
Simple Network Management Protocol
(SNMP)

Copyright © 1997-2012 Ericsson AB. All Rights Reserved.
Simple Network Management Protocol (SNMP) 4.22.1

September 3 2012

Copyright © 1997-2012 Ericsson AB. All Rights Reserved.
The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

September 3 2012

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 1

1.1 SNMP Introduction

2 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1 SNMP User's Guide

A multilingual Simple Network Management Protocol application, featuring an Extensible Agent, a simple manager
and a MIB compiler and facilities for implementing SNMP MIBs etc.

1.1 SNMP Introduction
The SNMP development toolkit contains the following parts:

• An Extensible multi-lingual SNMP agent, which understands SNMPv1 (RFC1157), SNMPv2c (RFC1901,
1905, 1906 and 1907), SNMPv3 (RFC2271, 2272, 2273, 2274 and 2275), or any combination of these
protocols.

• A multi-lingual SNMP manager.

• A MIB compiler, which understands SMIv1 (RFC1155, 1212, and 1215) and SMIv2 (RFC1902, 1903, and
1904).

The SNMP development tool provides an environment for rapid agent/manager prototyping and construction. With
the following information provided, this tool is used to set up a running multi-lingual SNMP agent/manager:

• a description of a Management Information Base (MIB) in Abstract Syntax Notation One (ASN.1)

• instrumentation functions for the managed objects in the MIB, written in Erlang.

The advantage of using an extensible (agent/manager) toolkit is to remove details such as type-checking, access rights,
Protocol Data Unit (PDU), encoding, decoding, and trap distribution from the programmer, who only has to write
the instrumentation functions, which implement the MIBs. The get-next function only has to be implemented for
tables, and not for every variable in the global naming tree. This information can be deduced from the ASN.1 file.

1.1.1 Scope and Purpose
This manual describes the SNMP development tool, as a component of the Erlang/Open Telecom Platform
development environment. It is assumed that the reader is familiar with the Erlang Development Environment, which
is described in a separate User's Guide.

1.1.2 Prerequisites
The following prerequisites is required for understanding the material in the SNMP User's Guide:

• the basics of the Simple Network Management Protocol version 1 (SNMPv1)

• the basics of the community-based Simple Network Management Protocol version 2 (SNMPv2c)

• the basics of the Simple Network Management Protocol version 3 (SNMPv3)

• the knowledge of defining MIBs using SMIv1 and SMIv2

• familiarity with the Erlang system and Erlang programming

The tool requires Erlang release 4.7 or later.

1.1.3 Definitions
The following definitions are used in the SNMP User's Guide.

1.1 SNMP Introduction

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 3

MIB
The conceptual repository for management information is called the Management Information Base (MIB).
It does not hold any data, merely a definition of what data can be accessed. A definition of an MIB is a
description of a collection of managed objects.

SMI
The MIB is specified in an adapted subset of the Abstract Syntax Notation One (ASN.1) language. This
adapted subset is called the Structure of Management Information (SMI).

ASN.1
ASN.1 is used in two different ways in SNMP. The SMI is based on ASN.1, and the messages in the protocol
are defined by using ASN.1.

Managed object

A resource to be managed is represented by a managed object, which resides in the MIB. In an SNMP MIB, the
managed objects are either:

• scalar variables, which have only one instance per context. They have single values, not multiple values
like vectors or structures.

• tables, which can grow dynamically.

• a table element, which is a special type of scalar variable.

Operations
SNMP relies on the three basic operations: get (object), set (object, value) and get-next (object).

Instrumentation function
An instrumentation function is associated with each managed object. This is the function, which actually
implements the operations and will be called by the agent when it receives a request from the management
station.

Manager
A manager generates commands and receives notifications from agents. There usually are only a few managers
in a system.

Agent
An agent responds to commands from the manager, and sends notification to the manager. There are potentially
many agents in a system.

1.1.4 About This Manual
In addition to this introductory chapter, the SNMP User's Guide contains the following chapters:

• Chapter 2: "Functional Description" describes the features and operation of the SNMP development toolkit. It
includes topics on Sub-agents and MIB loading, Internal MIBs, and Traps.

• Chapter 3: "The MIB Compiler" describes the features and the operation of the MIB compiler.

• Chapter 4: "Running the application" describes how to start and configure the application. Topics on how to
debug the application are also included.

• Chapter 5: "Definition of Agent Configuration Files" is a reference chapter, which contains more detailed
information about the agent configuration files.

• Chapter 6: "Definition of Manager Configuration Files" is a reference chapter, which contains more detailed
information about the manager configuration files.

• Chapter 7: "Agent Implementation Example" describes how an MIB can be implemented with the SNMP
Development Toolkit. Implementation examples are included.

• Chapter 8: "Instrumentation Functions" describes how instrumentation functions should be defined in Erlang for
the different operations.

• Chapter 9: "Definition of Instrumentation Functions" is a reference chapter which contains more detailed
information about the instrumentation functions.

1.2 Agent Functional Description

4 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

• Chapter 10: "Definition of Agent Net if" is a reference chapter, which describes the Agent Net if function in
detail.

• Chapter 11: "Definition of Manager Net if" is a reference chapter, which describes the Manager Net if function
in detail.

• Chapter 12: "Advanced Agent Topics" describes sub-agents, agent semantics, audit trail logging, and the
consideration of distributed tables.

• Appendix A describes the conversion of SNMPv2 to SNMPv1 error messages.

• Appendix B contains the RFC1903 text on RowStatus.

1.1.5 Where to Find More Information
Refer to the following documentation for more information about SNMP and about the Erlang/OTP development
system:

• Marshall T. Rose (1991), "The Simple Book - An Introduction to Internet Management", Prentice-Hall

• Evan McGinnis and David Perkins (1997), "Understanding SNMP MIBs", Prentice-Hall

• RFC1155, 1157, 1212 and 1215 (SNMPv1)

• RFC1901-1907 (SNMPv2c)

• RFC1908, 2089 (coexistence between SNMPv1 and SNMPv2)

• RFC2271, RFC2273 (SNMP std MIBs)

• the Mnesia User's Guide

• the Erlang 4.4 Extensions User's Guide

• the Reference Manual

• the Erlang Embedded Systems User's Guide

• the System Architecture Support Libraries (SASL) User's Guide

• the Installation Guide

• the Asn1 User's Guide

• Concurrent Programming in Erlang, 2nd Edition (1996), Prentice-Hall, ISBN 0-13-508301-X.

1.2 Agent Functional Description
The SNMP agent system consists of one Master Agent and optional Sub-agents.

The tool makes it easy to dynamically extend an SNMP agent in run-time. MIBs can be loaded and unloaded at any
time. It is also easy to change the implementation of an MIB in run-time, without having to recompile the MIB. The
MIB implementation is clearly separated from the agent.

To facilitate incremental MIB implementation, the tool can generate a prototype implementation for a whole MIB, or
parts thereof. This allows different MIBs and management applications to be developed at the same time.

1.2.1 Features
To implement an agent, the programmer writes instrumentation functions for the variables and the tables in the MIBs
that the agent is going to support. A running prototype which handles set, get, and get-next can be created
without any programming.

The toolkit provides the following:

• multi-lingual multi-threaded extensible SNMP agent

• easy writing of instrumentation functions with a high-level programming language

• basic fault handling such as automatic type checking

1.2 Agent Functional Description

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 5

• access control

• authentication

• privacy through encryption

• loading and unloading of MIBs in run-time

• the ability to change instrumentation functions without recompiling the MIB

• rapid prototyping environment where the MIB compiler can use generic instrumentation functions, which later
can be refined by the programmer

• a simple and extensible model for transaction handling and consistency checking of set-requests

• support of the sub-agent concept via distributed Erlang

• a mechanism for sending notifications (traps and informs)

• support for implementing SNMP tables in the Mnesia DBMS.

1.2.2 SNMPv1, SNMPv2 and SNMPv3
The SNMP development toolkit works with all three versions of Standard Internet Management Framework; SNMPv1,
SNMPv2 and SNMPv3. They all share the same basic structure and components. And they follow the same
architecture.

The versions are defined in following RFCs

• SNMPv1 RFC 1555, 1157 1212, 1213 and 1215

• SNMPv2 RFC 1902 - 1907

• SNMPv3 RFC 2570 - 2575

Over time, as the Framework has evolved from SNMPv1 , through SNMPv2, to SNMPv3 the definitions of each of
these architectural components have become richer and more clearly defined, but the fundamental architecture has
remained consistent.

The main features of SNMPv2 compared to SNMPv1 are:

• The get-bulk operation for transferring large amounts of data.

• Enhanced error codes.

• A more precise language for MIB specification

The standard documents that define SNMPv2 are incomplete, in the sense that they do not specify how an SNMPv2
message looks like. The message format and security issues are left to a special Administrative Framework. One
such framework is the Community-based SNMPv2 Framework (SNMPv2c), which uses the same message format and
framework as SNMPv1. Other experimental frameworks as exist, e.g. SNMPv2u and SNMPv2*.

The SNMPv3 specifications take a modular approach to SNMP. All modules are separated from each other, and can
be extended or replaced individually. Examples of modules are Message definition, Security and Access Control. The
main features of SNMPv3 are:

• Encryption and authentication is added.

• MIBs for agent configuration are defined.

All these specifications are commonly referred to as "SNMPv3", but it is actually only the Message module, which
defines a new message format, and Security module, which takes care of encryption and authentication, that cannot
be used with SNMPv1 or SNMPv2c. In this version of the agent toolkit, all the standard MIBs for agent configuration
are used. This includes MIBs for definition of management targets for notifications. These MIBs are used regardless
of which SNMP version the agent is configured to use.

The extensible agent in this toolkit understands the SNMPv1, SNMPv2c and SNMPv3. Recall that SNMP consists
of two separate parts, the MIB definition language (SMI), and the protocol. On the protocol level, the agent can be
configured to speak v1, v2c, v3 or any combination of them at the same time, i.e. a v1 request gets an v1 reply, a v2c

1.2 Agent Functional Description

6 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

request gets a v2c reply, and a v3 request gets a v3 reply. On the MIB level, the MIB compiler can compile both SMIv1
and SMIv2 MIBs. Once compiled, any of the formats can be loaded into the agent, regardless of which protocol version
the agent is configured to use. This means that the agent translates from v2 notifications to v1 traps, and vice versa.
For example, v2 MIBs can be loaded into an agent that speaks v1 only. The procedures for the translation between
the two protocols are described in RFC 1908 and RFC 2089.

In order for an implementation to make full use of the enhanced SNMPv2 error codes, it is essential that the
instrumentation functions always return SNMPv2 error codes, in case of error. These are translated into the
corresponding SNMPv1 error codes by the agent, if necessary.

Note:
The translation from an SMIv1 MIB to an SNMPv2c or SNMPv3 reply is always very straightforward, but
the translation from a v2 MIB to a v1 reply is somewhat more complicated. There is one data type in SMIv2,
called Counter64, that an SNMPv1 manager cannot decode correctly. Therefore, an agent may never send
a Counter64 object to an SNMPv1 manager. The common practice in these situations is to simple ignore
any Counter64 objects, when sending a reply or a trap to an SNMPv1 manager. For example, if an SNMPv1
manager tries to GET an object of type Counter64, he will get a noSuchName error, while an SNMPv2
manager would get a correct value.

1.2.3 Operation
The following steps are needed to get a running agent:

• Write your MIB in SMI in a text file.

• Write the instrumentation functions in Erlang and compile them.

• Put their names in the association file.

• Run the MIB together with the association file through the MIB compiler.

• Configure the application (agent).

• Start the application (agent).

• Load the compiled MIB into the agent.

The figures in this section illustrate the steps involved in the development of an SNMP agent.

1.2 Agent Functional Description

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 7

Figure 2.1: MIB Compiler Principles

The compiler parses the SMI file and associates each table or variable with an instrumentation function (see the figure
MIB Compiler Principles). The actual instrumentation functions are not needed at MIB compile time, only their names.

The binary output file produced by the compiler is read by the agent at MIB load time (see the figure Starting the Agent).
The instrumentation is ordinary Erlang code which is loaded explicitly or automatically the first time it is called.

Figure 2.2: Starting the Agent

The SNMP agent system consists of one Master Agent and optional sub-agents. The Master Agent can be seen as a
special kind of sub-agent. It implements the core agent functionality, UDP packet processing, type checking, access
control, trap distribution, and so on. From a user perspective, it is used as an ordinary sub-agent.

Sub-agents are only needed if your application requires special support for distribution from the SNMP toolkit. A
sub-agent can also be used if the application requires a more complex set transaction scheme than is found in the
master agent.

1.2 Agent Functional Description

8 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

The following illustration shows how a system can look in runtime.

Figure 2.3: Architecture

A typical operation could include the following steps:

• The Manager sends a request to the Agent.

• The Master Agent decodes the incoming UDP packet.

• The Master Agent determines which items in the request that should be processed here and which items should
be forwarded to its subagent.

• Step 3 is repeated by all subagents.

• Each sub-agent calls the instrumentation for its loaded MIBs.

• The results of calling the instrumentation are propagated back to the Master Agent.

• The answer to the request is encoded to a UDP Protocol Data Unit (PDU).

The sequence of steps shown is probably more complex than normal, but it illustrates the amount of functionality
which is available. The following points should be noted:

• An agent can have many MIBs loaded at the same time.

• Sub-agents can also have sub-agents. Each sub-agent can have an arbitrary number of child sub-agents
registered, forming a hierarchy.

• One MIB can communicate with many applications.

• Instrumentation can use Distributed Erlang to communicate with an application.

Most applications only need the Master Agent because an agent can have multiple MIBs loaded at the same time.

1.2 Agent Functional Description

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 9

1.2.4 Sub-agents and MIB Loading
Since applications tend to be transient (they are dynamically loaded and unloaded), the management of these
applications must be dynamic as well. For example, if we have an equipment MIB for a rack and different MIBs for
boards, which can be installed in the rack, the MIB for a card should be loaded when the card is inserted, and unloaded
when the card is removed.

In this agent system, there are two ways to dynamically install management information. The most common way
is to load an MIB into an agent. The other way is to use a sub-agent, which is controlled by the application and is
able to register and unregister itself. A sub-agent can register itself for managing a sub-tree (not to be mixed up with
erlang:register). The sub-tree is identified by an Object Identifier. When a sub-agent is registered, it receives
all requests for this particular sub-tree and it is responsible for answering them. It should also be noted that a sub-
agent can be started and stopped at any time.

Compared to other SNMP agent packages, there is a significant difference in this way of using sub-agents. Other
packages normally use sub-agents to load and unload MIBs in run-time. In Erlang, it is easy to load code in run-time
and it is possible to load an MIB into an existing sub-agent. It is not necessary to create a new process for handling
a new MIB.

Sub-agents are used for the following reasons:

• to provide a more complex set-transaction scheme than master agent

• to avoid unnecessary process communication

• to provide a more lightweight mechanism for loading and unloading MIBs in run-time

• to provide interaction with other SNMP agent toolkits.

Refer to the chapter Advanced Agent Topics in this User's Guide for more information about these topics.

The communication protocol between sub-agents is the normal message passing which is used in distributed Erlang
systems. This implies that sub-agent communication is very efficient compared to SMUX, DPI, AgentX, and similar
protocols.

1.2.5 Contexts and Communities
A context is a collection of management information accessible by an SNMP entity. An instance of a management
object may exist in more than one context. An SNMP entity potentially has access to many contexts.

Each managed object can exist in many instances within a SNMP entity. To identify the instances, specified by an MIB
module, a method to distinguish the actual instance by its 'scope' or context is used. Often the context is a physical or
a logical device. It can include multiple devices, a subset of a single device or a subset of multiple devices, but the
context is always defined as a subset of a single SNMP entity. To be able to identify a specific item of management
information within an SNMP entity, the context, the object type and its instance must be used.

For example, the managed object type ifDescr from RFC1573, is defined as the description of a network
interface. To identify the description of device-X's first network interface, four pieces of information are needed:
the snmpEngineID of the SNMP entity which provides access to the management information at device-X, the
contextName (device-X), the managed object type (ifDescr), and the instance ("1").

In SNMPv1 and SNMPv2c, the community string in the message was used for (at least) three different purposes:

• to identify the context

• to provide authentication

• to identify a set of trap targets

In SNMPv3, each of these usage areas has its own unique mechanism. A context is identified by the name of the
SNMP entity, contextEngineID, and the name of the context, contextName. Each SNMPv3 message contains
values for these two parameters.

1.2 Agent Functional Description

10 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

There is a MIB, SNMP-COMMUNITY-MIB, which maps a community string to a contextEngineID and
contextName. Thus, each message, an SNMPv1, SNMPv2c or an SNMPv3 message, always uniquely identifies
a context.

For an agent, the contextEngineID identified by a received message, is always equal to the snmpEngineID
of the agent. Otherwise, the message was not intended for the agent. If the agent is configured with more than one
context, the instrumentation code must be able to figure out for which context the request was intended. There is a
function snmpa:current_context/0 provided for this purpose.

By default, the agent has no knowledge of any other contexts than the default context, "". If it is to support more
contexts, these must be explicitly added, by using an appropriate configuration file Agent Configuration Files.

1.2.6 Management of the Agent
There is a set of standard MIBs, which are used to control and configure an SNMP agent. All of these MIBs, with the
exception of the optional SNMP-PROXY-MIB (which is only used for proxy agents), are implemented in this agent.
Further, it is configurable which of these MIBs are actually loaded, and thus made visible to SNMP managers. For
example, in a non-secure environment, it might be a good idea to not make MIBs that define access control visible.
Note, the data the MIBs define is used internally in the agent, even if the MIBs not are loaded. This chapter describes
these standard MIBs, and some aspects of their implementation.

Any SNMP agent must implement the system group and the snmp group, defined in MIB-II. The definitions of these
groups have changed from SNMPv1 to SNMPv2. MIBs and implementations for both of these versions are Provided in
the distribution. The MIB file for SNMPv1 is called STANDARD-MIB, and the corresponding for SNMPv2 is called
SNMPv2-MIB. If the agent is configured for SNMPv1 only, the STANDARD-MIB is loaded by default; otherwise,
the SNMPv2-MIB is loaded by default. It is possible to override this default behavior, by explicitly loading another
version of this MIB, for example, you could choose to implement the union of all objects in these two MIBs.

An SNMPv3 agent must implement the SNMP-FRAMEWORK-MIB and SNMP-MPD-MIB. These MIBs are loaded
by default, if the agent is configured for SNMPv3. These MIBs can be loaded for other versions as well.

There are five other standard MIBs, which also may be loaded into the agent. These MIBs are:

• SNMP-TARGET-MIB and SNMP-NOTIFICATION-MIB, which defines managed objects for configuration of
management targets, i.e. receivers of notifications (traps and informs). These MIBs can be used with any SNMP
version.

• SNMP-VIEW-BASED-ACM-MIB, which defined managed objects for access control. This MIB can be used
with any SNMP version.

• SNMP-COMMUNITY-MIB, which defines managed objects for coexistence of SNMPv1 and SNMPv2c with
SNMPv3. This MIB is only useful if SNMPv1 or SNMPv2c is used, possibly in combination with SNMPv3.

• SNMP-USER-BASED-SM-MIB, which defines managed objects for authentication and privacy. This MIB is
only useful with SNMPv3.

All of these MIBs should be loaded into the Master Agent. Once loaded, these MIBs are always available in all contexts.

The ASN.1 code, the Erlang source code, and the generated .hrl files for them are provided in the distribution and
are placed in the directories mibs, src, and include, respectively, in the snmp application.

The .hrl files are generated with snmpc:mib_to_hrl/1. Include these files in your code as in the following
example:

-include_lib("snmp/include/SNMPv2-MIB.hrl").

The initial values for the managed objects defined in these tables, are read at start-up from a set of configuration files.
These are described in Configuration Files.

1.2 Agent Functional Description

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 11

STANDARD-MIB and SNMPv2-MIB

These MIBs contain the snmp- and system groups from MIB-II which is defined in RFC1213 (STANDARD-MIB)
or RFC1907 (SNMPv2-MIB). They are implemented in the snmp_standard_mib module. The snmp counters
all reside in volatile memory and the system and snmpEnableAuthenTraps variables in persistent memory,
using the SNMP built-in database (refer to the Reference Manual, section snmp, module snmpa_local_db for
more details).

If another implementation of any of these variables is needed, e.g. to store the persistent variables in a Mnesia database,
an own implementation of the variables must be made. That MIB will be compiled and loaded instead of the default
MIB. The new compiled MIB must have the same name as the original MIB (i.e. STANDARD-MIB or SNMPv2-
MIB), and be located in the SNMP configuration directory (see Configuration Files.)

One of these MIBs is always loaded. If only SNMPv1 is used, STANDARD-MIB is loaded, otherwise SNMPv2-MIB
is loaded.

Data Types

There are some new data types in SNMPv2 that are useful in SNMPv1 as well. In the STANDARD-MIB, three data
types are defined, RowStatus, TruthValue and DateAndTime. These data types are originally defined as textual
conventions in SNMPv2-TC (RFC1903).

SNMP-FRAMEWORK-MIB and SNMP-MPD-MIB

The SNMP-FRAMEWORK-MIB and SNMP-MPD-MIB define additional read-only managed objects, which is used
in the generic SNMP framework defined in RFC2271 and the generic message processing and dispatching module
defined in RFC2272. They are generic in the sense that they are not tied to any specific SNMP version.

The objects in these MIBs are implemented in the modules snmp_framework_mib and snmp_standard_mib,
respectively. All objects reside in volatile memory, and the configuration files are always reread at start-up.

If SNMPv3 is used, these MIBs are loaded by default.

SNMP-TARGET-MIB and SNMP-NOTIFICATION-MIB

The SNMP-TARGET-MIB and SNMP-NOTIFICATION-MIB define managed objects for configuration of
notification receivers. They are described in detail in RFC2273. Only a brief description is given here.

All tables in these MIBs have a column of type StorageType. The value of this column specifies how each row
is stored, and what happens in case of a restart of the agent. The implementation supports the values volatile
and nonVolatile. When the tables are initially filled with data from the configuration files, these rows will
automatically have storage type nonVolatile. Should the agent restart, all nonVolatile rows survive the restart,
while the volatile rows are lost. The configuration files are not read at restart, by default.

These MIBs are not loaded by default.

snmpNotifyTable

An entry in the snmpNotifyTable selects a set of management targets, which should receive notifications, as
well as the type (trap or inform) of notification that should be sent to each selected management target. When an
application sends a notification using the function send_notification/5 or the function send_trap the
parameter NotifyName, specified in the call, is used as an index in the table. The notification is sent to the
management targets selected by that entry.

snmpTargetAddrTable

An entry in the snmpTargetAddrTable defines transport parameters (such as IP address and UDP
port) for each management target. Each row in the snmpNotifyTable refers to potentially many rows
in the snmpTargetAddrTable. Each row in the snmpTargetAddrTable refers to an entry in the
snmpTargetParamsTable.

1.2 Agent Functional Description

12 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpTargetParamsTable

An entry in the snmpTargetParamsTable defines which SNMP version to use, and which security parameters
to use.

Which SNMP version to use is implicitly defined by specifying the Message Processing Model. This version of the
agent handles the models v1, v2c and v3.

Each row specifies which security model to use, along with security level and security parameters.

SNMP-VIEW-BASED-ACM-MIB

The SNMP-VIEW-BASED-ACM-MIB defines managed objects to control access to the the managed objects for the
managers. The View Based Access Control Module (VACM) can be used with any SNMP version. However, if it
is used with SNMPv1 or SNMPv2c, the SNMP-COMMUNITY-MIB defines additional objects to map community
strings to VACM parameters.

All tables in this MIB have a column of type StorageType. The value of this column specifies how each row
is stored, and what happens in case of a restart of the agent. The implementation supports the values volatile
and nonVolatile. When the tables are initially filled with data from the configuration files, these rows will
automatically have storage type nonVolatile. Should the agent restart, all nonVolatile rows survive the restart,
while the volatile rows are lost. The configuration files are not read at restart by default.

This MIB is not loaded by default.

VACM is described in detail in RFC2275. Here is only a brief description given.

The basic concept is that of a MIB view. An MIB view is a subset of all the objects implemented by an agent. A
manager has access to a certain MIB view, depending on which security parameters are used, in which context the
request is made, and which type of request is made.

The following picture gives an overview of the mechanism to select an MIB view:

Figure 2.4: Overview of the mechanism of MIB selection

1.2 Agent Functional Description

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 13

vacmContextTable

The vacmContextTable is a read-only table that lists all available contexts.

vacmSecurityToGroupTable

The vacmSecurityToGroupTable maps a securityModel and a securityName to a groupName.

vacmAccessTable

The vacmAccessTable maps the groupName (found in vacmSecurityToGroupTable), contextName,
securityModel, and securityLevel to an MIB view for each type of operation (read, write, or notify). The
MIB view is represented as a viewName. The definition of the MIB view represented by the viewName is found
in the vacmViewTreeFamilyTable

vacmViewTreeFamilyTable

The vacmViewTreeFamilyTable is indexed by the viewName, and defines which objects are included in the
MIB view.

The MIB definition for the table looks as follows:

VacmViewTreeFamilyEntry ::= SEQUENCE
 {
 vacmViewTreeFamilyViewName SnmpAdminString,
 vacmViewTreeFamilySubtree OBJECT IDENTIFIER,
 vacmViewTreeFamilyMask OCTET STRING,
 vacmViewTreeFamilyType INTEGER,
 vacmViewTreeFamilyStorageType StorageType,
 vacmViewTreeFamilyStatus RowStatus
 }

INDEX { vacmViewTreeFamilyViewName,
 vacmViewTreeFamilySubtree
 }

Each vacmViewTreeFamilyViewName refers to a collection of sub-trees.

MIB View Semantics

An MIB view is a collection of included and excluded sub-trees. A sub-tree is identified by an OBJECT IDENTIFIER.
A mask is associated with each sub-tree.

For each possible MIB object instance, the instance belongs to a sub-tree if:

• the OBJECT IDENTIFIER name of that MIB object instance comprises at least as many sub-identifiers as does
the sub-tree, and

• each sub-identifier in the name of that MIB object instance matches the corresponding sub-identifier of the sub-
tree whenever the corresponding bit of the associated mask is 1 (0 is a wild card that matches anything).

Membership of an object instance in an MIB view is determined by the following algorithm:

• If an MIB object instance does not belong to any of the relevant sub-trees, then the instance is not in the MIB
view.

• If an MIB object instance belongs to exactly one sub-tree, then the instance is included in, or excluded from, the
relevant MIB view according to the type of that entry.

• If an MIB object instance belongs to more than one sub-tree, then the sub-tree which comprises the greatest
number of sub-identifiers, and is the lexicographically greatest, is used.

1.2 Agent Functional Description

14 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

Note:
If the OBJECT IDENTIFIER is longer than an OBJECT IDENTIFIER of an object type in the MIB, it refers to
object instances. Because of this, it is possible to control whether or not particular rows in a table shall be visible.

SNMP-COMMUNITY-MIB

The SNMP-COMMUNITY-MIB defines managed objects that is used for coexistence between SNMPv1 and
SNMPv2c with SNMPv3. Specifically, it contains objects for mapping between community strings and version-
independent SNMP message parameters. In addition, this MIB provides a mechanism for performing source address
validation on incoming requests, and for selecting community strings based on target addresses for outgoing
notifications.

All tables in this MIB have a column of type StorageType. The value of this column specifies how each row
is stored, and what happens in case of a restart of the agent. The implementation supports the values volatile
and nonVolatile. When the tables are initially filled with data from the configuration files, these rows will
automatically have storage type nonVolatile. Should the agent restart, all nonVolatile rows survive the restart,
while the volatile rows are lost. The configuration files are not read at restart, by default.

This MIB is not loaded by default.

SNMP-USER-BASED-SM-MIB

The SNMP-USER-BASED-SM-MIB defines managed objects that is used for the User-Based Security Model.

All tables in this MIB have a column of type StorageType. The value of the column specifies how each row
is stored, and what happens in case of a restart of the agent. The implementation supports the values volatile
and nonVolatile. When the tables are initially filled with data from the configuration files, these rows will
automatically have storage type nonVolatile. Should the agent restart, all nonVolatile rows survive the restart,
while the volatile rows are lost. The configuration files are not read at restart, by default.

This MIB is not loaded by default.

OTP-SNMPEA-MIB

The OTP-SNMPEA-MIB was used in earlier versions of the agent, before standard MIBs existed for access control,
MIB views, and trap target specification. All objects in this MIB are now obsolete.

1.2.7 Notifications
Notifications are defined in SMIv1 with the TRAP-TYPE macro in the definition of an MIB (see RFC1215). The
corresponding macro in SMIv2 is NOTIFICATION-TYPE. When an application decides to send a notification, it calls
one of the following functions:

snmpa:send_notification(Agent, Notification, Receiver
 [, NotifyName, ContextName, Varbinds])
snmpa:send_trap(Agent, Notification, Community [, Receiver, Varbinds])

providing the registered name or process identifier of the agent where the MIB, which defines the notification is loaded
and the symbolic name of the notification.

If the send_notification/3,4 function is used, all management targets are selected, as defined in RFC2273.
The Receiver parameter defines where the agent should send information about the delivery of inform requests.

1.2 Agent Functional Description

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 15

If the send_notification/5 function is used, an NotifyName must be provided. This parameter is used as an
index in the snmpNotifyTable, and the management targets defined by that single entry is used.

The send_notification/6 function is the most general version of the function. A ContextName must be
specified, from which the notification will be sent. If this parameter is not specified, the default context ("") is used.

The function send_trap is kept for backwards compatibility and should not be used in new code. Applications that
use this function will continue to work. The snmpNotifyName is used as the community string by the agent when
a notification is sent.

Notification Sending

The simplest way to send a notification is to call the function snmpa:send_notification(Agent,
Notification, no_receiver). In this case, the agent performs a get-operation to retrieve the object values
that are defined in the notification specification (with the TRAP-TYPE or NOTIFICATION-TYPE macros). The
notification is sent to all managers defined in the target and notify tables, either unacknowledged as traps, or
acknowledged as inform requests.

If the caller of the function wants to know whether or not acknowledgments are received for a certain notification
(provided it is sent as an inform), the Receiver parameter can be specified as {Tag, ProcessName} (refer
to the Reference Manual, section snmp, module snmp for more details). In this case, the agent send a message
{snmp_notification, Tag, {got_response, ManagerAddr}} or {snmp_notification, Tag,
{no_response, ManagerAddr}} for each management target.

Sometimes it is not possible to retrieve the values for some of the objects in the notification specification with a get-
operation. However, they are known when the send_notification function is called. This is the case if an object
is an element in a table. It is possible to give the values of some objects to the send_notification function
snmpa:send_notification(Agent, Notification, Receiver, Varbinds). In this function,
Varbinds is a list of Varbind, where each Varbind is one of:

• {Variable, Value}, where Variable is the symbolic name of a scalar variable referred to in the
notification specification.

• {Column, RowIndex, Value}, where Column is the symbolic name of a column variable. RowIndex
is a list of indices for the specified element. If this is the case, the OBJECT IDENTIFIER sent in the trap is the
RowIndex appended to the OBJECT IDENTIFIER for the table column. This is the OBJECT IDENTIFIER
which specifies the element.

• {OID, Value}, where OID is the OBJECT IDENTIFIER for an instance of an object, scalar variable or
column variable.

For example, to specify that sysLocation should have the value "upstairs" in the notification, we could use
one of:

• {sysLocation, "upstairs"} or

• {[1,3,6,1,2,1,1,6,0], "upstairs"}

It is also possible to specify names and values for extra variables that should be sent in the notification, but were not
defined in the notification specification.

The notification is sent to all management targets found in the tables. However, make sure that each manager has
access to the variables in the notification. If a variable is outside a manager's MIB view, this manager will not receive
the notification.

1.3 Manager Functional Description

16 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

Note:
By definition, it is not possible to send objects with ACCESS not-accessible in notifications. However,
historically this is often done and for this reason we allow it in notification sending. If a variable has ACCESS
not-accessible, the user must provide a value for the variable in the Varbinds list. It is not possible for
the agent to perform a get-operation to retrieve this value.

Notification Filters

It is possible to add notification filters to an agent. These filters will be called when a notification is to be sent. Their
purpose is to allow modification, suppression or other type of actions.

A notification filter is a module implementing the snmpa_notification_filter behaviour. A filter is added/deleted using
the functions: snmpa:register_notification_filter and snmpa:unregister_notification_filter.

Unless otherwise specified, the order of the registered filters will be the order in which they are registered.

Sub-agent Path

If a value for an object is not given to the send_notification function, the sub-agent will perform a get-operation
to retrieve it. If the object is not implemented in this sub-agent, its parent agent tries to perform a get-operation to
retrieve it. If the object is not implemented in this agent either, it forwards the object to its parent, and so on. Eventually
the Master Agent is reached and at this point all unknown object values must be resolved. If some object is unknown
even to the Master Agent, this is regarded as an error and is reported with a call to user_err/2 of the error report
module. No notifications are sent in this case.

For a given notification, the variables, which are referred to in the notification specification, must be implemented by
the agent that has the MIB loaded, or by some parent to this agent. If not, the application must provide values for the
unknown variables. The application must also provide values for all elements in tables.

1.2.8 Discovery
The sender is authoritative for messages containing payload which does not expect a response (for example SNMPv2-
Trap, Response or Report PDU).

The receiver is authoritative for messages containing payload which expects a response (for example Get, GetNext,
Get-Bulk, Set or Inform PDU).

The agent can both perform and respond to discovery.

The agent responds to discovery autonomously, without interaction by the user.

Initiating discovery towards a manager is done by calling the discovery function. The EngineId field of the target
(manager) entry in the target_addr.conf file has to have the value discovery. Note that if the manager does not
respond, the Timeout and RetryCount fields decide how long the function will hang before it returns.

Discovery can only be performed towards one manager at a time.

1.3 Manager Functional Description

1.3.1 Features
The manager provided with the tool is a lightweight manager that basically provides a means to communicate with
agents.

It does not really implement any management capabilities by itself. That is up to the user.

1.4 The MIB Compiler

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 17

A user in this context is basically a module implementing the snmpm_user behaviour. A user can issue snmp requests
and receive notification/traps.

Agents to be accessed by the manager needs to be registered by a user. Once registered, they can be accessed by all
registered users.

Notifications/traps from an agent is delivered to the user that did the registration.

Any message from an agent that is not registered is delivered to the default user.

By default, the default user is set to the snmpm_user_default module, which simply sends an info message to the
error_logger. It is however highly recommended that this module be replaced by another that does something useful
(see configuration params for more info).

When using version 3, then (at least one) usm user has to be registered.

Requests can be issued in two different ways. Synchronous (see sync_set, sync_get, sync_get_next and sync_get_bulk)
and asynchronous (see async_set, async_get, async_get_next and async_get_bulk). With synchronous the snmp reply
is returned by the function. With asynchronous, the reply will instead be delivered through a call to one of the
handle_pdu callback function defined by the handle_pdu behaviour.

1.3.2 Operation
The following steps are needed to get the manager running:

• [optional] Implement the default user.

• Implement the user(s).

• Configure the application (manager).

• Start the application (manager).

• Register the user(s).

• The user(s) register their agents.

1.3.3 MIB loading
It is possible to load mibs into the manager, but this is not necessary for normal operation, and not recommended.

