTML table to the output stream
 outputPartsInformation(out, parts);
 close(out);
 log("PartsServlet: doGet(), try{} block executed.");
 return;
}
catch(Throwable e){
 printError(out, e);
}
}

private void outputHeader (ServletOutputStream printStream) throws IOException {
log("PartsServlet: outputHeader()...");
printStream.print("<HTML><HEAD><TITLE>Parts Retrieval</TITLE>");
printStream.println("</HEAD><BODY>");
printStream.print("<BODY BGCOLOR=#C0C0C0>");
log("PartsServlet: outputHeader() executed.");
} // end outputHeader()
170 Building AS/400 Internet-Based Applications with Java

Figure 137. The outputPartsInformation Method

We call the outputPartsInformation to build an HTML table which contains all
the records. We then send the HTML table to the browser for display. The output
is shown in Figure 138.

Figure 138. The doGet Method Output

private void outputPartsInformation (ServletOutputStream printStream, Vector partsVector) throws
IOException {
log("PartsServlet: outputPartsInformation()...");
Enumeration parts = partsVector.elements();
printStream.println("<TABLE BORDER>");
printStream.println("<P><CENTER>Here are the results of your query:</P>");
printStream.println("<TR>");
 printStream.print("<TH>Number</TH><TH>Description</TH><TH>Quantitiy</TH><TH>Price</TH><TH>Date</TH>");
printStream.println("</TR>");
while (parts.hasMoreElements()) {
domain.Part aPart = ((domain.Part)parts.nextElement());
printStream.print("<TD>" + aPart.getNumber() + "</TD>");
printStream.print("<TD>" + aPart.getDescription() + "</TD>");
printStream.print("<TD><CENTER>" + aPart.getQuantity() + "</CENTER></TD>");
printStream.print("<TD><CENTER>$ " + aPart.getPrice() + "</CENTER></TD>");
printStream.print("<TD><CENTER>" + aPart.getDate() + "</CENTER></TD>");
printStream.println("</TR>");
}; // end while
printStream.println("</TABLE>");
printStream.println("</BODY></HTML>");
log("PartsServlet: outputPartsInformation() executed.");
} // end outputPartsInformation()
Introduction to AS/400 Servlets 171

4.5.1 Enhancing the Servlet
This section shows how to enhance the servlet to allow user input and to use an
HTML file to control the servlet. The enhanced servlet is shown in Figure 139.

Figure 139. Enhanced Servlet

To produce the enhanced servlet, perform the following steps:

1. Add the doPost method to the PartsServlet class.
2. Create an HTML file to control running the servlet.
172 Building AS/400 Internet-Based Applications with Java

Figure 140. The doPost Method

In Figure 140, we show the doPost method. We use the outputHeader, getAll, and
outputPartsInformation methods in exactly the same way as in the doGet method.

We use the HttpServletRequest class getParameterValues method to read the
value from the partno field. We need to define the partno field in the HTML file. If
the parameter is *all, we return all parts. Otherwise, we return only the part
record requested.

Notice that we use the getAll method to retrieve all the records from the database.
If only one record is requested from the database, we find it in the Vector
containing all the records and return only that record. Since the database is
small, this does not cause a performance problem. If we actually implemented
this in a production environment, we would add a getPart method, which would
retrieve only one part record.

public void doPost(HttpServletRequest request, HttpServletResponse response) throws IOException{

 // set the MIME type to text/html
 response.setContentType("text/html");
 // create the output stream
 ServletOutputStream out = response.getOutputStream();
 try {
 // get the value from the input field named part (see HTML file)
 // and check if value is valid
 String[] parameter = request.getParameterValues("partno");
 if (parameter[0].trim().length() == 0) parameter[0] = "*ALL";
 Vector parts = null;
 // write the HTML header to the output stream
 outputHeader(out);
 // retrieve all data from the database
 parts = partsCatalog.getAll();
 // process the request according to the value of the input field
 if (!parameter[0].toUpperCase().equals("*ALL")) {
 Vector selectedParts = new Vector();
 Enumeration partsE = parts.elements();
 while (partsE.hasMoreElements()){
 domain.Part aPart = (domain.Part)partsE.nextElement();
 if ((aPart.getNumber()).equals((new java.math.BigDecimal(parameter[0])))){
 selectedParts.addElement(aPart);
 };
 };
 parts = selectedParts;
 };
 // write the HTML table to the output stream
 outputPartsInformation(out, parts);
 close(out);
 return;
 }
 catch(Throwable e){
 printError(out, e);
 }
} // end of doPost()
Introduction to AS/400 Servlets 173

Figure 141. Servlet HTML File (Parts.html)

Figure 141 shows the source for the HTML file that we use to run the servlet. We
use the FORM action tag to specify which servlet to run and the method to use. In
this case, we use the POST method. We use the INPUT TYPE tag to define an
input field named partno . The name we use here must match the parameter
name that we use in the doPost method.

4.6 Executing the Servlet

After creating the servlet, we are ready to deploy the servlet on an HTTP server.
The application discussed in this chapter uses servlets to access AS/400
resources. To run it, we need a server that supports Java servlets. We tested the
application using two servers:

 • The Domino Go Webserver running on a Windows/NT platform
 • The IBM HTTP Server for AS/400 running on an AS/400 system

<HTML>
<BODY BGCOLOR="#C0C0C0">
<FORM action="/servlet/PartsServlet" method="POST">
<CENTER><IMG SRC="as400.gif" BORDER=2 X-SAS-UseImageWidth X-SAS-UseImageHeight HEIGHT=120
WIDTH=120></CENTER>
<CENTER>
<HR SIZE="5"></CENTER>
<CENTER>Enter *ALL to get all parts
from the catalog</CENTER>
<CENTER>or</CENTER>
<CENTER>Enter the part number to
get only one part from the catalog</CENTER>
<CENTER>Press the Button to retrieve
the parts</CENTER>
<CENTER> </CENTER>
<CENTER><TABLE BORDER=0 WIDTH="50%" HEIGHT="1" >
<TR>
<TD WIDTH="169" HEIGHT="14">
<DIV ALIGN=right>Part Number or *ALL </DIV>
</TD>
</TR>
<TD WIDTH="118" HEIGHT="14">
<!-- Add the input field after this line -->
<INPUT TYPE="text" NAME="partno" VALUE="*ALL" SIZE=10 MAXLENGTH=10>--></TD>
</TR>
<TR>
<TD WIDTH="169"></TD>
<TD WIDTH="118"><INPUT TYPE="submit" NAME="Submit" VALUE="Get Parts Information"></TD>
</TR>
</TABLE></CENTER>
<CENTER>
<HR SIZE="5"></CENTER>
</FORM>

This file uses the servlet <I>PartsServlet</I> to retrieve information
from the AS/400

<HR SIZE=5 WIDTH="100%">
</BODY></HTML>
174 Building AS/400 Internet-Based Applications with Java

4.6.1 Running under the Domino Go Webserver
The Domino Go Webserver is part of the recently announced IBM WebSphere
software family. It is a scalable, high-performance Web server that is available, in
addition to OS/390, on many workstation platforms (AIX, Solaris, HP-UX, OS/2
Warp, Windows NT, and Windows 95).

Figure 142. Three-Tier Servlet Architecture

The Domino Go Webserver includes:

 • State-of-the-art security
 • Site indexing capabilities
 • Advanced server statistics reporting
 • Relational database connectivity with Net.Data
 • Support for Java servlets on all platforms
 • Support for JDK 1.1
 • Support for the JIT (Just-in-Time) compiler
 • HTTP 1.1
 • Web-site content rating

We use the combination of Domino Go Webserver and ServletExpress to provide
a three-tier implementation for the servlet:

 • Client —Provides the end-user interface
 • NT server —Provides the HTTP server
 • AS/400—Provides the database server

For the Domino Go Webserver and ServletExpress, we export the classes to the
\ServletExpress\servlets directory on the NT server.

To view the configuration steps for Domino Go Webserver, see Section 9.1,
“Domino Go Webserver” on page 287.

To export the Java classes, follow these steps:

1. In the Workbench, select the packages dataAccess , domain , and servlets .
2. From the File menu, select Export . In the dialog that follows, select only the

Class Files option.
3. Ensure that the Director y radio button is selected.
4. Press the Next button.
5. In this dialog, specify the path to the x:\ServletEx press\servlets directory.

Where x = a drive on the NT server.
6. Export only the class files.
7. Press the Finish button.

You can run both the client and Domino Go Webserver on the same hardware
platform. This allows you to test the three-tier implementation using two
hardware platforms.

Note
Introduction to AS/400 Servlets 175

4.6.1.1 Configure ServletExpress
Now you are ready to configure ServletExpress. ServletExpress allows you
manage the servlets running under the control of the Web server. You do not
have to use ServletExpress to run servlets under the Domino Go HTTP server if
they are stored in the default directory. For the PartsServlet class, it is stored in a
package named servlets. When you export it, it is exported to a subdirectory
named servlets in the default directory. You need to configure ServletExpress so
it can find the PartsServlet class. ServletExpress also makes it easy for you to
load and unload servlets without stopping the Web server. To configure
ServletExpress, see Section 9.2, “ServletExpress” on page 289.

4.6.1.2 Running the PartsServlet
After these configuration steps, you are ready to test your servlet. Point your Web
browser to the following URL: http://server:xxxx/servlet/PartsServlet

Press the Enter key. Replace server with the name of your server and xxxx with
the port you are using (by default, Domino Go uses port 0080).

If everything is configured properly, you should see the table with all the parts in it
as shown in Figure 138 on page 171.

But what if not everything works as expected? Are there any means to debug or
trace the program? Maybe you noticed in some of the PartsServlet's methods that
the log() method is called. When you call this method, the arguments are logged
on the server. This is similar to what you are normally doing when using
System.out.println().

You can find the log file used by the Domino Go Webserver and ServletExpress in
the directory \ServletExpress\logs\ncfservice under the name of event_log. When
you open this file using NotePad, for example, you can see that there are some
lines at the end that were produced by the PartsServlet class. This logging facility
can be helpful when trying to find program problems.

4.6.1.3 Running the Enhanced Servlet
To run the servlet using the HTML file discussed in Section 4.5.1, “Enhancing the
Servlet” on page 172, in the browser, enter:

http://server/apptest/Parts.html

The page shown in Figure 143 on page 177 appears. In this scenario, you can
select either one specific part or all parts from the parts database.
176 Building AS/400 Internet-Based Applications with Java

Figure 143. Enhanced Servlet

4.6.2 Running under the IBM HTTP Server for AS/400
We use the combination of the IBM HTTP Server for AS/400 and the WebSphere
Application Server to provide a two-tier implementation for the servlet. This
support is available with OS/400 V4R3 and later. In Figure 144, client provides
the end user interface and AS/400 provides the HTTP server and the database
server.

Figure 144. Two-Tier Servlet Architecture

For the IBM HTTP Server for AS/400 and the WebSphere Application Server, we
export the classes to the \QIBM\ProdData\IBMWebAS\servlets directory in the
AS/400 Integrated File System.

To view the configuration steps for the IBM HTTP Server for AS/400, see Section
9.3, “IBM HTTP Server for AS/400” on page 293.

4.6.3 Running Servlets on the AS/400 System
The IBM WebSphere Application Server is IBM's Java servlet-based Web
application server that helps you deploy and manage Web applications. They
range from simple Web sites to powerful e-business solutions. For detailed
information on how to obtain and use the IBM WebSphere Application Server for
AS/400, see the following URL: http://www.as400.ibm.com/HTTP
Introduction to AS/400 Servlets 177

You can configure a server instance of the IBM HTTP Server for AS/400 to run
WebSphere. It is enabled through the Server API of the HTTP Server. For
information about how to configure the IBM HTTP Server for AS/400 and the IBM
WebSphere Application Server for AS/400, see Chapter 9, “HTTP Server
Configuration” on page 287. For an entire listing of the IBM HTTP Server for
AS/400 configuration file used for this redbook, refer to Appendix B, “IBM HTTP
Server for AS400 Configuration” on page 301.

4.6.4 Running the PartsServlet Servlet on the AS/400 System
Once you configure the IBM HTTP Server for AS/400 and the WebSphere
application server to serve servlets, you can run the PartsServlet servlet on the
AS/400 system. Enter:

http://yourAS400Server:xxxx/servlet/PartsServlet

To run the servlet using the HTML file, enter:

http://yourAS400Server:xxxx/apptest/Parts.html

The variable yourAS400Server is the name of your AS/400 system. The variable
xxxx is equal to the TCP/IP port over which you are running the IBM HTTP Server
for AS/400.
178 Building AS/400 Internet-Based Applications with Java

Chapter 5. Overview of the Order Entry Application

This chapter covers an example RPG order entry application. This application
represents a commercial application, although it does not include all the
necessary error handling a business application requires. In Chapter 6,
“Developing AS/400 Java Applets” on page 193, we convert this RPG application
to a Java Internet-based application.

5.1 Overview of the Order Entry Application

This section provides an overview of the application and a description of how the
application database is used.

5.1.1 The ABC Company
The ABC Company is a wholesale supplier with one warehouse and 10 sales
districts. Each district serves 3000 customers (30000 total customers for the
company). The warehouse maintains stock for the 100000 items sold by the
Company.

The following diagram illustrates the company structure (warehouse, district, and
customer).

Figure 145. The Company Structure

5.1.2 The ABC Company Database
The company runs its business with a database. This database is used in a
mission critical, OLTP (online transaction processing) environment. The database
includes tables with the following data:

 • District information (next available order number, tax rate, and so on)
 • Customer information (name, address, telephone number, and so on)
 • Order information (date, time, shipper, and so on)
 • Order line information (quantity, delivery date, and so on)
 • Item information (name, price, item ID, and so on)
 • Stock information (quantity in stock, warehouse ID, and so on.)
© Copyright IBM Corp. 1999 179

5.1.3 A Customer Transaction
A customer transaction occurs based on the following series of events:

1. Customers telephone one of the 10 district centers to place an order.

2. The district customer service representative answers the telephone, obtains
the following information, and enters it into the application:

 • Customer number
 • Item numbers of the items the customer wants to order
 • The quantity required for each item

3. The customer service representative may prompt for a list of customers or a
list of parts.

4. The application then performs the following actions:

a. Reads the customer last name, customer discount rate, and customer
credit status from the Customer Table (CSTMR).

b. Reads the District Table for the next available district order number. The
next available district order number increases by one and is updated.

c. Reads the item names, item prices, and item data for each item ordered by
the customer from the Item Table (ITEM).

d. Checks if the quantity of ordered items is in stock by reading the quantity in
the Stock Table (STOCK).

5. When the order is accepted, the following occurs:

a. Inserts a new row into the Order Table to reflect the creation of the new
order (ORDERS).

b. A new row is inserted into the Order Line Table to reflect each item in the
order.

c. The quantity is reduced by the quantity ordered.

d. A message is written to a data queue to initiate order printing.

5.1.4 Application Flow
The RPG Order Entry Application consists of the following components:

 • ORDENTD (Parts Order Entry)—Display File
 • ORDENTR (Parts Order Entry)—Main RPG processing program
 • PRTORDERP (Parts Order Entry)—Print File
 • PRTORDERR (Print Orders)—RPG server job
 • SLTCUSTD (Select Customer)—Display file
 • SLTCUSTR (Select Customer)—RPG SQL stored procedure
 • SLTPARTD (Select Part)—Display file
 • SLTPARTR (Select Part)—RPG stored procedure

To download the sample code used in this redbook, please refer to Appendix
A.1, “Downloading the Files from the Internet Web Site” on page 299, for more
information.

Note
180 Building AS/400 Internet-Based Applications with Java

Figure 146. RPG Application Flow

ORDENTR is the main RPG program. It is responsible for the main line
processing. It calls two supporting RPG programs that are used to prompt for and
select end-user input. They are SLTCUSTR which handles selecting a customer,
and SLTPARTR which handles selecting part numbers. PRTODERR is an RPG
program that handles printing customer orders. It reads order records that were
placed on a data queue and prints them in a background job.

5.1.5 Customer Transaction Flow
The following scenario walks through a customer transaction showing the
application flow. By understanding the flow of the AS/400 application, you can
understand the changes made to this application to support a graphical client.

5.1.5.1 Starting the Application
To start the application, the customer calls the main program from an AS/400
command line:

CALL ORDENTR

When the order entry application is started, the display in Figure 147 on page 182
appears.
Overview of the Order Entry Application 181

Figure 147. Parts Order Entry

When the Parts Order Entry display appears, the user has two options:

 • Type in a customer number and press the Enter key
 • End the program by pressing either F3 or F12.

If they do not know the customer number, the user can press F4 to view a window
containing a list of available customers.
182 Building AS/400 Internet-Based Applications with Java

Figure 148. Select Customer

The user presses F12 to remove the window and return to the initial panel, or
scrolls through the items in the list until they find the customer they want. By
typing a 1 in the option field and pressing the Enter key, the user indicates their
choice. The selected customer is then returned to the initial panel.
Overview of the Order Entry Application 183

Figure 149. Parts Order Entry

After selecting a customer from the list, or typing a valid customer number and
pressing the Enter key, the customer details are shown and an order number is
assigned. An additional prompt is displayed allowing the user to type a part
number and quantity.

If the user does not know the part number, they can press F4 to view a window
containing a list of available parts.
184 Building AS/400 Internet-Based Applications with Java

Figure 150. Select Part

The user presses F12 to remove the window and return to the initial panel, or
scrolls through the items in the list until they find the part they want. By typing a 1
in the option field and pressing the Enter key, they indicate their choice. The
selected part is returned to the initial panel.

Figure 151. Parts Order Entry
Overview of the Order Entry Application 185

After selecting a customer from the list, or typing a valid customer number and
pressing the Enter key, the part and quantity ordered are added to the list section
below the part entry fields.

Figure 152. Parts Order Entry

The user may type a 2 beside an entry in the list to change the order. When the
Enter key is pressed, a window appears that allows the order line to be changed.

Figure 153. Change Selected Order

The user chooses to press F12 to cancel the change, press F4 to list the parts, or
type a new part identifier or different quantity. Pressing the Enter key validates
186 Building AS/400 Internet-Based Applications with Java

the part identifier and quantity. If valid, the order line is changed in the list and the
window is closed.

Figure 154. Completed Order

In Figure 154, you see the quantity for Zoo Season Pass is changed to 3. When
the order is complete, the user presses F6 to update the database. Then, an
order is placed on the data queue for printing.

Figure 155. Printed Order
Overview of the Order Entry Application 187

The printed order is created by a batch process. It shows the customer details
and the items, quantities, and cost of the order.

5.1.6 Database Table Structure
The ABC Company database has eight tables:

 • District
 • Customer
 • Order
 • Order Line
 • Item
 • Stock
 • Warehouse
 • History

The relationship among these tables are shown in Figure 156.

Figure 156. Table Relationships

5.1.7 Order Entry Application Database Layout
The sample application uses the following tables of the database:

 • District
 • Customer
 • Order
 • Order line
 • Stock
 • Item (catalog)

The following sections describe, in detail, the layout of the database.
188 Building AS/400 Internet-Based Applications with Java

5.1.7.1 Tables
Table 14. District Table Layout (Dstrct)

Table 15. Customer Table Layout (CSTMR)

Field Name Real Name Type Length

DID District ID Decimal 3

DWID Warehouse ID Character 4

DNAME District Name Character 10

DADDR1 Address Line 1 Character 20

DADDR2 Address Line 2 Character 20

DCITY City Character 20

DSTATE State Character 2

DZIP Zip Code Character 10

DTAX Tax Decimal 5

DYTD Year to Date Balance Decimal 13

DNXTOR Next Order Number Decimal 9

Primary Key: DID and DWID

Field Name Real Name Type Length

CID Customer ID Character 4

CDID District ID Decimal 3

CWID Warehouse ID Character 4

CFIRST First Name Character 16

CINIT Middle Initials Character 2

CLAST Last Name Character 16

CADDR1 Address Line 1 Character 20

CCREDT Credit Status Character 2

CADDR2 Address Line 2 Character 20

CDCT Discount Decimal 5

CCITY City Character 20

CSTATE State Character 2

CZIP Zip Code Character 10

CPHONE Phone Number Character 16

CBAL Balance Decimal 7

CCRDLM Credit Limit Decimal 7

CYTD Year to Date Decimal 13
Overview of the Order Entry Application 189

Table 16. Order Table Layout (ORDERS)

Table 17. Order Line Table Layout (ORDLIN)r

CPAYCNT Payment Decimal 5

CDELCNT Delivery Qty Decimal 5

CLTIME Time of Last Order Numeric 6

CDATA Customer Information Character 500

Primary Key: CID, CDID, and CWID

Field Name Real Name Type Length

OWID Warehouse ID Character 4

ODID District ID Decimal 3

OCID Customer ID Character 4

OID Order ID Decimal 9

OENTDT Order Date Numeric 8

OENTTM Order Time Numeric 6

OCARID Carrier Number Character 2

OLINES Number of Order Lines Decimal 3

OLOCAL Local Decimal 1

Primary Key: OWID, ODID, and OID

Field Name Real Name Type Length

OID Order ID Decimal 9

ODID District ID Decimal 3

OWID Warehouse ID Character 4

OLNBR Order Line Number Decimal 3

OLSPWH Supply Warehouse Character 4

OLIID Item ID Character 6

OLQTY Quantity Ordered Numeric 3

OLAMNT Amount Numeric 7

OLDLVD Delivery Date Numeric 6

OLDSTI District Information Character 24

Primary Key: OLWID, OLDID, OLOID, and OLNBR

Field Name Real Name Type Length
190 Building AS/400 Internet-Based Applications with Java

Table 18. Item Table Layout (ITEM)

Table 19. Stock Table Layout (Stock)

5.1.8 Database Terminology
This redbook concentrates on the use of the AS/400 system as a database server
in a client/server environment. In some cases, we use SQL to access the AS/400
database. In other cases, we use native database access.