1.4 The MIB Compiler
The chapter The MIB Compiler describes the MIB compiler and contains the following topics:

• Operation

• Import

• Consistency checking between MIBs

• .hrl file generation

• Emacs integration

• Deviations from the standard

Note:
When importing MIBs, ensure that the imported MIBs as well as the importing MIB are compiled using the same
version of the SNMP-compiler.

1.4 The MIB Compiler

18 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.4.1 Operation
The MIB must be written as a text file in SMIv1 or SMIv2 using an ASN.1 notation before it will be compiled. This
text file must have the same name as the MIB, but with the suffix .mib. This is necessary for handling the IMPORT
statement.

The association file, which contains the names of instrumentation functions for the MIB, should have the suffix
.funcs. If the compiler does not find the association file, it gives a warning message and uses default instrumentation
functions. (See Default Instrumentation for more details).

The MIB compiler is started with a call to snmpc:compile(<mibname>). For example:

snmpc:compile("RFC1213-MIB").

The output is a new file which is called <mibname>.bin.

The MIB compiler understands both SMIv1 and SMIv2 MIBs. It uses the MODULE-IDENTITY statement to
determinate if the MIB is written in SMI version 1 or 2.

1.4.2 Importing MIBs
The compiler handles the IMPORT statement. It is important to import the compiled file and not the ASN.1 (source)
file. A MIB must be recompiled to make changes visible to other MIBs importing it.

The compiled files of the imported MIBs must be present in the current directory, or a directory in the current path.
The path is supplied with the {i, Path} option, for example:

snmpc:compile("MY-MIB",
 [{i, ["friend_mibs/", "../standard_mibs/"]}]).

It is also possible to import MIBs from OTP applications in an "include_lib" like fashion with the il option.
Example:

snmpc:compile("MY-MIB",
 [{il, ["snmp/priv/mibs/", "myapp/priv/mibs/"]}]).

finds the latest version of the snmp and myapp applications in the OTP system and uses the expanded paths as include
paths.

Note that an SMIv2 MIB can import an SMIv1 MIB and vice versa.

The following MIBs are built-ins of the Erlang SNMP compiler: SNMPv2-SMI, RFC-1215, RFC-1212, SNMPv2-
TC, SNMPv2-CONF, and RFC1155-SMI. They cannot therefore be compiled separately.

1.4.3 MIB Consistency Checking
When an MIB is compiled, the compiler detects if several managed objects use the same OBJECT IDENTIFIER.
If that is the case, it issues an error message. However, the compiler cannot detect Oid conflicts between different
MIBs. These kinds of conflicts generate an error at load time. To avoid this, the following function can be used to
do consistency checking between MIBs:

1.4 The MIB Compiler

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 19

erl>snmpc:is_consistent(ListOfMibNames).

ListOfMibNames is a list of compiled MIBs, for example ["RFC1213-MIB", "MY-MIB"]. The function also
performs consistency checking of trap definitions.

1.4.4 .hrl File Generation
It is possible to generate an .hrl file which contains definitions of Erlang constants from a compiled MIB file. This
file can then be included in Erlang source code. The file will contain constants for:

• object Identifiers for tables, table entries and variables

• column numbers

• enumerated values

• default values for variables and table columns.

Use the following command to generate a .hrl file from an MIB:

erl>snmpc:mib_to_hrl(MibName).

1.4.5 Emacs Integration
With the Emacs editor, the next-error (C-X `) function can be used indicate where a compilation error occurred,
provided the error message is described by a line number.

Use M-x compile to compile an MIB from inside Emacs, and enter:

 erl -s snmpc compile <MibName> -noshell

An example of <MibName> is RFC1213-MIB.

1.4.6 Compiling from a Shell or a Makefile
The erlc commands can be used to compile SNMP MIBs. Example:

 erlc MY-MIB.mib

All the standard erlc flags are supported, e.g.

 erlc -I mymibs -o mymibs -W MY-MIB.mib

The flags specific to the MIB compiler can be specified by using the + syntax:

1.5 Running the application

20 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

 erlc +'{group_check,false}' MY-MIB.mib

1.4.7 Deviations from the Standard
In some aspects the Erlang MIB compiler does not follow or implement the SMI fully. Here are the differences:

• Tables must be written in the following order: tableObject, entryObject, column1, ..., columnN (in
order).

• Integer values, for example in the SIZE expression must be entered in decimal syntax, not in hex or bit syntax.

• Symbolic names must be unique within a MIB and within a system.

• Hyphens are allowed in SMIv2 (a pragmatic approach). The reason for this is that according to SMIv2, hyphens
are allowed for objects converted from SMIv1, but not for others. This is impossible to check for the compiler.

• If a word is a keyword in any of SMIv1 or SMIv2, it is a keyword in the compiler (deviates from SMIv1 only).

• Indexes in a table must be objects, not types (deviates from SMIv1 only).

• A subset of all semantic checks on types are implemented. For example, strictly the TimeTicks may not be sub-
classed but the compiler allows this (standard MIBs must pass through the compiler) (deviates from SMIv2 only).

• The MIB.Object syntax is not implemented (since all objects must be unique anyway).

• Two different names cannot define the same OBJECT IDENTIFIER.

• The type checking in the SEQUENCE construct is non-strict (i.e. subtypes may be specified). The reason for this
is that some standard MIBs use this.

• A definition has normally a status field. When the status field has the value deprecated, then the MIB-compiler
will ignore this definition. With the MIB-compiler option {deprecated,true} the MIB-compiler does not
ignore the deprecated definitions.

• An object has a DESCRIPTIONS field. The descriptions-field will not be included in the compiled mib by
default. In order to get the description, the mib must be compiled with the option description.

1.5 Running the application
The chapter Running the application describes how the application is configured and started. The topics include:

• configuration directories and parameters

• modifying the configuration files

• starting the application (agent and/or manager)

• debugging the application (agent and/or manager)

Refer also to the chapter(s) Definition of Agent Configuration Files and Definition of Manager Configuration Files
which contains more detailed information about the agent and manager configuration files.

1.5.1 Configuring the application
The following two directories must exist in the system to run the agent:

• the configuration directory stores all configuration files used by the agent (refer to the chapter Definition of Agent
Configuration Files for more information).

• the database directory stores the internal database files.

The following directory must exist in the system to run the manager:

• the configuration directory stores all configuration files used by the manager (refer to the chapter Definition of
Manager Configuration Files for more information).

• the database directory stores the internal database files.

1.5 Running the application

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 21

The agent and manager uses (application) configuration parameters to find out where these directories are located.
The parameters should be defined in an Erlang system configuration file. The following configuration parameters are
defined for the SNMP application:

 agent_options() = [agent_option()]
 agent_option() = {restart_type, restart_type()} |
 {agent_type, agent_type()} |
 {agent_verbosity, verbosity()} |
 {versions, versions()} |
 {discovery, agent_discovery()} |
 {gb_max_vbs, gb_max_vbs()} |
 {priority, priority()} |
 {multi_threaded, multi_threaded()} |
 {db_dir, db_dir()} |
 {db_init_error, db_init_error()} |
 {local_db, local_db()} |
 {net_if, agent_net_if()} |
 {mibs, mibs()} |
 {mib_storage, mib_storage()} |
 {mib_server, mib_server()} |
 {audit_trail_log, audit_trail_log()} |
 {error_report_mod, error_report_mod()} |
 {note_store, note_store()} |
 {symbolic_store, symbolic_store()} |
 {target_cache, target_cache()} |
 {config, agent_config()}
 manager_options() = [manager_option()]
 manager_option() = {restart_type, restart_type()} |
 {net_if, manager_net_if()} |
 {server, server()} |
 {note_store, note_store()} |
 {config, manager_config()} |
 {inform_request_behaviour, manager_irb()} |
 {mibs, manager_mibs()} |
 {priority, priority()} |
 {audit_trail_log, audit_trail_log()} |
 {versions, versions()} |
 {def_user_mod, def_user_module() |
 {def_user_data, def_user_data()}

Agent specific config options and types:

agent_type() = master | sub <optional>

If master, one master agent is started. Otherwise, no agents are started.

Default is master.

agent_discovery() = [agent_discovery_opt()] <optional>

agent_discovery_opt() = {terminating, agent_terminating_discovery_opts()} |
{originating, agent_originating_discovery_opts()}

The terminating options effects discovery initiated by a manager.

The originating options effects discovery initiated by this agent.

For defaults see the options in agent_discovery_opt().

1.5 Running the application

22 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

agent_terminating_discovery_opts() = [agent_terminating_discovery_opt()]
<optional>

agent_terminating_discovery_opt() = {enable, boolean()} | {stage2, discovery
| plain} | {trigger_username, string()}

These are options effecting discovery terminating in this agent (i.e. initiated by a manager).

The default values for the terminating discovery options are:

• enable: true

• stage2: discovery

• trigger_username: ""

agent_originating_discovery_opts() = [agent_originating_discovery_opt()]
<optional>

agent_originating_discovery_opt() = {enable, boolean()}

These are options effecting discovery originating in this agent.

The default values for the originating discovery options are:

• enable: true

multi_threaded() = bool() <optional>

If true, the agent is multi-threaded, with one thread for each get request.

Default is false.

db_dir() = string() <mandatory>

Defines where the SNMP agent internal db files are stored.

gb_max_vbs() = pos_integer() | infinity <optional>

Defines the maximum number of varbinds allowed in a Get-BULK response.

Default is 1000.

local_db() = [local_db_opt()] <optional>

local_db_opt() = {repair, agent_repair()} | {auto_save, agent_auto_save()}
| {verbosity, verbosity()}

Defines options specific for the SNMP agent local database.

For defaults see the options in local_db_opt().

agent_repair() = false | true | force <optional>

When starting snmpa_local_db it always tries to open an existing database. If false, and some errors occur, a
new database is created instead. If true, an existing file will be repaired. If force, the table will be repaired
even if it was properly closed.

Default is true.

agent_auto_save() = integer() | infinity <optional>

The auto save interval. The table is flushed to disk whenever not accessed for this amount of time.

Default is 5000.

agent_net_if() = [agent_net_if_opt()] <optional>

agent_net_if_option() = {module, agent_net_if_module()} | {verbosity,
verbosity()} | {options, agent_net_if_options()}

1.5 Running the application

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 23

Defines options specific for the SNMP agent network interface entity.

For defaults see the options in agent_net_if_opt().

agent_net_if_module() = atom() <optional>

Module which handles the network interface part for the SNMP agent. Must implement the
snmpa_network_interface behaviour.

Default is snmpa_net_if.

agent_net_if_options() = [agent_net_if_option()] <optional>

agent_net_if_option() = {bind_to, bind_to()} | {sndbuf, sndbuf()} | {recbuf,
recbuf()} | {no_reuse, no_reuse()} | {req_limit, req_limit()} | {filter,
agent_net_if_filter_options()}

These options are actually specific to the used module. The ones shown here are applicable to the default
agent_net_if_module().

For defaults see the options in agent_net_if_option().

req_limit() = integer() | infinity <optional>

Max number of simultaneous requests handled by the agent.

Default is infinity.

agent_net_if_filter_options() = [agent_net_if_filter_option()] <optional>

agent_net_if_filter_option() = {module, agent_net_if_filter_module()}

These options are actually specific to the used module. The ones shown here are applicable to the default
agent_net_if_filter_module().

For defaults see the options in agent_net_if_filter_option().

agent_net_if_filter_module() = atom() <optional>

Module which handles the network interface filter part for the SNMP agent. Must implement the
snmpa_network_interface_filter behaviour.

Default is snmpa_net_if_filter.

agent_mibs() = [string()] <optional>

Specifies a list of MIBs (including path) that defines which MIBs are initially loaded into the SNMP master agent.

Note that the following will always be loaded:

• version v1: STANDARD-MIB

• version v2: SNMPv2

• version v3: SNMPv2, SNMP-FRAMEWORK-MIB and SNMP-MPD-MIB

Default is [].

mib_storage() = ets | {ets, Dir} | {ets, Dir, Action} | dets | {dets, Dir}
| {dets, Dir, Action} | mnesia | {mnesia, Nodes} | {mnesia, Nodes, Action}
<optional>

Specifies how info retrieved from the mibs will be stored.

If mib_storage is {ets, Dir}, the table will also be stored on file. If Dir is default, then db_dir
will be used.

If mib_storage is dets or if Dir is default, then db_dir will be used for Dir.

If mib_storage is mnesia then erlang:nodes() will be used for Nodes.

1.5 Running the application

24 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

Default is ets.

Dir = default | string(). Dir is the directory where the files will be stored. If default, then db_dir
will be used.

Nodes = visible | connected | [node()]. Nodes = visible is translated to
erlang:nodes(visible). Nodes = connected is translated to erlang:nodes(connected). If
Nodes = [] then the own node is assumed.

Action = clear | keep. Default is keep. Action is used to specify what shall be done if the mnesia/
dets table already exist.

mib_server() = [mib_server_opt()] <optional>

mib_server_opt() = {mibentry_override, mibentry_override()} |
{trapentry_override, trapentry_override()} | {verbosity, verbosity()} |
{cache, mibs_cache()}

Defines options specific for the SNMP agent mib server.

For defaults see the options in mib_server_opt().

mibentry_override() = bool() <optional>

If this value is false, then when loading a mib each mib- entry is checked prior to installation of the mib. The
purpose of the check is to prevent that the same symbolic mibentry name is used for different oid's.

Default is false.

trapentry_override() = bool() <optional>

If this value is false, then when loading a mib each trap is checked prior to installation of the mib. The purpose
of the check is to prevent that the same symbolic trap name is used for different trap's.

Default is false.

mibs_cache() = bool() | mibs_cache_opts() <optional>

Shall the agent utilize the mib server lookup cache or not.

Default is true (in which case the mibs_cache_opts() default values apply).

mibs_cache_opts() = [mibs_cache_opt()] <optional>

mibs_cache_opt() = {autogc, mibs_cache_autogc()} | {gclimit,
mibs_cache_gclimit()} | {age, mibs_cache_age()}

Defines options specific for the SNMP agent mib server cache.

For defaults see the options in mibs_cache_opt().

mibs_cache_autogc() = bool() <optional>

Defines if the mib server shall perform cache gc automatically or leave it to the user (see gc_mibs_cache/0,1,2,3).

Default is true.

mibs_cache_age() = integer() > 0 <optional>

Defines how old the entries in the cache will be allowed before they are GC'ed (assuming GC is performed). Each
entry in the cache is "touched" whenever it is accessed.

The age is defined in milliseconds.

Default is 10 timutes.

mibs_cache_gclimit() = integer() > 0 | infinity <optional>

When performing a GC, this is the max number of cache entries that will be deleted from the cache.

1.5 Running the application

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 25

The reason for having this limit is that if the cache is large, the GC can potentially take a long time, during which
the agent is locked.

Default is 100.

error_report_mod() = atom() <optional>

Defines an error report module, implementing the snmpa_error_report behaviour. Two modules are provided
with the toolkit: snmpa_error_logger and snmpa_error_io.

Default is snmpa_error_logger.

symbolic_store() = [symbolic_store_opt()]

symbolic_store_opt() = {verbosity, verbosity()}

Defines options specific for the SNMP agent symbolic store.

For defaults see the options in symbolic_store_opt().

target_cache() = [target_cache_opt()]

target_cache_opt() = {verbosity, verbosity()}

Defines options specific for the SNMP agent target cache.

For defaults see the options in target_cache_opt().

agent_config() = [agent_config_opt()] <mandatory>

agent_config_opt() = {dir, agent_config_dir()} | {force_load, force_load()}
| {verbosity, verbosity()}

Defines specific config related options for the SNMP agent.

For defaults see the options in agent_config_opt().

agent_config_dir = dir() <mandatory>

Defines where the SNMP agent configuration files are stored.

force_load() = bool() <optional>

If true the configuration files are re-read during start-up, and the contents of the configuration database ignored.
Thus, if true, changes to the configuration database are lost upon reboot of the agent.

Default is false.

Manager specific config options and types:

server() = [server_opt()] <optional>

server_opt() = {timeout, server_timeout()} | {verbosity, verbosity()}

Specifies the options for the manager server process.

Default is silence.

server_timeout() = integer() <optional>

Asynchroneous request cleanup time. For every requests, some info is stored internally, in order to be able to
deliver the reply (when it arrives) to the proper destination. If the reply arrives, this info will be deleted. But if
there is no reply (in time), the info has to be deleted after the best before time has been passed. This cleanup will
be performed at regular intervals, defined by the server_timeout() time. The information will have a best
before time, defined by the Expire time given when calling the request function (see async_get, async_get_next
and async_set).

Time in milli-seconds.

1.5 Running the application

26 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

Default is 30000.

manager_config() = [manager_config_opt()] <mandatory>

manager_config_opt() = {dir, manager_config_dir()} | {db_dir,
manager_db_dir()} | {db_init_error, db_init_error()} | {repair,
manager_repair()} | {auto_save, manager_auto_save()} | {verbosity,
verbosity()}

Defines specific config related options for the SNMP manager.

For defaults see the options in manager_config_opt().

manager_config_dir = dir() <mandatory>

Defines where the SNMP manager configuration files are stored.

manager_db_dir = dir() <mandatory>

Defines where the SNMP manager store persistent data.

manager_repair() = false | true | force <optional>

Defines the repair option for the persistent database (if and how the table is repaired when opened).

Default is true.

manager_auto_save() = integer() | infinity <optional>

The auto save interval. The table is flushed to disk whenever not accessed for this amount of time.

Default is 5000.

manager_irb() = auto | user | {user, integer()} <optional>

This option defines how the manager will handle the sending of response (acknowledgment) to received inform-
requests.

• auto - The manager will autonomously send response (acknowledgment> to inform-request messages.

• {user, integer()} - The manager will send response (acknowledgment) to inform-request messages
when the handle_inform function completes. The integer is the time, in milli-seconds, that the manager will
consider the stored inform-request info valid.

• user - Same as {user, integer()}, except that the default time, 15000 milli-seconds, is used.

See snmpm_network_interface, handle_inform and definition of the manager net if for more info.

Default is auto.

manager_mibs() = [string()] <optional>

Specifies a list of MIBs (including path) and defines which MIBs are initially loaded into the SNMP manager.

Default is [].

manager_net_if() = [manager_net_if_opt()] <optional>

manager_net_if_opt() = {module, manager_net_if_module()} | {verbosity,
verbosity()} | {options, manager_net_if_options()}

Defines options specific for the SNMP manager network interface entity.

For defaults see the options in manager_net_if_opt().

manager_net_if_options() = [manager_net_if_option()] <optional>

manager_net_if_option() = {bind_to, bind_to()} | {sndbuf, sndbuf()}
| {recbuf, recbuf()} | {no_reuse, no_reuse()} | {filter,
manager_net_if_filter_options()}

1.5 Running the application

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 27

These options are actually specific to the used module. The ones shown here are applicable to the default
manager_net_if_module().

For defaults see the options in manager_net_if_option().

manager_net_if_module() = atom() <optional>

The module which handles the network interface part for the SNMP manager. It must implement the
snmpm_network_interface behaviour.

Default is snmpm_net_if.

manager_net_if_filter_options() = [manager_net_if_filter_option()] <optional>

manager_net_if_filter_option() = {module, manager_net_if_filter_module()}

These options are actually specific to the used module. The ones shown here are applicable to the default
manager_net_if_filter_module().

For defaults see the options in manager_net_if_filter_option().

manager_net_if_filter_module() = atom() <optional>

Module which handles the network interface filter part for the SNMP manager. Must implement the
snmpm_network_interface_filter behaviour.

Default is snmpm_net_if_filter.

def_user_module() = atom() <optional>

The module implementing the default user. See the snmpm_user behaviour.

Default is snmpm_user_default.

def_user_data() = term() <optional>

Data for the default user. Passed to the user when calling the callback functions.

Default is undefined.

Common config types:

restart_type() = permanent | transient | temporary

See supervisor documentation for more info.

Default is permanent for the agent and transient for the manager.

db_init_error() = terminate | create

Defines what to do if the agent is unable to open an existing database file. terminate means that the agent/
manager will terminate and create means that the agent/manager will remove the faulty file(s) and create new
ones.

Default is terminate.

priority() = atom() <optional>

Defines the Erlang priority for all SNMP processes.

Default is normal.

versions() = [version()] <optional>

version() = v1 | v2 | v3

Which SNMP versions shall be accepted/used.

Default is [v1,v2,v3].

1.5 Running the application

28 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

verbosity() = silence | info | log | debug | trace <optional>

Verbosity for a SNMP process. This specifies now much debug info is printed.

Default is silence.

bind_to() = bool() <optional>

If true, net_if binds to the IP address. If false, net_if listens on any IP address on the host where it is running.

Default is false.

no_reuse() = bool() <optional>

If true, net_if does not specify that the IP and port address should be reusable. If false, the address is set
to reusable.

Default is false.

recbuf() = integer() <optional>

Receive buffer size.

Default value is defined by gen_udp.

sndbuf() = integer() <optional>

Send buffer size.

Default value is defined by gen_udp.

note_store() = [note_store_opt()] <optional>

note_store_opt() = {timeout, note_store_timeout()} | {verbosity,
verbosity()}

Specifies the options for the SNMP note store.

For defaults see the options in note_store_opt().

note_store_timeout() = integer() <optional>

Note cleanup time. When storing a note in the note store, each note is given lifetime. Every timeout the
note_store process performs a GC to remove the expired note's. Time in milli-seconds.

Default is 30000.

audit_trail_log() [audit_trail_log_opt()] <optional>

audit_trail_log_opt() = {type, atl_type()} | {dir, atl_dir()} | {size,
atl_size()} | {repair, atl_repair()} | {seqno, atl_seqno()}

If present, this option specifies the options for the audit trail logging. The disk_log module is used to maintain
a wrap log. If present, the dir and size options are mandatory.

If not present, audit trail logging is not used.

atl_type() = read | write | read_write <optional>

Specifies what type of an audit trail log should be used. The effect of the type is actually different for the the
agent and the manager.

For the agent:

• If write is specified, only set requests are logged.

• If read is specified, only get requests are logged.

• If read_write, all requests are logged.

For the manager:

1.5 Running the application

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 29

• If write is specified, only sent messages are logged.

• If read is specified, only received messages are logged.

• If read_write, both outgoing and incoming messages are logged.

Default is read_write.

atl_dir = dir() <mandatory>

Specifies where the audit trail log should be stored.

If audit_trail_log specifies that logging should take place, this parameter must be defined.

atl_size() = {integer(), integer()} <mandatory>

Specifies the size of the audit trail log. This parameter is sent to disk_log.

If audit_trail_log specifies that logging should take place, this parameter must be defined.

atl_repair() = true | false | truncate | snmp_repair <optional>

Specifies if and how the audit trail log shall be repaired when opened. Unless this parameter has the value
snmp_repair it is sent to disk_log. If, on the other hand, the value is snmp_repair, snmp attempts to
handle certain faults on its own. And even if it cannot repair the file, it does not truncate it directly, but instead
moves it aside for later off-line analysis.

Default is true.

atl_seqno() = true | false <optional>

Specifies if the audit trail log entries will be (sequence) numbered or not. The range of the sequence numbers are
according to RFC 5424, i.e. 1 through 2147483647.

Default is false.

1.5.2 Modifying the Configuration Files
To to start the application (agent and/or manager), the configuration files must be modified and there are two ways of
doing this. Either edit the files manually, or run the configuration tool as follows.

If authentication or encryption is used (SNMPv3 only), start the crypto application.

1> snmp:config().

Simple SNMP configuration tool (version 4.0)
--
Note: Non-trivial configurations still has to be
 done manually. IP addresses may be entered
 as dront.ericsson.se (UNIX only) or
 123.12.13.23
--

Configure an agent (y/n)? [y]

Agent system config:

1. Agent process priority (low/normal/high) [normal]
2. What SNMP version(s) should be used (1,2,3,1&2,1&2&3,2&3)? [3] 1&2&3
3. Configuration directory (absolute path)? [/ldisk/snmp] /ldisk/snmp/agent/conf
4. Config verbosity (silence/info/log/debug/trace)? [silence]
5. Database directory (absolute path)? [/ldisk/snmp] /ldisk/snmp/agent/db
6. Mib storage type (ets/dets/mnesia)? [ets]
7. Target cache verbosity (silence/info/log/debug/trace)? [silence]
8. Symbolic store verbosity (silence/info/log/debug/trace)? [silence]
9. Local DB verbosity (silence/info/log/debug/trace)? [silence]

1.5 Running the application

30 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

10. Local DB repair (true/false/force)? [true]
11. Local DB auto save (infinity/milli seconds)? [5000]
12. Error report module? [snmpa_error_logger]
13. Agent type (master/sub)? [master]
14. Master-agent verbosity (silence/info/log/debug/trace)? [silence] log
15. Shall the agent re-read the configuration files during startup
 (and ignore the configuration database) (true/false)? [true]
16. Multi threaded agent (true/false)? [false] true
17. Check for duplicate mib entries when installing a mib (true/false)? [false]
18. Check for duplicate trap names when installing a mib (true/false)? [false]
19. Mib server verbosity (silence/info/log/debug/trace)? [silence]
20. Mib server cache (true/false)? [true]
21. Note store verbosity (silence/info/log/debug/trace)? [silence]
22. Note store GC timeout? [30000]
23. Shall the agent use an audit trail log (y/n)? [n] y
23b. Audit trail log type (write/read_write)? [read_write]
23c. Where to store the audit trail log? [/ldisk/snmp] /ldisk/snmp/agent/log
23d. Max number of files? [10]
23e. Max size (in bytes) of each file? [10240]
23f. Audit trail log repair (true/false/truncate)? [true]
24. Which network interface module shall be used? [snmpa_net_if]
25. Network interface verbosity (silence/info/log/debug/trace)? [silence] log
25a. Bind the agent IP address (true/false)? [false]
25b. Shall the agents IP address and port be not reusable (true/false)? [false]
25c. Agent request limit (used for flow control) (infinity/pos integer)? [infinity] 32
25d. Receive buffer size of the agent (in bytes) (default/pos integer)? [default]
25e. Send buffer size of the agent (in bytes) (default/pos integer)? [default]
25f. Do you wish to specify a network interface filter module (or use default) [default]

Agent snmp config:

1. System name (sysName standard variable) [bmk's agent]
2. Engine ID (snmpEngineID standard variable) [bmk's engine]
3. Max message size? [484]
4. The UDP port the agent listens to. (standard 161) [4000]
5. IP address for the agent (only used as id
 when sending traps) [127.0.0.1]
6. IP address for the manager (only this manager
 will have access to the agent, traps are sent
 to this one) [127.0.0.1]
7. To what UDP port at the manager should traps
 be sent (standard 162)? [5000]
8. Do you want a none- minimum- or semi-secure configuration?
 Note that if you chose v1 or v2, you won't get any security for these
 requests (none, minimum, semi_des, semi_aes) [minimum]
making sure crypto server is started...
8b. Give a password of at least length 8. It is used to generate
 private keys for the configuration: kalle-anka
9. Current configuration files will now be overwritten. Ok (y/n)? [y]

- - - - - - - - - - - - -
Info: 1. SecurityName "initial" has noAuthNoPriv read access
 and authenticated write access to the "restricted"
 subtree.
 2. SecurityName "all-rights" has noAuthNoPriv read/write
 access to the "internet" subtree.
 3. Standard traps are sent to the manager.
 4. Community "public" is mapped to security name "initial".
 5. Community "all-rights" is mapped to security name "all-rights".
The following agent files were written: agent.conf, community.conf,
standard.conf, target_addr.conf, target_params.conf,
notify.conf, vacm.conf and usm.conf
- - - - - - - - - - - - -

Configure a manager (y/n)? [y]

1.5 Running the application

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 31

Manager system config:

1. Manager process priority (low/normal/high) [normal]
2. What SNMP version(s) should be used (1,2,3,1&2,1&2&3,2&3)? [3] 1&2&3
3. Configuration directory (absolute path)? [/ldisk/snmp] /ldisk/snmp/manager/conf
4. Config verbosity (silence/info/log/debug/trace)? [silence] log
5. Database directory (absolute path)? [/ldisk/snmp] /ldisk/snmp/manager/db
6. Database repair (true/false/force)? [true]
7. Database auto save (infinity/milli seconds)? [5000]
8. Inform request behaviour (auto/user)? [auto]
9. Server verbosity (silence/info/log/debug/trace)? [silence] log
10. Server GC timeout? [30000]
11. Note store verbosity (silence/info/log/debug/trace)? [silence]
12. Note store GC timeout? [30000]
13. Which network interface module shall be used? [snmpm_net_if]
14. Network interface verbosity (silence/info/log/debug/trace)? [silence] log
15. Bind the manager IP address (true/false)? [false]
16. Shall the manager IP address and port be not reusable (true/false)? [false]
17. Receive buffer size of the manager (in bytes) (default/pos integer)? [default]
18. Send buffer size of the manager (in bytes) (default/pos integer)? [default]
19. Shall the manager use an audit trail log (y/n)? [n] y
19b. Where to store the audit trail log? [/ldisk/snmp] /ldisk/snmp/manager/log
19c. Max number of files? [10]
19d. Max size (in bytes) of each file? [10240]
19e. Audit trail log repair (true/false/truncate)? [true]
20. Do you wish to assign a default user [yes] or use
 the default settings [no] (y/n)? [n]

Manager snmp config:

1. Engine ID (snmpEngineID standard variable) [bmk's engine]
2. Max message size? [484]
3. IP address for the manager (only used as id
 when sending requests) [127.0.0.1]
4. Port number (standard 162)? [5000]
5. Configure a user of this manager (y/n)? [y]
5b. User id? kalle
5c. User callback module? snmpm_user_default
5d. User (callback) data? [undefined]
5. Configure a user of this manager (y/n)? [y] n
6. Configure an agent handled by this manager (y/n)? [y]
6b. User id? kalle
6c. Target name? [bmk's agent]
6d. Version (1/2/3)? [1] 3
6e. Community string ? [public]
6f. Engine ID (snmpEngineID standard variable) [bmk's engine]
6g. IP address for the agent [127.0.0.1]
6h. The UDP port the agent listens to. (standard 161) [4000]
6i. Retransmission timeout (infinity/pos integer)? [infinity]
6j. Max message size? [484]
6k. Security model (any/v1/v2c/usm)? [any] usm
6l. Security name? ["initial"]
6m. Security level (noAuthNoPriv/authNoPriv/authPriv)? [noAuthNoPriv] authPriv
6. Configure an agent handled by this manager (y/n)? [y] n
7. Configure an usm user handled by this manager (y/n)? [y]
7a. Engine ID [bmk's engine]
7b. User name? hobbes
7c. Security name? [hobbes]
7d. Authentication protocol (no/sha/md5)? [no] sha
7e Authentication [sha] key (length 0 or 20)? [""] [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16, \
 17,18,19,20]
7d. Priv protocol (no/des/aes)? [no] des
7f Priv [des] key (length 0 or 16)? [""] 10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25
7. Configure an usm user handled by this manager (y/n)? [y] n

1.5 Running the application

32 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

8. Current configuration files will now be overwritten. Ok (y/n)? [y]

- - - - - - - - - - - - -
The following manager files were written: manager.conf, agents.conf , users.conf and usm.conf
- - - - - - - - - - - - -

Configuration directory for system file (absolute path)? [/ldisk/snmp]
ok

1.5.3 Starting the application
Start Erlang with the command:

erl -config /tmp/snmp/sys

If authentication or encryption is used (SNMPv3 only), start the crypto application. If this step is forgotten, the
agent will not start, but report a {config_error,{unsupported_crypto,_}} error.

1> application:start(crypto).
ok

2> application:start(snmp).
ok

1.5.4 Debugging the application
It is possible to debug every (non-supervisor) process of the application (both agent and manager), possibly with
the exception of the net_if module(s), which could be supplied by a user of the application). This is done by calling
the snmpa:verbosity/2 and snmpm:verbosity/2 function(s) and/or using configuration parameters. The
verbosity itself has several levels: silence | info | log | debug | trace. For the lowest verbosity
silence, nothing is printed. The higher the verbosity, the more is printed. Default value is always silence.

3> snmpa:verbosity(master_agent, log).
ok
5> snmpa:verbosity(net_if, log).
ok
6>
%% Example of output from the agent when a get-next-request arrives:
** SNMP NET-IF LOG:
 got packet from {147,12,12,12}:5000

** SNMP NET-IF MPD LOG:
 v1, community: all-rights

** SNMP NET-IF LOG:
 got pdu from {147,12,12,12}:5000 {pdu, 'get-next-request',
 62612569,noError,0,
 [{varbind,[1,1],'NULL','NULL',1}]}

1.6 Definition of Agent Configuration Files

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 33

** SNMP MASTER-AGENT LOG:
 apply: snmp_generic,variable_func,[get,{sysDescr,persistent}]

** SNMP MASTER-AGENT LOG:
 returned: {value,"Erlang SNMP agent"}

** SNMP NET-IF LOG:
 reply pdu: {pdu,'get-response',62612569,noError,0,
 [{varbind,[1,3,6,1,2,1,1,1,0],
 'OCTET STRING',
 "Erlang SNMP agent",1}]}

** SNMP NET-IF INFO: time in agent: 19711 mysec

Other useful function(s) for debugging the agent are:

snmpa:info/0,1

info is used to retrieve a list of miscellaneous agent information.

snmpa:which_aliasnames/0

which_aliasnames is used to retrieve a list of all alias-names known to the agent.

snmpa:which_tables/0

which_tables is used to retrieve a list of all (MIB) tables known to the agent.

snmpa:which_variables/0

which_variables is used to retrieve a list of all (MIB) variables known to the agent.

snmpa:which_notifications/0

which_notifications is used to retrieve a list of all (MIB) notifications/traps known to the agent.

snmpa:restart_worker/0,1

restart_worker is used to restart the worker process of a multi-threaded agent.

snmpa:restart_set_worker/0,1

restart_set_worker is used to restart the set-worker process of a multi-threaded agent.

snmpa_local_db:print/0,1,2

For example, this function can show the counters snmpInPkts and snmpOutPkts.

Another usefull way to debug the agent is to pretty-print the content of all the tables and/or variables handled directly
by the agent. This can be done by simply calling:

snmpa:print_mib_info()

See print_mib_info/0, print_mib_tables/0 or print_mib_variables/0 for more info.

1.6 Definition of Agent Configuration Files
All configuration data must be included in configuration files that are located in the configuration directory. The
name of this directory is given in the config_dir configuration parameter. These files are read at start-up, and are
used to initialize the SNMPv2-MIB or STANDARD-MIB, SNMP-FRAMEWORK-MIB, SNMP-MPD-MIB, SNMP-
VIEW-BASED-ACM-MIB, SNMP-COMMUNITY-MIB, SNMP-USER-BASED-SM-MIB, SNMP-TARGET-MIB
and SNMP-NOTIFICATION-MIB (refer to the Management of the Agent for a description of the MIBs).

The files are:

1.6 Definition of Agent Configuration Files

34 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

• agent.conf: see Agent Information

• standard.conf: see System Information

• context.conf: see Contexts

• community.conf: see Communities

• target_addr.conf: see Target Address Definitions

• target_params.conf: see Target Parameters Definitions

• vacm.conf: see MIB Views for VACM

• usm.conf: see Security data for USM

• notify.conf: see Notify Definitions

The directory where the configuration files are found is given as a parameter to the agent.

The entry format in all files are Erlang terms, separated by a '.' and a newline. In the following sections, the formats
of these terms are described. Comments may be specified as ordinary Erlang comments.

Syntax errors in these files are discovered and reported with the function config_err/2 of the error report module
at start-up.

1.6.1 Agent Information
The agent information should be stored in a file called agent.conf.

Each entry is a tuple of size two:

{AgentVariable, Value}.

• AgentVariable is one of the variables is SNMP-FRAMEWORK-MIB or one of the internal variables
intAgentUDPPort, which defines which UDP port the agent listens to, or intAgentIpAddress, which
defines the IP address of the agent.

• Value is the value for the variable.

The following example shows a agent.conf file:

{intAgentUDPPort, 4000}.
{intAgentIpAddress,[141,213,11,24]}.
{snmpEngineID, "mbj's engine"}.
{snmpEngineMaxPacketSize, 484}.

The value of snmpEngineID is a string, which for a deployed agent should have a very specific structure. See RFC
2271/2571 for details.

1.6.2 Contexts
The context information should be stored in a file called context.conf. The default context "" need not be present.

Each row defines a context in the agent. This information is used in the table vacmContextTable in the SNMP-
VIEW-BASED-ACM-MIB.

Each entry is a term:

ContextName.

• ContextName is a string.

1.6 Definition of Agent Configuration Files

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 35

1.6.3 System Information
The system information should be stored in a file called standard.conf.

Each entry is a tuple of size two:

{SystemVariable, Value}.

• SystemVariable is one of the variables in the system group, or snmpEnableAuthenTraps.

• Value is the value for the variable.

The following example shows a valid standard.conf file:

{sysDescr, "Erlang SNMP agent"}.
{sysObjectID, [1,2,3]}.
{sysContact, "(mbj,eklas)@erlang.ericsson.se"}.
{sysName, "test"}.
{sysServices, 72}.
{snmpEnableAuthenTraps, enabled}.

A value must be provided for all variables, which lack default values in the MIB.

1.6.4 Communities
The community information should be stored in a file called community.conf. It must be present if the agent is
configured for SNMPv1 or SNMPv2c.

An SNMP community is a relationship between an SNMP agent and a set of SNMP managers that defines
authentication, access control and proxy characteristics.

The corresponding table is snmpCommunityTable in the SNMP-COMMUNITY-MIB.

Each entry is a term:

{CommunityIndex, CommunityName, SecurityName, ContextName, TransportTag}.

• CommunityIndex is a non-empty string.

• CommunityName is a string.

• SecurityName is a string.

• ContextName is a string.

• TransportTag is a string.

1.6.5 MIB Views for VACM
The information about MIB Views for VACM should be stored in a file called vacm.conf.

The corresponding tables are vacmSecurityToGroupTable, vacmAccessTable and
vacmViewTreeFamilyTable in the SNMP-VIEW-BASED-ACM-MIB.

Each entry is one of the terms, one entry corresponds to one row in one of the tables.

{vacmSecurityToGroup, SecModel, SecName, GroupName}.

{vacmAccess, GroupName, Prefix, SecModel, SecLevel, Match, ReadView, WriteView,
NotifyView}.

{vacmViewTreeFamily, ViewIndex, ViewSubtree, ViewStatus, ViewMask}.

• SecModel is any, v1, v2c, or usm.

1.6 Definition of Agent Configuration Files

36 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

• SecName is a string.

• GroupName is a string.

• Prefix is a string.

• SecLevel is noAuthNoPriv, authNoPriv, or authPriv

• Match is prefix or exact.

• ReadView is a string.

• WriteView is a string.

• NotifyView is a string.

• ViewIndex is an integer.

• ViewSubtree is a list of integer.

• ViewStatus is either included or excluded

• ViewMask is either null or a list of ones and zeros. Ones nominate that an exact match is used for this sub-
identifier. Zeros are wild-cards which match any sub-identifier. If the mask is shorter than the sub-tree, the tail is
regarded as all ones. null is shorthand for a mask with all ones.

1.6.6 Security data for USM
The information about Security data for USM should be stored in a file called usm.conf, which must be present if
the agent is configured for SNMPv3.

The corresponding table is usmUserTable in the SNMP-USER-BASED-SM-MIB.

Each entry is a term:

{EngineID, UserName, SecName, Clone, AuthP, AuthKeyC, OwnAuthKeyC, PrivP,
PrivKeyC, OwnPrivKeyC, Public, AuthKey, PrivKey}.

• EngineID is a string.

• UserName is a string.

• SecName is a string.

• Clone is zeroDotZero or a list of integers.

• AuthP is a usmNoAuthProtocol, usmHMACMD5AuthProtocol, or usmHMACSHAAuthProtocol.

• AuthKeyC is a string.

• OwnAuthKeyC is a string.

• PrivP is a usmNoPrivProtocol, usmDESPrivProtocol or usmAesCfb128Protocol.

• PrivKeyC is a string.

• OwnPrivKeyC is a string.

• Public is a string.

• AuthKey is a list (of integer). This is the User's secret localized authentication key. It is not visible in
the MIB. The length of this key needs to be 16 if usmHMACMD5AuthProtocol is used, and 20 if
usmHMACSHAAuthProtocol is used.

• PrivKey is a list (of integer). This is the User's secret localized encryption key. It is not visible in the MIB. The
length of this key needs to be 16 if usmDESPrivProtocol or usmAesCfb128Protocol is used.

1.6.7 Notify Definitions
The information about Notify Definitions should be stored in a file called notify.conf.

The corresponding table is snmpNotifyTable in the SNMP-NOTIFICATION-MIB.

Each entry is a term:

1.6 Definition of Agent Configuration Files

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 37

{NotifyName, Tag, Type}.

• NotifyName is a unique non-empty string.

• Tag is a string.

• Type is trap or inform.

1.6.8 Target Address Definitions
The information about Target Address Definitions should be stored in a file called target_addr.conf.

The corresponding tables are snmpTargetAddrTable in the SNMP-TARGET-MIB and
snmpTargetAddrExtTable in the SNMP-COMMUNITY-MIB.

Each entry is a term:

{TargetName, Ip, Udp, Timeout, RetryCount, TagList, ParamsName, EngineId}.
or
{TargetName, Ip, Udp, Timeout, RetryCount, TagList, ParamsName, EngineId, TMask,
MaxMessageSize}.
or
{TargetName, Domain, Ip, Udp, Timeout, RetryCount, TagList, ParamsName,
EngineId, TMask, MaxMessageSize}.

• TargetName is a unique non-empty string.

• Domain is one of the atoms: transportDomainUdpIpv4 | transportDomainUdpIpv6.

• Ip is a list of four or eight integers.

• Udp is an integer.

• Timeout is an integer.

• RetryCount is an integer.

• TagList is a string.

• ParamsName is a string.

• EngineId is a string or the atom discovery.

• TMask is a list of integer() of size 0, size 6 or size 10 (default: []).

• MaxMessageSize is an integer (default: 2048).

Note that if EngineId has the value discovery, the agent cannot send inform messages to that manager until
it has performed the discovery process with that manager.

1.6.9 Target Parameters Definitions
The information about Target Parameters Definitions should be stored in a file called target_params.conf.

The corresponding table is snmpTargetParamsTable in the SNMP-TARGET-MIB.

Each entry is a term:

{ParamsName, MPModel, SecurityModel, SecurityName, SecurityLevel}.

• ParamsName is a unique non-empty string.

• MPModel is v1, v2c or v3

• SecurityModel is v1, v2c, or usm.

• SecurityName is a string.

• SecurityLevel is noAuthNoPriv, authNoPriv or authPriv.

1.7 Definition of Manager Configuration Files

38 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.7 Definition of Manager Configuration Files
Configuration data may be included in configuration files that is located in the configuration directory. The name of
this directory is given in the config_dir configuration parameter. These files are read at start-up.

The directory where the configuration files are found is given as a parameter to the manager.

The entry format in all files are Erlang terms, separated by a '.' and a newline. In the following sections, the formats
of these terms are described. Comments may be specified as ordinary Erlang comments.

If syntax errors are discovered in these files they are reported with the function config_err/2 of the error report
module at start-up.

1.7.1 Manager Information
The manager information should be stored in a file called manager.conf.

Each entry is a tuple of size two:

{Variable, Value}.

• Variable is one of the following:

• address - which defines the IP address of the manager. Default is local host.

• port - which defines which UDP port the manager uses for communicating with agents. Mandatory.

• engine_id - The SnmpEngineID as defined in SNMP-FRAMEWORK-MIB. Mandatory.

• max_message_size - The snmpEngineMaxMessageSize as defined in SNMP-FRAMEWORK-
MIB. Mandatory.

• Value is the value for the variable.

The following example shows a manager.conf file:

{address, [141,213,11,24]}.
{port, 5000}.
{engine_id, "mgrEngine"}.
{max_message_size, 484}.

The value of engine_id is a string, which should have a very specific structure. See RFC 2271/2571 for details.

1.7.2 Users
For each manager user, the manager needs some information. This information is either added in the users.conf
config file or by calling the register_user function in run-time.

Each row defines a manager user of the manager.

Each entry is a tuple of size four:

{UserId, UserMod, UserData, DefaultAgentConfig}.

• UserId is any term (used to uniquely identify the user).

• UserMod is the user callback module (atom).

• UserData is any term (passed on to the user when calling the UserMod.

• DefaultAgentConfig is a list of default agent config's. These values are used as default values when this
user registers agents.

1.8 Agent Implementation Example

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 39

1.7.3 Agents
The information needed to handle agents should be stored in a file called agents.conf. It is also possible to add
agents in run-time by calling the register_agent.

Each entry is a tuple:

{UserId, TargetName, Comm, Ip, Port, EngineID, Timeout, MaxMessageSize, Version,
SecModel, SecName, SecLevel}.

• UserId is the identity of the manager user responsible for this agent (term).

• TargetName is a unique non-empty string.

• Comm is the community string (string).

• Ip is the ip address of the agent (a list of four integers).

• Port is the port number of the agent (integer).

• EngineID is the engine-id of the agent (string).

• Timeout is re-transmission timeout (infinity | integer).

• MaxMessageSize is the max message size for outgoing messages to this agent (integer).

• Version is the version (v1 | v2 | v3).

• SecModel is the security model (any | v1 | v2c | usm).

• SecName is the security name (string).

• SecLevel is security level (noAuthNoPriv | authNoPriv | authPriv).

1.7.4 Security data for USM
The information about Security data for USM should be stored in a file called usm.conf, which must be present
if the manager wishes to use SNMPv3 when communicating with agents. It is also possible to add usm data in run-
time by calling the register_usm_user.

The corresponding table is usmUserTable in the SNMP-USER-BASED-SM-MIB.

Each entry is a term:

{EngineID, UserName, AuthP, AuthKey, PrivP, PrivKey}.
{EngineID, UserName, SecName, AuthP, AuthKey, PrivP, PrivKey}.

The first case is when we have the identity-function (SecName = UserName).

• EngineID is a string.

• UserName is a string.

• SecName is a string.

• AuthP is a usmNoAuthProtocol, usmHMACMD5AuthProtocol or usmHMACSHAAuthProtocol.

• AuthKey is a list (of integer). This is the User's secret localized authentication key. It is not visible
in the MIB. The length of this key needs to be 16 if usmHMACMD5AuthProtocol is used and 20 if
usmHMACSHAAuthProtocol is used.

• PrivP is a usmNoPrivProtocol, usmDESPrivProtocol or usmAesCfb128Protocol.

• PrivKey is a list (of integer). This is the User's secret localized encryption key. It is not visible in the MIB. The
length of this key needs to be 16 if usmDESPrivProtocol or usmAesCfb128Protocol is used.

1.8 Agent Implementation Example
This Implementation Example section describes how an MIB can be implemented with the SNMP Development
Toolkit.

1.8 Agent Implementation Example

40 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

The example shown can be found in the toolkit distribution.

The agent is configured with the configuration tool, using default suggestions for everything but the manager node.

1.8.1 MIB
The MIB used in this example is called EX1-MIB. It contains two objects, a variable with a name and a table with
friends.

EX1-MIB DEFINITIONS ::= BEGIN

 IMPORTS
 RowStatus FROM STANDARD-MIB
 DisplayString FROM RFC1213-MIB
 OBJECT-TYPE FROM RFC-1212
 ;

 example1 OBJECT IDENTIFIER ::= { experimental 7 }

 myName OBJECT-TYPE
 SYNTAX DisplayString (SIZE (0..255))
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "My own name"
 ::= { example1 1 }

 friendsTable OBJECT-TYPE
 SYNTAX SEQUENCE OF FriendsEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "A list of friends."
 ::= { example1 4 }

 friendsEntry OBJECT-TYPE
 SYNTAX FriendsEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 ""
 INDEX { fIndex }
 ::= { friendsTable 1 }

 FriendsEntry ::=
 SEQUENCE {
 fIndex
 INTEGER,
 fName
 DisplayString,
 fAddress
 DisplayString,
 fStatus
 RowStatus }

 fIndex OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "number of friend"
 ::= { friendsEntry 1 }

1.8 Agent Implementation Example

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 41

 fName OBJECT-TYPE
 SYNTAX DisplayString (SIZE (0..255))
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "Name of friend"
 ::= { friendsEntry 2 }
 fAddress OBJECT-TYPE
 SYNTAX DisplayString (SIZE (0..255))
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "Address of friend"
 ::= { friendsEntry 3 }
 fStatus OBJECT-TYPE
 SYNTAX RowStatus
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "The status of this conceptual row."
 ::= { friendsEntry 4 }
 fTrap TRAP-TYPE
 ENTERPRISE example1
 VARIABLES { myName, fIndex }
 DESCRIPTION
 "This trap is sent when something happens to
 the friend specified by fIndex."
 ::= 1
END

1.8.2 Default Implementation
Without writing any instrumentation functions, we can compile the MIB and use the default implementation of it.
Recall that MIBs imported by "EX1-MIB.mib" must be present and compiled in the current directory ("./STANDARD-
MIB.bin","./RFC1213-MIB.bin") when compiling.

unix> erl -config ./sys
1> application:start(snmp).
ok
2> snmpc:compile("EX1-MIB").
No accessfunction for 'friendsTable', using default.
No accessfunction for 'myName', using default.
{ok, "EX1-MIB.bin"}
3> snmpa:load_mibs(snmp_master_agent, ["EX1-MIB"]).
ok

This MIB is now loaded into the agent, and a manager can ask questions. As an example of this, we start another
Erlang system and the simple Erlang manager in the toolkit:

1> snmp_test_mgr:start_link([{agent,"dront.ericsson.se"},{community,"all-rights"},
 %% making it understand symbolic names: {mibs,["EX1-MIB","STANDARD-MIB"]}]).
{ok, <0.89.0>}
%% a get-next request with one OID.
2> snmp_test_mgr:gn([[1,3,6,1,3,7]]).
ok
* Got PDU:
[myName,0] = []

1.8 Agent Implementation Example

42 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

%% A set-request (now using symbolic names for convenience)
3> snmp_test_mgr:s([{[myName,0], "Martin"}]).
ok
* Got PDU:
[myName,0] = "Martin"
%% Try the same get-next request again
4> snmp_test_mgr:gn([[1,3,6,1,3,7]]).
ok
* Got PDU:
[myName,0] = "Martin"
%% ... and we got the new value.
%% you can event do row operations. How to add a row:
5> snmp_test_mgr:s([{[fName,0], "Martin"}, {[fAddress,0],"home"}, {[fStatus,0],4}]).
 %% createAndGo
ok
* Got PDU:
[fName,0] = "Martin"
[fAddress,0] = "home"
[fStatus,0] = 4
6> snmp_test_mgr:gn([[myName,0]]).
ok
* Got PDU:
[fName,0] = "Martin"
7> snmp_test_mgr:gn().
ok
* Got PDU:
[fAddress,0] = "home"
8> snmp_test_mgr:gn().
ok
* Got PDU:
[fStatus,0] = 1
9>

1.8.3 Manual Implementation
The following example shows a "manual" implementation of the EX1-MIB in Erlang. In this example, the values of
the objects are stored in an Erlang server. The server has a 2-tuple as loop data, where the first element is the value of
variable myName, and the second is a sorted list of rows in the table friendsTable. Each row is a 4-tuple.

Note:
There are more efficient ways to create tables manually, i.e. to use the module snmp_index.

Code

-module(ex1).
-author('dummy@flop.org').
%% External exports
-export([start/0, my_name/1, my_name/2, friends_table/3]).
%% Internal exports
-export([init/0]).
-define(status_col, 4).
-define(active, 1).
-define(notInService, 2).
-define(notReady, 3).
-define(createAndGo, 4). % Action; written, not read
-define(createAndWait, 5). % Action; written, not read

1.8 Agent Implementation Example

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 43

-define(destroy, 6). % Action; written, not read
start() ->
 spawn(ex1, init, []).
%%--
%% Instrumentation function for variable myName.
%% Returns: (get) {value, Name}
%% (set) noError
%%--
my_name(get) ->
 ex1_server ! {self(), get_my_name},
 Name = wait_answer(),
 {value, Name}.
my_name(set, NewName) ->
 ex1_server ! {self(), {set_my_name, NewName}},
 noError.
%%--
%% Instrumentation function for table friendsTable.
%%--
friends_table(get, RowIndex, Cols) ->
 case get_row(RowIndex) of
 {ok, Row} ->
 get_cols(Cols, Row);
 _ ->
 {noValue, noSuchInstance}
 end;
friends_table(get_next, RowIndex, Cols) ->
 case get_next_row(RowIndex) of
 {ok, Row} ->
 get_next_cols(Cols, Row);
 _ ->
 case get_next_row([]) of
 {ok, Row} ->
 % Get next cols from first row.
 NewCols = add_one_to_cols(Cols),
 get_next_cols(NewCols, Row);
 _ ->
 end_of_table(Cols)
 end
 end;
%%--
%% If RowStatus is set, then:
%% *) If set to destroy, check that row does exist
%% *) If set to createAndGo, check that row does not exist AND
%% that all columns are given values.
%% *) Otherwise, error (for simplicity).
%% Otherwise, row is modified; check that row exists.
%%--
friends_table(is_set_ok, RowIndex, Cols) ->
 RowExists =
 case get_row(RowIndex) of
 {ok, _Row} -> true;
 _ -> false
 end,
 case is_row_status_col_changed(Cols) of
 {true, ?destroy} when RowExists == true ->
 {noError, 0};
 {true, ?createAndGo} when RowExists == false,
 length(Cols) == 3 ->
 {noError, 0};
 {true, _} ->
 {inconsistentValue, ?status_col};
 false when RowExists == true ->
 {noError, 0};
 _ ->
 [{Col, _NewVal} | _Cols] = Cols,

1.8 Agent Implementation Example

44 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

 {inconsistentName, Col}
 end;
friends_table(set, RowIndex, Cols) ->
 case is_row_status_col_changed(Cols) of
 {true, ?destroy} ->
 ex1_server ! {self(), {delete_row, RowIndex}};
 {true, ?createAndGo} ->
 NewRow = make_row(RowIndex, Cols),
 ex1_server ! {self(), {add_row, NewRow}};
 false ->
 {ok, Row} = get_row(RowIndex),
 NewRow = merge_rows(Row, Cols),
 ex1_server ! {self(), {delete_row, RowIndex}},
 ex1_server ! {self(), {add_row, NewRow}}
 end,
 {noError, 0}.

%%--
%% Make a list of {value, Val} of the Row and Cols list.
%%--
get_cols([Col | Cols], Row) ->
 [{value, element(Col, Row)} | get_cols(Cols, Row)];
get_cols([], _Row) ->
 [].
%%--
%% As get_cols, but the Cols list may contain invalid column
%% numbers. If it does, we must find the next valid column,
%% or return endOfTable.
%%--
get_next_cols([Col | Cols], Row) when Col < 2 ->
 [{[2, element(1, Row)], element(2, Row)} |
 get_next_cols(Cols, Row)];
get_next_cols([Col | Cols], Row) when Col > 4 ->
 [endOfTable |
 get_next_cols(Cols, Row)];
get_next_cols([Col | Cols], Row) ->
 [{[Col, element(1, Row)], element(Col, Row)} |
 get_next_cols(Cols, Row)];
get_next_cols([], _Row) ->
 [].
%%--
%% Make a list of endOfTable with as many elems as Cols list.
%%--
end_of_table([Col | Cols]) ->
 [endOfTable | end_of_table(Cols)];
end_of_table([]) ->
 [].
add_one_to_cols([Col | Cols]) ->
 [Col + 1 | add_one_to_cols(Cols)];
add_one_to_cols([]) ->
 [].
is_row_status_col_changed(Cols) ->
 case lists:keysearch(?status_col, 1, Cols) of
 {value, {?status_col, StatusVal}} ->
 {true, StatusVal};
 _ -> false
 end.
get_row(RowIndex) ->
 ex1_server ! {self(), {get_row, RowIndex}},
 wait_answer().
get_next_row(RowIndex) ->
 ex1_server ! {self(), {get_next_row, RowIndex}},
 wait_answer().
wait_answer() ->
 receive

1.8 Agent Implementation Example

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 45

 {ex1_server, Answer} ->
 Answer
 end.
%%%---
%%% Server code follows
%%%---
init() ->
 register(ex1_server, self()),
 loop("", []).

loop(MyName, Table) ->
 receive
 {From, get_my_name} ->
 From ! {ex1_server, MyName},
 loop(MyName, Table);
 {From, {set_my_name, NewName}} ->
 loop(NewName, Table);
 {From, {get_row, RowIndex}} ->
 Res = table_get_row(Table, RowIndex),
 From ! {ex1_server, Res},
 loop(MyName, Table);
 {From, {get_next_row, RowIndex}} ->
 Res = table_get_next_row(Table, RowIndex),
 From ! {ex1_server, Res},
 loop(MyName, Table);
 {From, {delete_row, RowIndex}} ->
 NewTable = table_delete_row(Table, RowIndex),
 loop(MyName, NewTable);
 {From, {add_row, NewRow}} ->
 NewTable = table_add_row(Table, NewRow),
 loop(MyName, NewTable)
 end.
%%%---
%%% Functions for table operations. The table is represented as
%%% a list of rows.
%%%---
table_get_row([{Index, Name, Address, Status} | _], [Index]) ->
 {ok, {Index, Name, Address, Status}};
table_get_row([H | T], RowIndex) ->
 table_get_row(T, RowIndex);
table_get_row([], _RowIndex) ->
 no_such_row.
table_get_next_row([Row | T], []) ->
 {ok, Row};
table_get_next_row([Row | T], [Index | _])
when element(1, Row) > Index ->
 {ok, Row};
table_get_next_row([Row | T], RowIndex) ->
 table_get_next_row(T, RowIndex);
table_get_next_row([], RowIndex) ->
 endOfTable.
table_delete_row([{Index, _, _, _} | T], [Index]) ->
 T;
table_delete_row([H | T], RowIndex) ->
 [H | table_delete_row(T, RowIndex)];
table_delete_row([], _RowIndex) ->
 [].
table_add_row([Row | T], NewRow)
 when element(1, Row) > element(1, NewRow) ->
 [NewRow, Row | T];
table_add_row([H | T], NewRow) ->
 [H | table_add_row(T, NewRow)];
table_add_row([], NewRow) ->
 [NewRow].
make_row([Index], [{2, Name}, {3, Address} | _]) ->

1.8 Agent Implementation Example

46 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

 {Index, Name, Address, ?active}.
merge_rows(Row, [{Col, NewVal} | T]) ->
 merge_rows(setelement(Col, Row, NewVal), T);
merge_rows(Row, []) ->
 Row.

Association File

The association file EX1-MIB.funcs for the real implementation looks as follows:

{myName, {ex1, my_name, []}}.
{friendsTable, {ex1, friends_table, []}}.

Transcript

To use the real implementation, we must recompile the MIB and load it into the agent.

1> application:start(snmp).
ok
2> snmpc:compile("EX1-MIB").
{ok,"EX1-MIB.bin"}
3> snmpa:load_mibs(snmp_master_agent, ["EX1-MIB"]).
ok
4> ex1:start().
<0.115.0>
%% Now all requests operates on this "real" implementation.
%% The output from the manager requests will *look* exactly the
%% same as for the default implementation.

Trap Sending

How to send a trap by sending the fTrap from the master agent is shown in this section. The master agent has the
MIB EX1-MIB loaded, where the trap is defined. This trap specifies that two variables should be sent along with the
trap, myName and fIndex. fIndex is a table column, so we must provide its value and the index for the row in
the call to snmpa:send_trap/4. In the example below, we assume that the row in question is indexed by 2 (the
row with fIndex 2).

we use a simple Erlang SNMP manager, which can receive traps.

[MANAGER]
1> snmp_test_mgr:start_link([{agent,"dront.ericsson.se"},{community,"public"}
 %% does not have write-access
1>{mibs,["EX1-MIB","STANDARD-MIB"]}]).
{ok, <0.100.0>}
2> snmp_test_mgr:s([{[myName,0], "Klas"}]).
ok
* Got PDU:
Received a trap:
 Generic: 4 %% authenticationFailure
 Enterprise: [iso,2,3]
 Specific: 0
 Agent addr: [123,12,12,21]
 TimeStamp: 42993
2>

1.9 Manager Implementation Example

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 47

[AGENT]
3> snmpa:send_trap(snmp_master_agent, fTrap,"standard trap", [{fIndex,[2],2}]).
[MANAGER]
2>
* Got PDU:
Received a trap:
 Generic: 6
 Enterprise: [example1]
 Specific: 1
 Agent addr: [123,12,12,21]
 TimeStamp: 69649
[myName,0] = "Martin"
[fIndex,2] = 2
2>

1.9 Manager Implementation Example
This Implementation Example section describes how a simple manager can be implemented with the SNMP
Development Toolkit.

The example shown, ex2, can be found in the toolkit distribution.

This example has two functions:

• A simple example of how to use the manager component of the SNMP Development Toolkit.

• A simple example of how to write agent test cases, using the new manager.

1.9.1 The example manager
The example manager, snmp_ex2_manager, is a simple example of how to implement an snmp manager using the
manager component of the SNMP Development Toolkit.

The module exports the following functions:

• start_link/0, start_link/1

• stop/0

• agent/2, agent/3

• sync_get/2, sync_get/3

• sync_get_next/2, sync_get_next/3

• sync_get_bulk/4, sync_get_bulk/5

• sync_set/2, sync_set/3

• oid_to_name/1

This module is also used by the test module described in the next section.

1.9.2 A simple standard test
This simple standard test, snmp_ex2_simple_standard_test, a module which, using the
snmp_ex2_manager described in the previous section, implements a simple agent test utility.

1.10 Instrumentation Functions
A user-defined instrumentation function for each object attaches the managed objects to real resources. This function is
called by the agent on a get or set operation. The function could read some hardware register, perform a calculation,
or whatever is necessary to implement the semantics associated with the conceptual variable. These functions must
be written both for scalar variables and for tables. They are specified in the association file, which is a text file. In

1.10 Instrumentation Functions

48 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

this file, the OBJECT IDENTIFIER, or symbolic name for each managed object, is associated with an Erlang tuple
{Module,Function, ListOfExtraArguments}.

When a managed object is referenced in an SNMP operation, the associated {Module, Function,
ListOfExtraArguments} is called. The function is applied to some standard arguments (for example, the
operation type) and the extra arguments supplied by the user.

Instrumentation functions must be written for get and set for scalar variables and tables, and for get-next for
tables only. The get-bulk operation is translated into a series of calls to get-next.

1.10.1 Instrumentation Functions
The following sections describe how the instrumentation functions should be defined in Erlang for the different
operations. In the following, RowIndex is a list of key values for the table, and Column is a column number.

These functions are described in detail in Definition of Instrumentation Functions.

New / Delete Operations

For scalar variables:

variable_access(new [, ExtraArg1, ...])
variable_access(delete [, ExtraArg1, ...])

For tables:

table_access(new [, ExtraArg1, ...])
table_access(delete [, ExtraArg1, ...])

These functions are called for each object in an MIB when the MIB is unloaded or loaded, respectively.

Get Operation

For scalar variables:

variable_access(get [, ExtraArg1, ...])

For tables:

table_access(get,RowIndex,Cols [,ExtraArg1, ...])

Cols is a list of Column. The agent will sort incoming variables so that all operations on one row (same index) will
be supplied at the same time. The reason for this is that a database normally retrieves information row by row.

These functions must return the current values of the associated variables.

Set Operation

For scalar variables:

1.10 Instrumentation Functions

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 49

variable_access(set, NewValue [, ExtraArg1, ...])

For tables:

table_access(set, RowIndex, Cols [, ExtraArg1,..])

Cols is a list of tuples {Column, NewValue}.

These functions returns noError if the assignment was successful, otherwise an error code.

Is-set-ok Operation

As a complement to the set operation, it is possible to specify a test function. This function has the same syntax as
the set operation above, except that the first argument is is_set_ok instead of set. This function is called before
the variable is set. Its purpose is to ensure that it is permissible to set the variable to the new value.

variable_access(is_set_ok, NewValue [, ExtraArg1, ...])

For tables:

table_access(set, RowIndex, Cols [, ExtraArg1,..])

Cols is a list of tuples {Column, NewValue}.

Undo Operation

A function which has been called with is_set_ok will be called again, either with set if there was no error, or
with undo, if an error occurred. In this way, resources can be reserved in the is_set_ok operation, released in the
undo operation, or made permanent in the set operation.

variable_access(undo, NewValue [, ExtraArg1, ...])

For tables:

table_access(set, RowIndex, Cols [, ExtraArg1,..])

Cols is a list of tuples {Column, NewValue}.

GetNext Operation

The GetNext Operation operation should only be defined for tables since the agent can find the next instance of plain
variables in the MIB and call the instrumentation with the get operation.

1.10 Instrumentation Functions

50 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

table_access(get_next, RowIndex, Cols [, ExtraArg1, ...])

Cols is a list of integers, all greater than or equal to zero. This indicates that the instrumentation should find the
next accessible instance. This function returns the tuple {NextOid, NextValue}, or endOfTable. NextOid
should be the lexicographically next accessible instance of a managed object in the table. It should be a list of integers,
where the first integer is the column, and the rest of the list is the indices for the next row. If endOfTable is returned,
the agent continues to search for the next instance among the other variables and tables.

RowIndex may be an empty list, an incompletely specified row index, or the index for an unspecified row.

This operation is best described with an example.

GetNext Example

A table called myTable has five columns. The first two are keys (not accessible), and the table has three rows. The
instrumentation function for this table is called my_table.

Figure 10.1: Contents of my_table

Note:
N/A means not accessible.

The manager issues the following getNext request:

getNext{ myTable.myTableEntry.3.1.1,
 myTable.myTableEntry.5.1.1 }

Since both operations involve the 1.1 index, this is transformed into one call to my_table:

my_table(get_next, [1, 1], [3, 5])

In this call, [1, 1] is the RowIndex, where key 1 has value 1, and key 2 has value 1, and [3, 5] is the list of
requested columns. The function should now return the lexicographically next elements:

1.10 Instrumentation Functions

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 51

[{[3, 1, 2], d}, {[5, 1, 2], f}]

This is illustrated in the following table:

Figure 10.2: GetNext from [3,1,1] and [5,1,1].

The manager now issues the following getNext request:

getNext{ myTable.myTableEntry.3.2.1,
 myTable.myTableEntry.5.2.1 }

This is transformed into one call to my_table:

my_table(get_next, [2, 1], [3, 5])

The function should now return:

[{[4, 1, 1], b}, endOfTable]

This is illustrated in the following table:

1.10 Instrumentation Functions

52 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

Figure 10.3: GetNext from [3,2,1] and [5,2,1].

The manager now issues the following getNext request:

getNext{ myTable.myTableEntry.3.1.2,
 myTable.myTableEntry.4.1.2 }

This will be transform into one call to my_table:

my_table(get_next, [1, 2], [3, 4])

The function should now return:

[{[3, 2, 1], g}, {[5, 1, 1], c}]

This is illustrated in the following table:

Figure 10.4: GetNext from [3,1,2] and [4,1,2].

1.10 Instrumentation Functions

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 53

The manager now issues the following getNext request:

getNext{ myTable.myTableEntry,
 myTable.myTableEntry.1.3.2 }

This will be transform into two calls to my_table:

my_table(get_next, [], [0]) and
my_table(get_next, [3, 2], [1])

The function should now return:

[{[3, 1, 1], a}] and
[{[3, 1, 1], a}]

In both cases, the first accessible element in the table should be returned. As the key columns are not accessible, this
means that the third column is the first row.

Note:
Normally, the functions described above behave exactly as shown, but they are free to perform other actions.
For example, a get-request may have side effects such as setting some other variable, perhaps a global
lastAccessed variable.

1.10.2 Using the ExtraArgument
The ListOfExtraArguments can be used to write generic functions. This list is appended to the standard
arguments for each function. Consider two read-only variables for a device, ipAdr and name with object identifiers
1.1.23.4 and 1.1.7 respectively. To access these variables, one could implement the two Erlang functions ip_access
and name_access, which will be in the MIB. The functions could be specified in a text file as follows:

{ipAdr, {my_module, ip_access, []}}.
% Or using the oid syntax for 'name'
{[1,1,7], {my_module, name_access, []}}.

The ExtraArgument parameter is the empty list. For example, when the agent receives a get-request for the ipAdr
variable, a call will be made to ip_access(get). The value returned by this function is the answer to the get-
request.

If ip_access and name_access are implemented similarly, we could write a generic_access function using
the ListOfExtraArguments:

1.10 Instrumentation Functions

54 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

{ipAdr, {my_module, generic_access, ['IPADR']}}.
% The mnemonic 'name' is more convenient than 1.1.7
{name, {my_module, generic_access, ['NAME']}}.

When the agent receives the same get-request as above, a call will be made to generic_access(get, 'IPADR').

Yet another possibility, closer to the hardware, could be:

{ipAdr, {my_module, generic_access, [16#2543]}}.
{name, {my_module, generic_access, [16#A2B3]}}.

1.10.3 Default Instrumentation
When the MIB definition work is finished, there are two major issues left.

• Implementing the MIB

• Implementing a Manager Application.

Implementing an MIB can be a tedious task. Most probably, there is a need to test the agent before all tables and
variables are implemented. In this case, the default instrumentation functions are useful. The toolkit can generate
default instrumentation functions for variables as well as for tables. Consequently, a running prototype agent, which
can handle set, get, get-next and table operations, is generated without any programming.

The agent stores the values in an internal volatile database, which is based on the standard module ets. However,
it is possible to let the MIB compiler generate functions which use an internal, persistent database, or the Mnesia
DBMS. Refer to the Mnesia User Guide and the Reference Manual, section SNMP, module snmp_generic for
more information.

When parts of the MIB are implemented, you recompile it and continue on by using default functions. With this
approach, the SNMP agent can be developed incrementally.

The default instrumentation allows the application on the manager side to be developed and tested simultaneously
with the agent. As soon as the ASN.1 file is completed, let the MIB compiler generate a default implementation and
develop the management application from this.

Table Operations

The generation of default functions for tables works for tables which use the RowStatus textual convention from
SNMPv2, defined in STANDARD-MIB and SNMPv2-TC.

Note:
We strongly encourage the use of the RowStatus convention for every table that can be modified from the
manager, even for newly designed SNMPv1 MIBs. In SNMPv1, everybody has invented their own scheme for
emulating table operations, which has led to numerous inconsistencies. The convention in SNMPv2 is flexible
and powerful and has been tested successfully. If the table is read only, no RowStatus column should be used.