Field Name Real Name Type Length

IID Item ID Character 6

INAME Item Name Character 24

IPRICE Price Decimal 5

IDATA Item Information Character 50

Primary Key: IID

Field Name Real Name Type Length

STWID Warehouse ID Character 4

STIID Item ID Character 6

STQTY Quantity in Stock Decimal 5

STDI01 District Information Character 24

STDI02 District Information Character 24

STDI03 District Information Character 24

STDI04 District Information Character 24

STDI05 District Information Character 24

STDI06 District Information Character 24

STDI07 District Information Character 24

STDI08 District Information Character 24

STDI09 District Information Character 24

STDI10 District Information Character 24

STYTD Year to Date Decimal 9

STORDERS Quantity Decimal 5

STREMORD Quantity Decimal 5

STDATA Item Information Character 50

Primary Key: STWID and STIID
Overview of the Order Entry Application 191

The terminology used for the database access is different in both cases. In Table
20, you find the correspondence between the different terms.

Table 20. Database Terminology

AS/400 Native SQL

Library Collection

Physical File Table

Field Column

Record Row

Logical File View or Index
192 Building AS/400 Internet-Based Applications with Java

Chapter 6. Developing AS/400 Java Applets

This chapter investigates a more complex applet development scenario. We build
an AS/400 Internet-based shopping applet. It is actually a set of three applets.
These applets use the CPW databases that are described in Chapter 5,
“Overview of the Order Entry Application” on page 179. The databases are
AS/400 databases and are accessed using JDBC. This suite of applets allow you
to select items from the Item database, place and confirm orders, and check the
status of orders. This application example is an Internet-based version of the
RPG order entry application discussed in Section 5.1, “Overview of the Order
Entry Application” on page 179.

The first two applets are the Toolbox applet and Cart applet. Use them to select
items to order and to place an order:

 • Toolbox applet

– Used to query the Item database and select items to be ordered

 • Cart applet

– Used to check what items have been selected
– Used to place and confirm an order for those items

Normally the Toolbox applet works in conjunction with the Cart applet. The third
applet is independent of the preceding two applets. It is the Status applet and is
used to check the status of an order.

6.1 Shopping Application User Interface

This section shows the "shopping" applet graphical user interfaces. The images
shown were captured when running under Netscape Navigator.

The example programs discussed in this chapter are available for you to
download from the redbook Web site. Refer to Appendix A.1, “Downloading the
Files from the Internet Web Site” on page 299 for details.

Note
© Copyright IBM Corp. 1999 193

Figure 157. Toolbox Applet

Figure 157 shows the Toolbox applet, which is the first applet we investigate. It
allows you to query the AS/400 Items database for information and display the
query results in a listbox. You can select the items you want and put them into a
“Shopping Cart.” Then, use the Cart applet to check your selected items and
place an order. You can also use the Status applet to check the status of your
orders.

Figure 158. Cart Applet

Figure 158 shows the Cart applet. It displays the items that you select using the
Toolbox applet. Normally, the Toolbox applet and the Cart Applet are run together
in a browser.
194 Building AS/400 Internet-Based Applications with Java

Figure 159. Placing an Order

In the Cart applet, confirm your order by entering a valid customer number. The
number entered is checked against the AS/400 Customer database. If the
customer number is valid, the “Confirm Order” button is enabled as shown in
Figure 159. You can place an order by clicking on the Confirm Order button.

Figure 160. Order Confirmation

Upon confirmation of the order, the Cart applet returns a message box, which
displays an order number. Use the order number to track the order status.
Developing AS/400 Java Applets 195

Figure 161. Status Applet

The Order Status applet, shown in Figure 161, allows you to check the status of
an order by entering the order number and clicking on the Query button.

The Shopping application has limitations that can easily be eliminated by adding
additional function to the applets. These limitations include:

 • The Toolbox applet only allows you to order a quantity of one.
 • The Cart applet does not allow you to delete items from the cart.

6.2 Shopping Application Objects and Classes

Figure 162 on page 197 shows the design of the Shopping application. It consists
of five classes. Three of the classes are applets that provide a graphical user
interface, while the other two are supporting classes. All of the programs
discussed in the chapter are available for you to ownload from the redbook Web
site. The "Shopping" application was created using VisualAge for Java 2.0
Enterprise Edition.
196 Building AS/400 Internet-Based Applications with Java

Figure 162. Shopping Application Design

A project named “AppletWorkshop” that holds a package named ToolboxApplet
and the classes is in the VisualAge for Java Integrated Development
Environment(IDE). The project includes:

 • ToolboxApplet —A GUI applet that allows items to be selected.
 • CartApplet —A GUI applet that allows orders to be placed.
 • StatusApplet —A GUI applet that checks the order status.
 • ItemsDb —A supporting class that provides access to the AS/400 database (it

is used by the GUI applets).
 • SelectedItems —A class for storing the items selected. A cart object is

instantiated from this class. The GUI applets can put items into the cart or
display what is in the cart.

The ItemsDb and SelectedItems classes are created to promote reusability. The
other classes use them. This allows you to easily change and add functionality to
the application.

Figure 163 on page 198 shows the ToolboxApplet package in the VisualAge for
Java WorkBench. The runner superscript on the top right hand corner of a class
means that it is a runnable Java applet.
Developing AS/400 Java Applets 197

Figure 163. ToolboxApplet Package

In addition to the classes shown in the ToolboxApplet package, we use several
other classes:

 • The MultiColumnListbox from the IBM Enterprise Access Libraries project to
display the selected items

 • The AS/400 Toolbox for Java classes to allow access to the AS/400 system

 • The Java classes in the Java Classes Library project to provide Java support

 • The Vector class from the java.util package to store the items in the "shopping"
cart

 – A Vector is a collection of different objects.

 – The difference between a Vector and an Array is:

 • An array is a collection of the same type of objects.
 • A vector is a collection of different or the same type of objects.

 – VectorEnumeration is a support class:

 • It allows you to scroll through the entire list of objects inside a Vector.
 • It provides two main methods:

 – getNextElement()
 – hasmoreElements()

 – Elements can be of different types in a vector; you have to type cast the
element to the proper type before using.

6.3 The SelectedItems Class

The SelectedItems class is a supporting class used with the Toolbox applet and
the Cart applet. SelectedItems acts as a buffer that stores items that you select.
As you view items that are available, you can select items and place them in your
“Shopping Cart.” You can view the items you select, which are stored in a
SelectedItems object.

The SelectedItems class contains a static vector named wanted that contains all
of the items selected. This is the “shopping cart” where we keep the selected
items. It also contains a static BigDecimal variable named totalAmount that
198 Building AS/400 Internet-Based Applications with Java

stores the total value of the items selected. We use the static keyword because
we want other classes to share these variables.

6.3.1 Writing the Class
The class definition for the SelectedItems class is shown in Figure 164.

Figure 164. SelectedItems Class Definition

The two import statements tell the compiler where the supporting classes are
located. The BigDecimal class is in the java.math package. The Vector class is in
the java.util package.

In some cases, generic import statements are used. Instead of writing “import
java.math.BigDecimal;” we can write “import java.math.*”, so that all classes in
the java.math package are known to the compiler.

The advantage of using the specific import statement rather than the generic one
is that specific import statements document exactly what additional classes are
used in the application. This facilitates modifying code and packaging the
application using JAR files.

6.3.2 Writing the Methods
First, we discuss the getVector method which allows other classes or methods to
access the Vector named wanted (we declare this name as private). Declaring a
variable as private gives the class owner more control over it because other users
cannot access it directly. They can only access it through owner-supplied public
methods. Here, we supply the public getVector method. Also, if the wanted Vector
is not instantiated, we instantiate it here. This is called lazy initialization so if the
Vector is disposed later, it is regenerated when needed.

Figure 165. The getVector Method

The clear method allows other applets to clear the cart and remove selections
from the cart.

import java.math.BigDecimal;
import java.util.Vector;
public class SelectedItems
{
 private static Vector wanted;
 public static BigDecimal totalAmount;
}

public Vector getVector()
{
if (wanted == null)
 wanted = new Vector();
return wanted;
}

Developing AS/400 Java Applets 199

Figure 166. The clear Method

Finally, the addSelectedRows method allows items to be added to the wanted
Vector that was previously created. An object array is used as the input
parameter.

We add the object array to the vector and add the price of the item to the
totalAmount variable. Because we may not have initialized the totalAmount
variable, we set it to zero if it is empty.

Figure 167. The addSelectedRow Method

6.4 The ItemsDb Class

The ItemsDb class is a supporting class that provides access to the AS/400
system. All the graphical user interface applets use this class to access the
AS/400 databases. The class definition is shown in Figure 168 on page 201.

public void clear()
{
 wanted = null;
}

public void addSelectedRow(Object[] row)
{
getVector().addElement(row);
if (totalAmount == null)
{
 totalAmount = new BigDecimal("0");
}
String Column3 = new java.lang.String((String) row[2]);
totalAmount = totalAmount.add(new BigDecimal(Column3.trim()));
}

200 Building AS/400 Internet-Based Applications with Java

Figure 168. The ItemsDb Class Definition

The class definition declares all the variables that we use in this class. An
explanation of the variables is shown in Table 21 on page 202.

import java.math.*;
import java.util.*;
public class ItemsDb extends java.lang.Object
{
private java.sql.Connection dbConnect;
private java.sql.PreparedStatement psItem;
private java.sql.PreparedStatement psItemRange;
private java.sql.PreparedStatement psCustomerDb;
private java.sql.PreparedStatement psQuantityInHand;
private java.sql.Statement sGetInetOrderNo;
private String systemName = new String("");
private String userid = new String("");
private String password = new String("");
private java.sql.ResultSet rs = null;
public String itemId;
public String itemName;
public BigDecimal itemPriceBigDecimal;
public String itemPrice;
public String itemInfo;
public Object[] row;
public String validCustomerId = null;
protected java.util.Vector aConnectionListener = null;
}

Developing AS/400 Java Applets 201

Table 21. ItemsDb Class Variables

6.4.1 Common Methods All Applets Use
The ItemsDb class provides some methods that are used by all GUI applets.

6.4.1.1 The connect Method
The connect method is used to connect to the AS/400 system. It uses the system
name, user ID, and password defined in the class variables. It also prepares the
JDBC statements that are used to access the AS/400 databases.
202 Building AS/400 Internet-Based Applications with Java

Figure 169. The connect Method

If we load an applet from the local workstation disk, we must handle security. By
default, applets do not have access to any remote system. In this case, the
AS/400 system is a remote system. Here, we run under Netscape Navigator, so
we use the security support provided by Netscape. We use the enablePriviledge
method from the PrivilegeManger class. This causes a security dialog to appear
when we attempt to connect to the AS/400 system. If we use the AS/400 HTTP
server to serve the applets, we automatically have access to the AS/400 system,
so we do not need to provide any special security support. For more information
about security and deploying applets, refer to Chapter 3, “Introduction to AS/400
Applets” on page 51.

6.4.1.2 The disconnect Method
The disconnect method is used for closing all AS/400 connections.

Figure 170. The disconnect Method

6.4.1.3 The finalize Method
The finalize method automates using the disconnect method. Every time the
ItemsDb class is disposed, it disconnects from the AS/400 system and releases
all resources allocated.

public String connect()
{
try
{
netscape.security.PrivilegeManager.enablePrivilege("UniversalConnect");
java.sql.DriverManager.registerDriver(new com.ibm.as400.access.AS400JDBCDriver());
dbConnect = java.sql.DriverManager.getConnection("jdbc:as400://" + systemName +
"/apilib;naming=system;errors=full;date format=iso", userid, password);
psItem = dbConnect.prepareStatement("SELECT * FROM apilib/ITEM WHERE IID = ?");
psItemRange = dbConnect.prepareStatement("SELECT * FROM apilib/ITEM WHERE IID >= ? AND IID <= ?");
psCustomerDb = dbConnect.prepareStatement("SELECT CID FROM apilib/CSTMR WHERE CID = ? AND CDID=001 AND
CWID='0001'");
psQuantityInHand = dbConnect.prepareStatement("SELECT STQTY FROM apilib/STOCK WHERE STWID= '0001' AND
STIID=?");
}
catch (Exception e)
{
System.out.println("connect(): " + e);
e.printStackTrace();
return "Connect: " + e;
}
return "Connect Successfully";
}

public void disconnect() throws Exception
{
dbConnect.close();
psItem.close();
psItemRange.close();
psCustomerDb.close();
psQuantityInHand.close();
return;
}

Developing AS/400 Java Applets 203

Figure 171. The finalize Method

6.4.2 Methods Used by the Toolbox Applet
The ItemsDb class has some methods that are used only by the Toolbox applet
class.

6.4.2.1 The fetchNextItem Method
The fetchNextItem method is used after executing a JDBC statement that
returns a resultset. It fetches the next record from the current resultset and puts
the corresponding field values in the public class variables. It returns itself (this)
to allow for the cascading of methods.

protected void finalize()
{
try
{
 disconnect();
 super.finalize();
}
catch (Throwable t)
{
 System.out.println(t);
}
return;
}

204 Building AS/400 Internet-Based Applications with Java

Figure 172. The fetchNextItem Method

6.4.2.2 The getItem Method
The getItem method queries the ITEM table using the itemno parameter passed
to it as input. It executes the psItem prepared statement object that was prepared
in the connect method. It uses the fetchNextItem method to load the information
from the resultset into the class variables.

Figure 173. The getItem Method

public ItemsDb fetchNextItem()
{
try
{
if (rs.next())
{
 itemId = rs.getString("IID");
 itemName = rs.getString("INAME");
 itemPriceBigDecimal = rs.getBigDecimal("IPRICE", 2);
 itemPrice = itemPriceBigDecimal.toString();
 itemInfo = rs.getString("IDATA");
}
else
{
 itemId = null;
 itemName = null;
 itemPriceBigDecimal = null;
 itemPrice = null;
 itemInfo = null;
}
}
catch (Exception e)
{
 System.out.println("fetchnext fail: " + e);
}
return this;
}

public ItemsDb getItem(String itemno)
{
try
{
 psItem.setString(1, itemno);
 rs = psItem.executeQuery();
 fetchNextItem();
}
catch (Exception e)
{
 System.out.println("getItem fail: " + e);
}
return this;
}

Developing AS/400 Java Applets 205

6.4.2.3 The getItems Method
The getItems method queries the ITEM database for items matching a range of
item numbers. It executes the psItemRange prepared statement object created in
the connect method. It uses the fetchNextItem method to load the data into the
class variables. If there are no more records, the class variables are set to null.

Figure 174. The getItems Method

6.4.3 Methods Used by CartApplet
The ItemsDb class provides some methods that are only used by the Cart applet.

6.4.3.1 The quantityInHand Method
The quantityInHand method returns the Quantity in Stock value for an item from
the AS/400 Stock table. It executes the psQuantityInHand prepared statement
object that was prepared in the connect method.

public java.sql.ResultSet getItems(String itemnoMin, String itemnoMax)
{
if (itemnoMax.length() == 0)
{
 getItem(itemnoMin);
}
else
{
try
{
 psItemRange.setString(1, itemnoMin);
 psItemRange.setString(2, itemnoMax);
 rs = psItemRange.executeQuery();
}
catch (Exception e)
{
 System.out.println("getItemS fail: " + e);
}
}
return rs;
}

206 Building AS/400 Internet-Based Applications with Java

Figure 175. The quantityInHand Method

6.4.3.2 The verifyCustomer Method
The verifyCustomer method checks whether the customerId passed as an input
parameter is valid. It executes the psCustomerDb prepared statement object
created in the connect method. It returns as true or false depending on the result
of the check. If the customerId is valid, it saves it in the class variable
validCustomerId.

Figure 176. The verifyCustomer Method

6.4.3.3 The confirmOrder Method
The confirmOrder method creates an order from the items inside the
SelectedItems object. The customerId is validated by the verifyCustomer method
prior to confirming the order.

public BigDecimal quantityInHand(String itemNo)
{
try
{
// Get next Order No. and the Inet YTD Balance
 psQuantityInHand.setString(1, itemNo);
 rs = psQuantityInHand.executeQuery();
 rs.next();
 return rs.getBigDecimal("STQTY", 0);
}
catch (Exception e)
{
 System.out.println(e);
}
return null;
}

public boolean verifyCustomer(String customerId)
{
boolean isvalid = false;
try
{
 psCustomerDb.setString(1, customerId);
 rs = psCustomerDb.executeQuery();
if (rs.next())
{
 isvalid = true;
 validCustomerId = customerId;
}
}
catch (Exception e)
{
 validCustomerId = null;
}
return isvalid;
}

Developing AS/400 Java Applets 207

The confirmOrder method uses JDBC to access the AS/400 database. It
contains the following logic:

 • Verify if there are items in the cart.
 • Retrieve the next order number and district YTD balance from the AS/400

District table.
 • Update the District YTD balance with the new order total.
 • Increment the District next order number by one.
 • Insert an order record to the AS/400 Order table.
 • Update the stock balance in the AS/400 Stock table.
 • Insert an order line record in the AS/400 Order Line table for each item

ordered.
 • Return the order number used.
 • Clear the items from the cart.

When confirming the order, the confirmOrder method performs the following
actions:

 • Retrieves the next order number DNXTOR from the District table(DSTRCT)
 • Increments it by one
 • Writes it back to the District table

6.4.4 Methods Used by the StatusApplet
The ItemsDb class provides some methods that are used only by the Status
applet.

6.4.4.1 The checkOrderStatus Method
The checkOrderStatus method receives an order number as a parameter, which
it uses to query the AS/400 database for order information. It returns a Vector
named orderStatus which contains all the details about the order.
208 Building AS/400 Internet-Based Applications with Java

Figure 177. The checkOrderStatus Method

6.5 The Toolbox Applet

This applet allows you to enter a system name, user ID and password, and
connect to the AS/400 system. If the connection is successful, the QueryRange
of Items button is enabled. You can click on the Query Range of Items button to
get the items found in the ITEM table for the range specified by TextField1 and
TextField2. The item information is displayed in the listbox. It uses the ItemsDb
class for all the AS/400 Database accesses.

6.5.0.1 Basic Class Definition
Figure 178 shows the basic class structure, class variables, and the multicolumn
listbox declaration.

Figure 178. ToolboxAppletExample Class Definition

public Vector checkOrderStatus(String orderIdString)
{
// return Vector contains CustomerLastName, CustomerFirstName,Object[],Object[],...
// where Object[] is OrderLineDetail => [ItemId,ItemName,QtyOrdered,Amount]
Vector orderStatus = new Vector();
if (orderIdString.length() > 9 || orderIdString.length() == 0)
 return null;
try
{
 sGetInetOrderNo = dbConnect.createStatement();
 rs = sGetInetOrderNo.executeQuery("SELECT OCID,OLINES FROM ORDERS WHERE OWID='0001' AND ODID=001 AND
OID=" + orderIdString);
 rs.next();
 String customerId = rs.getString("OCID");
 BigDecimal orderLines = rs.getBigDecimal("OLINES", 0);
 rs = sGetInetOrderNo.executeQuery("SELECT CFIRST,CLAST FROM CSTMR WHERE CWID='0001' AND CDID=001 AND
CID='" + customerId + "'");
 rs.next();
 String lastName = rs.getString("CLAST");
 String firstName = rs.getString("CFIRST");
 orderStatus.addElement(lastName);
 orderStatus.addElement(firstName);
.
.
.
return orderStatus;
}

import java.applet.*;
import java.awt.*;
import java.net.URL;
import java.util.*;
public class ToolboxAppletExample extends Applet implements
java.awt.event.ActionListener, java.awt.event.ItemListener {
 static SelectedItems selected = new SelectedItems();
 private com.ibm.ivj.eab.dab.IMulticolumnListbox ivjIMulticolumnListbox1 =
null;
 private java.sql.DriverManager ivjDriverManager1 = null;
}

Developing AS/400 Java Applets 209

We declare a variable named selected , which is based on the SelectedItems
class. Because selected is declared as static, it is shared by all other classes that
declare it. We declare a multicolumn listbox named ivjIMulticolumnListbox1 . It
is based on the IMulticolumnListbox class from the com.ibm.eab.dab package,
which is included with VisualAge for Java Enterprise Edition. We declare a
DriverManager, which is used for the JDBC connection.

6.5.1 The addAllRows Method
The addAllRows method is called after a JDBC statement that returns a resultset
is executed. It uses the fetchNextItem method to loop through the resultset and
retrieve all returned items. It formats the item information into an array, which is
used to populate the listbox.