1.10.4 Atomic Set
In SNMP, the set operation is atomic. Either all variables which are specified in a set operation are changed, or
none are changed. Therefore, the set operation is divided into two phases. In the first phase, the new value of each
variable is checked against the definition of the variable in the MIB. The following definitions are checked:

1.11 Definition of Instrumentation Functions

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 55

• the type

• the length

• the range

• the variable is writable and within the MIB view.

At the end of phase one, the user defined is_set_ok functions are called for each scalar variable, and for each
group of table operations.

If no error occurs, the second phase is performed. This phase calls the user defined set function for all variables.

If an error occurs, either in the is_set_ok phase, or in the set phase, all functions which were called with
is_set_ok but not set, are called with undo.

There are limitations with this transaction mechanism. If complex dependencies exist between variables, for example
between month and day, another mechanism is needed. Setting the date to 'Feb 31' can be avoided by a somewhat
more generic transaction mechanism. You can continue and find more and more complex situations and construct an
N-phase set-mechanism. This toolkit only contains a trivial mechanism.

The most common application of transaction mechanisms is to keep row operations together. Since our agent sorts
row operations, the mechanism implemented in combination with the RowStatus (particularly 'createAndWait' value)
solve most problems elegantly.

1.11 Definition of Instrumentation Functions
The section Definition of Instrumentation Functions describes the user defined functions, which the agent calls at
different times.

1.11.1 Variable Instrumentation
For scalar variables, a function f(Operation, ...) must be defined.

The Operation can be new, delete, get, is_set_ok, set, or undo.

In case of an error, all instrumentation functions may return either an SNMPv1 or an SNMPv2 error code. If it returns
an SNMPv2 code, it is converted into an SNMPv1 code before it is sent to a SNMPv1 manager. It is recommended
to use the SNMPv2 error codes for all instrumentation functions, as these provide more details. See Appendix A for
a description of error code conversions.

f(new [, ExtraArgs])

The function f(new [, ExtraArgs]) is called for each variable in the MIB when the MIB is loaded into the
agent. This makes it possible to perform necessary initialization.

This function is optional. The return value is discarded.

f(delete [, ExtraArgs])

The function f(delete [, ExtraArgs]) is called for each object in an MIB when the MIB is unloaded from
the agent. This makes it possible to perform necessary clean-up.

This function is optional. The return value is discarded.

f(get [, ExtraArgs])

The function f(get [, ExtraArgs]) is called when a get-request or a get-next request refers to the variable.

This function is mandatory.

1.11 Definition of Instrumentation Functions

56 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

Valid Return Values
• {value, Value}. The Value must be of correct type, length and within ranges, otherwise genErr is

returned in the response PDU. If the object is an enumerated integer, the symbolic enum value may be used as
an atom. If the object is of type BITS, the return value shall be an integer or a list of bits that are set.

• {noValue, noSuchName}(SNMPv1)

• {noValue, noSuchObject | noSuchInstance} (SNMPv2)

• genErr. Used if an error occurred. Note, this should be an internal processing error, e.g. a caused by a
programing fault somewhere. If the variable does not exist, use {noValue, noSuchName} or {noValue,
noSuchInstance}.

f(is_set_ok, NewValue [, ExtraArgs])

The function f(is_set_ok, NewValue [, ExtraArgs]) is called in phase one of the set-request processing
so that the new value can be checked for inconsistencies.

NewValue is guaranteed to be of the correct type, length and within ranges, as specified in the MIB. If the object is
an enumerated integer or of type BITS, the integer value is used.

This function is optional.

If this function is called, it will be called again, either with undo or with set as first argument.

Valid return values
• noError

• badValue | noSuchName | genErr(SNMPv1)

• noAccess | noCreation | inconsistentValue | resourceUnavailable |
inconsistentName | genErr(SNMPv2)

f(undo, NewValue [, ExtraArgs])

If an error occurred, this function is called after the is_set_ok function is called. If set is called for this object,
undo is not called.

NewValue is guaranteed to be of the correct type, length and within ranges, as specified in the MIB. If the object is
an enumerated integer or of type BITS, the integer value is used.

This function is optional.

Valid return values
• noError

• genErr(SNMPv1)

• undoFailed | genErr(SNMPv2)

f(set, NewValue [, ExtraArgs])

This function is called to perform the set in phase two of the set-request processing. It is only called if the corresponding
is_set_ok function is present and returns noError.

NewValue is guaranteed to be of the correct type, length and within ranges, as specified in the MIB. If the object is
an enumerated integer or of type BITS, the integer value is used.

This function is mandatory.

Valid return values
• noError

• genErr(SNMPv1)

• commitFailed | undoFailed | genErr(SNMPv2)

1.11 Definition of Instrumentation Functions

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 57

1.11.2 Table Instrumentation
For tables, a f(Operation, ...) function should be defined (the function shown is exemplified with f).

The Operation can be new, delete, get, next, is_set_ok, undo or set.

In case of an error, all instrumentation functions may return either an SNMPv1 or an SNMPv2 error code. If it returns
an SNMPv2 code, it is converted into an SNMPv1 code before it is sent to a SNMPv1 manager. It is recommended
to use the SNMPv2 error codes for all instrumentation functions, as these provide more details. See Appendix A for
a description of error code conversions.

f(new [, ExtraArgs])

The function f(new [, ExtraArgs]) is called for each object in an MIB when the MIB is loaded into the agent.
This makes it possible to perform the necessary initialization.

This function is optional. The return value is discarded.

f(delete [, ExtraArgs])

The function f(delete [, ExtraArgs]) is called for each object in an MIB when the MIB is unloaded from
the agent. This makes it possible to perform any necessary clean-up.

This function is optional. The return value is discarded.

f(get, RowIndex, Cols [, ExtraArgs])

The function f(get, RowIndex, Cols [, ExtraArgs]) is called when a get-request refers to a table.

This function is mandatory.

Arguments
• RowIndex is a list of integers which define the key values for the row. The RowIndex is the list

representation (list of integers) which follow the Cols integer in the OBJECT IDENTIFIER.

• Cols is a list of integers which represent the column numbers. The Cols are sorted by increasing value and
are guaranteed to be valid column numbers.

Valid Return Values
• A list with as many elements as the Cols list, where each element is the value of the corresponding column.

Each element can be:

• {value, Value}. The Value must be of correct type, length and within ranges, otherwise genErr is
returned in the response PDU. If the object is an enumerated integer, the symbolic enum value may be used
(as an atom). If the object is of type BITS, the return value shall be an integer or a list of bits that are set.

• {noValue, noSuchName}(SNMPv1)

• {noValue, noSuchObject | noSuchInstance}(SNMPv2)

• {noValue, Error}. If the row does not exist, because all columns have {noValue, Error}),
the single tuple {noValue, Error} can be returned. This is a shorthand for a list with all elements
{noValue, Error}.

• genErr. Used if an error occurred. Note that this should be an internal processing error, e.g. a caused
by a programing fault somewhere. If some column does not exist, use {noValue, noSuchName} or
{noValue, noSuchInstance}.

f(get_next, RowIndex, Cols [, ExtraArgs])

The function f(get_next, RowIndex, Cols [, ExtraArgs]) is called when a get-next- or a get-bulk-
request refers to the table.

1.11 Definition of Instrumentation Functions

58 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

The RowIndex argument may refer to an existing row or a non-existing row, or it may be unspecified. The Cols list
may refer to inaccessible columns or non-existing columns. For each column in the Cols list, the corresponding next
instance is determined, and the last part of its OBJECT IDENTIFIER and its value is returned.

This function is mandatory.

Arguments
• RowIndex is a list of integers (possibly empty) that defines the key values for a row. The RowIndex is the

list representation (list of integers), which follow the Cols integer in the OBJECT IDENTIFIER.

• Cols is a list of integers, greater than or equal to zero, which represents the column numbers.

Valid Return Values
• A list with as many elements as the Cols list Each element can be:

• {NextOid, NextValue}, where NextOid is the lexicographic next OBJECT IDENTIFIER for the
corresponding column. This should be specified as the OBJECT IDENTIFER part following the table
entry. This means that the first integer is the column number and the rest is a specification of the keys.
NextValue is the value of this element.

• endOfTable if there are no accessible elements after this one.

• {genErr, Column} where Column denotes the column that caused the error. Column must be one
of the columns in the Cols list. Note that this should be an internal processing error, e.g. a caused by a
programing fault somewhere. If some column does not exist, you must return the next accessible element (or
endOfTable).

f(is_set_ok, RowIndex, Cols [, ExtraArgs])

The function f(is_set_ok, RowIndex, Cols [, ExtraArgs]) is called in phase one of the set-request
processing so that new values can be checked for inconsistencies.

If the function is called, it will be called again with undo, or with set as first argument.

This function is optional.

Arguments
• RowIndex is a list of integers which define the key values for the row. The RowIndex is the list

representation (list of integers) which follow the Cols integer in the OBJECT IDENTIFIER.

• Cols is a list of {Column, NewValue}, where Column is an integer, and NewValue is guaranteed to
be of the correct type, length and within ranges, as specified in the MIB. If the object is an enumerated integer
or of type BITS, the integer value is used. The list is sorted by Column (increasing) and each Column is
guaranteed to be a valid column number.

Valid Return Values
• {noError, 0}

• {Error, Column}, where Error is the same as for is_set_ok for variables, and Column denotes the
faulty column. Column must be one of the columns in the Cols list.

f(undo, RowIndex, Cols [, ExtraArgs])

If an error occurs, The function f(undo, RowIndex, Cols [, ExtraArgs]) is called after the is_set_ok
function. If set is called for this object, undo is not called.

This function is optional.

Arguments
• RowIndex is a list of integers which define the key values for the row. The RowIndex is the list

representation (list of integers) which follow the Cols integer in the OBJECT IDENTIFIER.

1.12 Definition of Agent Net if

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 59

• Cols is a list of {Column, NewValue}, where Column is an integer, and NewValue is guaranteed to
be of the correct type, length and within ranges, as specified in the MIB. If the object is an enumerated integer
or of type BITS, the integer value is used. The list is sorted by Column (increasing) and each Column is
guaranteed to be a valid column number.

Valid Return Values
• {noError, 0}

• {Error, Column} where Error is the same as for undo for variables, and Column denotes the faulty
column. Column must be one of the columns in the Cols list.

f(set, RowIndex, Cols [, ExtraArgs])

The function f(set, RowIndex, Cols [, ExtraArgs]) is called to perform the set in phase two of the set-
request processing. It is only called if the corresponding is_set_ok function did not exist, or returned {noError,
0}.

This function is mandatory.

Arguments
• RowIndex is a list of integers that define the key values for the row. The RowIndex is the list representation

(list of integers) which follow the Cols integer in the OBJECT IDENTIFIER.

• Cols is a list of {Column, NewValue}, where Column is an integer, and NewValue is guaranteed to
be of the correct type, length and within ranges, as specified in the MIB. If the object is an enumerated integer
or of type BITS, the integer value is used. The list is sorted by Column (increasing) and each Column is
guaranteed to be a valid column number.

Valid Return Values
• {noError, 0}

• {Error, Column} where Error is the same as set for variables, and Column denotes the faulty column.
Column must be one of the columns in the Cols list.

1.12 Definition of Agent Net if

Figure 12.1: The Purpose of Agent Net if

The Network Interface (Net if) process delivers SNMP PDUs to a master agent, and receives SNMP PDUs from the
master agent. The most common behaviour of a Net if process is that is receives bytes from a network, decodes them
into an SNMP PDU, which it sends to a master agent. When the master agent has processed the PDU, it sends a
response PDU to the Net if process, which encodes the PDU into bytes and transmits the bytes onto the network.

1.12 Definition of Agent Net if

60 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

However, that simple behaviour can be modified in numerous ways. For example, the Net if process can apply some
kind of encrypting/decrypting scheme on the bytes or act as a proxy filter, which sends some packets to a proxy agent
and some packets to the master agent.

It is also possible to write your own Net if process. The default Net if process is implemented in the module
snmpa_net_if and it uses UDP as the transport protocol.

This section describes how to write a Net if process.

1.12.1 Mandatory Functions
A Net if process must implement the SNMP agent network interface behaviour.

1.12.2 Messages
The section Messages describes mandatory messages, which Net if must send and be able to receive.

Outgoing Messages

Net if must send the following message when it receives an SNMP PDU from the network that is aimed for the
MasterAgent:

MasterAgent ! {snmp_pdu, Vsn, Pdu, PduMS, ACMData, From, Extra}

• Vsn is either 'version-1', 'version-2', or 'version-3'.

• Pdu is an SNMP PDU record, as defined in snmp_types.hrl, with the SNMP request.

• PduMS is the Maximum Size of the response Pdu allowed. Normally this is returned from
snmpa_mpd:process_packet (see Reference Manual).

• ACMData is data used by the Access Control Module in use. Normally this is returned from
snmpa_mpd:process_packet (see Reference Manual).

• From is the source address. If UDP over IP is used, this should be a 2-tuple {IP, UDPport}, where IP is a
4-tuple with the IP address, and UDPport is an integer.

• Extra is any term the Net if process wishes to send to the agent. This term can be retrieved by the
instrumentation functions by calling snmp:current_net_if_data(). This data is also sent back to the
Net if process when the agent generates a response to the request.

The following message is used to report that a response to a request has been received. The only request an agent can
send is an Inform-Request.

Pid ! {snmp_response_received, Vsn, Pdu, From}

• Pid is the Process that waits for the response for the request. The Pid was specified in the send_pdu_req
message (see below).

• Vsn is either 'version-1', 'version-2', or 'version-3'.

• Pdu is the SNMP Pdu received

• From is the source address. If UDP over IP is used, this should be a 2-tuple {IP, UDPport}, where IP is a
4-tuple with the IP address, and UDPport is an integer.

1.12 Definition of Agent Net if

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 61

Incoming Messages

This section describes the incoming messages which a Net if process must be able to receive.

• {snmp_response, Vsn, Pdu, Type, ACMData, To, Extra}

This message is sent to the Net if process from a master agent as a response to a previously received request.

• Vsn is either 'version-1', 'version-2', or 'version-3'.

• Pdu is an SNMP PDU record (as defined in snmp_types.hrl) with the SNMP response.

• Type is the #pdu.type of the original request.

• ACMData is data used by the Access Control Module in use. Normally this is just sent to
snmpa_mpd:generate_response_message (see Reference Manual).

• To is the destination address. If UDP over IP is used, this should be a 2-tuple {IP, UDPport}, where IP
is a 4-tuple with the IP address, and UDPport is an integer.

• Extra is the term that the Net if process sent to the agent when the request was sent to the agent.

• {discarded_pdu, Vsn, ReqId, ACMData, Variable, Extra}

This message is sent from a master agent if it for some reason decided to discard the pdu.

• Vsn is either 'version-1', 'version-2', or 'version-3'.

• ReqId is the request id of the original request.

• ACMData is data used by the Access Control Module in use. Normally this is just sent to
snmpa_mpd:generate_response_message (see Reference Manual).

• Variable is the name of an snmp counter that represents the error, e.g. snmpInBadCommunityUses.

• Extra is the term that the Net if process sent to the agent when the request was sent to the agent.

• {send_pdu, Vsn, Pdu, MsgData, To, Extra}

This message is sent from a master agent when a trap is to be sent.

• Vsn is either 'version-1', 'version-2', or 'version-3'.

• Pdu is an SNMP PDU record (as defined in snmp_types.hrl) with the SNMP response.

• MsgData is the message specific data used in the SNMP message. This value is normally sent to
snmpa_mpd:generate_message/4. In SNMPv1 and SNMPv2c, this message data is the community
string. In SNMPv3, it is the context information.

• To is a list of the destination addresses and their corresponding security parameters. This value is normally
sent to snmpa_mpd:generate_message/4.

• Extra is any term that the notification sender wishes to pass to the Net if process when sending a notification
(see send notification for more info).

• {send_pdu_req, Vsn, Pdu, MsgData, To, Pid, Extra}

This message is sent from a master agent when a request is to be sent. The only request an agent can send is
Inform-Request. The net if process needs to remember the request id and the Pid, and when a response is received
for the request id, send it to Pid, using a snmp_response_received message.

• Vsn is either 'version-1', 'version-2', or 'version-3'.

• Pdu is an SNMP PDU record (as defined in snmp_types.hrl) with the SNMP response.

• MsgData is the message specific data used in the SNMP message. This value is normally sent to
snmpa_mpd:generate_message/4. In SNMPv1 and SNMPv2c, this message data is the community
string. In SNMPv3, it is the context information.

• To is a list of the destination addresses and their corresponding security parameters. This value is normally
sent to snmpa_mpd:generate_message/4.

• Pid is a process identifier.

1.13 Definition of Manager Net if

62 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

• Extra is any term that the notification sender wishes to pass to the Net if process when sending a notification
(see send notification for more info).

Notes

Since the Net if process is responsible for encoding and decoding of SNMP messages, it must also update the relevant
counters in the SNMP group in MIB-II. It can use the functions in the module snmpa_mpd for this purpose (refer to
the Reference Manual, section snmp, module snmpa_mpd for more details.)

There are also some useful functions for encoding and decoding of SNMP messages in the module snmp_pdus.

1.13 Definition of Manager Net if

Figure 13.1: The Purpose of Manager Net if

The Network Interface (Net if) process delivers SNMP PDUs to the manager server, and receives SNMP PDUs from
the manager server. The most common behaviour of a Net if process is that is receives request PDU from the manager
server, encodes the PDU into bytes and transmits the bytes onto the network to an agent. When the reply from the
agent is received by the Net if process, which it decodes into an SNMP PDU, which it sends to the manager server.

However, that simple behaviour can be modified in numerous ways. For example, the Net if process can apply some
kind of encrypting/decrypting scheme on the bytes.

The snmp application provides two different modules, snmpm_net_if (the default) and snmpm_net_if_mt, both
uses the UDP as the transport protocol. The difference between the two modules is that the latter is "multi-threaded",
i.e. for each message/request a new process is created that process the message/request and then exits.

It is also possible to write your own Net if process, this section describes how to write a Net if processdo that.

1.13.1 Mandatory Functions
A Net if process must implement the SNMP manager network interface behaviour.

1.13.2 Messages
The section Messages describes mandatory messages, which Net if must send to the manager server process.

Net if must send the following message when it receives an SNMP PDU from the network that is aimed for the
MasterAgent:

Server ! {snmp_pdu, Pdu, Addr, Port}

• Pdu is an SNMP PDU record, as defined in snmp_types.hrl, with the SNMP request.

• Addr is the source address.

• Port is port number of the sender.

1.14 Audit Trail Log

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 63

Server ! {snmp_trap, Trap, Addr, Port}

• Trap is either an SNMP pdu record or an trappdu record, as defined in snmp_types.hrl, with the SNMP
request.

• Addr is the source address.

• Port is port number of the sender.

Server ! {snmp_inform, Ref, Pdu, PduMS, Addr, Port}

• Ref is either the atom ignore or something that can be used to identify the inform-request (e.g. request-id).
ignore is used if the response (acknowledgment) to the inform-request has already been sent (this means that
the server will not make the call to the inform_response function). See the inform request behaviour configuration
option for more info.

• Pdu is an SNMP PDU record, as defined in snmp_types.hrl, with the SNMP request.

• Addr is the source address.

• Port is port number of the sender.

Server ! {snmp_report, Data, Addr, Port}

• Data is either {ok, Pdu} or {error, ReqId, ReasonInfo, Pdu}. Which one is used depends on the
return value from the MPD process_msg function. If the MsgData is ok, the first is used, and if it is {error,
ReqId, Reason} the latter is used.

• Pdu is an SNMP PDU record, as defined in snmp_types.hrl, with the SNMP request.

• ReqId is an integer.

• ReasonInfo is a term().

• Addr is the source address.

• Port is port number of the sender.

Notes

Since the Net if process is responsible for encoding and decoding of SNMP messages, it must also update the relevant
counters in the SNMP group in MIB-II. It can use the functions in the module snmpm_mpd for this purpose (refer to
the Reference Manual, section snmp, module snmpm_mpd for more details).

There are also some useful functions for encoding and decoding of SNMP messages in the module snmp_pdus.

1.14 Audit Trail Log
The chapter Audit Trail Log describes the audit trail logging.

Both the agent and the manager can be configured to log incoming and outgoing messages. It uses the Erlang standard
log mechanism disk_log for logging. The size and location of the log files are configurable. A wrap log is used,
which means that when the log has grown to a maximum size, it starts from the beginning of the log, overwriting
existing log records.

The log can be either a read, write or a read_write.

1.15 Advanced Agent Topics

64 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.14.1 Agent Logging
For the agent, a write, means that all set requests and their responses are stored. No get requests or traps are
stored in a write. A read_write, all requests, responses and traps are stored.

The log uses a raw data format (basically the BER encoded message), in order to minimize the CPU load needed for
the log mechanism. This means that the log is not human readable, but needs to be formatted off-line before it can be
read. Use the function snmpa:log_to_txt for this purpose.

1.14.2 Manager Logging
For the manager, a write, means that all requests (set and get) and their responses are stored. No traps are stored
in a write. A read_write, all requests, responses and traps are stored.

The log uses a raw data format (basically the BER encoded message), in order to minimize the CPU load needed for
the log mechanism. This means that the log is not human readable, but needs to be formatted off-line before it can be
read. Use the function snmpm:log_to_txt for this purpose.

1.15 Advanced Agent Topics
The chapter Advanced Agent Topics describes the more advanced agent related features of the SNMP development
tool. The following topics are covered:

• When to use a Sub-agent

• Agent semantics

• Sub-agents and dependencies

• Distributed tables

• Fault tolerance

• Using Mnesia tables as SNMP tables

• Audit Trail Logging

• Deviations from the standard

1.15.1 When to use a Sub-agent
The section When to use a Sub-agent describes situations where the mechanism of loading and unloading MIBs is
insufficient. In these cases a sub-agent is needed.

Special Set Transaction Mechanism

Each sub-agent can implement its own mechanisms for set, get and get-next. For example, if the application
requires the get mechanism to be asynchronous, or needs a N-phase set mechanism, a specialized sub-agent should
be used.

The toolkit allows different kinds of sub-agents at the same time. Accordingly, different MIBs can have different set
or get mechanisms.

Process Communication

A simple distributed agent can be managed without sub-agents. The instrumentation functions can use distributed
Erlang to communicate with other parts of the application. However, a sub-agent can be used on each node if this
generates too much unnecessary traffic. A sub-agent processes requests per incoming SNMP request, not per variable.
Therefore the network traffic is minimized.

If the instrumentation functions communicate with UNIX processes, it might be a good idea to use a special sub-agent.
This sub-agent sends the SNMP request to the other process in one packet in order to minimize context switches. For

1.15 Advanced Agent Topics

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 65

example, if a whole MIB is implemented on the C level in UNIX, but you still want to use the Erlang SNMP tool, then
you may have one special sub-agent, which sends the variables in the request as a single operation down to C.

Frequent Loading of MIBs

Loading and unloading of MIBs are quite cheap operations. However, if the application does this very often, perhaps
several times per minute, it should load the MIBs once and for all in a sub-agent. This sub-agent only registers and
unregisters itself under another agent instead of loading the MIBs each time. This is cheaper than loading an MIB.

Interaction With Other SNMP Agent Toolkits

If the SNMP agent needs to interact with sub-agents constructed in another package, a special sub-agent should be
used, which communicates through a protocol specified by the other package.

1.15.2 Agent Semantics
The agent can be configured to be multi-threaded, to process one incoming request at a time, or to have a request limit
enabled (this can be used for load control or to limit the effect of DoS attacks). If it is multi-threaded, read requests
(get, get-next and get-bulk) and traps are processed in parallel with each other and set requests. However,
all set requests are serialized, which means that if the agent is waiting for the application to complete a complicated
write operation, it will not process any new write requests until this operation is finished. It processes read requests
and sends traps, concurrently. The reason for not handle write requests in parallel is that a complex locking mechanism
would be needed even in the simplest cases. Even with the scheme described above, the user must be careful not to
violate that the set requests are atoms. If this is hard to do, do not use the multi-threaded feature.

The order within an request is undefined and variables are not processed in a defined order. Do not assume that the
first variable in the PDU will be processed before the second, even if the agent processes variables in this order. It
cannot even be assumed that requests belonging to different sub-agents have any order.

If the manager tries to set the same variable many times in the same PDU, the agent is free to improvise. There is
no definition which determines if the instrumentation will be called once or twice. If called once only, there is no
definition that determines which of the new values is going to be supplied.

When the agent receives a request, it keeps the request ID for one second after the response is sent. If the agent receives
another request with the same request ID during this time, from the same IP address and UDP port, that request will
be discarded. This mechanism has nothing to do with the function snmpa:current_request_id/0.

1.15.3 Sub-agents and Dependencies
The toolkit supports the use of different types of sub-agents, but not the construction of sub-agents.

Also, the toolkit does not support dependencies between sub-agents. A sub-agent should by definition be stand alone
and it is therefore not good design to create dependencies between them.

1.15.4 Distributed Tables
A common situation in more complex systems is that the data in a table is distributed. Different table rows are
implemented in different places. Some SNMP tool-kits dedicate an SNMP sub-agent for each part of the table and
load the corresponding MIB into all sub-agents. The Master Agent is responsible for presenting the distributed table
as a single table to the manager. The toolkit supplied uses a different method.

The method used to implement distributed tables with this SNMP tool is to implement a table coordinator process
responsible for coordinating the processes, which hold the table data and they are called table holders. All table holders
must in some way be known by the coordinator; the structure of the table data determines how this is achieved. The
coordinator may require that the table holders explicitly register themselves and specify their information. In other
cases, the table holders can be determined once at compile time.

1.15 Advanced Agent Topics

66 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

When the instrumentation function for the distributed table is called, the request should be forwarded to the table
coordinator. The coordinator finds the requested information among the table holders and then returns the answer
to the instrumentation function. The SNMP toolkit contains no support for coordination of tables since this must be
independent of the implementation.

The advantages of separating the table coordinator from the SNMP tool are:

• We do not need a sub-agent for each table holder. Normally, the sub-agent is needed to take care of
communication, but in Distributed Erlang we use ordinary message passing.

• Most likely, some type of table coordinator already exists. This process should take care of the instrumentation
for the table.

• The method used to present a distributed table is strongly application dependent. The use of different masking
techniques is only valid for a small subset of problems and registering every row in a distributed table makes it
non-distributed.

1.15.5 Fault Tolerance
The SNMP agent toolkit gets input from three different sources:

• UDP packets from the network

• return values from the user defined instrumentation functions

• return values from the MIB.

The agent is highly fault tolerant. If the manager gets an unexpected response from the agent, it is possible that some
instrumentation function has returned an erroneous value. The agent will not crash even if the instrumentation does.
It should be noted that if an instrumentation function enters an infinite loop, the agent will also be blocked forever.
The supervisor ,or the application, specifies how to restart the agent.

Using the SNMP Agent in a Distributed Environment

The normal way to use the agent in a distributed environment is to use one master agent located at one node, and zero
or more sub-agents located on other nodes. However, this configuration makes the master agent node a single point
of failure. If that node goes down, the agent will not work.

One solution to this problem is to make the snmp application a distributed Erlang application, and that means, the
agent may be configured to run on one of several nodes. If the node where it runs goes down, another node restarts the
agent. This is called failover. When the node starts again, it may takeover the application. This solution to the problem
adds another problem. Generally, the new node has another IP address than the first one, which may cause problems
in the communication between the SNMP managers and the agent.

If the snmp agent is configured as a distributed Erlang application, it will during takeover try to load the same MIBs
that were loaded at the old node. It uses the same filenames as the old node. If the MIBs are not located in the same
paths at the different nodes, the MIBs must be loaded explicitly after takeover.

1.15.6 Using Mnesia Tables as SNMP Tables
The Mnesia DBMS can be used for storing data of SNMP tables. This means that an SNMP table can be implemented
as a Mnesia table, and that a Mnesia table can be made visible via SNMP. This mapping is largely automated.

There are three main reasons for using this mapping:

• We get all features of Mnesia, such as fault tolerance, persistent data storage, replication, and so on.

• Much of the work involved is automated. This includes get-next processing and RowStatus handling.

• The table may be used as an ordinary Mnesia table, using the Mnesia API internally in the application at the
same time as it is visible through SNMP.

When this mapping is used, insertion and deletion in the original Mnesia table is slower, with a factor O(log n). The
read access is not affected.

1.15 Advanced Agent Topics

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 67

A drawback with implementing an SNMP table as a Mnesia table is that the internal resource is forced to use the
table definition from the MIB, which means that the external data model must be used internally. Actually, this is only
partially true. The Mnesia table may extend the SNMP table, which means that the Mnesia table may have columns
which are use internally and are not seen by SNMP. Still, the data model from SNMP must be maintained. Although
this is undesirable, it is a pragmatic compromise in many situations where simple and efficient implementation is
preferable to abstraction.

Creating the Mnesia Table

The table must be created in Mnesia before the manager can use it. The table must be declared as type snmp. This
makes the table ordered in accordance with the lexicographical ordering rules of SNMP. The name of the Mnesia
table must be identical to the SNMP table name. The types of the INDEX fields in the corresponding SNMP table
must be specified.

If the SNMP table has more than one INDEX column, the corresponding Mnesia row is a tuple, where the first element
is a tuple with the INDEX columns. Generally, if the SNMP table has N INDEX columns and C data columns, the
Mnesia table is of arity (C-N)+1, where the key is a tuple of arity N if N > 1, or a single term if N = 1.

Refer to the Mnesia User's Guide for information on how to declare a Mnesia table as an SNMP table.

The following example illustrates a situation in which we have an SNMP table that we wish to implement as a Mnesia
table. The table stores information about employees at a company. Each employee is indexed with the department
number and the name.

 empTable OBJECT-TYPE
 SYNTAX SEQUENCE OF EmpEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "A table with information about employees."
 ::= { emp 1}
 empEntry OBJECT-TYPE
 SYNTAX EmpEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 ""
 INDEX { empDepNo, empName }
 ::= { empTable 1 }
 EmpEntry ::=
 SEQUENCE {
 empDepNo INTEGER,
 empName DisplayString,
 empTelNo DisplayString
 empStatus RowStatus
 }

The corresponding Mnesia table is specified as follows:

mnesia:create_table([{name, employees},
 {snmp, [{key, {integer, string}}]},
 {attributes, [key, telno, row_status]}]).

1.15 Advanced Agent Topics

68 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

Note:
In the Mnesia tables, the two key columns are stored as a tuple with two elements. Therefore, the arity of the
table is 3.

Instrumentation Functions

The MIB table shown in the previous section can be compiled as follows:

1> snmpc:compile("EmpMIB", [{db, mnesia}]).

This is all that has to be done! Now the manager can read, add, and modify rows. Also, you can use the ordinary
Mnesia API to access the table from your programs. The only explicit action is to create the Mnesia table, an action
the user has to perform in order to create the required table schemas.

Adding Own Actions

It is often necessary to take some specific action when a table is modified. This is accomplished with an instrumentation
function. It executes some specific code when the table is set, and passes all other requests down to the pre-defined
function.

The following example illustrates this idea:

emp_table(set, RowIndex, Cols) ->
 notify_internal_resources(RowIndex, Cols),
 snmp_generic:table_func(set, RowIndex, Cols, {empTable, mnesia});
emp_table(Op, RowIndex, Cols) ->
 snmp_generic:table_func(Op, RowIndex, Cols, {empTable, mnesia}).

The default instrumentation functions are defined in the module snmp_generic. Refer to the Reference Manual,
section SNMP, module snmp_generic for details.

Extending the Mnesia Table

A table may contain columns that are used internally, but should not be visible to a manager. These internal columns
must be the last columns in the table. The set operation will not work with this arrangement, because there are
columns that the agent does not know about. This situation is handled by adding values for the internal columns in
the set function.

To illustrate this, suppose we extend our Mnesia empTable with one internal column. We create it as before, but
with an arity of 4, by adding another attribute.

mnesia:create_table([{name, employees},
 {snmp, [{key, {integer, string}}]},
 {attributes, {key, telno, row_status, internal_col}}]).

The last column is the internal column. When performing a set operation, which creates a row, we must give a value
to the internal column. The instrumentation functions will now look as follows:

1.16 SNMP Appendix A

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 69

-define(createAndGo, 4).
-define(createAndWait, 5).

emp_table(set, RowIndex, Cols) ->
 notify_internal_resources(RowIndex, Cols),
 NewCols =
 case is_row_created(empTable, Cols) of
 true -> Cols ++ [{4, "internal"}]; % add internal column
 false -> Cols % keep original cols
 end,
 snmp_generic:table_func(set, RowIndex, NewCols, {empTable, mnesia});
emp_table(Op, RowIndex, Cols) ->
 snmp_generic:table_func(Op, RowIndex, Cols, {empTable, mnesia}).

is_row_created(Name, Cols) ->
 case snmp_generic:get_status_col(Name, Cols) of
 {ok, ?createAndGo} -> true;
 {ok, ?createAndWait} -> true;
 _ -> false
 end.

If a row is created, we always set the internal column to "internal".

1.15.7 Deviations from the Standard
In some aspects the agent does not implement SNMP fully. Here are the differences:

• The default functions and snmp_generic cannot handle an object of type NetworkAddress as INDEX
(SNMPv1 only!). Use IpAddress instead.

• The agent does not check complex ranges specified for INTEGER objects. In these cases it just checks that
the value lies within the minimum and maximum values specified. For example, if the range is specified as
1..10 | 12..20 the agent would let 11 through, but not 0 or 21. The instrumentation functions must check
the complex ranges itself.

• The agent will never generate the wrongEncoding error. If a variable binding is erroneous encoded, the
asn1ParseError counter will be incremented.

• A tooBig error in an SNMPv1 packet will always use the 'NULL' value in all variable bindings.

• The default functions and snmp_generic do not check the range of each OCTET in textual conventions
derived from OCTET STRING, e.g. DisplayString and DateAndTime. This must be checked in an
overloaded is_set_ok function.

1.16 SNMP Appendix A

1.16.1 Appendix A
This appendix describes the conversion of SNMPv2 to SNMPv1 error messages. The instrumentation functions should
return v2 error messages.

Mapping of SNMPv2 error message to SNMPv1:

SNMPv2 message SNMPv1 message

noError noError

genErr genErr

1.17 SNMP Appendix B

70 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

noAccess noSuchName

wrongType badValue

wrongLength badValue

wrongEncoding badValue

wrongValue badValue

noCreation noSuchName

inconsistentValue badValue

resourceUnavailable genErr

commitFailed genErr

undoFailed genErr

notWritable noSuchName

inconsistentName noSuchName

Table 16.1: Error Messages

1.17 SNMP Appendix B

1.17.1 Appendix B

RowStatus (from RFC1903)

RowStatus ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION
 "The RowStatus textual convention is used to manage the
 creation and deletion of conceptual rows, and is used as the
 value of the SYNTAX clause for the status column of a
 conceptual row (as described in Section 7.7.1 in RFC1902.)

 The status column has six defined values:

 - `active', which indicates that the conceptual row is
 available for use by the managed device;

 - `notInService', which indicates that the conceptual
 row exists in the agent, but is unavailable for use by
 the managed device (see NOTE below);

 - `notReady', which indicates that the conceptual row
 exists in the agent, but is missing information
 necessary in order to be available for use by the
 managed device;

 - `createAndGo', which is supplied by a management

1.17 SNMP Appendix B

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 71

 station wishing to create a new instance of a
 conceptual row and to have its status automatically set
 to active, making it available for use by the managed
 device;

 - `createAndWait', which is supplied by a management
 station wishing to create a new instance of a
 conceptual row (but not make it available for use by
 the managed device); and,

 - `destroy', which is supplied by a management station
 wishing to delete all of the instances associated with
 an existing conceptual row.

 Whereas five of the six values (all except `notReady') may
 be specified in a management protocol set operation, only
 three values will be returned in response to a management
 protocol retrieval operation: `notReady', `notInService' or
 `active'. That is, when queried, an existing conceptual row
 has only three states: it is either available for use by
 the managed device (the status column has value `active');
 it is not available for use by the managed device, though
 the agent has sufficient information to make it so (the
 status column has value `notInService'); or, it is not
 available for use by the managed device, and an attempt to
 make it so would fail because the agent has insufficient
 information (the state column has value `notReady').

 NOTE WELL

 This textual convention may be used for a MIB table,
 irrespective of whether the values of that table's
 conceptual rows are able to be modified while it is
 active, or whether its conceptual rows must be taken
 out of service in order to be modified. That is, it is
 the responsibility of the DESCRIPTION clause of the
 status column to specify whether the status column must
 not be `active' in order for the value of some other
 column of the same conceptual row to be modified. If
 such a specification is made, affected columns may be
 changed by an SNMP set PDU if the RowStatus would not
 be equal to `active' either immediately before or after
 processing the PDU. In other words, if the PDU also
 contained a varbind that would change the RowStatus
 value, the column in question may be changed if the
 RowStatus was not equal to `active' as the PDU was
 received, or if the varbind sets the status to a value
 other than 'active'.

 Also note that whenever any elements of a row exist, the
 RowStatus column must also exist.

 To summarize the effect of having a conceptual row with a
 status column having a SYNTAX clause value of RowStatus,
 consider the following state diagram:

 STATE
 +--------------+-----------+-------------+-------------
 | A | B | C | D
 | |status col.|status column|
 |status column | is | is |status column
 ACTION |does not exist| notReady | notInService| is active

1.17 SNMP Appendix B

72 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

--------------+--------------+-----------+-------------+-------------
set status |noError ->D|inconsist- |inconsistent-|inconsistent-
column to | or | entValue| Value| Value
createAndGo |inconsistent- | | |
 | Value| | |
--------------+--------------+-----------+-------------+-------------
set status |noError see 1|inconsist- |inconsistent-|inconsistent-
column to | or | entValue| Value| Value
createAndWait |wrongValue | | |
--------------+--------------+-----------+-------------+-------------
set status |inconsistent- |inconsist- |noError |noError
column to | Value| entValue| |
active | | | |
 | | or | |
 | | | |
 | |see 2 ->D| ->D| ->D
--------------+--------------+-----------+-------------+-------------
set status |inconsistent- |inconsist- |noError |noError ->C
column to | Value| entValue| |
notInService | | | |
 | | or | | or
 | | | |
 | |see 3 ->C| ->C|wrongValue
--------------+--------------+-----------+-------------+-------------
set status |noError |noError |noError |noError
column to | | | |
destroy | ->A| ->A| ->A| ->A
--------------+--------------+-----------+-------------+-------------
set any other |see 4 |noError |noError |see 5
column to some| | | |
value | | see 1| ->C| ->D
--------------+--------------+-----------+-------------+-------------

 (1) goto B or C, depending on information available to the
 agent.

 (2) if other variable bindings included in the same PDU,
 provide values for all columns which are missing but
 required, then return noError and goto D.

 (3) if other variable bindings included in the same PDU,
 provide values for all columns which are missing but
 required, then return noError and goto C.

 (4) at the discretion of the agent, the return value may be
 either:

 inconsistentName: because the agent does not choose to
 create such an instance when the corresponding
 RowStatus instance does not exist, or

 inconsistentValue: if the supplied value is
 inconsistent with the state of some other MIB object's
 value, or

 noError: because the agent chooses to create the
 instance.

 If noError is returned, then the instance of the status
 column must also be created, and the new state is B or C,
 depending on the information available to the agent. If
 inconsistentName or inconsistentValue is returned, the row
 remains in state A.

 (5) depending on the MIB definition for the column/table,

1.17 SNMP Appendix B

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 73

 either noError or inconsistentValue may be returned.

 NOTE: Other processing of the set request may result in a
 response other than noError being returned, e.g.,
 wrongValue, noCreation, etc.

 Conceptual Row Creation

 There are four potential interactions when creating a
 conceptual row: selecting an instance-identifier which is
 not in use; creating the conceptual row; initializing any
 objects for which the agent does not supply a default; and,
 making the conceptual row available for use by the managed
 device.

 Interaction 1: Selecting an Instance-Identifier

 The algorithm used to select an instance-identifier varies
 for each conceptual row. In some cases, the instance-
 identifier is semantically significant, e.g., the
 destination address of a route, and a management station
 selects the instance-identifier according to the semantics.

 In other cases, the instance-identifier is used solely to
 distinguish conceptual rows, and a management station
 without specific knowledge of the conceptual row might
 examine the instances present in order to determine an
 unused instance-identifier. (This approach may be used, but
 it is often highly sub-optimal; however, it is also a
 questionable practice for a naive management station to
 attempt conceptual row creation.)

 Alternately, the MIB module which defines the conceptual row
 might provide one or more objects which provide assistance
 in determining an unused instance-identifier. For example,
 if the conceptual row is indexed by an integer-value, then
 an object having an integer-valued SYNTAX clause might be
 defined for such a purpose, allowing a management station to
 issue a management protocol retrieval operation. In order
 to avoid unnecessary collisions between competing management
 stations, `adjacent' retrievals of this object should be
 different.

 Finally, the management station could select a pseudo-random
 number to use as the index. In the event that this index
 was already in use and an inconsistentValue was returned in
 response to the management protocol set operation, the
 management station should simply select a new pseudo-random
 number and retry the operation.

 A MIB designer should choose between the two latter
 algorithms based on the size of the table (and therefore the
 efficiency of each algorithm). For tables in which a large
 number of entries are expected, it is recommended that a MIB
 object be defined that returns an acceptable index for
 creation. For tables with small numbers of entries, it is
 recommended that the latter pseudo-random index mechanism be
 used.

 Interaction 2: Creating the Conceptual Row

 Once an unused instance-identifier has been selected, the

1.17 SNMP Appendix B

74 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

 management station determines if it wishes to create and
 activate the conceptual row in one transaction or in a
 negotiated set of interactions.

 Interaction 2a: Creating and Activating the Conceptual Row

 The management station must first determine the column
 requirements, i.e., it must determine those columns for
 which it must or must not provide values. Depending on the
 complexity of the table and the management station's
 knowledge of the agent's capabilities, this determination
 can be made locally by the management station. Alternately,
 the management station issues a management protocol get
 operation to examine all columns in the conceptual row that
 it wishes to create. In response, for each column, there
 are three possible outcomes:

 - a value is returned, indicating that some other
 management station has already created this conceptual
 row. We return to interaction 1.

 - the exception `noSuchInstance' is returned,
 indicating that the agent implements the object-type
 associated with this column, and that this column in at
 least one conceptual row would be accessible in the MIB
 view used by the retrieval were it to exist. For those
 columns to which the agent provides read-create access,
 the `noSuchInstance' exception tells the management
 station that it should supply a value for this column
 when the conceptual row is to be created.

 - the exception `noSuchObject' is returned, indicating
 that the agent does not implement the object-type
 associated with this column or that there is no
 conceptual row for which this column would be
 accessible in the MIB view used by the retrieval. As
 such, the management station cannot issue any
 management protocol set operations to create an
 instance of this column.

 Once the column requirements have been determined, a
 management protocol set operation is accordingly issued.
 This operation also sets the new instance of the status
 column to `createAndGo'.

 When the agent processes the set operation, it verifies that
 it has sufficient information to make the conceptual row
 available for use by the managed device. The information
 available to the agent is provided by two sources: the
 management protocol set operation which creates the
 conceptual row, and, implementation-specific defaults
 supplied by the agent (note that an agent must provide
 implementation-specific defaults for at least those objects
 which it implements as read-only). If there is sufficient
 information available, then the conceptual row is created, a
 `noError' response is returned, the status column is set to
 `active', and no further interactions are necessary (i.e.,
 interactions 3 and 4 are skipped). If there is insufficient
 information, then the conceptual row is not created, and the
 set operation fails with an error of `inconsistentValue'.
 On this error, the management station can issue a management
 protocol retrieval operation to determine if this was
 because it failed to specify a value for a required column,
 or, because the selected instance of the status column
 already existed. In the latter case, we return to

1.17 SNMP Appendix B

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 75

 interaction 1. In the former case, the management station
 can re-issue the set operation with the additional
 information, or begin interaction 2 again using
 `createAndWait' in order to negotiate creation of the
 conceptual row.

 NOTE WELL

 Regardless of the method used to determine the column
 requirements, it is possible that the management
 station might deem a column necessary when, in fact,
 the agent will not allow that particular columnar
 instance to be created or written. In this case, the
 management protocol set operation will fail with an
 error such as `noCreation' or `notWritable'. In this
 case, the management station decides whether it needs
 to be able to set a value for that particular columnar
 instance. If not, the management station re-issues the
 management protocol set operation, but without setting
 a value for that particular columnar instance;
 otherwise, the management station aborts the row
 creation algorithm.

 Interaction 2b: Negotiating the Creation of the Conceptual
 Row

 The management station issues a management protocol set
 operation which sets the desired instance of the status
 column to `createAndWait'. If the agent is unwilling to
 process a request of this sort, the set operation fails with
 an error of `wrongValue'. (As a consequence, such an agent
 must be prepared to accept a single management protocol set
 operation, i.e., interaction 2a above, containing all of the
 columns indicated by its column requirements.) Otherwise,
 the conceptual row is created, a `noError' response is
 returned, and the status column is immediately set to either
 `notInService' or `notReady', depending on whether it has
 sufficient information to make the conceptual row available
 for use by the managed device. If there is sufficient
 information available, then the status column is set to
 `notInService'; otherwise, if there is insufficient
 information, then the status column is set to `notReady'.
 Regardless, we proceed to interaction 3.

 Interaction 3: Initializing non-defaulted Objects

 The management station must now determine the column
 requirements. It issues a management protocol get operation
 to examine all columns in the created conceptual row. In
 the response, for each column, there are three possible
 outcomes:

 - a value is returned, indicating that the agent
 implements the object-type associated with this column
 and had sufficient information to provide a value. For
 those columns to which the agent provides read-create
 access (and for which the agent allows their values to
 be changed after their creation), a value return tells
 the management station that it may issue additional
 management protocol set operations, if it desires, in
 order to change the value associated with this column.

 - the exception `noSuchInstance' is returned,
 indicating that the agent implements the object-type
 associated with this column, and that this column in at

1.17 SNMP Appendix B

76 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

 least one conceptual row would be accessible in the MIB
 view used by the retrieval were it to exist. However,
 the agent does not have sufficient information to
 provide a value, and until a value is provided, the
 conceptual row may not be made available for use by the
 managed device. For those columns to which the agent
 provides read-create access, the `noSuchInstance'
 exception tells the management station that it must
 issue additional management protocol set operations, in
 order to provide a value associated with this column.

 - the exception `noSuchObject' is returned, indicating
 that the agent does not implement the object-type
 associated with this column or that there is no
 conceptual row for which this column would be
 accessible in the MIB view used by the retrieval. As
 such, the management station cannot issue any
 management protocol set operations to create an
 instance of this column.

 If the value associated with the status column is
 `notReady', then the management station must first deal with
 all `noSuchInstance' columns, if any. Having done so, the
 value of the status column becomes `notInService', and we
 proceed to interaction 4.

 Interaction 4: Making the Conceptual Row Available

 Once the management station is satisfied with the values
 associated with the columns of the conceptual row, it issues
 a management protocol set operation to set the status column
 to `active'. If the agent has sufficient information to
 make the conceptual row available for use by the managed
 device, the management protocol set operation succeeds (a
 `noError' response is returned). Otherwise, the management
 protocol set operation fails with an error of
 `inconsistentValue'.

 NOTE WELL

 A conceptual row having a status column with value
 `notInService' or `notReady' is unavailable to the
 managed device. As such, it is possible for the
 managed device to create its own instances during the
 time between the management protocol set operation
 which sets the status column to `createAndWait' and the
 management protocol set operation which sets the status
 column to `active'. In this case, when the management
 protocol set operation is issued to set the status
 column to `active', the values held in the agent
 supersede those used by the managed device.

 If the management station is prevented from setting the
 status column to `active' (e.g., due to management station
 or network failure) the conceptual row will be left in the
 `notInService' or `notReady' state, consuming resources
 indefinitely. The agent must detect conceptual rows that
 have been in either state for an abnormally long period of
 time and remove them. It is the responsibility of the
 DESCRIPTION clause of the status column to indicate what an
 abnormally long period of time would be. This period of
 time should be long enough to allow for human response time
 (including `think time') between the creation of the
 conceptual row and the setting of the status to `active'.

1.17 SNMP Appendix B

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 77

 In the absence of such information in the DESCRIPTION
 clause, it is suggested that this period be approximately 5
 minutes in length. This removal action applies not only to
 newly-created rows, but also to previously active rows which
 are set to, and left in, the notInService state for a
 prolonged period exceeding that which is considered normal
 for such a conceptual row.

 Conceptual Row Suspension

 When a conceptual row is `active', the management station
 may issue a management protocol set operation which sets the
 instance of the status column to `notInService'. If the
 agent is unwilling to do so, the set operation fails with an
 error of `wrongValue'. Otherwise, the conceptual row is
 taken out of service, and a `noError' response is returned.
 It is the responsibility of the DESCRIPTION clause of the
 status column to indicate under what circumstances the
 status column should be taken out of service (e.g., in order
 for the value of some other column of the same conceptual
 row to be modified).

 Conceptual Row Deletion

 For deletion of conceptual rows, a management protocol set
 operation is issued which sets the instance of the status
 column to `destroy'. This request may be made regardless of
 the current value of the status column (e.g., it is possible
 to delete conceptual rows which are either `notReady',
 `notInService' or `active'.) If the operation succeeds,
 then all instances associated with the conceptual row are
 immediately removed."

 SYNTAX INTEGER {
 -- the following two values are states:
 -- these values may be read or written
 active(1),
 notInService(2),

 -- the following value is a state:
 -- this value may be read, but not written
 notReady(3),

 -- the following three values are
 -- actions: these values may be written,
 -- but are never read
 createAndGo(4),
 createAndWait(5),
 destroy(6)
 }

1.17 SNMP Appendix B

78 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

2 Reference Manual

A multilingual Simple Network Management Protocol application featuring an Extensible Agent, simple manager, a
MIB compiler and facilities for implementing SNMP MIBs etc.

snmp

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 79

snmp
Erlang module

The module snmp contains interface functions to the SNMP toolkit.

Common Data Types
The following data-types are used in the functions below:

• datetime() = {date(), time()}

See calendar for more info.

Exports

config() -> ok | {error, Reason}

A simple interactive configuration tool. Simple configuration files can be generated, but more complex configurations
still have to be edited manually.

The tool is a textual based tool that asks some questions and generates sys.config and *.conf files.

Note that if the application shall support version 3, then the crypto app must be started before running this function
(password generation).

Note also that some of the configuration files for the agent and manager share the same names. This means that they
have to be stored in different directories!

start() -> ok | {error, Reason}

start(Type) -> ok | {error, Reason}

Types:

Type = start_type()

Starts the SNMP application.

See application for more info.

start_agent() -> ok | {error, Reason}

start_agent(Type) -> ok | {error, Reason}

Types:

Type = start_type()

The SNMP application consists of several entities, of which the agent is one. This function starts the agent entity of
the application.

Note that the only way to actually start the agent in this way is to add the agent related config after starting
the application (e.g it cannot be part of the normal application config; sys.config). This is done by calling:
application:set_env(snmp, agent, Conf).

The default value for Type is normal.

start_manager() -> ok | {error, Reason}

start_manager(Type) -> ok | {error, Reason}

Types:

snmp

80 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

Type = start_type()

The SNMP application consists of several entities, of which the manager is one. This function starts the manager entity
of the application.

Note that the only way to actually start the manager in this way is to add the manager related config after
starting the application (e.g it cannot be part of the normal application config; sys.config). This is done by calling:
application:set_env(snmp, manager, Conf).

The default value for Type is normal.

date_and_time() -> DateAndTime

Types:

DateAndTime = [int()]

Returns current date and time as the data type DateAndTime, as specified in RFC1903. This is an OCTET STRING.

date_and_time_to_universal_time_dst(DateAndTime) -> [utc()]

Types:

DateAndTime = [int()]

utc() = {{Y,Mo,D},{H,M,S}}

Converts a DateAndTime list to a list of possible universal time(s). The universal time value on the same format as
defined in calendar(3).

date_and_time_to_string(DateAndTime) -> string()

date_and_time_to_string(DateAndTime, Validate) -> string()

Types:

DateAndTime = [int()]

Validate = fun(Kind, Data) -> boolean()

Converts a DateAndTime list to a printable string, according to the DISPLAY-HINT definition in RFC2579.

The validation fun, Validate, allows for a more "flexible" validation of the DateAndTime argument.
Whenever the data is found to not follow RFC2579, the fun is called to allow a more "lax" validation. See the
validate_date_and_time/2 function for more info on the Validate fun.

date_and_time_to_string2(DateAndTime) -> string()

Types:

DateAndTime = [int()]

Converts a DateAndTime list to a printable string, according to the DISPLAY-HINT definition in RFC2579, with the
extension that it also allows the values "hours from UTC" = 14 together with "minutes from UTC" = 0.

local_time_to_date_and_time_dst(Local) -> [DateAndTime]

Types:

Local = {{Y,Mo,D},{H,M,S}}

DateAndTime = [int()]

Converts a local time value to a list of possible DateAndTime list(s). The local time value on the same format as
defined in calendar(3).

snmp

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 81

universal_time_to_date_and_time(UTC) -> DateAndTime

Types:

UTC = {{Y,Mo,D},{H,M,S}}

DateAndTime = [int()]

Converts a universal time value to a DateAndTime list. The universal time value on the same format as defined in
calendar(3).

validate_date_and_time(DateAndTime) -> bool()

validate_date_and_time(DateAndTime, Validate) -> bool()

Types:

DateAndTime = term()

Validate = fun(Kind, Data) -> boolean()

Checks if DateAndTime is a correct DateAndTime value, as specified in RFC2579. This function can be used in
instrumentation functions to validate a DateAndTime value.

The validation fun, Validate, allows for a more "flexible" validation of the DateAndTime argument. Whenever
the data is found to not follow RFC2579, the fun is called to allow a more "lax" validation. The input to the validation
fun looks like this:

 Kind Data
 -------------- ----------------------
 year {Year1, Year2}
 month Month
 day Day
 hour Hour
 minute Minute
 seconds Seconds
 deci_seconds DeciSeconds
 diff [Sign, Hour, Minute]
 valid_date {Year, Month, Day}

passwd2localized_key(Alg, Passwd, EngineID) -> Key

Types:

Alg = algorithm()

algorithm() = md5 | sha

Passwd = string()

EngineID = string()

Key = list()

Generates a key that can be used as an authentication or privacy key using MD5 och SHA. The key is localized for
EngineID.

octet_string_to_bits(S) -> Val

Types:

Val = bits()

Utility function for converting a value of type OCTET-STRING to BITS.

snmp

82 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

bits_to_octet_string(B) -> Val

Types:

Val = octet_string()

Utility function for converting a value of type BITS to OCTET-STRING.

read_mib(FileName) -> {ok, mib()} | {error, Reason}

Types:

FileName = string()

mib() = #mib{}

Reason = term()

Read a compiled mib.

log_to_txt(LogDir, Mibs, OutFile, LogName, LogFile) -> ok | {error, Reason}

log_to_txt(LogDir, Mibs, OutFile, LogName, LogFile, Start) -> ok | {error,
Reason}

log_to_txt(LogDir, Mibs, OutFile, LogName, LogFile, Start, Stop) -> ok |
{error, Reason}

Types:

LogDir = string()

Mibs = [MibName]

OutFile = string()

MibName = string()

LogName = string()

LogFile = string()

Start = Stop = null | datetime() | {local_time,datetime()} |
{universal_time,datetime()}

Reason = term()

Converts an Audit Trail Log to a readable text file, where each item has a trailing TAB character, and any TAB
character in the body of an item has been replaced by ESC TAB.

The function can be used on a running system, or by copying the entire log directory and calling this function. SNMP
must be running in order to provide MIB information.

LogDir is the name of the directory where the audit trail log is stored. Mibs is a list of Mibs to be used. The function
uses the information in the Mibs to convert for example object identifiers to their symbolic name. OutFile is the
name of the generated text-file. LogName is the name of the log, LogFile is the name of the log file. Start is
the start (first) date and time from which log events will be converted and Stop is the stop (last) date and time to
which log events will be converted.

The format of an audit trail log text item is as follows:

Tag Addr - Community [TimeStamp] Vsn
PDU

where Tag is request, response, report, trap or inform; Addr is IP:Port (or comma
space separated list of such); Community is the community parameter (SNMP version v1 and v2), or
SecLevel:"AuthEngineID":"UserName" (SNMP v3); TimeStamp is a date and time stamp, and Vsn is
the SNMP version. PDU is a textual version of the protocol data unit. There is a new line between Vsn and PDU.

snmp

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 83

log_to_io(LogDir, Mibs, LogName, LogFile) -> ok | {error, Reason}

log_to_io(LogDir, Mibs, LogName, LogFile, Start) -> ok | {error, Reason}

log_to_io(LogDir, Mibs, LogName, LogFile, Start, Stop) -> ok | {error,
Reason}

Types:

LogDir = string()

Mibs = [MibName]

MibName = string()

LogName = string()

LogFile = string()

Start = Stop = null | datetime() | {local_time,datetime()} |
{universal_time,datetime()}

Reason = term()

Converts an Audit Trail Log to a readable format and prints it on stdio. See log_to_txt above for more info.

change_log_size(LogName, NewSize) -> ok | {error, Reason}

Types:

LogName = string()

NewSize = {MaxBytes, MaxFiles}

MaxBytes = integer()

MaxFiles = integer()

Reason = term()

Changes the log size of the Audit Trail Log. The application must be configured to use the audit trail log function.
Please refer to disk_log(3) in Kernel Reference Manual for a description of how to change the log size.

The change is permanent, as long as the log is not deleted. That means, the log size is remembered across reboots.

print_version_info() -> void()

print_version_info(Prefix) -> void()

Types:

Prefix = string() | integer()

Utility function(s) to produce a formatted printout of the versions info generated by the versions1 function

This is the same as doing, e.g.:

 {ok, V} = snmp:versions1(),
 snmp:print_versions(V).

versions1() -> {ok, Info} | {error, Reason}

versions2() -> {ok, Info} | {error, Reason}

Types:

Info = [info()]

info() = term()

Reason = term()

snmp

84 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

Utility functions used to retrieve some system and application info.

The difference between the two functions is in how they get the modules to check. versions1 uses the app-file and
versions2 uses the function application:get_key.

print_versions(VersionInfo) -> void()

print_versions(Prefix, VersionInfo) -> void()

Types:

VersionInfo = [version_info()]

version_info() = term()

Prefix = string() | integer()

Utility function to produce a formatted printout of the versions info generated by the versions1 and versions2
functions

Example:

 {ok, V} = snmp:versions1(),
 snmp:print_versions(V).

enable_trace() -> void()

Starts a dbg tracer that prints trace events to stdout (using plain io:format after a minor formatting).

disable_trace() -> void()

Stop the tracer.

set_trace(Targets) -> void()

Types:

Targets = target() | targets()

target() = module()

module() = atom()

targets() = [target() | {target(), target_options()}]

target_options() = [target_option()]

target_option() = {return_trace, boolean()} | {scope, scope()}

scope() = all_functions | exported_functions | function_name() |
{function_name(), function_arity()}

function_name() = atom()

function_arity() = integer() >= 0

This function is used to set up default trace on function(s) for the given module or modules. The scope of the trace
will be all exported functions (both the call info and the return value). Timestamp info will also be included.

reset_trace(Targets) -> void()

Types:

Targets = module() | modules()

modules() = [module()]

snmp

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 85

module() = atom()

This function is used to reset (disable) trace for the given module(s).

set_trace(Targets, Opts) -> void()

Types:

Targets = target() | targets()

target() = module()

module() = atom()

targets() = [target() | {target(), target_options()}]

target_options() = [target_option()]

target_option() = {return_trace, boolean()} | {scope, scope()}

scope() = all_functions | exported_functions | function_name() |
{function_name(), function_arity()}

function_name() = atom()

function_arity() = integer() >= 0

Opts = disable | trace_options()

trace_options() = [trace_option()]

trace_option() = {timestamp, boolean()} | target_option()

This function is used to set up trace on function(s) for the given module or modules.

The example below sets up trace on the exported functions (default) of module snmp_generic and all functions
of module snmp_generic_mnesia. With return values (which is default) and timestamps in both cases (which
is also default):

 snmp:enable_trace(),
 snmp:set_trace([snmp_generic,
 {snmp_generic_mnesia, [{scope, all_functions}]}]),
 .
 .
 .
 snmp:set_trace(snmp_generic, disable),
 .
 .
 .
 snmp:disable_trace(),

See Also
calendar(3)

snmp

86 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmp
Application

This chapter describes the snmp application in OTP. The SNMP application provides the following services:

• a multilingual extensible SNMP agent

• a SNMP manager

• a MIB compiler

Configuration
The following configuration parameters are defined for the SNMP application. Refer to application(3) for more
information about configuration parameters.

The snmp part of the config file specifying the configuration parameters is basically the following tuple:

 {snmp, snmp_components_config()}

A minimal config file for starting a node with both a manager and an agent:

 [{snmp,
 [{agent, [{db_dir, "/tmp/snmp/agent/db"},
 {config, [{dir, "/tmp/snmp/agent/conf"}]}]},
 {manager, [{config, [{dir, "/tmp/snmp/manager/conf"},
 {db_dir, "/tmp/snmp/manager/db"}]}]}]}
]
 }
].

Each snmp component has its own set of configuration parameters, even though some of the types are common to
both components.

 snmp_components_config() -> [snmp_component_config()]
 snmp_component_config() -> {agent, agent_options()} | {manager, manager_options()}
 agent_options() = [agent_option()]
 agent_option() = {restart_type, restart_type()} |
 {agent_type, agent_type()} |
 {agent_verbosity, verbosity()} |
 {discovery, agent_discovery()} |
 {versions, versions()} |
 {gb_max_vbs, gb_max_vbs()} |
 {priority, priority()} |
 {multi_threaded, multi_threaded()} |
 {db_dir, db_dir()} |
 {db_init_error, db_init_error()} |
 {local_db, local_db()} |
 {net_if, agent_net_if()} |
 {mibs, mibs()} |
 {mib_storage, mib_storage()} |
 {mib_server, mib_server()} |
 {audit_trail_log, audit_trail_log()} |

snmp

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 87

 {error_report_mod, error_report_mod()} |
 {note_store, note_store()} |
 {symbolic_store, symbolic_store()} |
 {target_cache, target_cache()} |
 {config, agent_config()}
 manager_options() = [manager_option()]
 manager_option() = {restart_type, restart_type()} |
 {net_if, manager_net_if()} |
 {server, server()} |
 {note_store, note_store()} |
 {config, manager_config()} |
 {inform_request_behaviour, manager_irb()} |
 {mibs, manager_mibs()} |
 {priority, priority()} |
 {audit_trail_log, audit_trail_log()} |
 {versions, versions()} |
 {def_user_mod, def_user_module() |
 {def_user_data, def_user_data()}

Agent specific config options and types:

agent_type() = master | sub <optional>

If master, one master agent is started. Otherwise, no agents are started.

Default is master.

agent_discovery() = [agent_discovery_opt()] <optional>

agent_discovery_opt() = {terminating, agent_terminating_discovery_opts()} |
{originating, agent_originating_discovery_opts()}

The terminating options effects discovery initiated by a manager.

The originating options effects discovery initiated by this agent.

For defaults see the options in agent_discovery_opt().

agent_terminating_discovery_opts() = [agent_terminating_discovery_opt()]
<optional>

agent_terminating_discovery_opt() = {enable, boolean()} | {stage2, discovery
| plain} | {trigger_username, string()}

These are options effecting discovery terminating in this agent (i.e. initiated by a manager).

The default values for the terminating discovery options are:

• enable: true

• stage2: discovery

• trigger_username: ""

agent_originating_discovery_opts() = [agent_originating_discovery_opt()]
<optional>

agent_originating_discovery_opt() = {enable, boolean()}

These are options effecting discovery originating in this agent.

The default values for the originating discovery options are:

• enable: true

multi_threaded() = bool() <optional>

If true, the agent is multi-threaded, with one thread for each get request.

snmp

88 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

Default is false.

db_dir() = string() <mandatory>

Defines where the SNMP agent internal db files are stored.

gb_max_vbs() = pos_integer() | infinity <optional>

Defines the maximum number of varbinds allowed in a Get-BULK response.

Default is 1000.

local_db() = [local_db_opt()] <optional>

local_db_opt() = {repair, agent_repair()} | {auto_save, agent_auto_save()}
| {verbosity, verbosity()}

Defines options specific for the SNMP agent local database.

For defaults see the options in local_db_opt().

agent_repair() = false | true | force <optional>

When starting snmpa_local_db it always tries to open an existing database. If false, and some errors occur, a
new database is created instead. If true, an existing file will be repaired. If force, the table will be repaired
even if it was properly closed.

Default is true.

agent_auto_save() = integer() | infinity <optional>

The auto save interval. The table is flushed to disk whenever not accessed for this amount of time.

Default is 5000.

agent_net_if() = [agent_net_if_opt()] <optional>

agent_net_if_opt() = {module, agent_net_if_module()} | {verbosity,
verbosity()} | {options, agent_net_if_options()}

Defines options specific for the SNMP agent network interface entity.

For defaults see the options in agent_net_if_opt().

agent_net_if_module() = atom() <optional>

Module which handles the network interface part for the SNMP agent. Must implement the
snmpa_network_interface behaviour.

Default is snmpa_net_if.

agent_net_if_options() = [agent_net_if_option()] <optional>

agent_net_if_option() = {bind_to, bind_to()} | {sndbuf, sndbuf()} | {recbuf,
recbuf()} | {no_reuse, no_reuse()} | {req_limit, req_limit()} | {filter,
agent_net_if_filter_options()}

These options are actually specific to the used module. The ones shown here are applicable to the default
agent_net_if_module().

For defaults see the options in agent_net_if_option().

req_limit() = integer() | infinity <optional>

Max number of simultaneous requests handled by the agent.

Default is infinity.

snmp

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 89

agent_net_if_filter_options() = [agent_net_if_filter_option()] <optional>

agent_net_if_filter_option() = {module, agent_net_if_filter_module()}

These options are actually specific to the used module. The ones shown here are applicable to the default
agent_net_if_filter_module().

For defaults see the options in agent_net_if_filter_option().

agent_net_if_filter_module() = atom() <optional>

Module which handles the network interface filter part for the SNMP agent. Must implement the
snmpa_network_interface_filter behaviour.

Default is snmpa_net_if_filter.

agent_mibs() = [string()] <optional>

Specifies a list of MIBs (including path) that defines which MIBs are initially loaded into the SNMP master agent.

Note that the following mibs will always be loaded:

• version v1: STANDARD-MIB

• version v2: SNMPv2

• version v3: SNMPv2, SNMP-FRAMEWORK-MIB and SNMP-MPD-MIB

Default is [].

mib_storage() = ets | {ets, Dir} | {ets, Dir, Action} | dets | {dets, Dir}
| {dets, Dir, Action} | mnesia | {mnesia, Nodes} | {mnesia, Nodes, Action}
<optional>

Specifies how info retrieved from the mibs will be stored.

If mib_storage is {ets, Dir}, the table will also be stored on file. If Dir is default, then db_dir
will be used.

If mib_storage is dets or if Dir is default, then db_dir will be used for Dir.

If mib_storage is mnesia then erlang:nodes() will be used for Nodes.

Default is ets.

Dir = default | string(). Dir is the directory where the files will be stored. If default, then db_dir
will be used.

Nodes = visible | connected | [node()]. Nodes = visible is translated to
erlang:nodes(visible). Nodes = connected is translated to erlang:nodes(connected). If
Nodes = [] then the own node is assumed.

Action = clear | keep. Default is keep. Action is used to specify what shall be done if the mnesia/
dets table already exist.

mib_server() = [mib_server_opt()] <optional>

mib_server_opt() = {mibentry_override, mibentry_override()} |
{trapentry_override, trapentry_override()} | {verbosity, verbosity()} |
{cache, mibs_cache()}

Defines options specific for the SNMP agent mib server.

For defaults see the options in mib_server_opt().

mibentry_override() = bool() <optional>

If this value is false, then when loading a mib each mib- entry is checked prior to installation of the mib. The
purpose of the check is to prevent that the same symbolic mibentry name is used for different oid's.

snmp

90 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

Default is false.

trapentry_override() = bool() <optional>

If this value is false, then when loading a mib each trap is checked prior to installation of the mib. The purpose
of the check is to prevent that the same symbolic trap name is used for different trap's.

Default is false.

mibs_cache() = bool() | mibs_cache_opts() <optional>

Shall the agent utilize the mib server lookup cache or not.

Default is true (in which case the mibs_cache_opts() default values apply).

mibs_cache_opts() = [mibs_cache_opt()] <optional>

mibs_cache_opt() = {autogc, mibs_cache_autogc()} | {gclimit,
mibs_cache_gclimit()} | {age, mibs_cache_age()}

Defines options specific for the SNMP agent mib server cache.

For defaults see the options in mibs_cache_opt().

mibs_cache_autogc() = bool() <optional>

Defines if the mib server shall perform cache gc automatically or leave it to the user (see gc_mibs_cache/0,1,2,3).

Default is true.

mibs_cache_age() = integer() > 0 <optional>

Defines how old the entries in the cache will be allowed before they are GC'ed (assuming GC is performed). Each
entry in the cache is "touched" whenever it is accessed.

The age is defined in milliseconds.

Default is 10 timutes.

mibs_cache_gclimit() = integer() > 0 | infinity <optional>

When performing a GC, this is the max number of cache entries that will be deleted from the cache.

The reason for having this limit is that if the cache is large, the GC can potentially take a long time, during which
the agent is locked.

Default is 100.

error_report_mod() = atom() <optional>

Defines an error report module, implementing the snmpa_error_report behaviour. Two modules are provided
with the toolkit: snmpa_error_logger and snmpa_error_io.

Default is snmpa_error_logger.

symbolic_store() = [symbolic_store_opt()]

symbolic_store_opt() = {verbosity, verbosity()}

Defines options specific for the SNMP agent symbolic store.

For defaults see the options in symbolic_store_opt().

target_cache() = [target_cache_opt()]

target_cache_opt() = {verbosity, verbosity()}

Defines options specific for the SNMP agent target cache.

For defaults see the options in target_cache_opt().

snmp

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 91

agent_config() = [agent_config_opt()] <mandatory>

agent_config_opt() = {dir, agent_config_dir()} | {force_load, force_load()}
| {verbosity, verbosity()}

Defines specific config related options for the SNMP agent.