Figure 179. The AddAllRows Method

6.5.2 The getSelectedIndexes Method
The getSelectedIndexes method is called when the user clicks on the Put
Selection into Cart button. It determines which listbox indexes are selected. It
adds the selected rows of the listbox to the SelectedItems class object named
selected . It places the selected items into the “cart.”

Figure 180. The getSelectedIndexes Method

6.5.3 Checking the Connections
Figure 181 on page 211 shows the Toolbox applet in the VisualAge for Java
Visual Composition Editor(VCE).

public void addAllRows(ToolboxApplet.ItemsDb anItemDb)
{
anItemDb.fetchNextItem();
while (anItemDb.itemId != null)
{
 String[] array = new String[4];
 array[0] = anItemDb.itemId;
 array[1] = anItemDb.itemName;
 array[2] = insertSpaces(anItemDb.itemPrice, 6);
 array[3] = anItemDb.itemInfo;
 getIMulticolumnListbox1().addRow(array, array[0]);
 anItemDb.fetchNextItem();
}
}

public void getSelectedIndexes()
{
 Object key = getIMulticolumnListbox1().getSelectedObject();
 selected.addSelectedRow(getIMulticolumnListbox1().getRowData(key));
}

210 Building AS/400 Internet-Based Applications with Java

Figure 181. Toolbox Applet in the VCE

We use the following connections in this applet:

 • connect button:

 – ItemsDb—setSystemName method
 – ItemsDb—setUserID method
 – ItemsDb—setPassword method
 – ItemsDb—connect method

 • Connect the normal result to the message label
 • Connect the normal result to enable the Query Range of Items button

 • Query Range of Items button:

 – ToolboxAppletExample—removeAllRows method to clear the list box
 – ItemsDb—getItems method to retrieve the items from the AS/400 ITEM

table
 – ToolboxAppletExample—addAllRows method to add the items to the listbox

 • Put selections in cart button:

 – ToolboxAppletExample—getSelectedIndexes method to add the row
selected in the listbox to the cart vector

6.6 The Cart Applet

This applet allows you to enter a system name, user ID and password, and then
connect to the AS/400 system. If the connection is successful, the Look into Cart
button is enabled. You can click on the Look into Cart button to display the items
currently in the shopping cart, in the listbox. You can place an order for the items
in the cart by entering a valid cutomer number in the customer number text field.
The number entered is validated against the AS/400 Customer table. If the

addAllRows

enabled

getItems

connect

removeAllRows

getSelectedIndexes
Developing AS/400 Java Applets 211

customer number is valid, the Confirm Order button is enabled. Clicking on the
Confirm Order button generates an order. The created order number is returned
in a message box. This class uses the ItemsDb class for all AS/400 Database
accesses.

In the design of the Cart applet, we use a “Look into Cart” button to refresh the
listbox. We can also implement an event for the automatic refresh of the cart
whenever an item is put into the cart. For simplicity, we choose to implement the
Look into Cart button.

6.6.1 Writing the Class
In the class definition, we instantiate a SelectedItems object and name it cart.
This variable is shared with the Toolbox applet. The Toolbox applet puts items into
the cart. The Cart applet allows us to view what is in the cart and create an order
for the items in the cart.

Figure 182. CartApplet Class Definition

6.6.2 Viewing the Methods
The showCart method is used to display what is in the cart Vector in the listbox.
We use an object array of five elements (Object[5]) to store the elements from the
cart Vector. The cart Vector has four objects (columns) in it:

 • Item Identification
 • Item Name
 • Item Price
 • Item Detail

We display the four values from the cart Vector, plus the Quantity in stock for the
item in the listbox. We use the listbox addRow method to add rows to the listbox.
It requires an array as an input parameter. We populate the array with the values
from the cart Vector.

We insert the quantity in stock of the item, which we retrieve from the AS/400
system in the fourth element (Object[3]) of the array. We obtain the quantity in
stock by calling the quantityInHand method in the ItemsDb class. We convert it to
a String value for display.

Finally, we add the object array as a row to the listbox, display the total amount in
the Total Amount TextField, and display the listbox.

import java.applet.*;
import java.awt.*;
import java.util.*;
public class CartApplet extends Applet implements
java.awt.event.ActionListener, java.awt.event.KeyListener {
 SelectedItems cart = new SelectedItems();
}

212 Building AS/400 Internet-Based Applications with Java

Figure 183. The showCart Method

public void showCart()
{
try
{
 if (cart.getVector() != null)
{
 Enumeration enum = cart.getVector().elements();
 while (enum.hasMoreElements())
 {
 String myObject[] = new String[5];
 Object[] element = ((Object[]) enum.nextElement());
 myObject[0] = (String) element[0]; //ItemId
 myObject[1] = (String) element[1]; //ItemName
 myObject[2] = (String) element[2]; //Price
 //[3] is qty in stock.
 myObject[3] = (String) (getItemsDb().quantityInHand(((String)
element[0]))).toString();

 myObject[4] = (String) element[3]; //Details
 getIMulticolumnListbox1().addRow(myObject, myObject[0]);
 }

 getTextField3().setText(cart.totalAmount.toString());
 return;
}
}
catch (Exception e)
{
 e.printStackTrace();
 System.out.println(e);
}
return;
}

Developing AS/400 Java Applets 213

6.6.2.1 Viewing the Connections
Figure 184 shows the Cart applet in the VisualAge for Java Visual Composition
Editor.

Figure 184. The Cart Applet in the VCE

We use the following connections:

 • connect button:

 – ItemsDb—setSystemName method
 – ItemsDb—setUserID method
 – ItemsDb—setPassword method
 – ItemsDb—connect method

 • Connect the normal result to the message label
 • Connect the normal result to enable the Look into Cart button

 • Look into Cart button:

 – CartApplet—removeAllRows method to clear the listbox
 – CartApplet—showCart method to display the items in the cart Vector

 • Validate Customer Number:

We validate the customer number field so that the Confirm Order button is only
enabled if the customer number is valid. We use the verifyCustomer method in
the ItemsDb class to validate it. We connect it with the KeyReleased event of
the Customer Number Entry Field and the Confirm Order button. It enables the
Confirm Order button if the customer number in Entry Field is found in the
Database.

 • Confrim Order button:

 – ItemsDb—confirmOrder method, with the cart as the input parameter. The
normal result is connected to the MessageBox's show method to display
the order number.

removeAllRows

showCart verifyCustomer

enabled

connect

confirmOrder
214 Building AS/400 Internet-Based Applications with Java

 – CartApplet—clear method. After confirming the order, items in the list box
are cleared.

6.7 The Order Status Applet

The OrderStatus applet allows you to enter a system name, user ID, and
password and connect to the AS/400 system. If a connection to the AS/400
system is successfully made, the Query button is enabled. You can then enter an
order number and click on the Query button to check on the status of an order.
This class uses the ItemsDb class for all of the AS/400 Database accesses.

Figure 185. OrderStatus Class Definition

We declare a multicolumn listbox named ivjIMulticolumnListbox1 and a message
box named ivjMessageBox1. They are based on classes from the
com.ibm.eab.dab package, which is included with VisualAge for Java Enterprise
Edition.

To implement the Check Order Status Applet, two user-written methods are used.
The fillListbox method calls the ItemsDb class checkOrderStatus method with
OrderId as a parameter. The checkOrderStatus method returns a vector that
contains lastname, firstname, and an array of order detail. If the order is found,
the items ordered are displayed in the listbox.

public class OrderStatus extends Applet implements
java.awt.event.ActionListener {
 private com.ibm.ivj.eab.dab.IMulticolumnListbox ivjIMulticolumnListbox1 =
null;
 private com.ibm.ivj.eab.dab.IMessageBox ivjIMessageBox1 = null;
}

Developing AS/400 Java Applets 215

Figure 186. The fillListbox Method

6.7.0.1 Viewing the Connections
In Figure 187 on page 216, we show the Order Status applet in the VisualAge for
Java Visual Composition Editor.

Figure 187. Order Status Applet

public void fillListbox(String OrderId)
{
Vector orderStatus = getItemsDb().checkOrderStatus(OrderId);
if (orderStatus == null)
{
 getLabel2().setText("Order No. " + OrderId + " Not Found !!!");
 return;
}
Enumeration detailLine = orderStatus.elements();
String lastName = ((String) detailLine.nextElement());
String firstName = ((String) detailLine.nextElement());
getLabel2().setText("Order " + OrderId + " was Ordered by " + firstName + "
" + lastName);
while (detailLine.hasMoreElements())
{
 String[] detail = ((String[]) detailLine.nextElement());

 getIMulticolumnListbox1().addRow(detail, detail[0]);
}

return;
}

enabled
fillListbox

connect

showException showException
216 Building AS/400 Internet-Based Applications with Java

We use the following connections:

 • connect button

 – ItemsDb—setSystemName method
 – ItemsDb—setUserID method
 – ItemsDb—setPassword method
 – ItemsDb—connect method

 • Connect the normal result to the message label
 • Connect the normal result to enable the Query button

 • Query button:

 – OrderStatus—fillListbox method to retrieve and display the order
information for the order number in the TextField.

6.8 Testing the Applets

You can run the Toolbox applet and the Status applet inside the VisualAge for
Java Integrated Development Environment. The Cart applet must be exported
and run outside the IDE. We use Netscape Navigator to test outside the IDE.

To run the applets outside the VisualAge for Java IDE, we export the applet
classes. We use C:\apptest as the directory in this example. We export the
following classes to the apptest directory:

 • ToolboxAppletExample
 • CartApplet
 • StatusApplet
 • ItemsDb
 • SelectedItems

The package in which the classes are stored becomes a subdirectory of the
directory to which the export is done. In this case, ToolboxApplet becomes a
subdirectory of apptest.

Figure 188. The apptest\ToolboxApplet Directory

We use html files to control running the applets. The html files refer to the applet
class files using the APPLET tag. An applet viewer or browser tries to find the
classes in the current directory from where the html file is loaded.
Developing AS/400 Java Applets 217

Place the AS/400 Toolbox classes and any third party classes under the current
directory. A jar file can also be used to hold classes. We use a jar file, named
jt400.jar, to hold the AS/400 Toolbox for Java classes.

In addition to the AS/400 Toolbox for Java classes, we also need several classes
from the IBM Enterprise Access libraries. We export these classes to the com
subdirectory of the apptest directory. We also export the classes from the
netscape.security package to provide security support. Figure 189 shows the
contents of the apptest directory.

Figure 189. The apptest Directory

Running Java applets is different than running Java applications. Java
applications normally use the CLASSPATH environment variable to find classes
that are located locally on the workstation. In many cases, applets are loaded
from a remote resource. We assume that the browser or applet viewer does not
use the local disk to find supporting classes. We must make them available so
they can be found. Three html files (Table 22) are available to run the applets.

Table 22. Applet HTML Files

All of the html files point to the class files in the apptest directory. Figure 190 on
page 219 shows the html file for Order.htm, which runs both the Toolbox applet
and Cart applet under the same browser session.
218 Building AS/400 Internet-Based Applications with Java

Figure 190. Order.htm

Figure 191 shows the html file for Order1.htm which runs only the Toolbox applet.

Figure 191. Order1.htm

Figure 192 shows the html file for the Status applet.

Figure 192. Status.htm

6.9 Serving the Applets from the AS/400 System

We can also run the applets by using the AS/400 HTTP server. This involves
three steps:

1. Copy the apptest directory to the AS/400 system Integrated File System.

2. Configure the AS/400 HTTP server to allow the html files in apptest to be
executed.

Add the following directive to the HTTP configuration:

Pass /apptest/* /apptest/*

3. Point the browser to the html files stored on the AS/400 system.

HTML>
<applet archive="jt400.jar" code="ToolboxApplet.ToolboxAppletExample.class" width=800 height=420>
<hr>
This Applet would only be seen on JDK1.1 compatible Browser
<hr>
</applet><p>

<applet archive="jt400.jar" code="ToolboxApplet.CartApplet" width=800 height=400>
<hr>
This Applet would only be seen on JDK1.1 compatible Browser
<hr>
</applet><p>
</HTML>

<applet archive="jt400.jar" code="ToolboxApplet.ToolboxAppletExample.class" width=800 height=420>
<hr>
This Applet would only be seen on JDK1.1 compatible Browser
<hr>
</applet><p>

<HTML>
<applet archive="jt400.jar" code="ToolboxApplet.OrderStatus.class" width=800 height=450>
<hr>
This Applet would only be seen on JDK1.1 compatible Browser
<hr>
</applet><p>
</HTML>
Developing AS/400 Java Applets 219

Refer to Section 9.3, “IBM HTTP Server for AS/400” on page 293, for information
about configuring the AS/400 HTTP server.

Figure 193 shows the shopping applet running under Netscape Navigator and
serving it from the IBM HTTP Server for AS/400.

Figure 193. Shopping Applet Running under Netscape Navigator
220 Building AS/400 Internet-Based Applications with Java

Chapter 7. Developing AS/400 Java Servlets

In this chapter, we build a more complex servlet example. This application
demonstrates building Java programs that:

 • Run as servlets
 • Run as applets
 • Provide security password validation and protection
 • Use AS/400 Toolbox for Java classes to access AS/400 resources
 • Run on a Windows/NT platform under Domino Go Webserver
 • Run on the AS/400 platform under the IBM HTTP Server for AS/400

This application runs under the control of a Web browser. The application
displays shown in this chapter use the Microsoft Internet Explorer 4.0 browser.
This application was also tested using Netscape Navigator 4.x.

To start the application, enter the URL of the application server. For example, to
run it on an AS/400 system running the IBM HTTP Server for AS/400 and the
WebSphere Application Server in the browser, enter:

http://AS400ABC:xxxx/servlet/Signon

AS400ABC is the name of the AS/400 system. xxxx is the TCP/IP port over which
the IBM HTTP Server for AS/400 is running. Signon is a Java program, which
handles security, and runs as a Java servlet.

You can also run this application under the control of other HTTP servers. For
example, you can run under the Domino Go Webserver. In this case, we use a
three-tier approach:

1. The client workstation running a browser
2. The HTTP server running a server, for example Windows/NT
3. The AS/400 system

To run the application, enter:

http://server:xxxx/servlet/Signon

The example programs discussed in this chapter are available for you to
download from the redbook Web site. Refer to Appendix A.1, “Downloading the
Files from the Internet Web Site” on page 299, for details.

Note

In this application, we pass information across the network that we may want to
protect. For example, we pass in a password. In this case, we may want to use
the IBM HTTP Server for AS/400 Secure Sockets Layer (SSL) support. For
infomation about how to install and use SSL support on the AS/400 system,
see Chapter 8, “Security Considerations” on page 261. When running the
application under SSL, we enter:

https://AS400ABC:xxxx/servlet/Signon

Note
© Copyright IBM Corp. 1999 221

In this case, server is the name of an HTTP server, which supports running
servlets. We tested using Domino Go Webserver and ServletExpress running on
a Windows/NT platform.

7.1 Running the Application

When the application is started, the AS/400 Sign On window appears as shown in
Figure 194.

Figure 194. Servlet Sign On Window

The Sign On window allows you to enter security information and sign on to the
AS/400 system. After you enter a user ID, password, and AS/400 system name,
click on the Signon button. The information entered is validated. A Java program
running as a servlet does the validation using AS/400 Toolbox for Java classes. If
the information is valid and the AS/400 system is available, the application menu
window shown in Figure 195 on page 223 appears.
222 Building AS/400 Internet-Based Applications with Java

Figure 195. Servlet Application Menu Window

The application menu window allows you to select an application to run. Do this
by clicking the mouse pointer on the option. If you select the Database query
option, the Query Recall window appears as shown in Figure 196 on page 224.
Developing AS/400 Java Servlets 223

Figure 196. Query Recall Window

The Query Recall window allows you to recall a previous query or build a new
query. To build a new query, highlight new query , and click on the Open button.
This displays the Query Builder window, as shown in Figure 197.

Figure 197. Query Builder Window
224 Building AS/400 Internet-Based Applications with Java

The Query Builder Screen allows you to enter an SQL statement and run it on the
AS/400 system. For example, to retrieve all rows from the Parts table in the apilib
library, enter:

select * from from apilib.parts

Clicking on the Query button causes the SQL statement to run on the AS/400
system. The results appear in a table as shown in Figure 198.

Figure 198. Query Results

Rather than writing an SQL statement, click on the Wizard button and allow the
Query Wizard to help you build the SQL statement that you want to run. The
Query Wizard prompts you for the name of the table that you want to use. Click on
the Browse button to display the available tables or enter the name of the table,
as shown in Figure 199 on page 226.
Developing AS/400 Java Servlets 225

Figure 199. Query Wizard Table Prompt

After a table name is entered, click on the Next button. The Select Fields prompt
window appears as shown in Figure 200.

Figure 200. Select Fields Prompt Window
226 Building AS/400 Internet-Based Applications with Java

The Select Fields window allows you to select which fields you want to include in
the query. To select a field, highlight it and click on the Add button. In this
example, we select the PARTNO, PARTQY, and PARTPR fields. After selecting
the fields you require, click on the Next button to display the Select Conditions
window shown in Figure 201.

Figure 201. Select Conditions Prompt Window

The Select Conditions prompt allows you to add conditions to the SQL statement.
For example, to select only those records that have a PARTQY value of greater
than 50, perform the following steps:

1. Highlight the PARTQY field.
2. Select ">" from the choice box.
3. Enter 50 in the TextField.

After setting the conditions, click on the Next button to display the Select Order
prompt window shown in Figure 202 on page 228.
Developing AS/400 Java Servlets 227

Figure 202. Select Order Prompt Window

The Select Order screen allows you to add ordering information to the SQL
statement. For example, to order the records based on the PARTQY field in
ascending order, perform these steps:

1. Highlight the PARTQY field.
2. Click on the Ascending button.

Click on the Finish button to see the SQL statement so you can run it. Figure 203
on page 229 shows the SQL statement and the results of running it.
228 Building AS/400 Internet-Based Applications with Java

Figure 203. Query Results

The second option on the application menu shown in Figure 195 on page 223,
allows you to manage print jobs by user. Selecting this option displays the User
ID Prompt shown in Figure 204 on page 230.
Developing AS/400 Java Servlets 229

Figure 204. User ID Prompt

Enter a valid user ID to view all the print jobs available for the user as shown in
Figure 205.

Figure 205. Print Jobs By User

The Print Jobs window allows you to hold the print job, release it, or delete it from
the output queue.

You can also work with print jobs by output queue. Select Manage print jobs by
output queue to view the AS/400 Output Queues as shown in Figure 206 on
page 231.
230 Building AS/400 Internet-Based Applications with Java

Figure 206. Output Queues Display

Click on an output queue to view the print jobs in that particular output queue as
shown in Figure 207.

Figure 207. Print Jobs By Output Queue

The Print Jobs window allows you to select a job and hold it, release it, or delete
it from the output queue.

The Files option on the Application menu allows you to list the directories in the
AS/400 integrated file system. Figure 208 on page 232 shows a directory listing
for the root of the AS/400 integrated file system.
Developing AS/400 Java Servlets 231

Figure 208. AS/400 Integrated File System Directories

Select and click on one of the directories listed to view the files stored in that
directory. Click on the apptest directory to view the contents of that directory as
shown in Figure 209.

Figure 209. Directory Listing

Selecting System Performance from the application menu retrieves and displays
AS/400 system performance information as shown in Figure 210 on page 233.
232 Building AS/400 Internet-Based Applications with Java

Figure 210. AS/400 Performance Information

The Command line option allows you to enter an AS/400 command as shown in
Figure 211.

Figure 211. AS/400 Command

If you enter a valid AS/400 command, for example:

wrksyssts

The command runs on the AS/400 system, and the command output is written to
an AS/400 print file. You are notified that a print file is created as shown in Figure
212 on page 234.
Developing AS/400 Java Servlets 233

Figure 212. AS/400 Command Output

The Change password option allows you to change your password on the AS/400
system. Selecting this options displays the screen shown in Figure 213.

Figure 213. Change Password

The final option is the Sign off option. Selecting it signs you on the AS/400
system and displays the initial sign on menu.

7.2 Application Programs

This section covers the Java programs that support this application. This
application consists of a number of Java classes. They are supporting class,
servlets, and applets. We cover some of the key classes here to give you an
understanding of how the application works. The entire application is available for
you to download from our Web site.
234 Building AS/400 Internet-Based Applications with Java

7.2.1 How the Application Works
This application works by using HTML to display windows in a browser and
reading input requests from the HTML screens. The Java programs build the
HTML files "on the fly." There are no HTML source files used. Access to the
AS/400 system is done through classes provided by the AS/400 Toolbox for Java.

The Signon class is a servlet that provides support for signing on to the
application. It provides the following support:

 • Display initial sign on menu
 • Validate sign on information
 • Display application main menu

Two methods are provided to allow a servlet to interface with a client:

 • doGet
 • doPost

Each of these methods has two parameters that are passed in:

 • ServletRequest that encapsulates the request to the servlet
 • ServletResponse that encapsulates the response from the servlet

Using the ServletRequest interface or its subclass HttpServletRequest, servlets
can access protocol-specific header information such as the scheme of the URL
used in the request or the value of the specified parameters. After retrieving the
data from the HttpServletRequest, the servlet performs the requested task and
sends the information back to the client using the ServletResponse object. It
allows the servlet to set the MIME content type and a Writer, through which the
servlet can pass the information back to the client.