For defaults see the options in agent_config_opt().

agent_config_dir = dir() <mandatory>

Defines where the SNMP agent configuration files are stored.

force_load() = bool() <optional>

If true the configuration files are re-read during start-up, and the contents of the configuration database ignored.
Thus, if true, changes to the configuration database are lost upon reboot of the agent.

Default is false.

Manager specific config options and types:

server() = [server_opt()] <optional>

server_opt() = {timeout, server_timeout()} | {verbosity, verbosity()}

Specifies the options for the manager server process.

Default is silence.

server_timeout() = integer() <optional>

Asynchroneous request cleanup time. For every requests, some info is stored internally, in order to be able to
deliver the reply (when it arrives) to the proper destination. If the reply arrives, this info will be deleted. But if
there is no reply (in time), the info has to be deleted after the best before time has been passed. This cleanup will
be performed at regular intervals, defined by the server_timeout() time. The information will have an best
before time, defined by the Expire time given when calling the request function (see async_get, async_get_next
and async_set).

Time in milli-seconds.

Default is 30000.

manager_config() = [manager_config_opt()] <mandatory>

manager_config_opt() = {dir, manager_config_dir()} | {db_dir,
manager_db_dir()} | {db_init_error, db_init_error()} | {repair,
manager_repair()} | {auto_save, manager_auto_save()} | {verbosity,
verbosity()}

Defines specific config related options for the SNMP manager.

For defaults see the options in manager_config_opt().

manager_config_dir = dir() <mandatory>

Defines where the SNMP manager configuration files are stored.

manager_db_dir = dir() <mandatory>

Defines where the SNMP manager store persistent data.

manager_repair() = false | true | force <optional>

Defines the repair option for the persistent database (if and how the table is repaired when opened).

Default is true.

snmp

92 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

manager_auto_save() = integer() | infinity <optional>

The auto save interval. The table is flushed to disk whenever not accessed for this amount of time.

Default is 5000.

manager_irb() = auto | user | {user, integer()} <optional>

This option defines how the manager will handle the sending of response (acknowledgment) to received inform-
requests.

• auto - The manager will autonomously send response (acknowledgment> to inform-request messages.

• {user, integer()} - The manager will send response (acknowledgment) to inform-request messages
when the handle_inform function completes. The integer is the time, in milli-seconds, that the manager will
consider the stored inform-request info valid.

• user - Same as {user, integer()}, except that the default time, 15 seconds (15000), is used.

See snmpm_network_interface, handle_inform and definition of the manager net if for more info.

Default is auto.

manager_mibs() = [string()] <optional>

Specifies a list of MIBs (including path) and defines which MIBs are initially loaded into the SNMP manager.

Default is [].

manager_net_if() = [manager_net_if_opt()] <optional>

manager_net_if_opt() = {module, manager_net_if_module()} | {verbosity,
verbosity()} | {options, manager_net_if_options()}

Defines options specific for the SNMP manager network interface entity.

For defaults see the options in manager_net_if_opt().

manager_net_if_options() = [manager_net_if_option()] <optional>

manager_net_if_option() = {bind_to, bind_to()} | {sndbuf, sndbuf()}
| {recbuf, recbuf()} | {no_reuse, no_reuse()} | {filter,
manager_net_if_filter_options()}

These options are actually specific to the used module. The ones shown here are applicable to the default
manager_net_if_module().

For defaults see the options in manager_net_if_option().

manager_net_if_module() = atom() <optional>

The module which handles the network interface part for the SNMP manager. It must implement the
snmpm_network_interface behaviour.

Default is snmpm_net_if.

manager_net_if_filter_options() = [manager_net_if_filter_option()] <optional>

manager_net_if_filter_option() = {module, manager_net_if_filter_module()}

These options are actually specific to the used module. The ones shown here are applicable to the default
manager_net_if_filter_module().

For defaults see the options in manager_net_if_filter_option().

manager_net_if_filter_module() = atom() <optional>

Module which handles the network interface filter part for the SNMP manager. Must implement the
snmpm_network_interface_filter behaviour.

snmp

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 93

Default is snmpm_net_if_filter.

def_user_module() = atom() <optional>

The module implementing the default user. See the snmpm_user behaviour.

Default is snmpm_user_default.

def_user_data() = term() <optional>

Data for the default user. Passed to the user module when calling the callback functions.

Default is undefined.

Common config types:

restart_type() = permanent | transient | temporary

See supervisor documentation for more info.

Default is permanent for the agent and transient for the manager.

db_init_error() = terminate | create

Defines what to do if the agent or manager is unable to open an existing database file. terminate means that
the agent/manager will terminate and create means that the agent/manager will remove the faulty file(s) and
create new ones.

Default is terminate.

priority() = atom() <optional>

Defines the Erlang priority for all SNMP processes.

Default is normal.

versions() = [version()] <optional>

version() = v1 | v2 | v3

Which SNMP versions shall be accepted/used.

Default is [v1,v2,v3].

verbosity() = silence | info | log | debug | trace <optional>

Verbosity for a SNMP process. This specifies now much debug info is printed.

Default is silence.

bind_to() = bool() <optional>

If true, net_if binds to the IP address. If false, net_if listens on any IP address on the host where it is running.

Default is false.

no_reuse() = bool() <optional>

If true, net_if does not specify that the IP and port address should be reusable. If false, the address is set
to reusable.

Default is false.

recbuf() = integer() <optional>

Receive buffer size.

Default value is defined by gen_udp.

sndbuf() = integer() <optional>

Send buffer size.

snmp

94 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

Default value is defined by gen_udp.

note_store() = [note_store_opt()] <optional>

note_store_opt() = {timeout, note_store_timeout()} | {verbosity,
verbosity()}

Specifies the start-up verbosity for the SNMP note store.

For defaults see the options in note_store_opt().

note_store_timeout() = integer() <optional>

Note cleanup time. When storing a note in the note store, each note is given lifetime. Every timeout the
note_store process performs a GC to remove the expired note's. Time in milli-seconds.

Default is 30000.

audit_trail_log() = [audit_trail_log_opt()] <optional>

audit_trail_log_opt() = {type, atl_type()} | {dir, atl_dir()} | {size,
atl_size()} | {repair, atl_repair()} | {seqno, atl_seqno()}

If present, this option specifies the options for the audit trail logging. The disk_log module is used to maintain
a wrap log. If present, the dir and size options are mandatory.

If not present, audit trail logging is not used.

atl_type() = read | write | read_write <optional>

Specifies what type of an audit trail log should be used. The effect of the type is actually different for the the
agent and the manager.

For the agent:

• If write is specified, only set requests are logged.

• If read is specified, only get requests are logged.

• If read_write, all requests are logged.

For the manager:

• If write is specified, only sent messages are logged.

• If read is specified, only received messages are logged.

• If read_write, both outgoing and incoming messages are logged.

Default is read_write.

atl_dir = dir() <mandatory>

Specifies where the audit trail log should be stored.

If audit_trail_log specifies that logging should take place, this parameter must be defined.

atl_size() = {integer(), integer()} <mandatory>

Specifies the size of the audit trail log. This parameter is sent to disk_log.

If audit_trail_log specifies that logging should take place, this parameter must be defined.

atl_repair() = true | false | truncate | snmp_repair <optional>

Specifies if and how the audit trail log shall be repaired when opened. Unless this parameter has the value
snmp_repair it is sent to disk_log. If, on the other hand, the value is snmp_repair, snmp attempts to
handle certain faults on its own. And even if it cannot repair the file, it does not truncate it directly, but instead
moves it aside for later off-line analysis.

Default is true.

snmp

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 95

atl_seqno() = true | false <optional>

Specifies if the audit trail log entries will be (sequence) numbered or not. The range of the sequence numbers are
according to RFC 5424, i.e. 1 through 2147483647.

Default is false.

See Also
application(3), disk_log(3)

snmpa

96 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpa
Erlang module

The module snmpa contains interface functions to the SNMP agent.

DATA TYPES

oid() = [byte()]
atl_type() = read | write | read_write
notification_delivery_info() = #snmpa_notification_delivery_info{}

The oid() type is used to represent an ASN.1 OBJECT IDENTIFIER.

The record snmpa_notification_delivery_info contains the following fields:

tag = term()

A user defined identity representing this notification send operation.

mod = module()

A module implementing the snmpa_notification_delivery_info_receiver behaviour. The info functions of this
module will be called at various stages of delivery.

extra = term()

This is any extra info the user wants to have supplied when the functions in the callback module is called.

Exports

add_agent_caps(SysORID, SysORDescr) -> SysORIndex

Types:

SysORID = oid()

SysORDescr = string()

SysORIndex = integer()

This function can be used to add an AGENT-CAPABILITY statement to the sysORTable in the agent. The table is
defined in the SNMPv2-MIB.

del_agent_caps(SysORIndex) -> void()

Types:

SysORIndex = integer()

This function can be used to delete an AGENT-CAPABILITY statement to the sysORTable in the agent. This table
is defined in the SNMPv2-MIB.

get_agent_caps() -> [[SysORIndex, SysORID, SysORDescr, SysORUpTime]]

Types:

SysORIndex = integer()

SysORId = oid()

snmpa

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 97

SysORDescr = string()

SysORUpTime = integer()

Returns all AGENT-CAPABILITY statements in the sysORTable in the agent. This table is defined in the SNMPv2-
MIB.

get(Agent, Vars) -> Values | {error, Reason}

get(Agent, Vars, Context) -> Values | {error, Reason}

Types:

Agent = pid() | atom()

Vars = [oid()]

Context = string()

Values = [term()]

Reason = {atom(), oid()}

Performs a GET operation on the agent. All loaded MIB objects are visible in this operation. The agent calls the
corresponding instrumentation functions just as if it was a GET request coming from a manager.

Note that the request specific parameters (such as current_request_id) are not accessible for the instrumentation
functions if this function is used.

get_next(Agent, Vars) -> Values | {error, Reason}

get_next(Agent, Vars, Context) -> Values | {error, Reason}

Types:

Agent = pid() | atom()

Vars = [oid()]

Context = string()

Values = [{oid(), term()}]

Reason = {atom(), oid()}

Performs a GET-NEXT operation on the agent. All loaded MIB objects are visible in this operation. The agent calls
the corresponding instrumentation functions just as if it was a GET request coming from a manager.

Note that the request specific parameters (such as snmpa:current_request_id/0 are not accessible for the
instrumentation functions if this function is used.

backup(BackupDir) -> ok | {error, Reason}

backup(Agent, BackupDir) -> ok | {error, Reason}

Types:

BackupDir = string()

Agent = pid() | atom()

Reason = backup_in_progress | term()

Backup persistent/permanent data handled by the agent (such as local-db, mib-data and vacm).

Data stored by mnesia is not handled.

BackupDir cannot be identical to DbDir.

Simultaneous backup calls are not allowed. That is, two different processes cannot simultaneously successfully call this
function. One of them will be first, and succeed. The second will fail with the error reason backup_in_progress.

snmpa

98 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

info() -> [{Key, Value}]

info(Agent) -> [{Key, Value}]

Types:

Agent = pid() | atom()

Returns a list (a dictionary) containing information about the agent. Information includes loaded MIBs, registered sub-
agents, some information about the memory allocation.

As of version 4.4 the format of the info has been changed. To convert the info to the old format, call the old_info_format
function.

old_info_format(NewInfo) -> OldInfo

Types:

OldInfo = NewInfo = [{Key, Value}]

As of version 4.4 the format of the info has been changed. This function is used to convert to the old (pre-4.4) info
format.

load_mibs(Mibs) -> ok | {error, Reason}

load_mibs(Agent,Mibs) -> ok | {error, Reason}

Types:

Agent = pid() | atom()

Mibs = [MibName]

MibName = string()

Reason = term()

Loads Mibs into an agent. If the agent cannot load all MIBs, it will indicate where loading was aborted. The MibName
is the name of the Mib, including the path to where the compiled mib is found. For example,

 Dir = code:priv_dir(my_app) ++ "/mibs/",
 snmpa:load_mibs(snmp_master_agent, [Dir ++ "MY-MIB"]).

unload_mibs(Mibs) -> ok | {error, Reason}

unload_mibs(Agent,Mibs) -> ok | {error, Reason}

Types:

Agent = pid() | atom()

Mibs = [MibName]

MibName = string()

Unloads MIBs into an agent. If it cannot unload all MIBs, it will indicate where unloading was aborted.

which_mibs() -> Mibs

which_mibs(Agent) -> Mibs

Types:

Agent = pid() | atom()

Mibs = [{MibName, MibFile}]

MibName = atom()

snmpa

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 99

MibFile = string()

Retrieve the list of all the mibs loaded into this agent. Default is the master agent.

whereis_mib(MibName) -> {ok, MibFile} | {error, Reason}

whereis_mib(Agent, MibName) -> {ok, MibFile} | {error, Reason}

Types:

Agent = pid() | atom()

MibName = atom()

MibFile = string()

Reason = term()

Get the full path to the (compiled) mib-file.

current_request_id() -> {value, RequestId} | false

current_context() -> {value, Context} | false

current_community() -> {value, Community} | false

current_address() -> {value, Address} | false

Types:

RequestId = integer()

Context = string()

Community = string()

Address = term()

Get the request-id, context, community and address of the request currently being processed by the agent.

Note that these functions is intended to be called by the instrumentation functions and only if they are executed in the
context of the agent process (e.g. it does not work if called from a spawned process).

enum_to_int(Name, Enum) -> {value, Int} | false

enum_to_int(Db, Name, Enum) -> {value, Int} | false

Types:

Db = term()

Name = atom()

Enum = atom()

Int = int()

Converts the symbolic value Enum to the corresponding integer of the enumerated object or type Name in a MIB.
The MIB must be loaded.

false is returned if the object or type is not defined in any loaded MIB, or if it does not define the symbolic value
as enumerated.

Db is a reference to the symbolic store database (retrieved by a call to get_symbolic_store_db/0).

int_to_enum(Name, Int) -> {value, Enum} | false

int_to_enum(Db, Name, Int) -> {value, Enum} | false

Types:

Db = term()

Name = atom()

snmpa

100 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

Int = int()

Enum = atom()

Converts the integer Int to the corresponding symbolic value of the enumerated object or type Name in a MIB. The
MIB must be loaded.

false is returned if the object or type is not defined in any loaded MIB, or if it does not define the symbolic value
as enumerated.

Db is a reference to the symbolic store database (retrieved by a call to get_symbolic_store_db/0).

name_to_oid(Name) -> {value, oid()} | false

name_to_oid(Db, Name) -> {value, oid()} | false

Types:

Db = term()

Name = atom()

Looks up the OBJECT IDENTIFIER of a MIB object, given the symbolic name. Note, the OBJECT IDENTIFIER
is given for the object, not for an instance.

false is returned if the object is not defined in any loaded MIB.

Db is a reference to the symbolic store database (retrieved by a call to get_symbolic_store_db/0).

oid_to_name(OID) -> {value, Name} | false

oid_to_name(Db, OID) -> {value, Name} | false

Types:

Db = term()

OID = oid()

Name = atom()

Looks up the symbolic name of a MIB object, given OBJECT IDENTIFIER.

false is returned if the object is not defined in any loaded MIB.

Db is a reference to the symbolic store database (retrieved by a call to get_symbolic_store_db/0).

which_aliasnames() -> Result

Types:

Result = [atom()]

Retrieve all alias-names known to the agent.

which_tables() -> Result

Types:

Result = [atom()]

Retrieve all tables known to the agent.

which_variables() -> Result

Types:

Result = [atom()]

Retrieve all variables known to the agent.

snmpa

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 101

which_notifications() -> Result

Types:

Result = [{Name, MibName, Info}]

Name = atom()

MibName = atom()

Info = term()

Retrieve all notifications (and traps) known to the agent.

log_to_txt(LogDir)

log_to_txt(LogDir, Mibs)

log_to_txt(LogDir, Mibs, OutFile) -> ok | {error, Reason}

log_to_txt(LogDir, Mibs, OutFile, LogName) -> ok | {error, Reason}

log_to_txt(LogDir, Mibs, OutFile, LogName, LogFile) -> ok | {error, Reason}

log_to_txt(LogDir, Mibs, OutFile, LogName, LogFile, Start) -> ok | {error,
Reason}

log_to_txt(LogDir, Mibs, OutFile, LogName, LogFile, Start, Stop) -> ok |
{error, Reason}

Types:

LogDir = string()

Mibs = [MibName]

MibName = string()

OutFile = string()

LogName = string()

LogFile = string()

Start = Stop = null | datetime() | {local_time,datetime()} |
{universal_time,datetime()}

Reason = disk_log_open_error() | file_open_error() | term()

disk_log_open_error() = {LogName, term()}

file_open_error() = {OutFile, term()}

Converts an Audit Trail Log to a readable text file. OutFile defaults to "./snmpa_log.txt". LogName defaults to
"snmpa_log". LogFile defaults to "snmpa.log". See snmp:log_to_txt for more info.

log_to_io(LogDir) -> ok | {error, Reason}

log_to_io(LogDir, Mibs) -> ok | {error, Reason}

log_to_io(LogDir, Mibs, LogName) -> ok | {error, Reason}

log_to_io(LogDir, Mibs, LogName, LogFile) -> ok | {error, Reason}

log_to_io(LogDir, Mibs, LogName, LogFile, Start) -> ok | {error, Reason}

log_to_io(LogDir, Mibs, LogName, LogFile, Start, Stop) -> ok | {error,
Reason}

Types:

LogDir = string()

Mibs = [MibName]

MibName = string()

LogName = string()

snmpa

102 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

LogFile = string()

Start = Stop = null | datetime() | {local_time,datetime()} |
{universal_time,datetime()}

Reason = disk_log_open_error() | file_open_error() | term()

disk_log_open_error() = {LogName, term()}

file_open_error() = {OutFile, term()}

Converts an Audit Trail Log to a readable format and prints it on stdio. LogName defaults to "snmpa_log". LogFile
defaults to "snmpa.log". See snmp:log_to_io for more info.

change_log_size(NewSize) -> ok | {error, Reason}

Types:

NewSize = {MaxBytes, MaxFiles}

MaxBytes = integer()

MaxFiles = integer()

Reason = term()

Changes the log size of the Audit Trail Log. The application must be configured to use the audit trail log function.
Please refer to disk_log(3) in Kernel Reference Manual for a description of how to change the log size.

The change is permanent, as long as the log is not deleted. That means, the log size is remembered across reboots.

set_log_type(NewType) -> {ok, OldType} | {error, Reason}

set_log_type(Agent, NewType) -> {ok, OldType} | {error, Reason}

Types:

NewType = OldType = atl_type()

Agent = pid() | atom()

Reason = term()

Changes the run-time Audit Trail log type.

Note that this has no effect on the application configuration as defined by configuration files, so a node restart will
revert the config to whatever is in those files.

This function is primarily useful in testing/debugging scenarios.

mib_of(Oid) -> {ok, MibName} | {error, Reason}

mib_of(Agent, Oid) -> {ok, MibName} | {error, Reason}

Types:

Agent = pid() | atom()

Oid = oid()

MibName = atom()

Reason = term()

Finds the mib corresponding to the Oid. If it is a variable, the Oid must be <Oid for var>.0 and if it is a table, Oid
must be <table>.<entry>.<col>.<any>

me_of(Oid) -> {ok, Me} | {error, Reason}

me_of(Agent, Oid) -> {ok, Me} | {error, Reason}

Types:

snmpa

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 103

Agent = pid() | atom()

Oid = oid()

Me = #me{}

Reason = term()

Finds the mib entry corresponding to the Oid. If it is a variable, the Oid must be <Oid for var>.0 and if it is a table,
Oid must be <table>.<entry>.<col>.<any>

invalidate_mibs_cache() -> void()

invalidate_mibs_cache(Agent) -> void()

Types:

Agent = pid() | atom()

Invalidate the mib server cache.

The entire contents of the cache will be deleted.

enable_mibs_cache() -> void()

enable_mibs_cache(Agent) -> void()

Types:

Agent = pid() | atom()

Enable the mib server cache.

disable_mibs_cache() -> void()

disable_mibs_cache(Agent) -> void()

Types:

Agent = pid() | atom()

Disable the mib server cache.

which_mibs_cache_size() -> void()

which_mibs_cache_size(Agent) -> void()

Types:

Agent = pid() | atom()

Retreive the size of the mib server cache.

gc_mibs_cache() -> {ok, NumElementsGCed} | {error, Reason}

gc_mibs_cache(Agent) -> {ok, NumElementsGCed} | {error, Reason}

gc_mibs_cache(Age) -> {ok, NumElementsGCed} | {error, Reason}

gc_mibs_cache(Agent, Age) -> {ok, NumElementsGCed} | {error, Reason}

gc_mibs_cache(Age, GcLimit) -> {ok, NumElementsGCed} | {error, Reason}

gc_mibs_cache(Agent, Age, GcLimit) -> {ok, NumElementsGCed} | {error, Reason}

Types:

Agent = pid() | atom()

Age = integer() > 0

GcLimit = integer() > 0 | infinity

NumElementsGCed = integer() >= 0

snmpa

104 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

Reason = term()

Perform mib server cache gc.

Manually performs a mib server cache gc. This can be done regardless of the value of the autogc option. The
NumElementsGCed value indicates how many elements where actually removed from the cache.

enable_mibs_cache_autogc() -> void()

enable_mibs_cache_autogc(Agent) -> void()

Types:

Agent = pid() | atom()

Enable automatic gc of the mib server cache.

disable_mibs_cache_autogc() -> void()

disable_mibs_cache_autogc(Agent) -> void()

Types:

Agent = pid() | atom()

Disable automatic gc of the mib server cache.

update_mibs_cache_age(NewAge) -> ok | {error, Reason}

update_mibs_cache_age(Agent, NewAge) -> ok | {error, Reason}

Types:

Agent = pid() | atom()

NewAge = integer() > 0

Reason = term()

Change the mib server cache age property.

update_mibs_cache_gclimit(NewGcLimit) -> ok | {error, Reason}

update_mibs_cache_gclimit(Agent, NewGCLimit) -> ok | {error, Reason}

Types:

Agent = pid() | atom()

NewGcLimit = integer() > 0 | infinity

Reason = term()

Change the mib server cache gclimit property.

register_notification_filter(Id, Mod, Data) -> ok | {error, Reason}

register_notification_filter(Agent, Id, Mod, Data) -> ok | {error, Reason}

register_notification_filter(Id, Mod, Data, Where) -> ok | {error, Reason}

register_notification_filter(Agent, Id, Mod, Data, Where) -> ok | {error,
Reason}

Types:

Agent = pid() | atom()

Id = filter_id()

filter_id() = term()

Mod = atom()

snmpa

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 105

Data = term()

Where = filter_position()

Reason = term()

filter_position() = first | last | {insert_before, filter_id()} |
{insert_after, filter_id()}

Registers a notification filter.

Mod is a module implementing the snmpa_notification_filter behaviour.

Data will be passed on to the filter when calling the functions of the behaviour.

unregister_notification_filter(Id) -> ok | {error, Reason}

unregister_notification_filter(Agent, Id) -> ok | {error, Reason}

Types:

Agent = pid() | atom()

Id = filter_id()

filter_id() = term()

Unregister a notification filter.

which_notification_filter() -> Filters

which_notification_filter(Agent) -> Filters

Types:

Agent = pid() | atom()

Filters = [filter_id()]

filter_id() = term()

List all notification filters in an agent.

set_request_limit(NewLimit) -> {ok, OldLimit} | {error, Reason}

set_request_limit(Agent, NewLimit) -> {ok, OldLimit} | {error, Reason}

Types:

NewLimit = OldLimit = infinity | integer() >= 0

Agent = pid() | atom()

Reason = term()

Changes the request limit.

Note that this has no effect on the application configuration as defined by configuration files, so a node restart will
revert the config to whatever is in those files.

This function is primarily useful in load regulation scenarios.

register_subagent(Agent, SubTreeOid, Subagent) -> ok | {error, Reason}

Types:

Agent = pid() | atom()

SubTreeOid = oid()

SubAgent = pid()

Registers a sub-agent under a sub-tree of another agent.

snmpa

106 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

It is easy to make mistakes when registering sub-agents and this activity should be done carefully. For example, a
strange behaviour would result from the following configuration:

snmp_agent:register_subagent(MAPid,[1,2,3,4],SA1),
snmp_agent:register_subagent(SA1,[1,2,3], SA2).

SA2 will not get requests starting with object identifier [1,2,3] since SA1 does not.

unregister_subagent(Agent, SubagentOidOrPid) -> ok | {ok, SubAgentPid} |
{error, Reason}

Types:

Agent = pid() | atom()

SubTreeOidorPid = oid() | pid()

Unregister a sub-agent. If the second argument is a pid, then that sub-agent will be unregistered from all trees in Agent.

send_notification2(Agent, Notification, SendOpts) -> void()

Types:

Agent = pid() | atom()

Notification = atom()

SendOpts = [send_option()]

send_option() = {receiver, receiver()} | {name, notify_name()} | {context,
context_name()} | {varbinds, varbinds()} | {local_engine_id, string()} |
{extra, extra_info()}

receiver() = no_receiver | {tag(), tag_receiver()} |
notification_delivery_info()

tag() = term(()

tag_receiver() = pid() | registered_name() | {Mod, Func, Args}

registered_name() = atom()

Mod = atom()

Func = atom()

Args = list()

notify_name() = string()

context_name() = string()

varbinds() = [varbind()]

varbind() = {variable(), value()} | {column(), row_index(), value()} |
{oid(), value()}

variable() = atom()

value() = term()

column() = atom()

row_index() = [int()]

extra_info() = term()

Send the notification Notification to the management targets defined for notify-name (name) in the
snmpNotifyTable in SNMP-NOTIFICATION-MIB from the specified context.

snmpa

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 107

If no name is specified (or if it is ""), the notification is sent to all management targets.

If no context is specified, the default context, "", is used.

The send option receiver specifies where information about delivery of Inform-Requests should be sent. The agent
sends Inform-Requests and waits for acknowledgments from the management targets. The receiver can have three
values:

• no_receiver - No information is delivered.

• notification_delivery_info() - The information is delivered via a function call according to this data.
See the DATA TYPES section above for details.

• {tag(), tag_receiver()} - The information is delivered either via messages or via a function call
according to the value of tag_receiver().

Delivery is done differently depending on the value of tag_receiver():

• pid() | registered_name() - The info will be delivered in the following messages:

• {snmp_targets, tag(), Addresses}

This informs the user which target addresses the notification was sent to.

• {snmp_notification, tag(), {got_response, Address}}

This informs the user that this target address acknowledged the notification.

• {snmp_notification, tag(), {no_response, Address}}

This informs the user that this target address did not acknowledge the notification.

The notification is sent as an Inform-Request to each target address in Addresses and if there are no targets
for which an Inform-Request is sent, Addresses is the empty list [].

The tag_receiver() will first be sent the snmp_targets message, and then for each address in
Addresses list, one of the two snmp_notification messages.

• {Mod, Func, Args} - The info will be delivered via the function call:

Mod:Func([Msg | Args])

where Msg has the same content and purpose as the messages descrived above.

Note:
The extra info is not normally interpreted by the agent, instead it is passed through to the net-if process. It is
up to the implementor of that process to make use of this data.

The version of net-if provided by this application makes no use of this data, with one exception: Any tuple
containing the atom snmpa_default_notification_extra_info may be used by the agent and is
therefor reserved.

See the net-if incomming messages for sending a trap and notification for more info.

snmpa

108 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

send_notification(Agent, Notification, Receiver)

send_notification(Agent, Notification, Receiver, Varbinds)

send_notification(Agent, Notification, Receiver, NotifyName, Varbinds)

send_notification(Agent, Notification, Receiver, NotifyName, ContextName,
Varbinds) -> void()

send_notification(Agent, Notification, Receiver, NotifyName, ContextName,
Varbinds, LocalEngineID) -> void()

Types:

Agent = pid() | atom()

Notification = atom()

Receiver = no_receiver | {Tag, Recv} | notification_delivery_info()

Tag = term()

Recv = receiver()

receiver() = pid() | atom() | {Mod, Func, Args}

Mod = atom()

Func = atom()

Args = list()

NotifyName = string()

ContextName = string()

Varbinds = varbinds()

varbinds() = [varbind()]

varbind() = {Variable, Value} | {Column, RowIndex, Value} | {OID, Value}

Variable = atom()

Column = atom()

OID = oid()

Value = term()

RowIndex = [int()]

LocalEngineID = string()

Sends the notification Notification to the management targets defined for NotifyName in the
snmpNotifyTable in SNMP-NOTIFICATION-MIB from the specified context.

If no NotifyName is specified (or if it is ""), the notification is sent to all management targets (Addresses below).

If no ContextName is specified, the default "" context is used.

The parameter Receiver specifies where information about delivery of Inform-Requests should be sent. The agent
sends Inform-Requests and waits for acknowledgments from the managers. Receiver can have three values:

• no_receiver - No information is delivered.

• notification_delivery_info() - The information is delivered via a function call according to this data.
See the DATA TYPES section above for details.

• {Tag, Recv} - The information is delivered either via messages or via a function call according to the value
of Recv.

If Receiver has the value {Tag, Recv}, the delivery is done according to Recv:

• pid() | atom() - The info will be delivered in the following messages:

• {snmp_targets, Tag, Addresses}

This inform the user which target addresses the notification was sent to.

snmpa

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 109

• {snmp_notification, Tag, {got_response, Address}}

This informs the user that this target address acknowledged the notification.

• {snmp_notification, Tag, {no_response, Address}}

This informs the user that this target address did not acknowledge notification.

The notification is sent as an Inform-Request to each target address in Addresses and if there are no targets for
which an Inform-Request is sent, Addresses is the empty list [].

The receiver will first be sent the snmp_targets message, and then for each address in Addresses list,
one of the two snmp_notification messages.

• {Mod, Func, Args} - The info will be delivered via the function call:

Mod:Func([Msg | Args])

where Msg has the same content and purpose as the messages descrived above.

Address is a management target address and Addresses is a list of management target addresses. They are defined
as followes:

 Addresses = [address()]
 Address = address()
 address() = v1_address() | v3_address()
 v1_address() = {TDomain, TAddress}
 v3_address() = {{TDomain, TAddress}, V3MsgData}
 TDomain = tdoamin()
 TAddress = taddress()
 tdomain() = The oid of snmpUDPDomain
 This is the only supported transport domain.
 taddress() = [A1, A2, A3, A4, P1, P3]
 The 4 first bytes makes up the IP-address and the last 2,
 the UDP-port number.
 V3MsgData = v3_msg_data()
 v3_msg_data() = term()

If Receiver is a notification_delivery_info() record, then the information about
the notification delivery will be delivered to the receiver via the callback functions
defined by the snmpa_notification_delivery_info_receiver behaviour according to the content of the
notification_delivery_info() record.

The optional argument Varbinds defines values for the objects in the notification. If no value is given for an object,
the Agent performs a get-operation to retrieve the value.

Varbinds is a list of Varbind, where each Varbind is one of:

• {Variable, Value}, where Variable is the symbolic name of a scalar variable referred to in the
notification specification.

• {Column, RowIndex, Value}, where Column is the symbolic name of a column variable. RowIndex
is a list of indices for the specified element. If this is the case, the OBJECT IDENTIFIER sent in the
notification is the RowIndex appended to the OBJECT IDENTIFIER for the table column. This is the
OBJECT IDENTIFIER which specifies the element.

• {OID, Value}, where OID is the OBJECT IDENTIFIER for an instance of an object, scalar variable, or
column variable.

For example, to specify that sysLocation should have the value "upstairs" in the notification, we could use
one of:

• {sysLocation, "upstairs"} or

snmpa

110 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

• {[1,3,6,1,2,1,1,6,0], "upstairs"} or

• {?sysLocation_instance, "upstairs"} (provided that the generated .hrl file is included)

If a variable in the notification is a table element, the RowIndex for the element must be given in the Varbinds
list. In this case, the OBJECT IDENTIFIER sent in the notification is the OBJECT IDENTIFIER that identifies this
element. This OBJECT IDENTIFIER could be used in a get operation later.

This function is asynchronous, and does not return any information. If an error occurs, user_err/2 of the error
report module is called and the notification is discarded.

Note:
Note that the use of the LocalEngineID argument is only intended for special cases, if the agent is to "emulate"
multiple EngineIDs! By default, the agent uses the value of SnmpEngineID (see SNMP-FRAMEWORK-MIB).

ExtraInfo is not normally used in any way by the agent. It is intended to be passed along to the net-if process,
which is a component that a user can implement themself. The users own net-if may then make use of ExtraInfo. The
net-if provided with this application does not process ExtraInfo.

There is one exception. Any tuple containing the atom snmpa_default_notification_extra_info will, in
this context, be considered belonging to this application, and may be processed by the agent.

discovery(TargetName, Notification) -> {ok, ManagerEngineID} | {error,
Reason}

discovery(TargetName, Notification, Varbinds) -> {ok, ManagerEngineID} |
{error, Reason}

discovery(TargetName, Notification, DiscoHandler) -> {ok, ManagerEngineID} |
{error, Reason}

discovery(TargetName, Notification, ContextName, Varbinds) -> {ok,
ManagerEngineID} | {error, Reason}

discovery(TargetName, Notification, Varbinds, DiscoHandler) -> {ok,
ManagerEngineID} | {error, Reason}

discovery(TargetName, Notification, ContextName, Varbinds, DiscoHandler) ->
{ok, ManagerEngineID} | {error, Reason}

discovery(TargetName, Notification, ContextName, Varbinds, DiscoHandler,
ExtraInfo) -> {ok, ManagerEngineID} | {error, Reason}

Types:

TargetName = string()

Notification = atom()

ContextName = string() (defaults to "")

Varbinds = varbinds()

varbinds() = [varbind()]

DiscoHandler = snmpa_discovery_handler()

ExtraInfo = term()

snmpa_discovery_handler() = Module implementing the
snmpa_discovery_handler behaviour

ManagerEngineID = string()

varbind() = {Variable, Value} | {Column, RowIndex, Value} | {OID, Value}

snmpa

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 111

Variable = atom()

Column = atom()

OID = oid()

Value = term()

RowIndex = [int()]

Reason = term()

Initiate the discovery process with the manager identified by TargetName using the notification Notification.

This function is synchronous, which means that it will return when the discovery process has been completed or failed.

The DiscoHandler module is used during the discovery process. See discovery handler for more info.

The ExtraInfo argument is passed on to the callback functions of the DiscoHandler.

Note:
If we are not at security-level noAuthNoPriv, this could be complicated, since the agent will then continue
with stage 2, before which the usm-related updates must be done.

Note:
The default discovery handler will require additional actions by the caller and the discovery will not work if the
security-level is higher then noAuthNoPriv.

convert_config(OldConfig) -> AgentConfig

Types:

OldConfig = list()

AgentConfig = list()

This off-line utility function can be used to convert the old snmp application config (pre snmp-4.0) to the new snmp
agent config (as of snmp-4.0).

For information about the old config (OldConfig) see the OTP R9C documentation.

For information about the current agent config (AgentConfig), see either the SNMP application part of the reference
manual or the Configuring the application chapter of the SNMP user's guide.

restart_worker() -> void()

restart_worker(Agent) -> void()

Types:

Agent = pid() | atom()

Restart the worker process of a multi-threaded agent.