The Signon servlet is run from a browser by entering:

http://server:xxxx/servlet/Signon

Entering this command from the browser runs the doGet method of the Signon
class.

If you load the servlets that make up this application into the VisualAge for Java
2.0 Integrated Development environment, some of the classes are marked with
a warning message. If you read the warning messages, they indicate that the
getParameter method is deprecated. However, the Java Servlet API
specification (version 2.1a, November 1998), shows this to be a supported
method. Originally, Sun decided to deprecate this method, but has since
reconsidered.

Note
Developing AS/400 Java Servlets 235

Figure 214. SignOn doGet Method

To help you understand the processing that takes place, we added logging to the
SignOn class. The log for the sign on processing shows the following entries.

 • Signon: Signon: doGet: Entered.

The first time the doGet method is called, no parameters are passed in. It calls
the genSignonForm method to generate and display the Sign on menu.

 • Signon: Signon: genSignonForm: Entered.

The genSignonForm method shown in Figure 215, builds the Sign on menu
using HTML tags. It specifies that the Post method be used and the Signon
program called.

public void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
log("Signon: doGet: Entered.");
String urlStr = new String(HttpUtils.getRequestURL(req));
ServletOutputStream out = res.getOutputStream();
imgBase = "http://" + req.getServerName() + ":" + Integer.toString(req.getServerPort()) + "/";
ServletCallLog.logCaller(req, res);
Enumeration e = req.getParameterNames();
if (!e.hasMoreElements()) {
// a GET request came in with no parameters -
// Generate a signon form
 genSignonForm(out, new String(HttpUtils.getRequestURL(req)));
} else {
 String sysName = req.getParameter("system");
 String userId = req.getParameter("user");
 String urlBase = urlStr.substring(0, urlStr.lastIndexOf("/") + 1);
 String cmd = req.getParameter("cmd");
 if (cmd.equalsIgnoreCase("menu")) {
 genMenu(out, urlBase, sysName, userId);
 } else
 if (cmd.equalsIgnoreCase("signoff")) {
 signOff(req, res);
 } else {
 genInfo(out, imgBase, sysName, userId);
 }
 }
 out.close();
}

236 Building AS/400 Internet-Based Applications with Java

Figure 215. SignOn genSignonForm Method

The urlBase variable, contains the name of the program to run. This causes the
Sign on menu shown in Figure 194 on page 222 to be displayed. The HTML code
that is generated by the genSignonForm method is shown in Figure 216 on page
238.

private void genSignonForm(ServletOutputStream out, String urlBase)
throws IOException
{
log("Signon: genSignonForm: Entered.");
log("Signon: genSignonForm: imgBase = " + imgBase);
String host = getHostFromURL(urlBase);
out.println("<HTML><HEAD><TITLE> " + host + " AS/400 Signon </TITLE></HEAD>");
out.println("<BODY>");
out.println("

");
out.println("<center>");
out.println("");

out.println("

");
out.println("<p>Welcome to " + host);
out.println("<p>Please log in:");
out.print(" <FORM ACTION=\"");
out.print(urlBase);
out.println("\" METHOD=\"POST\">");
out.println("<TABLE ALIGN=CENTER WIDTH=40%>");
out.println("<CAPTION><BIG>AS/400 Logon Information</BIG></CAPTION>");
out.println("<TR>");
out.println("<TD></TD>");
out.println("<TD></TD>");
out.println("</TR>");
out.println("<TR>");
out.println("<TD>User ID:</TD>");
out.println("<TD><INPUT TYPE=\"text\" NAME=\"user\" MAXLENGTH=\"10\"></TD>");
out.println("</TR>");
out.println("<TR>");
out.println("<TD>Password:</TD>");
out.println("<TD><INPUT TYPE=\"password\" NAME=\"pw\" MAXLENGTH=\"10\"></TD>");
out.println("</TR>");
out.println("<TR>");
out.println("<TD>AS/400 System:</TD>");
out.println("<TD><INPUT TYPE=\"text\" NAME=\"system\" MAXLENGTH=\"10\"></TD>");
out.println("</TR>");
out.println("</TABLE>");
// output submit button
out.println("<P ALIGN=Center>");

out.println("<INPUT TYPE=submit VALUE=\"Signon\">");
out.println("</FORM>");

out.println("</center>");

out.println("</BODY></HTML>");

}

Developing AS/400 Java Servlets 237

Figure 216. Generated Sign On HTML

Two key points to notice about the HTML file are:

 • The FORM ACTION tag specifies that the Signon servlet will be run using the
Post method.

 • The INPUT TYPE tag specifies that clicking on a Signon button causes the
servlet to run.

After the Signon button is clicked, the doPost method of the SignOn class is
called:

 • Signon: Signon: doPost: Entered.

This method calls the addUserToCache method in the SuperServlet class,
which tries to create an as400 object using the sign on information. If this is
successful, the user is valid and the main application window appears.

<HTML><HEAD><TITLE> LOCALHOST AS/400 Signon </TITLE></HEAD>
<BODY>

<center>

<p>Welcome to LOCALHOST
<p>Please log in:
<FORM ACTION="http://sysname:xxxx/servlet/Signon" METHOD="POST ">
<TABLE ALIGN=CENTER WIDTH=40%>
<CAPTION><BIG>AS/400 Logon Information</BIG></CAPTION>
<TR>
<TD></TD>
<TD></TD>
</TR>
<TR>
<TD>User ID:</TD>
<TD><INPUT TYPE="text" NAME="user" MAXLENGTH="10"></TD>
</TR>
<TR>
<TD>Password:</TD>
<TD><INPUT TYPE="password" NAME="pw" MAXLENGTH="10"></TD>
</TR>
<TR>
<TD>AS/400 System:</TD>
<TD><INPUT TYPE="text" NAME="system" MAXLENGTH="10"></TD>
</TR>
</TABLE>
<P ALIGN=Center>
<INPUT TYPE=submit VALUE="Signon">
</FORM>
</center>
</BODY></HTML>
238 Building AS/400 Internet-Based Applications with Java

Figure 217. SignOn doPost Method

 • Signon: urlBase = http://localhost/servlet/

 • Signon: Signon: genMain: Entered.

After a successful sign on, the genMain method displays the main application
menu and the information menu shown in Figure 195 on page 223.

public void doPost (HttpServletRequest req, HttpServletResponse res)throws ServletException, IOException
{
log("Signon: doPost: Entered.");
ServletCallLog.logCaller(req, res);

String sysName = req.getParameter("system");
String userId = req.getParameter("user");
String password = req.getParameter("pw");

String urlStr = new String(HttpUtils.getRequestURL(req));
String urlBase = urlStr.substring(0, urlStr.lastIndexOf("/") + 1);
log("urlBase = " + urlBase);

ServletOutputStream out = res.getOutputStream();

// set content type and other response header fields first
res.setContentType("text/html");

try
{
 addUsertoCache(req, res, sysName, userId, password);

 genMain(out, urlBase, sysName, userId) ;
}
catch (Exception e)
{
out.println("<HEAD><TITLE> AS/400 </TITLE></HEAD><BODY>");
out.println("
");

out.println("<p>Signon to AS/400 failed");
out.println("<p>" + e.getMessage());
out.println("</BODY>");

e.printStackTrace();
}

 // then write the data of the response
out.close();
}

Developing AS/400 Java Servlets 239

Figure 218. SignOn genMain Method

 • Signon: Signon: doGet: Entered.

 • Signon: Signon: genMenu: Entered.

The SignOn doGet method is called twice. The first time it is called with a
parameter named cmd , which is set equal to menu . This causes the genMenu
method to be called to generate the application menu. The HTML tags
generated by the genMenu method are shown in Figure 219 on page 240.

Figure 219. Application Menu HTML

private void genMain(ServletOutputStream out, String urlBase, String sysName, String userId)
throws IOException
{
log("Signon: genMain: Entered.");
out.println("<html>");
out.println("<head>");
out.println("<title>AS/400</title>");
out.println("</head>");

out.println("<frameset cols=25%,*>");
out.print("<frame src=");
out.println(urlBase + " Signon?cmd=menu &system=" + sysName

+ "&user=" + userId + " name=nav>");
out.print("<frame src=");
out.println(urlBase + " Signon?cmd=info &system=" + sysName

+ "&user=" + userId + " name=content>");
out.println("</frameset>");
out.println("</html>");
}

<HEAD><TITLE> AS/400 </TITLE></HEAD>
<BODY TEXT="#000000" BGCOLOR="#CCCCCC" LINK="#0000EE" VLINK="#551A8B" ALINK="#FF0000">
<center>

<h3>AS400ABC</h3>
</center>
<hr width="100%">

< A HREF=<A
HREF=http://AS400ABC:1040/servlet/DbSelectServlet?system=AS400ABC&user=auser&cmd=qr
ylist target=content>Database query
<A HREF=http://AS400ABC:1040/servlet/PrintJob?system=AS400ABC&user=auser&cmd=init&type=user
target=content>Manage print jobs by user
<A HREF=http://AS400ABC:1040/servlet/PrintJob?system=AS400ABC&user=auser&cmd=init&type=outq
target=content>Manage print jobs by output queue
<A HREF=http://AS400ABC:1040/servlet/IfsFileServlet?system=AS400ABC&user=auser&cmd=list&dir=/
target=content>Files
System
performance
<A HREF=http://AS400ABC:1040/servlet/CmdCallServlet?system=AS400ABC&user=auser
target=content>Command line
<A HREF=http://AS400ABC:1040/servlet/ChangePwdServlet?system=AS400ABC&user=auser
target=content>Change password
Sign
off

<hr width="100%">
</BODY>
240 Building AS/400 Internet-Based Applications with Java

The HTML tags control how the other Java servlets are run. To understand how it
works, look at the tag for the Database query option:

<A
HREF=http://AS400ABC:1040/servlet/DbSelectServlet?system=AS400ABC&user=auser
&cmd=qrylist target=content>Database query

HTML stands for hypertext markup language. Links are the hyper part of
hypertext. Links, which are also called anchors, mark text or images as elements
that point to other documents, images, applets, or, in this case, servlets. Links are
made up of three elements:

 • An anchor tag <A>, which marks the text or image as a link
 • An attribute, HREF=" ", which is located within the opening anchor tag
 • An address (URL), which tells the browser what to link to,

http://AS400ABC:1040/servlet/DbSelectServlet

In this case, clicking on the text DataBase query links us to the servlet named
DbSelectServlet:

 • Signon: Signon: doGet: Entered.
 • Signon: Signon: genInfo: Entered.

Finally the doGet method is called again with a parameter of info. The genInfo
method is called to generate the right portion of the application menu. The
window shown in Figure 220 appears.

Figure 220. Application Menu
Developing AS/400 Java Servlets 241

7.3 The Java Application Programs

Now that you understand how the servlets are invoked, you can look at how they
work. The application servlets are similar. This section looks at a fairly simple
servlet, which calls a program on the AS/400 system and a more complex
application which allows SQL query statements to be created and executed on
the AS/400 system. By understanding how these applications work, you can look
at the code and understand how the other applications work.

7.3.1 System Performance Servlet
This section looks at the System performance servlet. This servlet uses the
AS/400 Toolbox for Java distributed program call (DPC) class to call a program on
the AS/400 system, which returns system performance information. The
information returned by the AS/400 program is displayed in the browser by
imbedding it in an HTML file.

Figure 221. The PerfMon Class doGet Method

public void doGet (HttpServletRequest req, HttpServletResponse res)throws ServletException, IOException
{
AS400 sys = null;
imgBase = "http://" + req.getServerName() + ":" + Integer.toString(req.getServerPort())

+ "/";
String sysName = req.getParameter("system");
String userId = req.getParameter("user");
ServletCallLog.logCaller(req, res);

ServletOutputStream out = res.getOutputStream();

// set content type and other response header fields first
res.setContentType("text/html");

String realSystem = sysName.toUpperCase();
if (sysName.equalsIgnoreCase("localhost"))
{
 String earl = HttpUtils.getRequestURL(req).toString();
 realSystem = getHostFromURL(earl);
}
 // then write the data of the response
System.out.println("PerfMon: doGet: Starting output");
out.println("<HEAD><TITLE> AS/400 Performance Monitor </TITLE></HEAD><BODY>");
out.println("<center>");
out.println("");
out.println("<h3> Performance Information for " + realSystem + " </h3>");
out.println("
");

try {
 sys = getSysFromUserCache(req, res, sysName, userId);
 getStatus(out, sys);
} catch (Exception e) {
 out.println(e.toString());
 e.printStackTrace();
}

out.println("</BODY>");
out.close();
sys.disconnectService(AS400.COMMAND);
}

242 Building AS/400 Internet-Based Applications with Java

Clicking on the System Performance option invokes the doGet method of the
PerfMon class, which is shown in Figure 221 on page 242, of the PerfMon servlet.
This method builds the HTML tags for the display headings. It then calls the
getStatus method.

The getStatus method performs the following actions:

1. Creates a ProgramCall object named pgm.
2. Creates the parameters for the pgm object.
3. Sets the name of the AS/400 program to call equal to

QSYS.LIB/QWCRSSTS.PGM.
4. Calls the AS/400 program.
5. Formats the returned values into HTML tags for:

 – CPU utilization
 – DASD utilization
 – Total Jobs
 – Total DASD

Figure 222. System Performance Information

7.3.2 Database Query
The Database Query application is the most complex of the applications. It is
actually made up of a combination of applets and servlets. The following classes
make up the DataBase Query application:

 • DbSelectServlet—Servlet
 • SQLOrder—Applet
 • SQLWhere—Applet
 • SQLWizard—Applet

When you click on the Database query option from the application menu, the
doGet method of the DbSelectServlet class is called with a parameter of qrylist.
Refer to Figure 219 on page 240, to see the HTML file used. The doGet method
checks the parameter to determine which method to call. In this case, the
Developing AS/400 Java Servlets 243

getSavedQueries method is called to allow you to recall previously created
queries. This method generates the HTML file shown in Figure 223.

Figure 223. HTML Generated by the getSavedQueries Method

Displaying this HTML file in a browser shows the window that appears in Figure
224 on page 245. The action of this HTML file is to call the DbSelectServlet class
using a post method. It sets the following parameters:

 • name=cmd, value=qryprompt
 • name=open, value=Open
 • name=delete, value=Delete

<HEAD><TITLE>AS/400 Database Query</TITLE></HEAD>
<BODY>
<center>

<h3>Saved Queries</h3>
</center>
<hr width="100%">

<form action=http://AS400ABC:1040/servlet/DbSelectServlet method=post >
<input type=hidden name=cmd value= qryprompt >
<input type=hidden name=system value=AS400ABC>
<input type=hidden name=user value=auser>
<input type=hidden name=key value=as400abcauser908479492129>

<center>
<SELECT NAME="query" SIZE=5>
<OPTION VALUE=new selected>[new query]
</SELECT>

<input type=submit name=open value=Open>
<input type=submit name=delete value=Delete>
</center>
</BODY>
244 Building AS/400 Internet-Based Applications with Java

Figure 224. Saved Queries Window

Clicking on the Open button runs the doPost method, passing in a cmd parameter
value of qryprompt. If a cmd value of qryprompt is received in the doPost method,
the qryPrompt method is called.

The qryPrompt method builds and displays the HTML file shown in Figure 225 on
page 246.
Developing AS/400 Java Servlets 245

Figure 225. HTML Generated by the queryPrompt Method

Displaying this HTML file in a browser shows the window that appears in Figure
226 on page 247. The action of this HTML file is to call the DbSelectServlet class
using a post method. It sets the following parameters:

 • name=cmd, value=query
 • name=system, value=as400abc
 • name=user, value=auser
 • name=key, value=as400abcauser908479492129

 • radio name=qtype, default=html
 • name=wizard, value=Wizard
 • name=save, value=Save...

o<HEAD><TITLE> Query Statement </TITLE></HEAD><BODY>
<center>

<h3>Query AS/400 Database</h3>
</center>
<hr width="100%">
<center>
<form action=http://AS400ABC:1040/servlet/DbSelectServlet method=post>
<input type=hidden name=cmd value=query>
<input type=hidden name=system value=as400abc>
<input type=hidden name=user value=auser>
<input type=hidden name=key value=as400abcauser908479492129>

Query statement:
<textarea name=statement rows=5 cols=40>
</textarea>
<input type=submit name=wizard value=Wizard>

<input type=radio name=qtype value="html" checked>View results in HTML
<input type=radio name=qtype value="CSV">Comma separated variable (CSV) format
<input type=radio name=qtype value="TSV">Tab separated variable (TSV) format

<input type=submit value=Query>
<input type=submit name=save value=Save...>
</center>
</form>
<p>Enter the SQL statement.
For example, 'select * from apilib.parts'
to use the demo database.
<p>If you would like some assistance, you can use the
wizard button to get some help on formulating your query.
SQL gurus can simply type in the query and use the query button.
</body>
246 Building AS/400 Internet-Based Applications with Java

Figure 226. Query Statement Window

7.3.2.1 Writing your Own SQL Statements
At this point in the Database Query application, you can enter your own SQL
statements or use the Wizard to help you build an SQL statement. To see how the
Wizard works, refer to Section 7.3.2.2, “Using the Wizard” on page 248. In this
section, write our own SQL statement:

select * from apilib.parts

Clicking on the Query button runs the doPost method. If a cmd value of query is
received in the doPost method, the performQuery method is called. The
performQuery method sees how we want the results returned by checking which
radio button is selected. In this case, the View results in HTML radio button is
selected, so the fillTable method is called.

The fillTable method actually causes the sql statement to be executed on the
AS/400 system. It does the following:

 • Creates a connection object using the JDBC DriverManager getConnection
method

 • Creates a statement object using the createStatement method
 • Execute the SQL statement we entered using the statement object
 • Formats the rows into a table using HTML tags if a resultset is returned
 • Causes the browser to execute the HTML file to show the results

The output from the HTML file displayed by the browser is shown in Figure 227 on
page 248.
Developing AS/400 Java Servlets 247

Figure 227. Query Results

7.3.2.2 Using the Wizard
If the Wizard button is clicked, the wizPrompt method is executed. It builds and
shows the HTML file shown in Figure 228 on page 249.
248 Building AS/400 Internet-Based Applications with Java

Figure 228. HTML File Generated by the wizPrompt Method

The output of this HTML file appears in a browser as shown in Figure 229.

Figure 229. Enter Table Name Prompt

The action of this HTML file is to call the DbSelectServlet class using a post
method. It sets the following parameters:

 • name=cmd, value=qwcolinfo

 • name=system, value=as400abc

 • name=user, value=auser

<HEAD><TITLE> Query Wizard </TITLE></HEAD><BODY>
<center>

<h3>Enter the Table Name</h3>
<center>
<hr width="100%">
<center>
<form action=http://as400abc:1040/servlet/DbSelectServlet method=post>
<input type=hidden name=cmd value=qwcolinfo>
<input type=hidden name=system value=as400abc>
<input type=hidden name=user value=auser
<input type=hidden name=key value=as400abcauser908479492129>

Table name: <input type=text name=tblname>
<input type=submit name=wizact value=Browse...>

<input type=submit name=wizact value=Next...>
<input type=submit name=wizact value=Finish>
</center>
</form>
<p>Enter the table name.
For example, 'apilib.parts'
</body>

Developing AS/400 Java Servlets 249

 • name=key, value=as400abcauser908479492129

 • radio name=qtype, default=html
 • name=wizact, value=Browse...

 • name=wizact, value=Next...

 • name=wizact, value=Finish

Clicking on the Next button runs the doPost method with a cmd parameter equal
to qwcolinfo. This action, in turn, runs the wizColInfo method. It generates and
displays the HTML file shown in Figure 230.

Figure 230. HTML Generated By the wizColInfo Method

This HTML file runs an applet named SqlWizard.

<HEAD><TITLE> Query Wizard </TITLE></HEAD><BODY>
<center>

<center>
<h3>Select Fields</h3>
<form action=http://AS400ABC:1040/servlet/DbSelectServlet method=post>
<input type=hidden name=cmd value=qwwhere>
<input type=hidden name=system value=AS400ABC>
<input type=hidden name=user value=auser>
<input type=hidden name=key value=AS400ABCauser908479492129>

<applet code=SqlWizard.class codebase=http://AS400ABC:1040/applets/ height=230 width=390>
<param name=system value="AS400ABC">
<param name=user value="auser">
<param name=key value="AS400ABCauser908479492129">
<param name=url value=http://AS400ABC:1040/servlet/DbSelectServlet>
<param name=fields value="PARTNO,PARTDS,PARTQY,PARTPR,PARTDT">
</applet>

<input type=submit name=wizact value=Next...>
<input type=submit name=wizact value=Finish>
</center>
</form>
</body>

250 Building AS/400 Internet-Based Applications with Java

Figure 231. SQLWizard Applet

The SqlWizard applet allows you to select which table columns you want to add to
the selection criteria. As shown in Figure 231, we select the PARTNO, PARTQY,
and PARTPR columns.

The action of this HTML file is to call the DbSelectServlet class using a post
method. It sets the following parameters:

 • name=cmd, value=qwwhere

 • name=system, value=as400abc

 • name=user, value=auser

 • name=key, value=as400abcauser908479492129

 • name=wizact, value=Next...

 • name=wizact, value=Finish

Click on the Next button to run the doPost method, with the cmd parameter set to
qwwhere. Now, the wizWhere method is run. It generates and executes the HTML
file shown in Figure 232 on page 252.
Developing AS/400 Java Servlets 251

Figure 232. HTML File Generated by the wizWhere Method

The HTML file shown in Figure 232 runs an applet named SqlWhere.

<HEAD><TITLE> Query Wizard </TITLE></HEAD><BODY>
<center>

<center>
<h3>Select Conditions</h3>
<form action=http://AS400ABC:1040/servlet/DbSelectServlet method=post>
<input type=hidden name=cmd value=qworder>
<input type=hidden name=system value=AS400ABC>
<input type=hidden name=user value=auser>
<input type=hidden name=key value=AS400ABCauser908479492129>

<applet code=SqlWhere.class codebase=http://AS400ABC:1040/applets/ height=358 width=425>
<param name=system value="AS400ABC">
<param name=user value="auser">
<param name=key value="AS400ABCauser908479492129">
<param name=url value=http://AS400ABC:1040/servlet/DbSelectServlet>
<param name=fields value="PARTNO,PARTDS,PARTQY,PARTPR,PARTDT">
</applet>

<input type=submit name=wizact value=Next...>
<input type=submit name=wizact value=Finish>
</center>
</form>
</body>
252 Building AS/400 Internet-Based Applications with Java

Figure 233. SQLWhere Applet

The SQLWhere applet allows you to add a where clause to the SQL statement. In
this case, we want only those records that have a PARTQY field value of greater
than 50.

The action of this HTML file is to call the DbSelectServlet class using a post
method. It sets the following parameters:

 • name=cmd, value=qworder

 • name=system, value=as400abc

 • name=user, value=auser

 • name=key, value=as400abcauser908479492129

 • name=wizact, value=Next...

 • name=wizact, value=Finish

Clicking on the Next button runs the doPost method, with the cmd parameter set
to qworder . Now the wizOrder method runs. It generates and executes the HTML
file shown in Figure 234 on page 254.
Developing AS/400 Java Servlets 253

Figure 234. HTML File Generated by the wizOrder Method

This HTML file runs an applet named SqlOrder.

Figure 235. SqlOrder Applet

<HEAD><TITLE> Query Wizard </TITLE></HEAD><BODY>
<center>

<center>
<h3>Select Order</h3>
<form action=http://AS400ABC:1040/servlet/DbSelectServlet method=post>
<input type=hidden name=cmd value=qryprompt>
<input type=hidden name=system value=AS400ABC>
<input type=hidden name=user value=auser>
<input type=hidden name=key value=AS400ABCauser908479492129>

<applet code=SqlOrder.class codebase=http://AS400ABC:1040/applets/ height=250 width=426>
<param name=system value="AS400ABC">
<param name=user value="auser">
<param name=key value="AS400ABCauser908479492129">
<param name=url value=http://AS400ABC:1040/servlet/DbSelectServlet>
<param name=selected value="PARTNO,PARTQY,PARTPR">
</applet>

<input type=submit name=wizact value=Finish>
</center>
</form>
</body>
254 Building AS/400 Internet-Based Applications with Java

The SqlOrder applet, allows us to add an order by clause to the sql statement. In
this case, we want to display the results in ascending order, based on the
PARTQY field.

The action of this HTML file is to call the DbSelectServlet class using a post
method. It sets the following parameters:

 • name=cmd, value=qryprompt

 • name=system, value=as400abc

 • name=user, value=auser

 • name=key, value=as400abcauser908479492129

 • name=wizact, value=Next...

 • name=wizact, value=Finish

Clicking on the Finish button starts the doPost method, with the cmd parameter
set to qryprompt . If a cmd value of qryprompt is received in the doPost method, the
qryPrompt method is called. The qryPrompt method builds and displays the
HTML file shown in Figure 236.

Figure 236. HTML File for the queryPrompt Method

Displaying this file in a browser returns you to the Query AS/400 Database
window shown in Figure 237 on page 256.

<HEAD><TITLE> Query Statement </TITLE></HEAD><BODY>
<center>

<h3>Query AS/400 Database</h3>
</center>
<hr width="100%">
<center>
<form action=http://AS400ABC:1040/servlet/DbSelectServlet method=post>
<input type=hidden name=cmd value=query>
<input type=hidden name=system value=AS400ABC>
<input type=hidden name=user value=auser>
<input type=hidden name=key value=AS400ABCauser908479492129>

Query statement:
<textarea name=statement rows=5 cols=40>
select PARTNO,PARTQY,PARTPR from apilib.parts where PARTQY > 50 order by PARTQY ASC
</textarea>
<input type=submit name=wizard value=Wizard>

<input type=radio name=qtype value="html" checked>View results in HTML
<input type=radio name=qtype value="CSV">Comma separated variable (CSV) format
<input type=radio name=qtype value="TSV">Tab separated variable (TSV) format

<input type=submit value=Query>
<input type=submit name=save value=Save...>
</center>
</form>
<p>Enter the SQL statement.
For example, 'select * from apilib.parts'
to use the demo database.
<p>If you would like some assistance, you can use the
wizard button to get some help on formulating your query.
SQL gurus can simply type in the query and use the query button.
</body>
Developing AS/400 Java Servlets 255

Figure 237. Query AS/400 Database

The text area of the Query AS/400 Database window displays the SQL statement
that we created.

Clicking on the Query button runs the doPost method. If a cmd value of query is
received in the doPost method, the performQuery method is called. The
performQuery method verifies how we want the results returned by checking
which radio button is selected. In this case, the View results in HTML radio
button is selected, so the fillTable method is called.

The fillTable method actually runs the SQL statement on the AS/400 system. It
does the following:

 • Creates a connection object using the JDBC DriverManager getConnection
method

 • Creates a statement object using the createStatement method
 • Executes the SQL statement we entered using the statement object
 • Formats the rows into a table using HTML tags if a resultset is returned
 • Causes the browser to execute the HTML file to display the results

Clicking on the Query button runs the statement. The results are shown in Figure
238 on page 257.
256 Building AS/400 Internet-Based Applications with Java

Figure 238. SQL Result

7.4 Running the Application

The application discussed in this chapter uses servlets to access AS/400
resources. To run it, we need a server that supports Java servlets. We tested the
application using two servers:

 • Domino Go Webserver and ServletExpress running on a Windows/NT platform
 • The IBM HTTP Server for AS/400 and the WebSphere Application Server for

AS/400 running on an AS/400 system

7.4.1 Domino Go Webserver
For details about configuring Domino Go Webserver and ServletExpress, see
Section 9.1, “Domino Go Webserver” on page 287. For the application to be
served by the Domino Go Webserver, you must:

1. Export the class files to a directory where the Web server can find them.
2. Add the appropriate directives to the Domino Go server request routing table.

By default the Domino Go Webserver serves servlets from following directory:

\ServletExpress\servlets

We export the servlet classes to this directory. Figure 239 on page 258 shows the
servlet classes exported to the \ServletExpress\servlets directory.
Developing AS/400 Java Servlets 257

Figure 239. ServletExpress\servlets Directory

We also use three applets as part of this application. To keep access to the
applets secure and separate from the servlets, we export them to the following
directory:

\ServletExpress\servlets\applets

Figure 240 shows the content of the \Servlet\Express\applets directory.

Figure 240. Applet Directory

The application uses gif files to display images. The gif files are stored in the
apptest directory. Figure 241 shows the content of the apptest directory.

Figure 241. apptest Directory

We add the following directives to the Domino Go server request routing table:

 • Pass /apptest/* \apptest*

This directive allows us serve the gif files from the apptest directory.
258 Building AS/400 Internet-Based Applications with Java

 • Pass /applets/* c:\ServletExpress\servlets\applets*

This directive allows us to serve the applets from the applets directory.

7.4.2 IBM HTTP Server for AS/400
We can also serve this application using the IBM HTTP Server for AS/400 and the
WebSphere Application Server for AS/400. For configuration details about
running under the IBM HTTP Server for AS/400, see Section 9.3, “IBM HTTP
Server for AS/400” on page 293.

To allow the application to be served by the IBM HTTP Server for AS/400, you
must:

1. Export the class files to a directory where the Web server can find them.
2. Add the appropriate directives to the Domino Go server request routing table.

By default IBM HTTP Server for AS/400 serves servlets from the following
directory:

\QIBM\ProdData\IBMWebAS\servlets

We export the servlet classes to this directory. Figure 242 shows the servlet
classes exported to the \QIBM\ProdData\IBMWebAS\servlets .

Figure 242. \QIBM\ProdData\IBMWebAS\servlets Directory

We also use three applets as part of this application. To keep access to the
applets secure and separate form the servlets, we export them to the following
directory:

\QIBM\ProdData\IBMWebAS\servlets\applets

Figure 243 on page 260 shows the content of the \Servlet\Express\applets
directory.
Developing AS/400 Java Servlets 259

Figure 243. Applet Directory

The application uses gif files to display images. The gif files are stored in the
apptest directory. Figure 244 shows the content of the apptest directory.

Figure 244. The apptest Directory

We add the following directives to the IBM HTTP Server for AS/400 request
routing table:

 • Pass /apptest/* /apptest/*

This directive allows us serve the gif files from the apptest directory.

 • Pass /applets/* /QIBM/ProdData/IBMWebAS/servlets/applets

This directive allows us to serve the applets from the applets directory.
260 Building AS/400 Internet-Based Applications with Java

Chapter 8. Securit y Considerations

This chapter explains how you can provide security for your Internet application.
This chapter describes:

 • An overview of the elements of transaction security available on the Internet
 • A high level explanation of the Secure Sockets Layer (SSL) protocol
 • How to use Digital Certificate Manager on AS/400 to create an intranet

Certificate Authority (CA) and server certificates
 • How to configure the IBM HTTP Server for AS/400 to use SSL
 • Running a servlet under SSL

8.1 Internet Securit y Elements
There is no one single answer to Internet security. Some people think that by
installing a firewall between their networks and the Internet the company’s
network will be safe.

Is it simply a firewall that shields your company from any inappropriate Internet
access? No, security is not a single device or procedure. Security is a concept. It
is a set of different security measures that are selected based on the needs of a
specific installation. Therefore, it is essential to discuss first the type of Internet
security you need to achieve. Security is not simply a firewall.

First, the policy established by high-level management indicates how your
company wants to deal with the Internet and what level of security is to be
achieved. Various Internet security features, such as cryptography or host system
security functions, help you to implement what is designed.

Users must be educated to follow and maintain the implemented security
procedures, as well as to observe specific rules when acting as Internet clients.
These concepts are highlighted in Figure 245 on page 262.
© Copyright IBM Corp. 1999 261

Figure 245. Internet Security Elements

8.1.1 Transaction Securit y and Secure Sockets La yer
Transaction security includes several basic elements, such as:

 • Confidentiality and privacy
 • Integrity
 • Authentication
 • Accountability

Figure 246. Transaction Security

SSL is the Secure Sockets Layer protocol defined by Netscape Communications
Corporation. It provides a private channel between client and server that ensures
privacy of data, authentication of session partners, and message integrity.

Internet
���������	� ���
����

��������
�����

���

���������

���� �������� ������� ������
��������

Internet

���������	
��
����

Client identity
authenticated

��������

Server identity
authenticated

������

��	� ���

�

����

����
���

������

��� ������

��� ����

�

����

����
���

Web
browser

Web
server

���������	
��
����
262 Building AS/400 Internet-Based Applications with Java

Digital certificates are used for session partner authentication. Server
authentication is common. Client authentication is not yet common, but it is
growing in popularity. Keys are the base for end-to-end information encryption.
Figure 246 provides a high level view of SSL and transaction security.

TCP/IP applications must be rewritten to use SSL. Primarily SSL is used by HTTP
(HTTPS) for Web browsing. In OS/400, the V4R3 Directory Services Server
(LDAP) is SSL enabled. Other TCP/IP applications will follow.

8.1.1.1 Confidentialit y
Consider this problem: Intruders can eavesdrop on private information as
messages travel across the network. The solution lies in encryption. The sender
scrambles the message, and the receiver unscrambles it using a secret key.

Confidentiality means that the contents of the messages remain private as they
pass through the Internet. Without confidentiality, your computer broadcasts the
message to the network, which is similar to shouting the information across a
crowded room. Encryption ensures confidentiality.

8.1.1.2 Inte grit y
Consider, for example, that you want to know if the data received is the same as
the data that was sent. You can determine this through two possible solutions:
digital signature (hashing) and encryption.

The sending system calculates a value based on the data that is sent. The value
is appended to the transmission. The receiving system uses the same calculation
to generate a value. The receiving system compares the calculated value with the
received value. If the values are different, it assumes that the data changed.
Message hashing should be used with encryption for better protection.

Integrity means that the messages are not altered while being transmitted. Any
router along the way can insert or delete text or garble the message as it passes
by. Without integrity, you have no guarantee that the message you sent matches
the message received. Encryption and digital signature ensure integrity.

8.1.1.3 Authenticit y
Consider the scenario where you want to know who is at the other end of a Web
site to test its authenticity. One way to find out is through the use of digital
certificates and digital signatures (see Figure 247 on page 264).
Security Considerations 263

Figure 247. Verifying Identity—Digital Certificates and Digital Signatures

Authenticity means that you know who you are talking to and that you trust that
person. Without authenticity, you have no way to be sure that anyone is who they
say they are. Authentication through digital certificates and digital signatures
ensure authenticity.

There are two ways in which the server uses authentication:

 • Digital signature
 • Digital certificates

A digital signature ensures accountability. But how do you know if the person
sending you a message is who he says he is?

You look at the sender's digital certificate. A public key certificate is issued by a
trusted third party known as the certifying authority (CA). The browser and server
exchange information including their public key certificate. SSL uses the
information to identify and authenticate the sender of the certificate.

A digital certificate is like a credit card with your picture on it and a picture of the
bank president with his arm around you. A merchant trusts you more because
you look like the picture on the credit card, and they know the bank president
trusts you, too.

You base your trust for the authenticity of the sender on whether you trust the
third party (a person or agency) that certified the sender. The third party or
certification authority (CA) issues digital certificates.

How can you ensure that the person sending the message is really trustworthy?
Consider the following an example, which illustrates this point.

If you wake up one day feeling ill, you may decide to visit a doctor. You can select
a doctor from your phone book and go to his or her office for a visit. Once you
arrive at the office, how can you be sure that the person about to examine you is
really a doctor? After all, you have never met this person before. They may look
like a doctor and act like a doctor, but how do you know that this person has
successfully completed all the training necessary to become a doctor?

Problem - How do we know who is at the other end?

I am going to setup a fake site to
sell football tickets. No one will
ever know. I'll make millions.

This site does not have a
Certificate from a trusted source. I
think I'll order some football tickets

from someone else.

Certificate
University of the Internet

Issue Date
Distinguished Name

Public Key
Expiration Date

Digital Signature of CA

Authenticit y
264 Building AS/400 Internet-Based Applications with Java

You need certification by a trusted third party to reassure you that this person
really is a doctor. The doctor probably has a diploma on the wall stating that they
have successfully completed their training. If the diploma is from a well-known
school, you would probably be reassured that you are about to be examined by a
real doctor. What if the diploma is from the medical school of a correspondence
school whose name you don't recognize? You may not be reassured.

Authentication works the same way. Trusted third parties verify that the server
really is who it claims to be. This verification is provided with a digital certificate
(the digital equivalent of your doctor's diploma hanging on the wall). You base
your trust for the authenticity of the server on whether you trust the third party
that certified the server (the school that issued the diploma). That third party is
called a Certifying Authority (CA).

The term trusted root is given to a trusted certifying authority (CA) on your server.
A trusted root key is the key belonging to the CA.

Authentication can be used server to client (server authentication) or client to
server (client authentication). Server authentication is described earlier. The
clients authenticate the servers. With client authentication, the client is
authenticated by the server. For example, if a server contains hospital patient
information, we may use client authentication to verify that the client attempting to
access the data is really who he said he is before allowing him access to patient
records.

8.1.1.4 Accountabilit y
Consider the situation where you want to prove that a transaction took place. We
combine all the techniques we have seen. First the data is hashed using
cryptography to assure its integrity. The data is encrypted using the keys derived
from the public key exchange, which assures the identity of the session partners.
This is used in combination with a time stamp in the data to provide a log of the
transactions.

Accountability means that both sender and receiver agree that the exchange took
place. Without accountability, the addressee can easily say that the message
never arrived. Digital signatures ensure accountability. Accountability is not part
of the SSL protocol.

8.1.2 HTTP Server Over SSL (HTTPS)
SSL ensures that data transferred between a client and a server remains private.
It allows the client to authenticate the identity of the server. In addition, SSL V3
allows a server to authenticate a client.

Figure 248 on page 266 shows the high level view of the flow that takes place
when a client (browser) sends an https request to an HTTP server.
Security Considerations 265

Figure 248. HTTP Server Using SSL

If SSL client authentication is configured, the server requests the client’s
certificate for any https request. The server establishes a secure session
depending on whether the client has a valid certificate. This depends on the
server configuration: no client authentication, optional client authentication, and
mandatory client authentication.

Once your server has a digital certificate, SSL enabled browsers can
communicate securely with your server using SSL. With SSL, you can easily
establish a security-enabled Web site on the Internet or on your corporate
network.

SSL uses a security handshake to initiate the secure TCP/IP connection between
the client and the server. During the handshake, the client and server agree on
the security keys that they will use for the session and the algorithms they will use
for encryption and to compute message digest or hashes. The client
authenticates the server. In addition, if the client requests a document protected
by SSL client authentication, the server requests the client’s certificate. After the
handshake, SSL is used to encrypt and decrypt all information on both the https
requests and the server response, including:

 • The URL the client is requesting
 • The contents of any form being submitted
 • Access authorization information like user names and passwords
 • All data sent between the client and the server

The benefits of HTTP using SSL include:

 • Target server is verified for authenticity
 • Information is encrypted for privacy
 • Data is checked for transmission integrity

HTTPS is a unique protocol that combines SSL and HTTP. You need to specify
https:// as an anchor in HTML documents that link to SSL, protected documents.
A client user can open a URL by specifying https:// to request an SSL, protected
documents.

Because HTTPS (HTTP + SSL) and HTTP are different protocols and usually use
different ports (443 and 80, respectively), you can run both secure and

Browser sends HTTPS:// request

Server certificate sent back

1.The user needs to send
private data (for example,
credit card number).
3.The certificate signature
is checked by the
browser.
4.The browser confirms
that the server is the
desired one and encrypts
the data.

The information is sent to the server
encrypted with negotiated session key

2.The server retrieves a
certificate from an
authority that the browser
recognizes.

5.The server un-encrypts
the data with negotiated
session key.
266 Building AS/400 Internet-Based Applications with Java

non-secure servers at the same time. As a result, you can choose to provide
information to all users using no security, and specific information only to
browsers who make secure requests. This is how a retail company on the Internet
can allow users to look through merchandise without security, complete order
forms, and send their credit card numbers using SSL security. A browser that
does not have support for HTTP over SSL naturally cannot request URLs using
HTTPS. The non-SSL browsers do not allow users to send forms that need to be
submitted securely.

Figure 249 shows how clients can access the same server instance in normal
mode (port 80) or encrypted using SSL (port 443).

Figure 249. Accessing a Secure HTTP Session

8.2 Dig ital Certificates and Certificate Authorit y
A digital certificate identifies a user or a system and is required before SSL can
be used. Once a server has a digital certificate, SSL-enabled browsers, such as
the Netscape Navigator, can communicate securely with the server using SSL. A
digital certificate consists of:

 • Owner’s distinguished name
 • Owner’s public key
 • Digital signature of certificate authority (CA)
 • Name of the CA
 • Issue date of certificate
 • Certificate expiration date
 • Serial number

Plus, digital certificates have the following characteristics:

 • Digital certificates are digital documents that validate the identity of a
certificate's owner.

 • There are three types of digital certificates: CA, server, and client certificates.

OS/400

Port 80 Port 443
Non-secure Secure

htt p://... htt ps://...

SSL

IBM HTTP Server for AS/400

IBM HTTP Server for AS/400

Sockets
Security Considerations 267

 • Digital certificates contain public key—binds it to an identity.
 • Digital certificates are created by trusted third parties called Certificate

Authorities (CA).
 • Digital certificates can be distributed freely.
 • Digital signature in the digital certificate prevents tampering.

A digital certificate is issued by a certificate authority (CA). CAs are entities that
are trusted to properly issue certificates and have controls in place to prevent
fraudulent use. They are the equivalent to the Department of Motor Vehicles for a
driver's license. An individual may have many certificates from different CAs just
as we have many forms of personal identification (Social Security card, Blue
Cross/Blue Shield card, gym membership card.) If we can trust a CA, we can be
reasonably assured that any certificate they issue properly represents the
individual that is holding it.

The Certificate Authority charges a fee for issuing a certificate.

 • Certificate Authorities broadcast their public key and Distinguished Name.
 • People add them as trusted root key to web servers and browsers.
 • This means your server will trust anyone who has a certificate from that CA.
 • There are several common CA's in the marketplace.
 • Servers and browsers are shipped with several default trusted root keys and

more can be added as needed.