This is a utility function, that can be useful when e.g. debugging instrumentation functions.

restart_set_worker() -> void()

restart_set_worker(Agent) -> void()

Types:

snmpa

112 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

Agent = pid() | atom()

Restart the set worker process of a multi-threaded agent.

This is a utility function, that can be useful when e.g. debugging instrumentation functions.

print_mib_info() -> void()

Prints the content of all the (snmp) tables and variables for all mibs handled by the snmp agent.

print_mib_tables() -> void()

Prints the content of all the (snmp) tables for all mibs handled by the snmp agent.

print_mib_variables() -> void()

Prints the content of all the (snmp) variables for all mibs handled by the snmp agent.

verbosity(Ref,Verbosity) -> void()

Types:

Ref = pid() | sub_agents | master_agent | net_if | mib_server |
symbolic_store | note_store | local_db

Verbosity = verbosity() | {subagents, verbosity()}

verbosity() = silence | info | log | debug | trace

Sets verbosity for the designated process. For the lowest verbosity silence, nothing is printed. The higher the
verbosity, the more is printed.

See Also
calendar(3), erlc(1)

snmpa_conf

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 113

snmpa_conf
Erlang module

The module snmpa_conf contains various utility functions to used for manipulating (write/append/read) the config
files of the SNMP agent.

DATA TYPES

transportDomain() = transportDomainUdpIpv4 | transportDomainUdpIpv6
transportAddressIPv4() = [integer()], length 4
transportAddressIPv6() = [integer()], length 8
transportAddressMask() = [integer()], length 0 (default), 6 (IPv4) or 10 (IPv6)

Exports

agent_entry(Tag, Val) -> agent_entry()

Types:

Tag = intAgentIpAddress | intAgentUDPPort | intAgentMaxPacketSize |
snmpEngineMaxMessageSize | snmpEngineID

Val = term()

agent_entry() = term()

Create an entry for the agent config file, agent.conf.

The type of Val depends on the value of Tag, see Agent Information for more info.

write_agent_config(Dir, Conf) -> ok

write_agent_config(Dir, Hdr, Conf) -> ok

Types:

Dir = string()

Hdr = string()

Conf = [agent_entry()]

Write the agent config to the agent config file.

Dir is the path to the directory where to store the config file.

Hdr is an optional file header (note that this text is written to the file as is).

See Agent Information for more info.

append_agent_config(Dir, Conf) -> ok

Types:

Dir = string()

Conf = [agent_entry()]

Append the config to the current agent config file.

Dir is the path to the directory where to store the config file.

snmpa_conf

114 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

See Agent Information for more info.

read_agent_config(Dir) -> Conf

Types:

Dir = string()

Conf = [agent_entry()]

Read the current agent config file.

Dir is the path to the directory where to store the config file.

See Agent Information for more info.

standard_entry(Tag, Val) -> standard_entry()

Types:

Tag = sysDescr | sysObjectID | sysContact | sysName | sysLocation |
sysServices | snmpEnableAuthenTraps

Val = term()

standard_entry() = term()

Create an entry for the agent standard config file, standard.conf.

The type of Val depends on the value of Tag, see System Information for more info.

write_standard_config(Dir, Conf) -> ok

write_standard_config(Dir, Hdr, Conf) -> ok

Types:

Dir = string()

Hdr = string()

Conf = [standard_entry()]

Write the agent standard config to the agent standard config file.

Dir is the path to the directory where to store the config file.

Hdr is an optional file header (note that this text is written to the file as is).

See System Information for more info.

append_standard_config(Dir, Conf) -> ok

Types:

Dir = string()

Conf = [standard_entry()]

Append the standard config to the current agent standard config file.

Dir is the path to the directory where to store the config file.

See System Information for more info.

read_standard_config(Dir) -> Conf

Types:

Dir = string()

Conf = [standard_entry()]

snmpa_conf

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 115

Read the current agent standard config file.

Dir is the path to the directory where to store the config file.

See System Information for more info.

context_entry(Context) -> context_entry()

Types:

Context = string()

context_entry() = term()

Create an entry for the agent context config file, context.conf.

See Contexts for more info.

write_context_config(Dir, Conf) -> ok

write_context_config(Dir, Hdr, Conf) -> ok

Types:

Dir = string()

Hdr = string()

Conf = [context_entry()]

Write the agent context config to the agent context config file.

Dir is the path to the directory where to store the config file.

Hdr is an optional file header (note that this text is written to the file as is).

See Contexts for more info.

append_context_config(Dir, Conf) -> ok

Types:

Dir = string()

Conf = [context_entry()]

Append the context config to the current agent context config file.

Dir is the path to the directory where to store the config file.

See Contexts for more info.

read_context_config(Dir) -> Conf

Types:

Dir = string()

Conf = [context_entry()]

Read the current agent context config file.

Dir is the path to the directory where to store the config file.

See Contexts for more info.

community_entry(CommunityIndex) -> community_entry()

community_entry(CommunityIndex, CommunityName, SecName, ContextName,
TransportTag) -> community_entry()

Types:

snmpa_conf

116 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

CommunityIndex = string()

CommunityName = string()

SecName = string()

CtxName = string()

TransportTag = string()

community_entry() = term()

Create an entry for the agent community config file, community.conf.

CommunityIndex must be a non-empty string.

community_entry("public") translates to the following call: community_entry(CommunityIndex,
CommunityIndex, "initial", "", "").

community_entry("all-rights") translates to the following call:
community_entry(CommunityIndex, CommunityIndex, CommunityIndex, "", "").

See Community for more info.

write_community_config(Dir, Conf) -> ok

write_community_config(Dir, Hdr, Conf) -> ok

Types:

Dir = string()

Hdr = string()

Conf = [community_entry()]

Write the agent community config to the agent community config file.

Dir is the path to the directory where to store the config file.

Hdr is an optional file header (note that this text is written to the file as is).

See Community for more info.

append_community_config(Dir, Conf) -> ok

Types:

Dir = string()

Conf = [community_entry()]

Append the community config to the current agent community config file.

Dir is the path to the directory where to store the config file.

See Community for more info.

read_community_config(Dir) -> Conf

Types:

Dir = string()

Conf = [community_entry()]

Read the current agent community config file.

Dir is the path to the directory where to store the config file.

See Communities for more info.

snmpa_conf

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 117

target_addr_entry(Name, Ip, TagList, ParamsName, EngineId) ->
target_addr_entry()

target_addr_entry(Name, Ip, TagList, ParamsName, EngineId, TMask) ->
target_addr_entry()

target_addr_entry(Name, Ip, Udp, TagList, ParamsName, EngineId, TMask,
MaxMessageSize) -> target_addr_entry()

target_addr_entry(Name, Ip, Udp, Timeout, RetryCount, TagList, ParamsName,
EngineId, TMask, MaxMessageSize) -> target_addr_entry()

target_addr_entry(Name, Domain, Ip, Udp, Timeout, RetryCount, TagList,
ParamsName, EngineId, TMask, MaxMessageSize) -> target_addr_entry()

Types:

Name = string()

Domain = transportDomain()

Ip = transportAddressIPv4() | transportAddressIPv6() (depends on Domain)

Udp = integer()

Timeout = integer()

RetryCount = integer()

TagList = string()

ParamsName = string()

EngineId = string()

TMask = transportAddressMask() (depends on Domain)

MaxMessageSize = integer()

target_addr_entry() = term()

Create an entry for the agent target_addr config file, target_addr.conf.

Name must be a non-empty string.

target_addr_entry/5 translates to the following call: target_addr_entry(Name, Ip, TagList,
ParamsName, EngineId).

target_addr_entry/6 translates to the following call: target_addr_entry(Name, Ip, 162,
TagList, ParamsName, EngineId, TMask, 2048).

target_addr_entry/8 translates to the following call: target_addr_entry(Name, Ip, Udp, 1500,
3, TagList, ParamsName, EngineId, TMask, MaxMessageSize).

See Target Address Definitions for more info.

write_target_addr_config(Dir, Conf) -> ok

write_target_addr_config(Dir, Hdr, Conf) -> ok

Types:

Dir = string()

Hdr = string()

Conf = [target_addr_entry()]

Write the agent target_addr config to the agent target_addr config file.

Dir is the path to the directory where to store the config file.

Hdr is an optional file header (note that this text is written to the file as is).

See Target Address Definitions for more info.

snmpa_conf

118 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

append_target_addr_config(Dir, Conf) -> ok

Types:

Dir = string()

Conf = [target_addr_entry()]

Append the target_addr config to the current agent target_addr config file.

Dir is the path to the directory where to store the config file.

See Target Address Definitions for more info.

read_target_addr_config(Dir) -> Conf

Types:

Dir = string()

Conf = [target_addr_entry()]

Read the current agent target_addr config file.

Dir is the path to the directory where to store the config file.

See Target Address Definitions for more info.

target_params_entry(Name, Vsn) -> target_params_entry()

target_params_entry(Name, Vsn, SecName, SecLevel) -> target_params_entry()

target_params_entry(Name, MPModel, SecModel, SecName, SecLevel) ->
target_params_entry()

Types:

Name = string()

Vsn = v1 | v2 | v3

MPModel = v1 | v2c | v3

SecModel = v1 | v2c | usm

SecName = string()

SecLevel = noAuthNoPriv | authNoPriv | authPriv

target_params_entry() = term()

Create an entry for the agent target_params config file, target_params.conf.

Name must be a non-empty string.

Vsn translates into MPModel and SecModel as follows:

\011 Vsn = v1 => MPModel = v1, SecModel = v1
\011 Vsn = v2 => MPModel = v2c, SecModel = v2c
\011 Vsn = v3 => MPModel = v3, SecModel = usm

target_params_entry/2 translates to the following call: target_params_entry(Name, Vsn,
"initial", noAuthNoPriv).

target_params_entry/4 translates to the following call: target_params_entry(Name, MPModel,
SecModel, SecName, SecLevel) where MPModel and SecModel is mapped from Vsn, see above.

See Target Parameters Definitions for more info.

snmpa_conf

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 119

write_target_params_config(Dir, Conf) -> ok

write_target_params_config(Dir, Hdr, Conf) -> ok

Types:

Dir = string()

Hdr = string()

Conf = [target_params_entry()]

Write the agent target_params config to the agent target_params config file.

Dir is the path to the directory where to store the config file.

Hdr is an optional file header (note that this text is written to the file as is).

See Target Parameters Definitions for more info.

append_target_params_config(Dir, Conf) -> ok

Types:

Dir = string()

Conf = [target_params_entry()]

Append the target_params config to the current agent target_params config file.

Dir is the path to the directory where to store the config file.

See Target Parameters Definitions for more info.

read_target_params_config(Dir) -> Conf

Types:

Dir = string()

Conf = [target_params_entry()]

Read the current agent target_params config file.

Dir is the path to the directory where to store the config file.

See Target Parameters Definitions for more info.

vacm_s2g_entry(SecModel, SecName, GroupName) -> vacm_s2g_entry()

vacm_acc_entry(GroupName, Prefix, SecModel, SecLevel, Match, ReadView,
WriteView, NotifyView) -> vacm_acc_entry()

vacm_vtf_entry(ViewIndex, ViewSubtree) -> vacm_vtf_entry()

vacm_vtf_entry(ViewIndex, ViewSubtree, ViewStatus, ViewMask) ->
vacm_vtf_entry()

Types:

SecModel = v1 | v2c | usm

SecName = string()

GroupName = string()

Prefix = string()

SecLevel = noAuthNoPriv | authNoPriv | authPriv

Match = prefix | exact

ReadView = string()

WriteView = string()

snmpa_conf

120 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

NotifyView = string()

ViewIndex = integer()

ViewSubtree = [integer()]

ViewStatus = included | excluded

ViewMask = null | [zero_or_one()]

zero_or_one() = 0 | 1

vacm_s2g_entry() = term()

vacm_acc_entry() = term()

vacm_vtf_entry() = term()

Create an entry for the agent vacm config file, vacm.conf.

vacm_vtf_entry/2 translates to the following call: vacm_vtf_entry(ViewIndex, ViewSubtree,
included, null).

See MIB Views for VACM for more info.

write_vacm_config(Dir, Conf) -> ok

write_vacm_config(Dir, Hdr, Conf) -> ok

Types:

Dir = string()

Hdr = string()

Conf = [vacm_entry()]

vacm_entry() = vacm_sg2_entry() | vacm_acc_entry() | vacm_vtf_entry()

Write the agent vacm config to the agent vacm config file.

Dir is the path to the directory where to store the config file.

Hdr is an optional file header (note that this text is written to the file as is).

See MIB Views for VACM for more info.

append_vacm_config(Dir, Conf) -> ok

Types:

Dir = string()

Conf = [vacm_entry()]

Append the vacm config to the current agent vacm config file.

Dir is the path to the directory where to store the config file.

See MIB Views for VACM for more info.

read_vacm_config(Dir) -> Conf

Types:

Dir = string()

Conf = [vacm_entry()]

Read the current agent vacm config file.

Dir is the path to the directory where to store the config file.

See MIB Views for VACM for more info.

snmpa_conf

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 121

usm_entry(EngineId) -> usm_entry()

usm_entry(EngineID, UserName, SecName, Clone, AuthP, AuthKeyC, OwnAuthKeyC,
PrivP, PrivKeyC, OwnPrivKeyC, Public, AuthKey, PrivKey) -> usm_entry()

Types:

EngineId = string()

UserName = string()

SecName = string()

Clone = zeroDotZero | [integer()]

AuthP = usmNoAuthProtocol | usmHMACMD5AuthProtocol, |
usmHMACSHAAuthProtocol

AuthKeyC = string()

OwnAuthKeyC = string()

PrivP = usmNoPrivProtocol | usmDESPrivProtocol | usmAesCfb128Protocol

PrivKeyC = string()

OwnPrivKeyC = string()

Public = string()

AuthKey = [integer()]

PrivKey = [integer()]

usm_entry() = term()

Create an entry for the agent vacm config file, vacm.conf.

usm_entry/1 translates to the following call: usm_entry("initial", "initial", zeroDotZero,
usmNoAuthProtocol, "", "", usmNoPrivProtocol, "", "", "", "", "").

See Security data for USM for more info.

write_usm_config(Dir, Conf) -> ok

write_usm_config(Dir, Hdr, Conf) -> ok

Types:

Dir = string()

Hdr = string()

Conf = [usm_entry()]

Write the agent usm config to the agent usm config file.

Dir is the path to the directory where to store the config file.

Hdr is an optional file header (note that this text is written to the file as is).

See Security data for USM for more info.

append_usm_config(Dir, Conf) -> ok

Types:

Dir = string()

Conf = [usm_entry()]

Append the usm config to the current agent vacm config file.

Dir is the path to the directory where to store the config file.

See Security data for USM for more info.

snmpa_conf

122 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

read_usm_config(Dir) -> Conf

Types:

Dir = string()

Conf = [usm_entry()]

Read the current agent usm config file.

Dir is the path to the directory where to store the config file.

See Security data for USM for more info.

notify_entry(Name, Tag, Type) -> notify_entry()

Types:

Name = string()

Tag = string()

Type = trap | inform

community_entry() = term()

Create an entry for the agent notify config file, notify.conf.

Name must be a non-empty string.

See Notify Definitions for more info.

write_notify_config(Dir, Conf) -> ok

write_notify_config(Dir, Hdr, Conf) -> ok

Types:

Dir = string()

Hdr = string()

Conf = [notify_entry()]

Write the agent notify config to the agent notify config file.

Dir is the path to the directory where to store the config file.

Hdr is an optional file header (note that this text is written to the file as is).

See Notify Definitions for more info.

append_notify_config(Dir, Conf) -> ok

Types:

Dir = string()

Conf = [notify_entry()]

Append the notify config to the current agent notify config file.

Dir is the path to the directory where to store the config file.

See Notify Definitions for more info.

read_notify_config(Dir) -> Conf

Types:

Dir = string()

Conf = [community_entry()]

snmpa_conf

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 123

Read the current agent notify config file.

Dir is the path to the directory where to store the config file.

See Notify Definitions for more info.

snmpa_discovery_handler

124 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpa_discovery_handler
Erlang module

This module defines the behaviour of the agent discovery handler. A snmpa_discovery_handler compliant
module must export the following functions:

• stage1_finish/2

The semantics of them and their exact signatures are explained below.

Exports

stage1_finish(TargetName, ManagerEngineID, ExtraInfo) -> ignore |
{ok, usm_entry() | [usm_entry()]} | {ok, usm_entry() | [usm_entry()],
NewExtraInfo}

Types:

TargetName = string()

ManagerEngineID = string()

ExtraInfo = term()

usm_entry() = tuple() compatible with usm.conf

NewExtraInfo = term()

This function is called at the end of stage 1 of the discovery process. It should return either the atom ignore or {ok,
usm_entry() | [usm_entry()]}. See usm_entry() and usm_entry/13 for more info.

If the function returns ignore, then it is assumed that either:

• The caller (of the discovery function) will make the needed updates later.

• The callback function itself did the updates.

In either case, the agent will do nothing, but return the retrieved ManagerEngineID (see discovery for more info) and
possible continue with stage 2 of the discovery process.

The ExtraInfo argument is passed on from the discovery function.

This function may return an updated NewExtraInfo that will be used in subsequent calls to the callback functions.
Intended for future use.

The purpose of this function is to generate the usm- related security data needed for usm processing in the agent.
Specifically, updating the usmUserTable.

When an usm_entry() tuple (or a list of such tuples) is returned, this data is then added to the usmUserTable
by the (master-) agent.

When an usm_entry() tuple (or a list of such tuples) is returned, this data is then added to the usmUserTable
by the (master-) agent.

Note:
Note that the function does not check if this entry already exists.

snmpa_discovery_handler

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 125

Note:
Note that this function is executed in the context of the master-agent process.

snmpa_error_report

126 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpa_error_report
Erlang module

This module defines the behaviour of the agent error reporting. A snmpa_error_report compliant module must
export the following functions:

• config_err/2

• user_err/2

The semantics of them and their exact signatures are explained below.

Exports

config_err(Format, Args) -> void()

Types:

Format = string()

Args = list()

The function is called if an error occurs during the configuration phase, for example if a syntax error is found in a
configuration file.

Format and Args are as in io:format(Format, Args).

user_err(Format, Args) -> void()

Types:

Format = string()

Args = list()

The function is called if a user related error occurs at run-time, for example if a user defined instrumentation function
returns erroneous.

Format and Args are as in io:format(Format, Args).

snmpa_error

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 127

snmpa_error
Erlang module

The module snmpa_error contains two callback functions which are called if an error occurs at different times
during agent operation. These functions in turn calls the corresponding function in the configured error report module,
which implements the actual report functionality.

Two simple implementation(s) is provided with the toolkit; the modules snmpa_error_logger which is the default and
snmpa_error_io.

The error report module is configured using the directive error_report_mod, see configuration parameters.

Exports

config_err(Format, Args) -> void()

Types:

Format = string()

Args = list()

The function is called if an error occurs during the configuration phase, for example if a syntax error is found in a
configuration file.

Format and Args are as in io:format(Format, Args).

user_err(Format, Args) -> void()

Types:

Format = string()

Args = list()

The function is called if a user related error occurs at run-time, for example if a user defined instrumentation function
returns erroneous.

Format and Args are as in io:format(Format, Args).

snmpa_error_io

128 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpa_error_io
Erlang module

The module snmpa_error_io implements the snmp_error_report behaviour (see snmpa_error_report)
containing two callback functions which are called in order to report SNMP errors.

This module provides a simple mechanism for reporting SNMP errors. Errors are written to stdout using the io module.
It is provided as an simple example.

This module needs to be explicitly configured, see snmpa_error and configuration parameters.

Exports

config_err(Format, Args) -> void()

Types:

Format = string()

Args = list()

The function is called if an error occurs during the configuration phase, for example if a syntax error is found in a
configuration file.

Format and Args are as in io:format(Format, Args).

user_err(Format, Args) -> void()

Types:

Format = string()

Args = list()

The function is called if a user related error occurs at run-time, for example if a user defined instrumentation function
returns erroneous.

Format and Args are as in io:format(Format, Args).

snmpa_error_logger

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 129

snmpa_error_logger
Erlang module

The module snmpa_error_logger implements the snmpa_error_report behaviour (see
snmpa_error_report) containing two callback functions which are called in order to report SNMP errors.

This module provides a simple mechanism for reporting SNMP errors. Errors are sent to the error_logger after
a size check. Messages are truncated after 1024 chars. It is provided as an example.

This module is the default error report module, but can be explicitly configured, see snmpa_error and configuration
parameters.

Exports

config_err(Format, Args) -> void()

Types:

Format = string()

Args = list()

The function is called if an error occurs during the configuration phase, for example if a syntax error is found in a
configuration file.

Format and Args are as in io:format(Format, Args).

user_err(Format, Args) -> void()

Types:

Format = string()

Args = list()

The function is called if a user related error occurs at run-time, for example if a user defined instrumentation function
returns erroneous.

Format and Args are as in io:format(Format, Args).

See Also
error_logger(3)

snmpa_local_db

130 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpa_local_db
Erlang module

The module snmpa_local_db contains functions for implementing tables (and variables) using the SNMP built-in
database. The database exists in two instances, one volatile and one persistent. The volatile database is implemented
with ets. The persistent database is implemented with dets.

There is a scaling problem with this database.

• Insertions and deletions are inefficient for large tables.

This problem is best solved by using Mnesia instead.

The following functions describe the interface to snmpa_local_db. Each function has a Mnesia equivalent. The
argument NameDb is a tuple {Name, Db} where Name is the symbolic name of the managed object (as defined
in the MIB), and Db is either volatile or persistent. mnesia is not possible since all these functions are
snmpa_local_db specific.

Common Data Types
In the functions defined below, the following types are used:

• NameDb = {Name, Db}

• Name = atom(), Db = volatile | persistent

• RowIndex = [int()]

• Cols = [Col] | [{Col, Value}], Col = int(), Value = term()

where RowIndex denotes the last part of the OID, that specifies the index of the row in the table. Cols is a list of
column numbers in case of a get operation, and a list of column numbers and values in case of a set operation.

Exports

dump() -> ok | {error, Reason}

Types:

Reason = term()

This function can be used to manually dump the database to file.

match(NameDb, Pattern)

Performs an ets/dets matching on the table. See Stdlib documentation, module ets, for a description of Pattern and
the return values.

print()

print(TableName)

print(TableName, Db)

Types:

TableName = atom()

Prints the contents of the database on screen. This is useful for debugging since the STANDARD-MIB and OTP-
SNMPEA-MIB (and maybe your own MIBs) are stored in snmpa_local_db.

TableName is an atom for a table in the database. When no name is supplied, the whole database is shown.

snmpa_local_db

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 131

table_create(NameDb) -> bool()

Creates a table. If the table already exist, the old copy is destroyed.

Returns false if the NameDb argument is incorrectly specified, true otherwise.

table_create_row(NameDb, RowIndex, Row) -> bool()

Types:

Row = {Val1, Val2, ..., ValN}

Val1 = Val2 = ... = ValN = term()

Creates a row in a table. Row is a tuple with values for all columns, including the index columns.

table_delete(NameDb) -> void()

Deletes a table.

table_delete_row(NameDb, RowIndex) -> bool()

Deletes the row in the table.

table_exists(NameDb) -> bool()

Checks if a table exists.

table_get_row(NameDb, RowIndex) -> Row | undefined

Types:

Row = {Val1, Val2, ..., ValN}

Val1 = Val2 = ... = ValN = term()

Row is a tuple with values for all columns, including the index columns.

See Also
ets(3), dets(3), snmp_generic(3)

snmpa_mpd

132 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpa_mpd
Erlang module

The module snmpa_mpd implements the version independent Message Processing and Dispatch functionality in
SNMP for the agent. It is supposed to be used from a Network Interface process (Definition of Agent Net if).

Exports

init(Vsns) -> mpd_state()

Types:

Vsns = [Vsn]

Vsn = v1 | v2 | v3

This function can be called from the net_if process at start-up. The options list defines which versions to use.

It also initializes some SNMP counters.

process_packet(Packet, TDomain, TAddress, State, NoteStore, Log) -> {ok, Vsn,
Pdu, PduMS, ACMData} | {discarded, Reason} | {discovery, DiscoPacket}

process_packet(Packet, TDomain, TAddress, LocalEngineID, State, NoteStore,
Log) -> {ok, Vsn, Pdu, PduMS, ACMData} | {discarded, Reason} | {discovery,
DiscoPacket}

Types:

Packet = binary()

TDomain = snmpUDPDomain

TAddress = {Ip, Udp}

LocalEngineID = string()

Ip = {integer(), integer(), integer(), integer()}

Udp = integer()

State = mpd_state()

NoteStore = pid()

Log = snmp_log()

Vsn = 'version-1' | 'version-2' | 'version-3'

Pdu = #pdu

PduMs = integer()

ACMData = acm_data()

Reason = term()

DiscoPacket = binary()

Processes an incoming packet. Performs authentication and decryption as necessary. The return values should be
passed the agent.

snmpa_mpd

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 133

Note:
Note that the use of the LocalEngineID argument is only intended for special cases, if the agent is to "emulate"
multiple EngineIDs! By default, the agent uses the value of SnmpEngineID (see SNMP-FRAMEWORK-MIB).

generate_response_msg(Vsn, RePdu, Type, ACMData, Log) -> {ok, Packet} |
{discarded, Reason}

generate_response_msg(Vsn, RePdu, Type, ACMData, LocalEngineID, Log) -> {ok,
Packet} | {discarded, Reason}

Types:

Vsn = 'version-1' | 'version-2' | 'version-3'

RePdu = #pdu

Type = atom()

ACMData = acm_data()

LocalEngineID = string()

Packet = binary()

Generates a possibly encrypted response packet to be sent to the network. Type is the #pdu.type of the original
request.

Note:
Note that the use of the LocalEngineID argument is only intended for special cases, if the agent is to "emulate"
multiple EngineIDs! By default, the agent uses the value of SnmpEngineID (see SNMP-FRAMEWORK-MIB).

generate_msg(Vsn, NoteStore, Pdu, MsgData, To) -> {ok, PacketsAndAddresses} |
{discarded, Reason}

generate_msg(Vsn, NoteStore, Pdu, MsgData, LocalEngineID, To) -> {ok,
PacketsAndAddresses} | {discarded, Reason}

Types:

Vsn = 'version-1' | 'version-2' | 'version-3'

NoteStore = pid()

Pdu = #pdu

MsgData = msg_data()

LocalEngineID = string()

To = [dest_addrs()]

PacketsAndAddresses = [{TDomain, TAddress, Packet}]

TDomain = snmpUDPDomain

TAddress = {Ip, Udp}

Ip = {integer(), integer(), integer(), integer()}

Udp = integer()

Packet = binary()

Generates a possibly encrypted request packet to be sent to the network.

snmpa_mpd

134 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

MsgData is the message specific data used in the SNMP message. This value is received in a send_pdu or
send_pdu_req message from the agent. In SNMPv1 and SNMPv2c, this message data is the community string.
In SNMPv3, it is the context information. To is a list of the destination addresses and their corresponding security
parameters. This value is also received from the requests mentioned above.

Note:
Note that the use of the LocalEngineID argument is only intended for special cases, if the agent is to "emulate"
multiple EngineIDs! By default, the agent uses the value of SnmpEngineID (see SNMP-FRAMEWORK-MIB).

discarded_pdu(Variable) -> void()

Types:

Variable = atom()

Increments the variable associated with a discarded pdu. This function can be used when the net_if process receives
a discarded_pdu message from the agent.

snmpa_network_interface

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 135

snmpa_network_interface
Erlang module

This module defines the behaviour of the agent network interface. A snmpa_network_interface compliant
module must export the following functions:

• start_link/4

• info/1

• get_log_type/1

• set_log_type/2

• verbosity/2

The semantics of them and their exact signatures are explained below.

But this is not enough. There is also a set of mandatory messages which the network interface entity must be able to
receive and be able to send. This is described in chapter snmp_agent_netif.

Exports

start_link(Prio, NoteStore, MasterAgent, Opts) -> {ok, Pid} | {error, Reason}

Types:

Prio = priority()

NoteStore = pid()

MasterAgent = pid()

Opts = [opt()]

opt() = {verbosity, verbosity()} | {versions, versions()} | term()

versions() = [version()]

version() = v1 | v2 | v3

Start-link the network interface process.

NoteStore is the pid of the note-store process and MasterAgent is the pid of the master-agent process.

Opts is an (basically) implementation dependent list of options to the network interface process. There are however
a number of options which must be handled: versions and verbosity.

info(Pid) -> [{Key, Value}]

Types:

Pid = pid()

The info returned is basically up to the implementer to decide. This implementation provided by the application
provides info about memory allocation and various socket information.

The info returned by this function is returned together with other info collected by the agent when the info function
is called (tagged with with the key net_if).

verbosity(Pid, Verbosity) -> void()

Types:

Pid = pid()

Verbosity = verbosity()

snmpa_network_interface

136 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

Change the verbosity of a running network interface process.

get_log_type(Pid) -> {ok, LogType} | {error, Reason}

Types:

Pid = pid()

LogType = atl_type()

Reason = term()

The Audit Trail Log is managed by the network interface process. So, it is this process that has to retrieve the actual
log-type.

set_log_type(Pid, NewType) -> {ok, OldType} | {error, Reason}

Types:

Pid = pid()

NewType = OldType = atl_type()

Reason = term()

The Audit Trail Log is managed by the network interface process. So, it is this process that has to do the actual changing
of the type.

See set_log_type for more info.

snmpa_network_interface_filter

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 137

snmpa_network_interface_filter
Erlang module

This module defines the behaviour of the agent network interface filter. A
snmpa_network_interface_filter compliant module must export the following functions:

• accept_recv/2

• accept_send/2

• accept_recv_pdu/3

• accept_send_pdu/2

The semantics of them and their exact signatures are explained below.

The purpose of the network interface filter is to allow for filtering of messages (accept or reject) receive and send.
This is done on two levels:

• The first level is at the UDP entry / exit point, i.e. immediately after the receipt of the message, before any message
processing is done (accept_recv) and immediately before sending the message, after all message processing is
done (accept_send).

• The second level is at the MPD entry / exit point, i.e. immediately after the basic message processing
(accept_recv_pdu) / immediately before the basic message processing (accept_send_pdu).

Note that the network interface filter is something which is used by the network interface implementation provided by
the application (snmpa_net_if). The default filter accepts all messages.

A network interface filter can e.g. be used during testing or for load regulation. If the intended use is load regulation,
see also req_limit and the function register_notification_filter.

DATA TYPES

port() = integer() > 0
pdu_type() = 'get-request' | 'get-next-request' | 'get-response' |
 'set-request' | trap | 'get-bulk-request' | 'inform-request' |
 report

Exports

accept_recv(Ip, Port) -> boolean()

Types:

Ip = ip_address()

Port = port()

Called at the reception of a message (before any processing has been done).

For the message to be discarded, the function must return false.

accept_send(Ip, Port) -> boolean()

Types:

Ip = ip_address()

Port = port()

snmpa_network_interface_filter

138 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

Called before the sending of a message (after all processing has been done).

For the message to be discarded, the function must return false.

accept_recv_pdu(Ip, Port, PduType) -> boolean()

Types:

Ip = ip_address()

Port = port()

PduType = pdu_type()

Called after the basic message processing (MPD) has been done, but before the pdu is handed over to the master-
agent for primary processing.

For the pdu to be discarded, the function must return false.

accept_send_pdu(Targets, PduType) -> Reply

Types:

Targets = targets()

targets() = [target()]

target() = {ip_address(), port()}

PduType = pdu_type() > 0

Reply = boolean() | NewTargets

NewTargets = targets()

Called before the basic message processing (MPD) is done, when a pdu has been received from the master-agent.

For the message to be discarded all together, the function must return false.

Note that it is possible for this function to filter out targets (but not add its own) by returning an updated Targets
list (NewTargets).

snmpa_notification_delivery_info_receiver

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 139

snmpa_notification_delivery_info_receiver
Erlang module

This module defines the behaviour of the notification delivery information receiver.

A snmpa_notification_delivery_info_receiver compliant module must export the following
functions:

• delivery_targets/3

• delivery_info/4

The semantics of them and their exact signatures are explained below.

DATA TYPES

address() = A 4-tuple

Exports

delivery_targets(Tag, Targets, Extra) -> void()

Types:

Tag = term()

Targets = [target()]

target() = {Address, Port}

Address = address()

Port = integer()

Extra = term()

Inform about target addresses.

This is the first function called when a notification delivery is in progress. It informs the receiver which targets will
get the notification. The result of the delivery will be provided via successive calls to delivery_info/4 function,
see below.

delivery_info(Tag, Target, DeliveryResult, Extra) -> void()

Types:

Tag = term()

Target = target()

target() = {Address, Port}

Address = address()

Port = integer()

DeliveryResult = delivery_result()

delivery_result() = no_response | got_response

Extra = term()

Inform about delivery result.

snmpa_notification_delivery_info_receiver

140 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

This function is called for each target in the Targets argument of the delivery_targets/3 function, see above.

The purpose is to inform the receiver of the result of the delivery (was the notification acknowledged or not) for
each target.

snmpa_notification_filter

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 141

snmpa_notification_filter
Erlang module

This module defines the behaviour of the agent notification filters. A snmpa_notification_filter compliant
module must export the following functions:

• handle_notification/2

The semantics of them and their exact signatures are explained below.

The purpose of notification filters is to allow for modification and/or suppression of a notification.

A misbehaving filter will be removed.

Exports

handle_notification(Notif, Data) -> Reply

Types:

Reply = send | {send, NewNotif} | dont_send

Notif = NewNotif = notification() | trap()

Data = term()

Handle a notification to be sent. The filter can either accept the notification as is, return send, modify the notification,
return {send, NewNotif} or suppress the notification, return dont_send.

Data is supplied at filter registration time, see register_notification_filter.

snmpa_supervisor

142 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpa_supervisor
Erlang module

This is the top supervisor for the agent part of the SNMP application. There is always one supervisor at each node
with an SNMP agent (master agent or sub-agent).

Exports

start_sub_sup(Opts) -> {ok, pid()} | {error, {already_started, pid()}} |
{error, Reason}

Types:

Opts = [opt()]

opt() = {db_dir, string()} | ...

Starts a supervisor for the SNMP agent system without a master agent. The supervisor starts all involved SNMP
processes, but no agent processes. Sub-agents should be started by calling start_sub_agent/3.

db_dir is mandatory.

See configuration parameters for a description of the options.

start_master_sup(Opts) -> {ok, pid()} | {error, {already_started, pid()}} |
{error, Reason}

Types:

Opts = [opt()]

opt() = {db_dir, string()} | {config, ConfOpts()} | ...

ConfOpts = [conf_opts()]

conf_opts() = {dir, string()} | ...

Reason = term()

Starts a supervisor for the SNMP agent system. The supervisor starts all involved SNMP processes, including the
master agent. Sub-agents should be started by calling start_subagent/3.

db_dir is mandatory.

dir in config is mandatory.

See snmp config for a description of the options.

start_sub_agent(ParentAgent,Subtree,Mibs) -> {ok, pid()} | {error, Reason}

Types:

ParentAgent = pid()

SubTree = oid()

Mibs = [MibName]

MibName = [string()]

Starts a sub-agent on the node where the function is called. The snmpa_supervisor must be running.

If the supervisor is not running, the function fails with the reason badarg.

snmpa_supervisor

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 143

stop_sub_agent(SubAgent) -> ok | no_such_child

Types:

SubAgent = pid()

Stops the sub-agent on the node where the function is called. The snmpa_supervisor must be running.