Some examples of universally recognized Internet Certificate Authorities (CA)
include:

 • Thawte
 • VeriSign
 • US Postal Service
 • AT&T
 • MCI

For testing purposes or for applications that will be used exclusively in an intranet
environment, you may issue digital certificates using an intranet Certificate
Authority. The AS/400 system with Digital Certificate Manager (DCM) can act as
an intranet Certificate Authority.

For secure communications, the receiver must trust the CA that issued the
certificate, whether the receiver is a browser or a server. Any time a sender signs
a message, the receiver must have the corresponding CA certificate and public
key designated as trusted root key.

8.3 AS/400 Im plementation of Di g ital Certificate Mana gement
You can configure your AS/400 system as an intranet Certificate Authority. Digital
Certificate Manager (DCM) is a Web-browser based administration facility that
allows you to create, manage, and use certificates within an enterprise and with
partners of an enterprise. You can use DCM to request digital certificates from
Internet Certificate Authorities such as VeriSign and Thawte.

DCM allows you to create your own intranet Certificate Authority (CA). You can
then use the CA to dynamically issue digital certificates to servers and users
(client certificates) on your intranet. When you create a server certificate, DCM
automatically generates the private key and public key for the certificate.
268 Building AS/400 Internet-Based Applications with Java

You can also use DCM to register and use digital certificates from Verisign or
other commercial organizations on your intranet or the Internet.

Digital Certificate Manager is option 34 of OS/400 (5769-SS1 option 34). You
must install this option to use DCM. DCM is a link in the AS/400 Tasks page,
which runs in the *ADMIN HTTP server instance. Therefore, you must have
installed IBM HTTP Server for AS/400 (5769-DG1) and use it to access DCM. In
addition, you must install IBM Cryptographic Access Provider licensed program
(5769-AC1,or AC2, or AC3) to create certificate keys. These cryptographic
products determine the maximum key length permitted for cryptographic
algorithms on your AS/400 system. Government export and import regulations
determine which version is available in your country. To use all the options
available in DCM, you must have *SECOFR and *SECADM authority.

To access the Digital Certificate Manager, click on the hyperlink for Digital
Certificate Manager from the AS/400 Tasks Page. When using Digital Certificate
Manager, you can click the Help button on any page at any time to access on-line
help.

8.3.1 Confi gurin g a Digital Certificate Environment
You can use your AS/400 system to configure a digital certificate environment.
You can also configure the HTTP server to use digital certificates and run over
SSL.

Perform the following series of steps to configure an intranet digital certificate
environment using the AS/400 system as a Certificate Authority:

1. Use DCM to create an intranet CA in one or more AS/400 system.

2. Using DCM, the intranet CA issues server certificates that can be used in the
local server (same AS/400 system where the CA is configured) or exported to
a remote server.

3. For the clients to recognize and trust the server certificates issued by the
intranet CA, the CA certificate must be installed in the browsers and
designated as a trusted root.

4. If the server requests client certificates for client authentication, the users
must request and install client certificates in their browsers.

5. The HTTP server must be configured to enable SSL (SSL On) and specify the
key ring file where the server certificate is stored (keyfile). To optionally
authenticate client certificates (SSL_ClientAuth client), add
PROTECTION/PROTECT directives to protect resources.

8.4 Creatin g a Self-Si gned Certificate
This section describes how to create a self-signed certificate using your AS/400
system as an intranet Certificate Authority.

Because self-signed certificates are not recognized by visitor’s browsers as
coming from a trusted third party, they should not be used in customer transaction
situations over the Internet. Use them only on your test and development
systems, and for demonstration purposes. You can also use a self-signed
certificate for intranet applications.
Security Considerations 269

To obtain a self-signed certificate, perform the following tasks:

1. Create an intranet Certificate Authority.
2. Create a server certificate with your intranet CA.
3. Configure your HTTP server to use the server certificate.

8.4.1 Creatin g an Intranet Certificate Authorit y
Digital Certificate Manager (DCM) allows you to create your own intranet CA in
your AS/400 system and use it to issue server and client certificates for testing
purposes or applications within your organization.

This section outlines the steps you must perform to create a CA on your AS/400
system. You only need to perform this task if the system administrator has not
previously created an intranet Certificate Authority and if you want to use your
AS/400 system to issue intranet server certificates.

To create an intranet CA in your AS/400 system, follow these steps:

1. Start the HTTP *ADMIN server on your AS/400 system. From the command
line, enter the command:

STRTCPSVR SERVER(*HTTP) HTTPSVR(*ADMIN)

2. Access the AS/400 Tasks page from your browser by entering the URL:

http:// System_name:2001

3. You are prompted to enter user name and password. Sign on with a user that
has *SECOFR and *SECADM authority.

The AS/400 Tasks Page appears as shown in Figure 250.

Figure 250. AS/400 Tasks Page

4. Click on Digital Certificate Mana ger.

5. Click on Certificate Authorit y (CA).

6. Click on Create a Certificate Authorit y.

Note: If a Certificate Authority (CA) was previously created on your system,
the Create a Certificate Authority link does not appears.
270 Building AS/400 Internet-Based Applications with Java

7. Complete the Create a Certificate Authority form as shown in Figure 251.

Replace the field values appropriately with your organization’s information.

Figure 251. Create an Intranet Certificate Authority

Click OK.

8. After DCM processes the form, it stores a copy of the CA certificate in the CA
default key ring file:

/QIBM/USERDATA/ICSS/CERT/CERTAUTH/DEFAULT.KYR

At this point, you can install the CA certificate in your browser so that it
recognizes the certificates issued by the intranet CA. DCM displays the page
shown in Figure 252.

Figure 252. CA Certificate Created Successfully

Click Receive Certificate if you want to install the CA certificate in your
browser now. Or, click OK to proceed to the next setup window, and install the
CA certificate in your browser at later time. Notice the default path and file
name where the intranet CA key ring file is stored.
Security Considerations 271

9. Complete the CA Policy Data form to set the client certificate policy for your
CA. See Figure 253.

Figure 253. Certificate Authority Policy

This is where you define whether your CA can issue and sign client
certificates. If the CA can issue client certificates, indicate the length of time
for which the certificates will be valid.

10.The policy data for the Certificate Authority was successfully changed
message appears. At this point, you can continue to create a server certificate
signed by your Certificate Authority. This allows server authentication by
clients that use this system as a server.

8.4.2 Creatin g a Server Certificate with Your Intranet CA
Immediately after creating the intranet CA, DCM leads you to create a server
certificate.

To use Secure Sockets Layer (SSL) for secure Web serving, your server must
have a digital certificate. When you create a server certificate in DCM, the server
certificate and keys are stored in the following default directory and file:

/QIBM/USERDATA/ICSS/CERT/SERVER/DEFAULT.KYR

Note: When you create a server certificate, Digital Certificate Manager (DCM)
stores a copy of the CA certificate in the server’s key ring and designates it as a
trusted root.

1. Complete the Create a Server Certificate form as shown in Figure 254
replacing the field values with your organization information.

The options for the key size are determined by the IBM Cryptographic Access
Provider (5769-ACx) licensed program installed in your system. This is the key
size that is used to generate your public and private keys.
272 Building AS/400 Internet-Based Applications with Java

Figure 254. Create a Server Certificate Page

By default, the system inserts the fully qualified name of the AS/400 system
into the system name field. Do not change this name. This is the name used to
describe your server. You can give the server any name. However, the fully
qualified TCP/IP host name is usually used for the server name.

Click OK.

2. The Server Certificate Created Successfully page appears (see Figure 255).

Figure 255. Server Certificate Created Successfully Page

From this page, you can select whether the HTTP ADMIN server or the
Directory Services server (LDAP) uses this server certificate for SSL
connections. Do not select any of these options.

3. Copy the file and path name where the server certificate is stored to the
clipboard. It is:

/QIBM/USERDATA/ICSS/CERT/SERVER/DEFAULT.KYR

Click OK. Click Done .
Security Considerations 273

8.4.2.1 Creatin g a Server Certificate with an Existin g Intranet CA
The steps to create a server certificate described in the previous section assume
that you are creating the intranet CA for the first time. If your administrator has
already created an intranet CA and server certificate, you can use the existing
server certificate in your HTTP server configuration.

If you want to create a new server certificate using an existing intranet CA, start
by clicking Create a server certificate under Server Certificates in DCM (see
Figure 256).

Figure 256. Create a Server Certificate with an Existing Intranet CA

Select Local Certificate Authority and Click OK.

The Create Server Certificate page appears next (see Figure 254 on page 273).

8.4.2.2 Authorizin g QTMHHTTP to the Ke y Rin g File
You may need to give QTMHHTTP (or the user profile under which your HTTP
server runs) authority to the key ring and stash files. The key ring and stash files
are created with *PUBLIC authority *EXCLUDE. QTMHHTTP (or the user profile
under which the HTTP server runs) must have at least read rights to those files.

Perform the following steps:

1. To authorize QTMHHTTP to the key ring and stash file, enter the command:

WRKLNK ’/QIBM/UserData/ICSS/Cert/Server’

2. Enter 5, Next level, to display the files in the directory.

3. Enter 9, Work with authority, by the key ring file (DEFAULT.KYR).

4. Enter 1, Add user, User=QTMHHTTP, Data Authority=*R.

5. Repeat steps 1 through 3 to authorize QTMHHTTP to the stash file
(DEFAULT.sth).
274 Building AS/400 Internet-Based Applications with Java

8.4.3 Confi gurin g the Web Server to Use SSL with Server Authentication
The Web server must be configured to run over SSL and use the server
certificate you created in Section 8.4.2, “Creating a Server Certificate with Your
Intranet CA” on page 272. To configure your HTTP server to run over SSL and
use a server certificate, you must perform the following tasks:

1. From Digital Certificate Manager, click on Return to AS/400 Tasks . The
AS/400 Tasks page is displayed (see Figure 250 on page 270).

2. Click on IBM HTTP Server for AS/400 .

3. Click on Confi guration and Administration .

4. Click on Confi gurations in the left frame.

5. Select your HTTP confi guration file in the drop-down box immediately
beneath the Configurations link as shown in Figure 257.

Figure 257. HTTP Server Configuration

6. Click on Securit y confi guration . Fill in the Security configuration page (see
Figure 258 on page 276).

a. Check Allow SSL connections .
b. Accept the default SSL port (443) or specified the port you wish to use for

SSL.
c. Deselect Enable SSL client authentication .
d. Add the key rin g path and file name . If you copied it to the clipboard, you

can paste it now:
/QIBM/USERDATA/ICSS/CERT/SERVER/DEFAULT.KYR
Security Considerations 275

Figure 258. Security Configuration Page

Click App ly.

You should see this message at the top of the screen: The configuration file
was successfully updated. Server instances that are using this configuration
must be stopped and started for the changes to take affect.

You should also see your key ring file added in the Key rings box.

7. You should now stop the server instance and start it again. In the left pane
window, click Server Instances .

8. Click on Work with server instances .

9. From the drop-down box, select your server instance (see Figure 259).
276 Building AS/400 Internet-Based Applications with Java

Figure 259. Work with Server Instances

Click Stop. Wait until you see this message at the top of your window: The
server instance was successfully stopped.

10.From the drop-down box, select your server instance (see Figure 259).

Click Start .

You should see this message: The server instance was successfully started.

You have now successfully configured your Web server to use SSL with server
authentication.

8.5 Requestin g a Server Certificate from an Internet CA
To conduct commercial business on the Internet, you should request your server
certificate from an Internet Certificate Authority, such as VeriSign or Thawte,
which are widely known by clients browsers and servers.

For your private Web network within your own company, university, or group, or for
testing purposes you can, using Digital Certificate Manager (DCM), act as your
own CA. Section 8.4, “Creating a Self-Signed Certificate” on page 269, explains
this procedure.

This section describes how to obtain a server certificate from an Internet
certificate authority. To use a server certificate issued by an Internet CA, perform
these steps:

1. Request the server certificate from an Internet CA.
2. Receive a server certificate for this server.
3. Configure the HTTP server to use SSL and Server Authentication.
Security Considerations 277

8.5.1 Requestin g a Server Certificate from an Internet CA
To use SSL for secure Web serving, your server must have a digital certificate.
You can use an intranet certification authority (CA) to issue a server certificate
(see Section 8.4, “Creating a Self-Signed Certificate” on page 269), or you can
use an Internet CA.

When you choose to use an Internet CA to issue a server certificate, you must
first request the certificate. Follow these steps:

1. From the Digital Certificate Manager (DCM) page, click Server Certificates in
the left-hand frame to display an extended list of server tasks.

2. Click on Create a server certificate from the list to display the Select a
Certificate Authority page.

3. Select VeriSi gn or other Internet Certificate Authorit y as shown in Figure
260.

Figure 260. Requesting a Certificate from VeriSign or other Internet Certificate Authority

Click OK to display the Create a Server Certificate form.

4. Complete the Create a Server Certificate form as show in Figure 261 on page
279 replacing the field values with your organization information.

The options for the key size are determined by the IBM Cryptographic Access
Provider (5769-ACx) licensed program installed in your system. This is the key
size that will be used to generate your public and private keys.
278 Building AS/400 Internet-Based Applications with Java

Figure 261. Request a Server Certificate from an Internet CA

By default, the system inserts the fully qualified name of the AS/400
system into the system name field. Do not change this name. This is the
name used to describe your server. You can give the server any name,
although the fully qualified TCP/IP host name is usually used for the server
name.

Click OK to process the Create a Certificate Request form.

You receive the Server Certificate Request Created page as shown in
Figure 262.

Figure 262. Server Certificate Request Generated by DCM

Note: Do not click done or close the browser yet. You need to cut and paste
the certificate request when you submit the Certificate Signing Request to the
Internet CA.

5. Copy the Server Certificate Request to your clipboard. Start at -----BEGIN
NEW CERTIFICATE REQUEST----- and end at -----END NEW CERTIFICATE
REQUEST-----. Click Done to close the page.
Security Considerations 279

6. Follow your Internet CA procedures to paste the certificate request. For
example, to request a certificate from VeriSign, follow the instructions that are
described on the following URL:

http://www.verisign.com

When VeriSign is satisfied that you meet all of its requirements, it e-mails the
secure server certificate to you. You should receive it in three to five business
days. Other certificates authorities have their own procedures.

8.5.2 Receivin g a Server Certificate for this Server
After you receive the certificate from the Internet CA, you need to copy the signed
server certificate to a text file that DCM can access when you perform the
Receive server certificate task. Perform the following steps:

1. Copy the signed server certificate presented to you by the Internet CA to your
clipboard. Start at -----BEGIN CERTIFICATE REQUEST-----, and end at
-----END CERTIFICATE REQUEST-----.

2. Paste the signed server certificate in your clipboard into a .txt file. Use a text
editor of your choice, for example Notepad, to create a .txt file and paste the
server certificate issued by the Internet CA.

3. Save the file in your AS/400 system IFS. Use a mapped network drive and
save the .txt file that contains the server certificate issued by the Internet CA
in the following path (enter a file name of your choice):

/QIBM/USERDATA/ICSS/CERT/SERVER/rcvcert.txt

4. In DCM, click Receive a server certificate and complete the Receive a
Server Certificate page (Figure 263).

Figure 263. Receiving a Server Certificate Issued by an Internet CA

5. The Certificate Received page is displayed. You have the option to use the
received certificate with the ADMIN or LDAP server. Do not select these
options. Click OK.

6. You should receive a Server Configuration Status message indicating the
server certificate operations are complete. Click Done .

7. You must now set the key as the default key. In DCM, click Key management .
Complete the Key Management page and select Work with ke ys (see Figure
264 on page 281).
280 Building AS/400 Internet-Based Applications with Java

Figure 264. Key Management Page

8. Select the key with the label corresponding to the certificate you received from
the Internet CA (VeriSign_Cert in our example). Select Set key to be the
default and click OK.

8.5.3 Confi gurin g the HTTP Server to Use SSL
This task is described in Section 8.4.3, “Configuring the Web Server to Use SSL
with Server Authentication” on page 275.

8.6 App ly in g Securit y to the A pp lications
In this section, we run an application using digital certificates and SSL. Since we
are using the security support provided by the IBM HTTP Server for AS/400, the
benefits apply directly to servlets. For applets, we can use the HTTP server to
initiate the applet, but once the applet starts and is communicating with the
AS/400 system, it uses its own sockets connection to interface with the AS/400
system. In this case, you have to provide your own encryption to protect
information going across an Internet connection. As discussed in Chapter 3,
“Introduction to AS/400 Applets” on page 51, you can use the browser’s security
classes to provide digital certificate support.

8.6.1 Servlets
In Section 8.3, “AS/400 Implementation of Digital Certificate Management” on
page 268, we show configuring the test AS/400 system. We use this configuration
to run the servlet discussed in Chapter 4, “Introduction to AS/400 Servlets” on
page 159, using Netscape Communicator. If you run the application under
another browser, you use similar dialogs to help you control the security of the
application. To start the servlet, we enter:

https://AS400ABC/apptest/Parts.html

Before the servlet starts, we are presented with security dialogs. Since we did not
obtain a digital certificate from a universally recognized Internet Certificate
Authority, the browser displays the warning dialog shown in Figure 265 on page
282.
Security Considerations 281

Figure 265. New Site Certificate

Clicking on the Next button causes the dialog shown in Figure 266 to appear. This
dialog allows us to display more information about the certificate that is being
presented.

Figure 266. New Site Certificate Information

Clicking on the More Info... button shows a dialog which contains information
about the issuer of the certificate.
282 Building AS/400 Internet-Based Applications with Java

Figure 267. View a Certificate

Clicking on the Next button in the dialog displayed in Figure 266 on page 282,
causes the dialog shown in Figure 268 to appear.

Figure 268. New Site Certificate Acceptance Dialog

The dialog shown in Figure 268 allows us to choose how we want to deal with the
certificate received from the remote site. In this case, we recognize that it is a site
that we can trust, so we set the Accept this certificate for this session radio
button on and click on the Next button. This causes the dialog shown in Figure
269 on page 284 to appear.
Security Considerations 283

Figure 269. Netscape Certificate Warning Dialog

After we accept the certificate, the browser displays a final warning that allows us
to choose to be reminded with further warning messages. Clicking on the Next
button starts the SSL session with the remote system. If this is the first time that
we have requested a secure document, we are presented with the dialog shown
in Figure 270.

Figure 270. Netscape Security Information Dialog

We can use the check box shown in Figure 270 to control whether we want to see
this warning dialog in the future. If we click on the Continue button, the servlet
application starts as shown in Figure 271 on page 285. The lock Icon shown in
the lower left corner of the browser indicates that we are running under a SSL
session.
284 Building AS/400 Internet-Based Applications with Java

Figure 271. PartsServlet Running under SSL

8.6.2 Additional Resources
For additional information, consult the following resources:

 • HTTP Server for AS/400 Webmaster's Guide
 • Securing Your AS/400 from Harm on the Internet, SG24-4929
 • http://publib.boulder.ibm.com/pubs/html/as400/ic2924/info/index.htm

Click Internet—>Digital certificate management

 • http://www.software.ibm.com/webservers/
 • http://www.ibm.com/security
 • http://www.ics.raleigh.com
 • http://www.internet.ibm.com/commercepoint/registry/
 • http://www.verisign.com/products/doc.html
 • http://home.netscape.com/assist/security/ssl/index.html
 • http://www.rsa.com

SSL Enabled
Security Considerations 285

286 Building AS/400 Internet-Based Applications with Java

Chapter 9. HTTP Server Configuration

This chapter shows the HTTP server configurations that we use for this redbook.
The chapter explains:

 • Domino Go Webserver
 • ServletExpress
 • IBM HTTP Server for AS/400
 • IBM WebSphere Application Server for AS/400

9.1 Domino Go Webserver

For more information about Domino Go Webserver, see the Web site:
http://www.software.ibm.com/webservers/dgw.

Figure 272. Domino Go Webserver Initial Screen

To see the initial Domino Go Webserver screen, enter the following URL in the
browser Location field:

http://server:0080

If you are physically on the server system, you can replace the server name with
localhost. Perform the following steps:

1. Select CONFIGURATION AND ADMINISTRATION FORMS .

2. You are prompted for security information. The default user ID and password
are both admin .
© Copyright IBM Corp. 1999 287

Figure 273. Configuration and Administration Window

3. On the Configuration and Administration Form Screen, select Request
Routing .
288 Building AS/400 Internet-Based Applications with Java

Figure 274. Domino Go Routing Table

Figure 274 shows the Domino Go Webserver routing table used for this redbook.
The entries added were:

 • Pass /apptest/* \apptest*

This directive allows us serve the gif files from the apptest directory

 • Pass /applets/* c:\ServletExpress\servlets\applets*

This directive allows us to serve applets from the applets subdirectory

9.2 ServletExpress

ServletExpress allows you manage the servlets running under the control of the
Web server. You do not have to use ServletExpress to run servlets under the
Domino Go HTTP server if they are stored in the default directory. For the
PartsServlet class, it is stored in a package named servlets. When you export it, it
is exported to a subdirectory named servlets in the default directory. You need to
configure ServletExpress so it can find the PartsServlet class. ServletExpress
also makes it easy for you to load and unload servlets without stopping the Web
server.
HTTP Server Configuration 289

We also use ServletExpress to configure the classpath environment variable that
we use. In this case, we use ServletExpress to add the AS/400 Toolbox for Java
to the classpath variable.

Start your Web browser, perform the following steps:

1. Enter http://server:9090/ for the URL.
2. Make sure you add :9090 after the server name since the administration tool

server listens to the port 9090.

3. Login with the administrator user ID and password (the default is
admin/admin). You should see a window similar to the one shown in Figure
275.

Figure 275. ServletExpress Services Dialog

4. Click on the Manage button.

If you are physically on the server, you can replace the server name with
localhost .

Note
290 Building AS/400 Internet-Based Applications with Java

Figure 276. ServletExpress Setup Window

5. In the Setup Window, use the Basic menu option to set the Classpath
environment variable. Use the system Classpath or set your own. Be sure that
the directory where the AS/400 Toolbox for Java zip file is stored is included in
the Classpath.

6. After setting how the Classpath is resolved, select the Servlets button from
the toolbar. A window appears as shown in Figure 277 on page 292.
HTTP Server Configuration 291

Figure 277. ServletExpress Add Servlet Dialog

7. You can use this window to add any new servlets. For example, to add the
PartsServlet, complete these tasks:
a. Select the Add Servlet options from the Servlets tree and add the

information: Specify PartsServlet in the Servlet Name: text field
b. Specify servlets.PartsServlet in the Servlet Class: text field.

Note: Do not add the .class extension

c. Press the Add button
8. In the next window that appears, you can see that there are options or buttons

to load or unload servlets without the need for shutting down the whole HTTP
server.
292 Building AS/400 Internet-Based Applications with Java

Figure 278. ServletExpress Servlet Configuration Dialog

9.3 IBM HTTP Server for AS/400

For more information about the IBM HTTP Server for AS/400, see the Web site:
http://www.as400.ibm.com/http

We store the class files, jar files, gif files, and HTML files used to run the applets
and servlets discussed in this redbook in an Integrated File System (IFS)
directory named apptest .

By default, IBM HTTP Server for AS/400 serves servlets from the following
directory:

/QIBM/ProdData/IBMWebAS/servlets

We also use three applets as part of the servlet discussed in Chapter 7,
“Developing AS/400 Java Servlets” on page 221. To keep access to the applets
secure and separate from the servlets, we export them to the following directory:

/QIBM/ProdData/IBMWebAS/servlets/applets

To run the applets and servlets discussed in this redbook, you need to configure
the HTTP Server for AS/400 so it can serve the servlets and applets from these
directories.
HTTP Server Configuration 293

The configuration task requires that you add directives to the HTTP Server
configuration file for the server configuration that will be used for applet and
servlet serving. The directives to be added are PASS directives:

PASS /apptest/*
PASS /applets/* /QIBM/ProdData/IBMWebAS/servlets/applets

If you want to run servlets on the AS/400 system, you must also add special
directives to the HTTP configuration, see Section 9.4, “IBM WebSphere
Application Server for AS/400” on page 296, for details.

There are two techniques that you can use to add the directives to the server
configuration file:

 • Use the browser-based configuration program. You start this program by
entering one of the following URLs in your browser (substitute your server
name or IP address in the URL):

 – http://server_name:2001

 – http://ip_address:2001

Figure 279 on page 295 shows the V4R3 version of the browser-based
configuration program. You need to navigate to the Configurations-->Request

Processing-->Request Routing section of the configuration program to arrive at
the page where you can enter the PASS directive.

 • Use the OS/400 command Work with HTTP Configuration (WRKHTTPCFG). This
command is used in a 5250 session to invoke a line editor that can be used to
add the PASS directive to a selected configuration file member.

It is beyond the scope of this redbook to describe in detail how to use the
configuration programs for the HTTP Server for AS/400. You can find additional
information about how to configure and work the HTTP Server for AS/400 in the
following manuals:

 • HTTP Server for AS/400 Quick Beginnings, GC41-5433
 • HTTP Server Webmaster’s Guide, GC41-5434

Note
294 Building AS/400 Internet-Based Applications with Java

Figure 279. Browser-based HTTP Server Configuration Program

Start or Restart the HTTP Server Configuration Instance
After adding your PASS directive to the HTTP Server configuration file, you need
to start or restart the HTTP Server configuration instance.

If the HTTP Server instance is not active, use the following OS/400 command to
start the server instance:

STRTCPSVR SERVER(*HTTP) HTTPSVR(DEFAULT)

If the HTTP Server instance is already active, use the following OS/400 command
to restart the server instance:

STRTCPSVR SERVER(*HTTP) RESTART(*HTTP) HTTPSVR(DEFAULT)

For either of those commands, substitute your server instance name if you need
to start or restart a server instance other than DEFAULT. For example, we use the
name JAVAS for our configuration file.

Regardless of the technique you use to add the PASS directive to the HTTP
Server configuration file, be sure that you place the PASS directive for the
apptest directory before the PASS / directive.

The PASS / directive is considered to be a "catch-all" directive. If that directive
is encountered before your PASS directive, the HTTP Server attempts to serve
the requested HTML file from the directory associated with the PASS /
directive.

Note
HTTP Server Configuration 295

9.4 IBM WebSphere Application Server for AS/400

The IBM WebSphere Application Server for AS/400 provides the same
functionality of what the product provides on the other shipped platforms. On the
AS/400 system, it enables servlet support. Please refer to the official WebSphere
Web site for complete product information. It can be found at:
http://www.software.ibm.com/webservers/appserv/index.html

The AS/400 version has the same installation structure as the other platforms:

<INSTALL_ROOT>...

In this case, for the AS/400 system, <INSTALL_ROOT> is
/QIBM/ProdData/IBMWebAS/ .

You can configure a server instance of the IBM HTTP Server for AS/400 to run
WebSphere. It is enabled through the Server API of the HTTP Server. Figure 280
shows the configuration directives you need to add to the HTTP server
configuration file to enable WebSphere. For the entire listing of the IBM HTTP
Server for AS/400 configuration file used for this redbook, refer to Appendix B,
“IBM HTTP Server for AS400 Configuration” on page 301.

Figure 280. HTTP Server Directives to Enable WebSphere

In the near future, you can use the Administration and Configuration form of the
HTTP Server to add those directives automatically when you select to enable the
Java Servlet support.

Note: Today, the form is there, but the directives added are not correct for the
WebSphere support.

Once you select the configuration file and add the directives shown in Figure 280
to enable WebSphere, you need to change the jvm.properties files under the
/QIBM/ProdData/IBMWebAS/properties/server/servlet/servletservice/
directory. Change the following line in the file to point to your configuration file,

A number of PTFs are required to enable the WebSphere support on the
AS/400 system. The PTFs are not part of a cumulative tape at this point, so you
need to order them. To see the current list of PTFs, go the Web page
http://www.as400.ibm.com/http and click on the WebSphere Application
Server link.

Attention

Enable WebSphere support
Service /servlet/* /QSYS.LIB/QHTTPSVR.LIB/QZHJSVLT.SRVPGM:AdapterService*
Service /*.jsp /QSYS.LIB/QHTTPSVR.LIB/QZHJSVLT.SRVPGM:AdapterService
ServerInit /QSYS.LIB/QHTTPSVR.LIB/QZHJSVLT.SRVPGM:AdapterInit
/QIBM/ProdData/IBMWebAS/properties/server/servlet/servletservice/jvm.properties
ServerTerm /QSYS.LIB/QHTTPSVR.LIB/QZHJSVLT.SRVPGM:AdapterExit
Pass /IBMWebAS/samples/* /QIBM/ProdData/IBMWebAS/samples/*
Pass /IBMWebAS/doc/* /QIBM/ProdData/IBMWebAS/doc/*
Pass /IBMWebAS/system/admin/* /QIBM/ProdData/IBMWebAS/system/admin/*
Pass /IBMWebAS/* /QIBM/ProdData/IBMWebAS/web/*
end - WebSphere support
296 Building AS/400 Internet-Based Applications with Java

the shipped default is CONFIG. In this case, we use a configuration file named
JAVAS .

Figure 281. JVM Properties File

Once you change this line, you are ready to start the IBM WebSphere Application
Server on the AS/400 system. Start the HTTP server instance that points to the
configuration file that you have configured for WebSphere.

9.4.0.1 Verifying the Installation
To verify that you have WebSphere set up correctly, try to run the
HelloWorldServlet as your first servlet on the AS/400 system. Set the URL on
your browser to:

http://yourAS400Server:xxxx/servlet/HelloWorldServlet

yourServer:xxxx is your server name and the corresponding port number you
used for this server.

If you "Hello World" appears as the result, your WebSphere Application Server is
set up and ready. Again, you need to be patient here to allow the servlet to be
loaded into the Java Virtual Machine.

9.4.0.2 WebSphere Administration Graphical User Interface
The IBM WebSphere Application Server also provides its own Web-based GUI for
configuration, called the Application Server Manager. To get to the GUI, point
your browser to the following URL:

http://yourAS400Server:9090

The WebSphere Signon window appears as shown in Figure 282 on page 298.

Properties for Domino Go
#ncf.native.httpd.cnf.path=c:\winnt\httpd.cnf
ncf.native.httpd.cnf.path=/QSYS.LIB/QUSRSYS.LIB/QATMHTTPC.FILE/ JAVAS.MBR

It may take a little longer than you expect for your HTTP server instance to
come up due to the fact that it needs to create a Java Virtual Machine for
WebSphere to run under. Watch the server instance on WRKACTJOB until you
see it finish bring coming up and going into TIMW status.

Note
HTTP Server Configuration 297

Figure 282. WebSphere Sign On Screen

The graphical user interface provides configuration screens that allow you to
configure servlets. The screens and the configuration scenario is the same as for
ServletExpress used with the Domino Go Webserver. Please see Section 9.2,
“ServletExpress” on page 289 for details about configuring servlets. You do not
need to use the Application Server Manager to run servlets on the AS/400 system
from the default directory. For the PartsServlet class, it is stored in a package
named servlets. When you export it, it is exported to a subdirectory named
servlets in the default directory. You need to configure WebSphere so it can find
the PartsServlet class. The WebSphere graphical user interface also makes it
easy for you to load and unload servlets without stopping the Web server.

We also use the Application Server Manager to configure the classpath
environment variable that we use. In this case, we use the Application Server
Manager to add the AS/400 Toolbox for Java to the classpath variable.

The Application Server Manager also makes it easy for you to load and unload
servlets without starting and stopping the HTTP server.
298 Building AS/400 Internet-Based Applications with Java

Appendix A. Exam ple Pro grams

The Java programs and the AS/400 programs and libraries used in this redbook
are available for you to download from the Internet. These examples were
developed using VisualAge for Java Version 2.0 Enterprise edition. OS/400 V3R2
or later is required. To run the servlet examples on the AS/400 system, OS/400
V4R3 or later is required. The following VisualAge for Java projects are available:

 • AdvancedServlet —Advanced servlet example. See Chapter 7, “Developing
AS/400 Java Servlets” on page 221.

 • App letWorksho p—Advanced applet example. See Chapter 6, “Developing
AS/400 Java Applets” on page 193.

 • ServletExamples —Beginning applets and servlet examples. See Chapter 3,
“Introduction to AS/400 Applets” on page 51 and Chapter 4, “Introduction to
AS/400 Servlets” on page 159.

A.1 Downloadin g the Files from the Internet Web Site

To use these files, you must download them to your personal computer from the
Internet Web site. A file named README.TXT is included. It contains instructions
for restoring the AS/400 libraries, the VisualAge for Java examples and runtime
notes. The URL to access is: www.redbooks.ibm.com

Click on Additional Materials and select the directory SG245337. In the
SG245337 directory, click on readme.txt .

A.2 Settin g up VisualA ge for Java

VisualAge for Java, Enterprise Edition, Version 2.0 requires the following
software and hardware for development with the IDE:

 • Windows 95 or Windows NT 4.0 with service pack 3
 • TCP/IP communication protocol
 • Pentium processor or higher recommended
 • SVGA 800x600 display or higher (1024x768 recommended)
 • 64 MB RAM minimum (80 MB recommended)
 • Frames-capable Web browser

 – Netscape Navigator 4.04 or higher, or
 – Microsoft Internet Explorer 4.01 or higher

 • Java Development Kit (JDK) 1.1 for deploying applications or
 • JDK 1.1.2 for deploying applications using Swing components

The Java support classes described in the following sections are required:

These example programs have not been subjected to any formal testing. They
are provided "as is". Use them for reference only. Please refer to Appendix C,
“Special Notices” on page 303, for more information.

Important Information
© Copyright IBM Corp. 1999 299

A.2.1 The AS/400 Toolbox for Java Classes

The example programs require that the AS/400 Toolbox for Java classes be
inside the VisualAge for Java Integrated Development Environment. You must
import these classes inside the IDE. Enterprise Edition simplifies this process.
After you install VisualAge for Java 2.0 Enterprise edition, the Toolbox classes
are available in the repository as part of the IBM Enterprise Toolkit for AS/400
project. If you want to use the Toolbox classes, perform the following steps:

1. From the workbench, click on File—>Quick Start .
2. Click on Features—>Add Feature—>OK .
3. Select IBM Enterprise Toolkit for AS/400—>OK .

This adds the toolbox classes to your workspace. The IBM Enterprise Toolkit for
AS400 is listed under All projects.

The alternative is to perform the following steps:

1. Install LPP 5763-JC1 on an AS/400 system.
2. Download the classes to your workstation.
3. Import the classes into the VisualAge for Java IDE.

A.2.2 IBM Enterprise Data Access Libraries

The example programs use these supporting classes. To add them, perform
these tasks:

1. From the workbench, click on File—>Quick Start .
2. Click on Features—>Add Feature—>OK .
3. Select IBM Enterprise Data Access Libraries—>OK .

A.2.3 Sun JSDK Class Libraries

The example programs use these supporting classes. To add them, perform
these steps:

1. Select Selected from the Workbench menu.
2. Select Add—>Project from the pulldown menu.
3. Click on the Add projects from the repository radio button.
4. Select the Sun JSDK class libraries project .
5. Click on the Finish button.

A.2.4 Netscape Security

The example programs use these supporting classes. To add them:

1. Select Selected from the Workbench menu.
2. Select Add—>Project from the pulldown menu.
3. Click on the Add projects from the repository radio button.
4. Select the Netscape Security project .
5. Click on the Finish button.
300 Building AS/400 Internet-Based Applications with Java

Appendix B. IBM HTTP Server for AS400 Configuration

This appendix contains the configuration file used for the IBM HTTP Server for
AS/400. The name of the configuration file is JAVAS. It uses port 1040.

00010 # *
00020 # IBM HTTP Server for AS/400
00030 # *
00200 #---
00210 # *** PORT DIRECTIVES ***
00220 #
00230 # The default port for HTTP is 80. If you change this
00240 # use a port number greater than 1024.
00250 #
00260 #
00270 # Syntax:
00280 # Port <port number>
00290 #---
00300 Port 1040
01090 Pass / /QIBM/ProdData/HTTP/Public/HTTPSVR/HTML/Welcome.html
01100 Pass /sample/* /QIBM/ProdData/HTTP/Public/HTTPSVR/HTML/*
01110 Service /servlet/* /QSYS.LIB/QHTTPSVR.LIB/QZHJSVLT.SRVPGM:AdapterService*
01120 Service /*.jhtml /QSYS.LIB/QHTTPSVR.LIB/QZHJSVLT.SRVPGM:AdapterService
01130 Service /*.jsp /QSYS.LIB/QHTTPSVR.LIB/QZHJSVLT.SRVPGM:AdapterService
01140 Map /netdata/* /QSYS.LIB/A980501A.LIB/DB2WWW.PGM/*
01710 IconPath /QIBM/HTTPSVR/Icons/
01720 AddIcon text.gif text text/*
01730 AddIcon html.gif html text/html
01740 AddIcon binary.gif bin application/*
01750 AddIcon compress.gif Z application/x-compress
01760 AddIcon compress.gif gzip application/x-gzip
01770 AddIcon image.gif img image/*
01780 AddIcon movie.gif vid video/*
01790 AddIcon sound.gif au audio/*
01800 #--
01810 # *** AddType ***
01820 #
01830 # To bind files with a particular suffix to a MIME
01840 # type/subtype, use AddType. Multiple occurrences
01850 # are allowed.
01860 AddType .java text/plain binary 1.0
01870 AddType .html text/html 8bit 1.0
01880 AddType .htm text/html 8bit 1.0
01890 AddType .gif image/gif binary
02330 Map /IBMWebAS/samples/* /QIBM/ProdData/IBMWebAS/samples/*
02340 Map /IBMWebAS/doc/* /QIBM/ProdData/IBMWebAS/doc/*
02350 Map /IBMWebAS/system/admin/* /QIBM/ProdData/IBMWebAS/system/admin/*
02360 Map /IBMWebAS/* /QIBM/ProdData/IBMWebAS/web/*
02370 Pass /apptest/*
02380 Pass /applets/* /Qibm/proddata/ibmwebas/servlets/applets/*
02390 Exec /QSYS.LIB/A980501A.LIB/*
02400 ServerInit /QSYS.LIB/QHTTPSVR.LIB/QZHJSVLT.SRVPGM:AdapterInit
 /QIBM/ProdData/IBMWebAS/properties/server/servlet/servletservice/jvm.properties
02410 ServerTerm /QSYS.LIB/QHTTPSVR.LIB/QZHJSVLT.SRVPGM:AdapterExit
02420 Enable GET
02430 Enable HEAD
02440 Enable POST
02450 Enable OPTIONS
02460 Enable TRACE
02470 Disable CONNECT
02480 normalmode On
02490 sslmode On
02500 sslport 443
02510 SSLClientAuth Off
02520 keyfile /QIBM/USERDATA/ICSS/CERT/SERVER/DEFAULT.KYR
© Copyright IBM Corp. 1999 301

302 Building AS/400 Internet-Based Applications with Java

Appendix C. Special Notices

This publication is intended to help anyone who want to build AS/400 Internet
based applications with Java. The information in this publication is not intended
as the specification of any programming interfaces that are provided by VisualAge
for Java or the AS/400 Toolbox for Java. See the PUBLICATIONS section of the
IBM Programming Announcement for VisualAge for Java and the AS/400 Toolbox
for Java for more information about what publications are considered to be
product documentation.

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent program that does not infringe any of IBM's intellectual property rights
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any formal
IBM test and is distributed AS IS. The information about non-IBM ("vendor")
products in this manual has been supplied by the vendor and IBM assumes no
responsibility for its accuracy or completeness. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been reviewed by
IBM for accuracy in a specific situation, there is no guarantee that the same or
similar results will be obtained elsewhere. Customers attempting to adapt these
techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of these
Web sites.

Any performance data contained in this document was determined in a controlled
environment, and therefore, the results that may be obtained in other operating
environments may vary significantly. Users of this document should verify the
applicable data for their specific environment.
© Copyright IBM Corp. 1999 303

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of including
these reference numbers is to alert IBM customers to specific information relative
to the implementation of the PTF when it becomes available to each customer
according to the normal IBM PTF distribution process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

Java and HotJava are trademarks of Sun Microsystems, Incorporated.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks
or registered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used
by IBM Corporation under license.

Pentium, MMX, ProShare, LANDesk, and ActionMedia are trademarks or
registered trademarks of Intel Corporation in the U.S. and other
countries.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or
service marks of others.

AFP IBM 
AIX OS/390
AS/400 OS/2
Client Access OS/400
DB2 VisualAge

400
304 Building AS/400 Internet-Based Applications with Java

Appendix D. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

D.1 International Technical Su pport Or ganization Publications
For information on ordering these ITSO publications see “How IBM Employees
Can Get ITSO Redbooks” on page 307.

 • Building AS/400 Applications with Java, SG24-2163

 • Application Development with VisualAge for Java Enterprise, SG24-5081

 • Securing Your AS/400 from Harm on the Internet, SG24-4929

D.2 Redbooks on CD-ROMs
Redbooks are also available on CD-ROMs. Order a subscription and receive
updates 2-4 times a year at significant savings.

D.3 Other Publications
These publications are also relevant as further information sources:

 • HTTP Server for AS/400 Quick Beginnings, GC41-5433

 • HTTP Server Webmaster’s Guide, GC41-5434

 • Java in a Nutshell, ISBN 1-56592-183-6

 • Java Developer's Reference, ISBN 1-57521-129-7

 • Object Oriented Technology: A Manager's Guide, ISBN 0-201-56358-4

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038
Lotus Redbooks Collection SBOF-6899 SK2T-8039
Tivoli Redbooks Collection SBOF-6898 SK2T-8044
AS/400 Redbooks Collection SBOF-7270 SK2T-2849
RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RS/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
RS/6000 Redbooks Collection (PDF Format) SBOF-8700 SK2T-8043
Application Development Redbooks Collection SBOF-7290 SK2T-8037
© Copyright IBM Corp. 1999 305

306 Building AS/400 Internet-Based Applications with Java

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks, CD-ROMs,
workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The latest information
may be found at http://www.redbooks.ibm.com/ .

How IBM Employees Can Get ITSO Redbooks
Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

 • Redbooks Web Site on the World Wide Web

http://w3.itso.ibm.com/

 • PUBORDER – to order hardcopies in the United States

 • Tools Disks

To get LIST3820s of redbooks, type one of the following commands:

 TOOLCAT REDPRINT
 TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
 TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get BookManager BOOKs of redbooks, type the following command:

 TOOLCAT REDBOOKS

To get lists of redbooks, type the following command:

 TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT

To register for information on workshops, residencies, and redbooks, type the following command:

 TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1998

 • REDBOOKS Category on INEWS

 • Online – send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

For information so current it is still in the process of being written, look at "Redpieces" on the Redbooks Web Site
(http://www.redbooks.ibm.com/redpieces.html). Redpieces are redbooks in progress; not all redbooks become
redpieces, and sometimes just a few chapters will be published this way. The intent is to get the information out
much quicker than the formal publishing process allows.

Redpieces
© Copyright IBM Corp. 1999 307

How Customers Can Get ITSO Redbooks
Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

 • Online Orders – send orders to:

 • Telephone Orders

 • Mail Orders – send orders to:

 • Fax – send orders to:

 • 1-800-IBM-4FAX (United States) or (+1) 408 256 5422 (Outside USA) – ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

 • On the World Wide Web

In United States
In Canada
Outside North America

IBMMAIL
usib6fpl at ibmmail
caibmbkz at ibmmail
dkibmbsh at ibmmail

Internet
usib6fpl@ibmmail.com
lmannix@vnet.ibm.com
bookshop@dk.ibm.com

United States (toll free)
Canada (toll free)

1-800-879-2755
1-800-IBM-4YOU

Outside North America
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(long distance charges apply)
(+45) 4810-1020 - German
(+45) 4810-1620 - Italian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

IBM Publications
Publications Customer Support
P.O. Box 29570
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Allerød
Denmark

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-800-267-4455
(+45) 48 14 2207 (long distance charge)

Redbooks Web Site
IBM Direct Publications Catalog

http://www.redbooks.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl

For information so current it is still in the process of being written, look at "Redpieces" on the Redbooks Web Site
(http://www.redbooks.ibm.com/redpieces.html). Redpieces are redbooks in progress; not all redbooks become
redpieces, and sometimes just a few chapters will be published this way. The intent is to get the information out
much quicker than the formal publishing process allows.

Redpieces
308 Building AS/400 Internet-Based Applications with Java

IBM Redbook Order Form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
 309

310 Building AS/400 Internet-Based Applications with Java

List of Abbreviations

AFP advanced function printing

APA all points addressable

AWT Abstract Windowing Toolkit

CPW Commercial Processing
Workload

EAB Enterprise Access Builder

DAX Data Access Builder

DDM Distributed Data Management

DPC Distributed Program Call

FFST First Failure Support
Technology

GUI Graphical User Interface

HTML Hypertext Markup Language

IBM International Business
Machines Corporation

IDE Integrated Development
Environment

ITSO International Technical
Support Organization

JAR Java archive

JDBC Java Database Connectivity

JDK Java Development Toolkit
© Copyright IBM Corp. 1999
JFC Java Foundation Classes

JIT Just in Time Compiler

JVM Java Virtual Machine

MI Machine Interface

OOA Object Oriented Analysis

OOD Object Oriented Design

OOP Object Oriented Programming

PTF Program Temporary Fix

RAD Rapid Application
Development

RMI Remote Method Invocation

SCS SNA Character Set

SLIC System Licensed Internal
Code

SSL secure sockets layer

TIMI Technology Independent
Machine Interface

UML Unified Methodology
Language

URL Universal Resource Locator

VCE Visual Composition Editor

WWW World Wide Web
 311

312 Building AS/400 Internet-Based Applications with Java

Index

Numerics
5763-JC1 58, 300
5769-AC1 41, 47, 269
5769-AC2 41, 47
5769-AC3 41, 47
5769-DG1 41, 269
5769-NC1 41, 47
5769-NCE 41, 47
5769-SS1 41, 269

A
abbreviations 311
acronyms 311
ActiveX 29, 133, 142
Add projects from the repository 59
All Problems tab 58
APPLET tag 30, 111, 217
Applet Viewer 51, 69, 74, 75, 79
applets 1, 6, 28, 51, 221

applet development scenario 193
applet processing 31
how applets are different from Net.Data and CGI pro-
grams 32
sample applet 32
scripting 29
serving applets from the AS/400 system 130
serving the applet from the PC drive 106
when to use 34

AppletViewer Properties dialog 76
ARCHIVE 131
ARCHIVE tag 106, 110
AS/400 Toolbox for Java 6, 51, 133, 168, 218, 222, 291,
300
ASCII 3
ASCII to EBCDIC 3
authenticity 263
AUTOEXEC.BAT. 126

B
bibliography 305

C
Cart applet 194
CartApplet class 197
cert2spc 116
Certificate Authority (CA) 115, 261, 264, 268, 281
CGI 1, 6, 15, 41, 44

APIs 17
Processing 16
sample RPG-CGI 20
when to use 28
why use 15

chkjava 116
Choose Bean 65
Choose Bean icon 63
© Copyright IBM Corp. 1999
Class Path 70, 71
CLASSPATH 128, 129, 132

Windows 95/98 126
Windows NT 126

CLASSPATH environment variable 125
com.ibm.as400.access.AS400JDBCDriver 58
com.ibm.ivj.eab.dab 58
Common Gateway Interface 1
Company Database

Customer 179
District 179
Item 179
Order 179
Order Line 179
Stock 179

Compute Now button 74
confidentiality 263
configure a digital certificate environment 269
CPW databases 193
cryptographic support 47
Customer Table Layout (CSTMR) 189

D
dataAccess 62
DataAccessor interface 80, 89

methods 89
DB2WWW 7
DbSelectServlet 243
digital certificate 114, 267
Digital Certificate Manager 41, 47, 261
Digital Certificate Manager (DCM) 268, 270, 272, 277,
278
Digital certificates 115, 263, 281
digital signature 263
Distributed Data Management (DDM) 80
District Table Layout (Dstrct) 189
doDelete 164
doDelete() 161
doGet() 161
domain 62
domino Go Webserver 174, 221, 222, 257, 287

routing table 289
doPost() 161
doPut 164
doPut() 161

E
EBCDIC 3
EBCDIC to ASCII 5
encryption 263

F
FORM 31
forms 2
313

G
Generate meta data method 68
Get method 3
getParameter() 165
getParameterNames() 165
getParameterValues 173
getParameterValues() 165
gif files 258, 260

H
HelloWorldServlet 166
HotJava 28
HTML 2, 4, 106, 133, 172
HTTP 3, 42, 164, 270
HTTP 1.1 42, 164
HTTPS 263, 265
HttpServletResponse 37
Hypertext Markup Language 2

I
IBM Enterprise Access Libraries 198
IBM Enterprise Data Access Libraries 58, 59, 72, 300
IBM Enterprise Toolkit for AS/400 project 300
IBM Enterprise Toolkit for AS400 59, 72
IBM HTTP Server for AS/400 1, 3, 5, 31, 41, 43, 51, 114,
132, 174, 177, 178, 221, 260, 261, 287, 296

serving applets from 129
IBM WebSphere Application Server for AS/400 41, 48,
177, 287

Application Server Manager 297
import 52
import dialog 55
Import SmartGuide 53
Integrated PC Server (IPCS) 6
Internet Connection Secure Server (ICSS) 47
Internet Connection Server (ICS) 41
Internet shopping application 193

CartApplet applet 211, 215
ItemsDb class 200
SelectedItems class 198
ToolboxApplet" applet 209

Item Table Layout (ITEM) 191
ItemsDb 197
ItemsDb class 197

J
JarMaker 157
Java and REXX CGI 44
Java applets 1
Java Console 110
Java Plug-in 51, 133, 156

a step-by-step approach 134
cache JARs in memory 154
control panel 154
enable Java Plug-in 154
HTML converter 136
Internet Explorer 140
Java run time parameters 154

Netscape Navigator 142
network access 154
running 137
show Java Console 154
summary 156

Java servlets 1
JavaScript 29
JDBC 58, 80, 168

properties object 93
JDBCPartsCatalog class 90

methods 90
jt400.jar 109, 128, 130
jt400.zip 109, 125, 128, 129, 132

L
launching the Applet Viewer 74
LDAP 280
Lotus Domino server 5

M
makecert 116
Microsoft Internet Explorer 28, 113, 156, 221

signed cabinet file 114
Microsoft Java Software Development Kit (SDK) 115

N
Net.Data 1, 6

Net.Data macros 9
Net.Data Processing 7
sample Net.Data macro 10
when to use 14

Netscape 110, 112
enablePrivilege code 112
Java console 110
security prompt 112

Netscape Navigator 28, 156, 221
security 93

Netscape Security 59, 72
Netscape Security project 59, 300

O
ODBC 5
ORDENTR 181
Order Line Table Layout (ORDLIN) 190
Order Status applet 196
Order Table Layout (ORDERS) 190

P
Part class 96

methods 97
PartsCatalog bean 63
PartsCatalog class 100

defaultDataAccessor method 101
methods 100

PartsServlet servlet 167
PartsView applet 51, 61, 112

running 77
314 Building AS/400 Internet-Based Applications with Java

PartsView class 81
handleException 87
methods 82

persistent CGI 41, 45
persistent connections 42
Plug-in 133
Post method 3
Project path field 72
Proxy caching 43
Proxy logging 44
PRTODERR 181

Q
QOpenSys 43
QTMHHTTP 274
QtmhWrStout 20
QZHBCGI 17
QzhbCgiParse 18, 44

R
redbook.dat repository 55
repository 55
requesting a server certificate 277
resolving problems in the imported applet 57
RPG application flow 181
RPG order entry application 179

customer transaction flow 181
ORDENTR 181
PRTODERR 181
SLTCUSTR 181
SLTPARTR 181
tables 189

runnable class 72

S
Secure Sockets Layer (SSL) 41, 221, 261, 272
SelectedItems 197
SelectedItems class 197, 198
self-signed certificate 269
servlet package 169
ServletExpress 175, 257, 287

add servlet dialog 292
configure 176, 289
services dialog 290
servlet configuration dialog 293
setting the Classpath 291
setup window 291

ServletRequest 164
ServletResponse 164
servlets 1, 6, 34, 41, 159, 221

communication with an HTTP server 164
destroy method 163
developing a servlet application 166
doGet 164, 170
doPost 164, 172
HelloWorldServlet 166, 297
how to use 163
HTML 172

init method 163
introduction to the servlet support 160
invoking 165
javax.servlet 169
javax.servlet.http 169
lifecycle 163
parameters 164
running on the AS/400 system 177
sample servlet 37
service method 163
servlet processing 35
servlets versus CGI 162
three tier implementation 175
two tier implementation 177
when to use 39
why use 34, 161

set Applet attributes 71
setting AppletViewer properties 75
Setting up VisualAge for Java 299
shopping application 193
signcode 116
signed cabinet file 114, 120

creating 114
SLTCUSTR 181
SLTPARTR 181
SQLOrder 243
SQLWhere 243
SQLWizard 243
SSL 267

Configure the Web Server to Use 275
Standard Input (STDIN) 3
Standard Output (STDOUT) 5
StatusApplet 197
StatusApplet class 197
STDIN 27
STDOUT 28, 37
Stock Table Layout (Stock) 191
STRTCPSVR 295
Sun Java Plug-in 133
Sun JSDK 169

class libraries 300
Sun JSDK class libraries 300

T
TCP/IP 263
TestPart class 94

methods 95
Thawte 268, 277
Toolbox applet 194
ToolboxApplet class 197
Tools for Internet Development on the AS/400 6

V
VBScript 29
vector 85, 198
VectorEnumeration 198
VeriSign 268, 277
virtual hosts 42, 43
Visual Composition editor 66
 315

VisualAge for Java IDE 52
VisualAge for Java workspace 64

W
WebSphere Administration Graphical User Interface 297
WebSphere Application Server 41, 48, 177
WebSphere Application Server for AS/400 177, 257, 259

Application Server Manager 297
what it provides 48

WebSphere Sign On screen 298
WRKHTTPCFG 294
316 Building AS/400 Internet-Based Applications with Java

© Copyright IBM Corp. 1999 317

ITSO Redbook Evaluation

Building AS/400 Internet-Based Applications with Java
SG24-5337-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete this
questionnaire and return it using one of the following methods:

 • Use the online evaluation form found at http://www.redbooks.ibm.com
 • Fax this form to: USA International Access Code + 1 914 432 8264
 • Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
_ Customer _ Business Partner _ Solution Developer _ IBM employee
_ None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

SG24-5337-00

Printed in the U.S.A.

B
uilding A

S
/400 Internet-B

ased A
pplications w

ith Java
S

G
24-5337-00

	Contents
	Figures
	Tables
	Preface
	The Team That Wrote This Redbook
	Comments Welcome

	Chapter 1. AS/400 Internet Application Development Overview
	1.1 From Server to Browser and Back—Fundamental Concepts
	1.1.1 The Requesting Web Page
	1.1.2 The Web Serving Application

	1.2 AS/400 Internet Application Development Techniques
	1.2.1 Other Approaches for Internet Applications
	1.2.2 Four Tools for Internet Development on the AS/400 System

	1.3 Net.Data
	1.3.1 Why Use Net.Data
	1.3.2 Net.Data Processing
	1.3.3 How Net.Data Macros are Invoked
	1.3.4 A Sample Net.Data Macro
	1.3.5 Source Code for the Net.Data Sample Macro
	1.3.6 When to Use Net.Data

	1.4 Common Gateway Interface (CGI) Programming
	1.4.1 Why Use CGI Programming
	1.4.2 CGI Processing
	1.4.3 APIs Used for CGI Programming
	1.4.4 A Sample RPG-CGI Program
	1.4.5 Source Code for the CG_PARTS CGI Program
	1.4.6 Summary of the CGI Sample Program
	1.4.7 When to Use CGI Programs

	1.5 Java Applets
	1.5.1 The Scripting Alternative
	1.5.2 How Applets are Different from Scripting
	1.5.3 Applet Processing
	1.5.4 How Applets are Different from Net.Data and CGI Programs
	1.5.5 A Sample Applet
	1.5.6 When to Use Applets
	1.5.7 Applet Development

	1.6 Java Servlets
	1.6.1 Why Use Servlets
	1.6.2 Servlet Processing
	1.6.3 A Sample Servlet
	1.6.4 When to Use Servlets
	1.6.5 Servlet Development

	Chapter 2. IBM HTTP Server for AS/400
	2.1 Product Packaging
	2.2 HTTP 1.1 Protocol
	2.2.1 Persistent Connections
	2.2.2 Virtual Hosts

	2.3 Proxy, Cache, and Local Memory Cache
	2.3.1 Proxy Caching
	2.3.2 Proxy Logging
	2.3.3 Local Memory Cache

	2.4 CGI Programming
	2.4.1 Java and REXX CGI
	2.4.2 Non-parsed Headers CGI
	2.4.3 QzhbCgiParse API

	2.5 Persistent CGI
	2.5.1 How Persistent CGI Works
	2.5.2 Controlling Persistent CGI

	2.6 Cryptographic Support, Certificates, and Digital ID
	2.6.1 Cryptographic Access Provider
	2.6.2 Digital Certificate Manager
	2.6.3 Digital ID

	2.7 WebSphere Application Server for AS/400
	2.7.1 What WebSphere Provides
	2.7.2 Accessing the WebSphere Server

	2.8 Summary

	Chapter 3. Introduction to AS/400 Applets
	3.1 The PartsView Applet
	3.1.1 Importing the Source Code for the Applet to the Workbench
	3.1.2 Resolving Problems in the Imported Applet
	3.1.3 Overview of Classes Used in the PartsView Applet
	3.1.4 Working with the Applet in the Visual Composition Editor
	3.1.5 Testing the Applet in the VisualAge for Java Applet Viewer

	3.2 Detailed Review of Java Classes Used in the Applet
	3.2.1 Design of the Applet
	3.2.2 Testing and Debugging Features in the PartsView Applet
	3.2.3 The PartsView Class
	3.2.4 The DataAccessor Interface
	3.2.5 The JDBCPartsCatalog Class
	3.2.6 The TestPart Class
	3.2.7 The Part Class
	3.2.8 The PartsCatalog Class

	3.3 Running the Applet in a Browser
	3.3.1 Test Environment
	3.3.2 Serving the Applet from the PC Drive
	3.3.3 Creating a Signed Cabinet File for Microsoft Internet Explorer 4.01
	3.3.4 Using the CLASSPATH Environment Variable
	3.3.5 Considerations for Using CLASSPATH
	3.3.6 Serving Applets from the HTTP Server for AS/400

	3.4 Working with the Sun Java Plug-in
	3.4.1 Java Plug-in Basics
	3.4.2 Working with the Java Plug-in—A Step-by-Step Approach
	3.4.3 Summary of the Java Plug-in

	3.5 Conclusion

	Chapter 4. Introduction to AS/400 Servlets
	4.1 Introduction to the Servlet Support
	4.1.1 Why Use Servlets
	4.1.2 Servlets versus CGI.BIN

	4.2 How to Use Servlets
	4.2.1 Communication with an HTTP Server
	4.2.2 Invoking a Servlet

	4.3 A Simple Servlet
	4.4 Developing the Servlet Application
	4.5 Migrating the Applet to a Servlet
	4.5.1 Enhancing the Servlet

	4.6 Executing the Servlet
	4.6.1 Running under the Domino Go Webserver
	4.6.2 Running under the IBM HTTP Server for AS/400
	4.6.3 Running Servlets on the AS/400 System
	4.6.4 Running the PartsServlet Servlet on the AS/400 System

	Chapter 5. Overview of the Order Entry Application
	5.1 Overview of the Order Entry Application
	5.1.1 The ABC Company
	5.1.2 The ABC Company Database
	5.1.3 A Customer Transaction
	5.1.4 Application Flow
	5.1.5 Customer Transaction Flow
	5.1.6 Database Table Structure
	5.1.7 Order Entry Application Database Layout
	5.1.8 Database Terminology

	Chapter 6. Developing AS/400 Java Applets
	6.1 Shopping Application User Interface
	6.2 Shopping Application Objects and Classes
	6.3 The SelectedItems Class
	6.3.1 Writing the Class
	6.3.2 Writing the Methods

	6.4 The ItemsDb Class
	6.4.1 Common Methods All Applets Use
	6.4.2 Methods Used by the Toolbox Applet
	6.4.3 Methods Used by CartApplet
	6.4.4 Methods Used by the StatusApplet

	6.5 The Toolbox Applet
	6.5.1 The addAllRows Method
	6.5.2 The getSelectedIndexes Method
	6.5.3 Checking the Connections

	6.6 The Cart Applet
	6.6.1 Writing the Class
	6.6.2 Viewing the Methods

	6.7 The Order Status Applet
	6.8 Testing the Applets
	6.9 Serving the Applets from the AS/400 System

	Chapter 7. Developing AS/400 Java Servlets
	7.1 Running the Application
	7.2 Application Programs
	7.2.1 How the Application Works

	7.3 The Java Application Programs
	7.3.1 System Performance Servlet
	7.3.2 Database Query

	7.4 Running the Application
	7.4.1 Domino Go Webserver
	7.4.2 IBM HTTP Server for AS/400

	Chapter 8. Security Considerations
	8.1 Internet Security Elements
	8.1.1 Transaction Security and Secure Sockets Layer
	8.1.2 HTTP Server Over SSL (HTTPS)

	8.2 Digital Certificates and Certificate Authority
	8.3 AS/400 Implementation of Digital Certificate Management
	8.3.1 Configuring a Digital Certificate Environment

	8.4 Creating a Self-Signed Certificate
	8.4.1 Creating an Intranet Certificate Authority
	8.4.2 Creating a Server Certificate with Your Intranet CA
	8.4.3 Configuring the Web Server to Use SSL with Server Authentication

	8.5 Requesting a Server Certificate from an Internet CA
	8.5.1 Requesting a Server Certificate from an Internet CA
	8.5.2 Receiving a Server Certificate for this Server
	8.5.3 Configuring the HTTP Server to Use SSL

	8.6 Applying Security to the Applications
	8.6.1 Servlets
	8.6.2 Additional Resources

	Chapter 9. HTTP Server Configuration
	9.1 Domino Go Webserver
	9.2 ServletExpress
	9.3 IBM HTTP Server for AS/400
	9.4 IBM WebSphere Application Server for AS/400

	Appendix A. Example Programs
	A.1 Downloading the Files from the Internet Web Site
	A.2 Setting up VisualAge for Java
	A.2.1 The AS/400 Toolbox for Java Classes
	A.2.2 IBM Enterprise Data Access Libraries
	A.2.3 Sun JSDK Class Libraries
	A.2.4 Netscape Security

	Appendix B. IBM HTTP Server for AS400 Configuration
	Appendix C. Special Notices
	Appendix D. Related Publications
	D.1 International Technical Support Organization Publications
	D.2 Redbooks on CD-ROMs
	D.3 Other Publications

	How to Get ITSO Redbooks
	How IBM Employees Can Get ITSO Redbooks
	How Customers Can Get ITSO Redbooks
	IBM Redbook Order Form

	List of Abbreviations
	Index
	ITSO Redbook Evaluation