If the supervisor is not running, the function fails with the reason badarg.

snmp_community_mib

144 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmp_community_mib
Erlang module

The module snmp_community_mib implements the instrumentation functions for the SNMP-COMMUNITY-
MIB, and functions for configuring the database.

The configuration files are described in the SNMP User's Manual.

Exports

configure(ConfDir) -> void()

Types:

ConfDir = string()

This function is called from the supervisor at system start-up.

Inserts all data in the configuration files into the database and destroys all old rows with StorageType volatile.
The rows created from the configuration file will have StorageType nonVolatile.

All snmp counters are set to zero.

If an error is found in the configuration file, it is reported using the function config_err/2 of the error, report
module and the function fails with reason configuration_error.

ConfDir is a string which points to the directory where the configuration files are found.

The configuration file read is: community.conf.

reconfigure(ConfDir) -> void()

Types:

ConfDir = string()

Inserts all data in the configuration files into the database and destroys all old data, including the rows with StorageType
nonVolatile. The rows created from the configuration file will have StorageType nonVolatile.

Thus, the data in the SNMP-COMMUNITY-MIB, after this function has been called, is from the configuration files.

All snmp counters are set to zero.

If an error is found in the configuration file, it is reported using the function config_err/2 of the error report
module, and the function fails with reason configuration_error.

ConfDir is a string which points to the directory where the configuration files are found.

The configuration file read is: community.conf.

add_community(Idx, CommName, SecName, CtxName, TransportTag) -> Ret

add_community(Idx, CommName, SecName, EngineId, CtxName, TransportTag) -> Ret

Types:

Idx = string()

CommName = string()

SecName = string()

EngineId = string()

CtxName = string()

snmp_community_mib

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 145

TransportTag = string()

Ret = {ok, Key} | {error, Reason}

Key = term()

Reason = term()

Adds a community to the agent config. Equivalent to one line in the community.conf file.

With the EngineId argument it is possible to override the configured engine-id (SNMP-FRAMEWORK-MIB).

delete_community(Key) -> Ret

Types:

Key = term()

Ret = ok | {error, Reason}

Reason = term()

Delete a community from the agent config.

snmp_framework_mib

146 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmp_framework_mib
Erlang module

The module snmp_framework_mib implements instrumentation functions for the SNMP-FRAMEWORK-MIB,
and functions for initializing and configuring the database.

The configuration files are described in the SNMP User's Manual.

Exports

configure(ConfDir) -> void()

Types:

ConfDir = string()

This function is called from the supervisor at system start-up.

Inserts all data in the configuration files into the database and destroys all old data.

Thus, the data in the SNMP-FRAMEWORK-MIB, after this function has been called, is from the configuration files.

All snmp counters are set to zero.

If an error is found in the configuration file, it is reported using the function config_err/2 of the error report
module, and the function fails with reason configuration_error.

ConfDir is a string which points to the directory where the configuration files are found.

The configuration file read is: context.conf.

init() -> void()

This function is called from the supervisor at system start-up.

Creates the necessary objects in the database if they do not exist. It does not destroy any old values.

add_context(Ctx) -> Ret

Types:

Ctx = string()

Ret = {ok, Key} | {error, Reason}

Key = term()

Reason = term()

Adds a context to the agent config. Equivalent to one line in the context.conf file.

delete_context(Key) -> Ret

Types:

Key = term()

Ret = ok | {error, Reason}

Reason = term()

Delete a context from the agent config.

snmp_generic

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 147

snmp_generic
Erlang module

The module snmp_generic contains generic functions for implementing tables (and variables) using the SNMP
built-in database or Mnesia. These default functions are used if no instrumentation function is provided for a managed
object in a MIB. Sometimes, it might be necessary to customize the behaviour of the default functions. For example,
in some situations a trap should be sent if a row is deleted or modified, or some hardware is to be informed, when
information is changed.

The overall structure is shown in the following figure:

 +---------------+
 | SNMP Agent |
 +- - - - - - - -+
 | MIB |
 +---------------+
 |
 Association file (associates a MIB object with
 | snmp_generic:table_funct
 | snmp_generic:variable_func)
+--------------------------------------+
| snmp_generic | Support for get-next,
| | RowStatus operations
+----------------------+---------------+
| snmpa_local_db | Mnesia | Database
+--------------+-------+---------------+
| dets | ets |
| (persistent) | |
+--------------+-------+

Each function takes the argument NameDb, which is a tuple {Name, Db}, to identify which database the functions
should use. Name is the symbolic name of the managed object as defined in the MIB, and Db is either volatile,
persistent, or mnesia. If it is mnesia, all variables are stored in the Mnesia table snmp_variables which
must be a table with two attributes (not a Mnesia SNMP table). The SNMP tables are stored in Mnesia tables with
the same names as the SNMP tables. All functions assume that a Mnesia table exists with the correct name and
attributes. It is the programmer's responsibility to ensure this. Specifically, if variables are stored in Mnesia, the table
snmp_variables must be created by the programmer. The record definition for this table is defined in the file
snmp/include/snmp_types.hrl.

If an instrumentation function in the association file for a variable myVar does not have a name when compiling an
MIB, the compiler generates an entry.

{myVar, {snmp_generic, variable_func, [{myVar, Db]}}.

And for a table:

{myTable, {snmp_generic, table_func, [{myTable, Db]}}.

snmp_generic

148 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

DATA TYPES
In the functions defined below, the following types are used:

name_db() = {name(), db()}
name() = atom()
db() = volatile | persistent | mnesia
row_index() = [int()]
columns() = [column()] | [{column(), value()}]
column() = int()
value() = term()

row_index()

Denotes the last part of the OID which specifies the index of the row in the table (see RFC1212, 4.1.6 for more
information about INDEX).

columns()

Is a list of column numbers in the case of a get operation, and a list of column numbers and values in the case
of a set operation.

Exports

get_status_col(Name, Cols)

get_status_col(NameDb, Cols) -> {ok, StatusVal} | false

Types:

Name = name()

NameDb = name_db()

Cols = columns()

StatusVal = term()

Gets the value of the status column from Cols.

This function can be used in instrumentation functions for is_set_ok, undo or set to check if the status column
of a table is modified.

get_index_types(Name)

Types:

Name = name()

Gets the index types of Name

This function can be used in instrumentation functions to retrieve the index types part of the table info.

get_table_info(Name, Item) -> table_info_result()

Types:

Name = name()

Item = table_item() | all

table_item() = nbr_of_cols | defvals | status_col | not_accessible |
index_types | first_accessible | first_own_index

table_info_result() = Value | [{table_item(), Value}]

snmp_generic

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 149

Value = term()

Get a specific table info item or, if Item has the value all, a two tuple list (property list) is instead returned with
all the items and their respctive values of the given table.

This function can be used in instrumentation functions to retrieve a given part of the table info.

table_func(Op1, NameDb)

table_func(Op2, RowIndex, Cols, NameDb) -> Ret

Types:

Op1 = new | delete

Op2 = get | next | is_set_ok | set | undo

NameDb = name_db()

RowIndex = row_index()

Cols = columns()

Ret = term()

This is the default instrumentation function for tables.

• The new function creates the table if it does not exist, but only if the database is the SNMP internal db.

• The delete function does not delete the table from the database since unloading an MIB does not necessarily
mean that the table should be destroyed.

• The is_set_ok function checks that a row which is to be modified or deleted exists, and that a row which is
to be created does not exist.

• The undo function does nothing.

• The set function checks if it has enough information to make the row change its status from notReady to
notInService (when a row has been been set to createAndWait). If a row is set to createAndWait,
columns without a value are set to noinit. If Mnesia is used, the set functionality is handled within a
transaction.

If it is possible for a manager to create or delete rows in the table, there must be a RowStatus column for
is_set_ok, set and undo to work properly.

The function returns according to the specification of an instrumentation function.

table_get_elements(NameDb, RowIndex, Cols) -> Values

Types:

NameDb = name_db()

RowIndex = row_index()

Cols = columns()

Values = [value() | noinit]

Returns a list with values for all columns in Cols. If a column is undefined, its value is noinit.

table_next(NameDb, RestOid) -> RowIndex | endOfTable

Types:

NameDb = name_db()

RestOid = [int()]

RowIndex = row_index()

Finds the indices of the next row in the table. RestOid does not have to specify an existing row.

snmp_generic

150 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

table_row_exists(NameDb, RowIndex) -> bool()

Types:

NameDb = name_db()

RowIndex = row_index()

Checks if a row in a table exists.

table_set_elements(NameDb, RowIndex, Cols) -> bool()

Types:

NameDb = name_db()

RowIndex = row_index()

Cols = columns()

Sets the elements in Cols to the row specified by RowIndex. No checks are performed on the new values.

If the Mnesia database is used, this function calls mnesia:write to store the values. This means that this function
must be called from within a transaction (mnesia:transaction/1 or mnesia:dirty/1).

variable_func(Op1, NameDb)

variable_func(Op2, Val, NameDb) -> Ret

Types:

Op1 = new | delete | get

Op2 = is_set_ok | set | undo

NameDb = name_db()

Val = value()

Ret = term()

This is the default instrumentation function for variables.

The new function creates a new variable in the database with a default value as defined in the MIB, or a zero value
(depending on the type).

The delete function does not delete the variable from the database.

The function returns according to the specification of an instrumentation function.

variable_get(NameDb) -> {value, Value} | undefined

Types:

NameDb = name_db()

Value = value()

Gets the value of a variable.

variable_set(NameDb, NewVal) -> true | false

Types:

NameDb = name_db()

NewVal = value()

Sets a new value to a variable. The variable is created if it does not exist. No checks are made on the type of the
new value.

Returns false if the NameDb argument is incorrectly specified, otherwise true.

snmp_generic

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 151

Example
The following example shows an implementation of a table which is stored in Mnesia, but with some checks performed
at set-request operations.

myTable_func(new, NameDb) -> % pass unchanged
 snmp_generic:table_func(new, NameDb).

myTable_func(delete, NameDb) -> % pass unchanged
 snmp_generic:table_func(delete, NameDb).

%% change row
myTable_func(is_set_ok, RowIndex, Cols, NameDb) ->
 case snmp_generic:table_func(is_set_ok, RowIndex,
 Cols, NameDb) of
 {noError, 0} ->
 myApplication:is_set_ok(RowIndex, Cols);
 Err ->
 Err
 end;

myTable_func(set, RowIndex, Cols, NameDb) ->
 case snmp_generic:table_func(set, RowIndex, Cols,
 NameDb),
 {noError, 0} ->
 % Now the row is updated, tell the application
 myApplication:update(RowIndex, Cols);
 Err ->
 Err
 end;

myTable_func(Op, RowIndex, Cols, NameDb) -> % pass unchanged
 snmp_generic:table_func(Op, RowIndex, Cols, NameDb).

The .funcs file would look like:

{myTable, {myModule, myTable_func, [{myTable, mnesia}]}}.

snmp_index

152 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmp_index
Erlang module

The module snmp_index implements an Abstract Data Type (ADT) for an SNMP index structure for SNMP tables.
It is implemented as an ets table of the ordered_set data-type, which means that all operations are O(log n). In the
table, the key is an ASN.1 OBJECT IDENTIFIER.

This index is used to separate the implementation of the SNMP ordering from the actual implementation of the table.
The SNMP ordering, that is implementation of GET NEXT, is implemented in this module.

For example, suppose there is an SNMP table, which is best implemented in Erlang as one process per SNMP table
row. Suppose further that the INDEX in the SNMP table is an OCTET STRING. The index structure would be created
as follows:

snmp_index:new(string)

For each new process we create, we insert an item in an snmp_index structure:

new_process(Name, SnmpIndex) ->
 Pid = start_process(),
 NewSnmpIndex =
 snmp_index:insert(SnmpIndex, Name, Pid),
 <...>

With this structure, we can now map an OBJECT IDENTIFIER in e.g. a GET NEXT request, to the correct process:

get_next_pid(Oid, SnmpIndex) ->
 {ok, {_, Pid}} = snmp_index:get_next(SnmpIndex, Oid),
 Pid.

Common data types
The following data types are used in the functions below:

• index()

• oid() = [byte()]

• key_types = type_spec() | {type_spec(), type_spec(), ...}

• type_spec() = fix_string | string | integer

• key() = key_spec() | {key_spec(), key_spec(), ...}

• key_spec() = string() | integer()

The index() type denotes an snmp index structure.

The oid() type is used to represent an ASN.1 OBJECT IDENTIFIER.

The key_types() type is used when creating the index structure, and the key() type is used when inserting and
deleting items from the structure.

snmp_index

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 153

The key_types() type defines the types of the SNMP INDEX columns for the table. If the table has one single
INDEX column, this type should be a single atom, but if the table has multiple INDEX columns, it should be a tuple
with atoms.

If the INDEX column is of type INTEGER, or derived from INTEGER, the corresponding type should be integer. If
it is a variable length type (e.g. OBJECT IDENTIFIER, OCTET STRING), the corresponding type should be string.
Finally, if the type is of variable length, but with a fixed size restriction (e.g. IpAddress), the corresponding type should
be fix_string.

For example, if the SNMP table has two INDEX columns, the first one an OCTET STRING with size 2, and the second
one an OBJECT IDENTIFER, the corresponding key_types parameter would be {fix_string, string}.

The key() type correlates to the key_types() type. If the key_types() is a single atom, the corresponding
key() is a single type as well, but if the key_types() is a tuple, key must be a tuple of the same size.

In the example above, valid keys could be {"hi", "mom"} and {"no", "thanks"}, whereas "hi", {"hi",
42} and {"hello", "there"} would be invalid.

Warning:
All API functions that update the index return a NewIndex term. This is for backward compatibility with a
previous implementation that used a B+ tree written purely in Erlang for the index. The NewIndex return value
can now be ignored. The return value is now the unchanged table identifier for the ets table.

The implementation using ets tables introduces a semantic incompatibility with older implementations. In those
older implementations, using pure Erlang terms, the index was garbage collected like any other Erlang term and
did not have to be deleted when discarded. An ets table is deleted only when the process creating it explicitly
deletes it or when the creating process terminates.

A new interface delete/1 is now added to handle the case when a process wants to discard an index table (i.e.
to build a completely new). Any application using transient snmp indexes has to be modified to handle this.

As an snmp adaption usually keeps the index for the whole of the systems lifetime, this is rarely a problem.

Exports

delete(Index) -> true

Types:

Index = NewIndex = index()

Key = key()

Deletes a complete index structure (i.e. the ets table holding the index). The index can no longer be referenced after
this call. See the warning note above.

delete(Index, Key) -> NewIndex

Types:

Index = NewIndex = index()

Key = key()

Deletes a key and its value from the index structure. Returns a new structure.

get(Index, KeyOid) -> {ok, {KeyOid, Value}} | undefined

Types:

snmp_index

154 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

Index = index()

KeyOid = oid()

Value = term()

Gets the item with key KeyOid. Could be used from within an SNMP instrumentation function.

get_last(Index) -> {ok, {KeyOid, Value}} | undefined

Types:

Index = index()

KeyOid = oid()

Value = term()

Gets the last item in the index structure.

get_next(Index, KeyOid) -> {ok, {NextKeyOid, Value}} | undefined

Types:

Index = index()

KeyOid = NextKeyOid = oid()

Value = term()

Gets the next item in the SNMP lexicographic ordering, after KeyOid in the index structure. KeyOid does not have
to refer to an existing item in the index.

insert(Index, Key, Value) -> NewIndex

Types:

Index = NewIndex = index()

Key = key()

Value = term()

Inserts a new key value tuple into the index structure. If an item with the same key already exists, the new Value
overwrites the old value.

key_to_oid(Index, Key) -> KeyOid

Types:

Index = index()

Key = key()

KeyOid = NextKeyOid = oid()

Converts Key to an OBJECT IDENTIFIER.

new(KeyTypes) -> Index

Types:

KeyTypes = key_types()

Index = index()

Creates a new snmp index structure. The key_types() type is described above.

snmp_notification_mib

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 155

snmp_notification_mib
Erlang module

The module snmp_notification_mib implements the instrumentation functions for the SNMP-
NOTIFICATION-MIB, and functions for configuring the database.

The configuration files are described in the SNMP User's Manual.

Exports

configure(ConfDir) -> void()

Types:

ConfDir = string()

This function is called from the supervisor at system start-up.

Inserts all data in the configuration files into the database and destroys all old rows with StorageType volatile.
The rows created from the configuration file will have StorageType nonVolatile.

If an error is found in the configuration file, it is reported using the function config_err/2 of the error report
module, and the function fails with reason configuration_error.

ConfDir is a string which points to the directory where the configuration files are found.

The configuration file read is: notify.conf.

reconfigure(ConfDir) -> void()

Types:

ConfDir = string()

Inserts all data in the configuration files into the database and destroys all old data, including the rows with StorageType
nonVolatile. The rows created from the configuration file will have StorageType nonVolatile.

Thus, the data in the SNMP-NOTIFICATION-MIB, after this function has been called, is from the configuration files.

If an error is found in the configuration file, it is reported using the function config_err/2 of the error report
module, and the function fails with reason configuration_error.

ConfDir is a string which points to the directory where the configuration files are found.

The configuration file read is: notify.conf.

add_notify(Name, Tag, Type) -> Ret

Types:

Name = string()

Tag = string()

Type = trap | inform

Ret = {ok, Key} | {error, Reason}

Key = term()

Reason = term()

Adds a notify definition to the agent config. Equivalent to one line in the notify.conf file.

snmp_notification_mib

156 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

delete_notify(Key) -> Ret

Types:

Key = term()

Ret = ok | {error, Reason}

Reason = term()

Delete a notify definition from the agent config.

snmp_pdus

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 157

snmp_pdus
Erlang module

RFC1157, RFC1905 and/or RFC2272 should be studied carefully before using this module, snmp_pdus.

The module snmp_pdus contains functions for encoding and decoding of SNMP protocol data units (PDUs). In short,
this module converts a list of bytes to Erlang record representations and vice versa. The record definitions can be found
in the file snmp/include/snmp_types.hrl. If snmpv3 is used, the module that includes snmp_types.hrl
must define the constant SNMP_USE_V3 before the header file is included. Example:

-define(SNMP_USE_V3, true).
-include_lib("snmp/include/snmp_types.hrl").

Encoding and decoding must be done explicitly when writing your own Net if process.

Exports

dec_message([byte()]) -> Message

Types:

Message = #message

Decodes a list of bytes into an SNMP Message. Note, if there is a v3 message, the msgSecurityParameters
are not decoded. They must be explicitly decoded by a call to a security model specific decoding function,
e.g. dec_usm_security_parameters/1. Also note, if the scopedPDU is encrypted, the OCTET STRING
encoded encryptedPDU will be present in the data field.

dec_message_only([byte()]) -> Message

Types:

Message = #message

Decodes a list of bytes into an SNMP Message, but does not decode the data part of the Message. That means, data is
still a list of bytes, normally an encoded PDU (v1 and V2) or an encoded and possibly encrypted scopedPDU (v3).

dec_pdu([byte()]) -> Pdu

Types:

Pdu = #pdu

Decodes a list of bytes into an SNMP Pdu.

dec_scoped_pdu([byte()]) -> ScopedPdu

Types:

ScopedPdu = #scoped_pdu

Decodes a list of bytes into an SNMP ScopedPdu.

dec_scoped_pdu_data([byte()]) -> ScopedPduData

Types:

ScopedPduData = #scoped_pdu | EncryptedPDU

snmp_pdus

158 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

EncryptedPDU = [byte()]

Decodes a list of bytes into either a scoped pdu record, or - if the scoped pdu was encrypted - to a list of bytes.

dec_usm_security_parameters([byte()]) -> UsmSecParams

Types:

UsmSecParams = #usmSecurityParameters

Decodes a list of bytes into an SNMP UsmSecurityParameters

enc_encrypted_scoped_pdu(EncryptedScopedPdu) -> [byte()]

Types:

EncryptedScopedPdu = [byte()]

Encodes an encrypted SNMP ScopedPdu into an OCTET STRING that can be used as the data field in a message
record, that later can be encoded with a call to enc_message_only/1.

This function should be used whenever the ScopedPDU is encrypted.

enc_message(Message) -> [byte()]

Types:

Message = #message

Encodes a message record to a list of bytes.

enc_message_only(Message) -> [byte()]

Types:

Message = #message

Message is a record where the data field is assumed to be encoded (a list of bytes). If there is a v1 or v2 message, the
data field is an encoded PDU, and if there is a v3 message, data is an encoded and possibly encrypted scopedPDU.

enc_pdu(Pd) -> [byte()]

Types:

Pdu = #pdu

Encodes an SNMP Pdu into a list of bytes.

enc_scoped_pdu(ScopedPdu) -> [byte()]

Types:

ScopedPdu = #scoped_pdu

Encodes an SNMP ScopedPdu into a list of bytes, which can be encrypted, and after encryption, encoded with a call
to enc_encrypted_scoped_pdu/1; or it can be used as the data field in a message record, which then can
be encoded with enc_message_only/1.

enc_usm_security_parameters(UsmSecParams) -> [byte()]

Types:

UsmSecParams = #usmSecurityParameters

Encodes SNMP UsmSecurityParameters into a list of bytes.

snmp_standard_mib

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 159

snmp_standard_mib
Erlang module

The module snmp_standard_mib implements the instrumentation functions for the STANDARD-MIB and
SNMPv2-MIB, and functions for configuring the database.

The configuration files are described in the SNMP User's Manual.

Exports

configure(ConfDir) -> void()

Types:

ConfDir = string()

This function is called from the supervisor at system start-up.

Inserts all data in the configuration files into the database and destroys all old rows with StorageType volatile.
The rows created from the configuration file will have StorageType nonVolatile.

All snmp counters are set to zero.

If an error is found in the configuration file, it is reported using the function config_err/2 of the error report
module, and the function fails with the reason configuration_error.

ConfDir is a string which points to the directory where the configuration files are found.

The configuration file read is: standard.conf.

inc(Name) -> void()

inc(Name, N) -> void()

Types:

Name = atom()

N = integer()

Increments a variable in the MIB with N, or one if N is not specified.

reconfigure(ConfDir) -> void()

Types:

ConfDir = string()

Inserts all data in the configuration files into the database and destroys all old data, including the rows with StorageType
nonVolatile. The rows created from the configuration file will have StorageType nonVolatile.

Thus, the data in the SNMP-STANDARD-MIB and SNMPv2-MIB, after this function has been called, is from the
configuration files.

All snmp counters are set to zero.

If an error is found in the configuration file, it is reported using the function config_err/2 of the error report
module, and the function fails with the reason configuration_error.

ConfDir is a string which points to the directory where the configuration files are found.

The configuration file read is: standard.conf.

snmp_standard_mib

160 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

reset() -> void()

Resets all snmp counters to 0.

sys_up_time() -> Time

Types:

Time = int()

Gets the system up time in hundredth of a second.

snmp_target_mib

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 161

snmp_target_mib
Erlang module

The module snmp_target_mib implements the instrumentation functions for the SNMP-TARGET-MIB, and
functions for configuring the database.

The configuration files are described in the SNMP User's Manual.

DATA TYPES

transportDomain() = transportDomainUdpIpv4 | transportDomainUdpIpv6
transportAddressIPv4() = [integer()], length 4
transportAddressIPv6() = [integer()], length 8
transportAddressMask() = [integer()], length 0 (default), 6 (IPv4) or 10 (IPv6)

Exports

configure(ConfDir) -> void()

Types:

ConfDir = string()

This function is called from the supervisor at system start-up.

Inserts all data in the configuration files into the database and destroys all old rows with StorageType volatile.
The rows created from the configuration file will have StorageType nonVolatile.

All snmp counters are set to zero.

If an error is found in the configuration file, it is reported using the function config_err/2 of the error report
module, and the function fails with the reason configuration_error.

ConfDir is a string which points to the directory where the configuration files are found.

The configuration files read are: target_addr.conf and target_params.conf.

reconfigure(ConfDir) -> void()

Types:

ConfDir = string()

Inserts all data in the configuration files into the database and destroys all old data, including the rows with StorageType
nonVolatile. The rows created from the configuration file will have StorageType nonVolatile.

Thus, the data in the SNMP-TARGET-MIB, after this function has been called, is the data from the configuration files.

All snmp counters are set to zero.

If an error is found in the configuration file, it is reported using the function config_err/2 of the , and the function
fails with the reason configuration_error.

ConfDir is a string which points to the directory where the configuration files are found.

The configuration files read are: target_addr.conf and target_params.conf.

snmp_target_mib

162 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

set_target_engine_id(TargetAddrName, EngineId) -> boolean()

Types:

TargetAddrName = string()

EngineId = string()

Changes the engine id for a target in the snmpTargetAddrTable. If notifications are sent as Inform requests to
a target, its engine id must be set.

add_addr(Name, Ip, Port, Timeout, Retry, TagList, Params, EngineId, TMask,
MMS) -> Ret

add_addr(Name, Domain, Ip, Port, Timeout, Retry, TagList, Params, EngineId,
TMask, MMS) -> Ret

Types:

Name = string()

Domain = transportDomain()

Ip = transportAddressIPv4() | transportAddressIPv6() (depends on the value
of Domain)

Port = integer()

Timeout = integer()

Retry = integer()

TagList = string()

ParamsName = string()

EngineId = string()

TMask = transportAddressMask() (depends on Domain)

MMS = integer()

Ret = {ok, Key} | {error, Reason}

Key = term()

Reason = term()

Adds a target address definition to the agent config. Equivalent to one line in the target_addr.conf file.

delete_addr(Key) -> Ret

Types:

Key = term()

Ret = ok | {error, Reason}

Reason = term()

Delete a target address definition from the agent config.

add_params(Name, MPModel, SecModel, SecName, SecLevel) -> Ret

Types:

Name = string()

MPModel = v1 | v2c | v3

SecModel = v1 | v2c | usm

SecName = string()

SecLevel = noAuthNoPriv | authNoPriv | authPriv

Ret = {ok, Key} | {error, Reason}

snmp_target_mib

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 163

Key = term()

Reason = term()

Adds a target parameter definition to the agent config. Equivalent to one line in the target_params.conf file.

delete_params(Key) -> Ret

Types:

Key = term()

Ret = ok | {error, Reason}

Reason = term()

Delete a target parameter definition from the agent config.

snmp_user_based_sm_mib

164 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmp_user_based_sm_mib
Erlang module

The module snmp_user_based_sm_mib implements the instrumentation functions for the SNMP-USER-
BASED-SM-MIB, and functions for configuring the database.

The configuration files are described in the SNMP User's Manual.

Exports

configure(ConfDir) -> void()

Types:

ConfDir = string()

This function is called from the supervisor at system start-up.

Inserts all data in the configuration files into the database and destroys all old rows with StorageType volatile.
The rows created from the configuration file will have StorageType nonVolatile.

All snmp counters are set to zero.

If an error is found in the configuration file, it is reported using the function config_err/2 of the error report
module, and the function fails with the reason configuration_error.

ConfDir is a string which points to the directory where the configuration files are found.

The configuration file read is: usm.conf.

reconfigure(ConfDir) -> void()

Types:

ConfDir = string()

Inserts all data in the configuration files into the database and destroys all old data, including the rows with StorageType
nonVolatile. The rows created from the configuration file will have StorageType nonVolatile.

Thus, the data in the SNMP-USER-BASED-SM-MIB, after this function has been called, is the data from the
configuration files.

All snmp counters are set to zero.

If an error is found in the configuration file, it is reported using the function config_err/2 of the error report
module, and the function fails with the reason configuration_error.

ConfDir is a string which points to the directory where the configuration files are found.

The configuration file read is: usm.conf.

add_user(EngineID, Name, SecName, Clone, AuthP, AuthKeyC, OwnAuthKeyC, PrivP,
PrivKeyC, OwnPrivKeyC, Public, AuthKey, PrivKey) -> Ret

Types:

EngineID = string()

Name = string()

SecName = string()

Clone = zeroDotZero | [integer()]

snmp_user_based_sm_mib

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 165

AuthP = usmNoAuthProtocol | usmHMACMD5AuthProtocol |
usmHMACSHAAuthProtocol

AuthKeyC = string()

OwnAuthKeyC = string()

PrivP = usmNoPrivProtocol | usmDESPrivProtocol

PrivKeyC = string()

OwnPrivKeyC = string()

Public = string()

AuthKey = string()

PrivKey = string()

Ret = {ok, Key} | {error, Reason}

Key = term()

Reason = term()

Adds a USM security data (user) to the agent config. Equivalent to one line in the usm.conf file.

delete_user(Key) -> Ret

Types:

Key = term()

Ret = ok | {error, Reason}

Reason = term()

Delete a USM security data (user) from the agent config.

snmp_view_based_acm_mib

166 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmp_view_based_acm_mib
Erlang module

The module snmp_view_based_acm_mib implements the instrumentation functions for the SNMP-VIEW-
BASED-ACM-MIB, and functions for configuring the database.

The configuration files are described in the SNMP User's Manual.

Exports

configure(ConfDir) -> void()

Types:

ConfDir = string()

This function is called from the supervisor at system start-up.

Inserts all data in the configuration files into the database and destroys all old rows with StorageType volatile.
The rows created from the configuration file will have StorageType nonVolatile.

All snmp counters are set to zero.

If an error is found in the configuration file, it is reported using the function config_err/2 of the error report
module, and the function fails with the reason configuration_error.

ConfDir is a string which points to the directory where the configuration files are found.

The configuration file read is: vacm.conf.

reconfigure(ConfDir) -> void()

Types:

ConfDir = string()

Inserts all data in the configuration files into the database and destroys all old data, including the rows with StorageType
nonVolatile. The rows created from the configuration file will have StorageType nonVolatile.

Thus, the data in the SNMP-VIEW-BASED-ACM-MIB, after this function has been called, is the data from the
configuration files.

All snmp counters are set to zero.

If an error is found in the configuration file, it is reported using the function config_err/2 of the error report module,
and the function fails with the reason configuration_error.

ConfDir is a string which points to the directory where the configuration files are found.

The configuration file read is: vacm.conf.

add_sec2group(SecModel, SecName, GroupName) -> Ret

Types:

SecModel = v1 | v2c | usm

SecName = string()

GroupName = string()

Ret = {ok, Key} | {error, Reason}

Key = term()

snmp_view_based_acm_mib

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 167

Reason = term()

Adds a security to group definition to the agent config. Equivalent to one vacmSecurityToGroup-line in the
vacm.conf file.

delete_sec2group(Key) -> Ret

Types:

Key = term()

Ret = ok | {error, Reason}

Reason = term()

Delete a security to group definition from the agent config.

add_access(GroupName, Prefix, SecModel, SecLevel, Match, RV, WV, NV) -> Ret

Types:

GroupName = string()

Prefix = string()

SecModel = v1 | v2c | usm

SecLevel = string()

Match = prefix | exact

RV = string()

WV = string()

NV = string()

Ret = {ok, Key} | {error, Reason}

Key = term()

Reason = term()

Adds a access definition to the agent config. Equivalent to one vacmAccess-line in the vacm.conf file.

delete_access(Key) -> Ret

Types:

Key = term()

Ret = ok | {error, Reason}

Reason = term()

Delete a access definition from the agent config.

add_view_tree_fam(ViewIndex, SubTree, Status, Mask) -> Ret

Types:

ViewIndex = integer()

SubTree = oid()

Status = included | excluded

Mask = null | [integer()], where all values are either 0 or 1

Ret = {ok, Key} | {error, Reason}

Key = term()

Reason = term()

snmp_view_based_acm_mib

168 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

Adds a view tree family definition to the agent config. Equivalent to one vacmViewTreeFamily-line in the
vacm.conf file.

delete_view_tree_fam(Key) -> Ret

Types:

Key = term()

Ret = ok | {error, Reason}

Reason = term()

Delete a view tree family definition from the agent config.

snmpc

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 169

snmpc
Erlang module

The module snmpc contains interface functions to the SNMP toolkit MIB compiler.

Exports

compile(File)

compile(File, Options) -> {ok, BinFileName} | {error, Reason}

Types:

File = string()

Options = [opt()]

opt() = db() | relaxed_row_name_assign_check() | deprecated() |
description() | reference() | group_check() | i() | il() | imports() |
module() | module_identity() | module_compliance() | agent_capabilities()
| outdir() | no_defs() | verbosity() | warnings() | warnings_as_errors()

db() = {db, volatile|persistent|mnesia}

deprecated() = {deprecated, bool()}

relaxed_row_name_assign_check() = relaxed_row_name_assign_check

description() = description

reference() = reference

group_check() = {group_check, bool()}

i() = {i, [dir()]}

il() = {il, [dir()]}

imports() = imports

module() = {module, atom()}

module_identity() = module_identity

module_compliance() = module_compliance

agent_capabilities() = agent_capabilities

no_defs() = no_defs

outdir() = {outdir, dir()}

verbosity() = {verbosity, silence|warning|info|log|debug|trace}

warnings() = {warnings, bool()}

warnings_as_errors() = warnings_as_errors

dir() = string()

BinFileName = string()

Compiles the specified MIB file <File>.mib. The compiled file BinFileName is called <File>.bin.

• The option db specifies which database should be used for the default instrumentation.

Default is volatile.

• The option deprecated specifies if a deprecated definition should be kept or not. If the option is false the MIB
compiler will ignore all deprecated definitions.

Default is true.

snmpc

170 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

• The option relaxed_row_name_assign_check, if present, specifies that the row name assign check shall
not be done strictly according to the SMI (which allows only the value 1). With this option, all values greater than
zero is allowed (>= 1). This means that the error will be converted to a warning.

By default it is not included, but if this option is present it will be.

• The option description specifies if the text of the DESCRIPTION field will be included or not.

By default it is not included, but if this option is present it will be.

• The option reference specifies if the text of the REFERENCE field, when found in a table definition, will
be included or not.

By default it is not included, but if this option is present it will be. The reference text will be placed in the allocList
field of the mib-entry record (#me{}) for the table.

• The option group_check specifies whether the mib compiler should check the OBJECT-GROUP macro and
the NOTIFICATION-GROUP macro for correctness or not.

Default is true.

• The option i specifies the path to search for imported (compiled) MIB files. The directories should be strings
with a trailing directory delimiter.

Default is ["./"].

• The option il (include_lib) also specifies a list of directories to search for imported MIBs. It assumes that the
first element in the directory name corresponds to an OTP application. The compiler will find the current installed
version. For example, the value ["snmp/mibs/"] will be replaced by ["snmp-3.1.1/mibs/"] (or what the current
version may be in the system). The current directory and the <snmp-home>/priv/mibs/ are always listed
last in the include path.

• The option imports, if present, specifies that the IMPORT statement of the MIB shall be included in the
compiled mib.

• The option module, if present, specifies the name of a module which implements all instrumentation functions
for the MIB.

The name of all instrumentation functions must be the same as the corresponding managed object it implements.

• The option module_identity, if present, specifies that the info part of the MODULE-IDENTITY statement
of the MIB shall be included in the compiled mib.

• The option module_compliance, if present, specifies that the MODULE-COMPLIANCE statement of the
MIB shall be included (with a mib-entry record) in the compiled mib. The mib-entry record of the module-
compliance will contain reference and module part(s) this info in the assocList field).

• The option agent_capabilities, if present, specifies that the AGENT-CAPABILITIES statement of the
MIB shall be included (with a mib-entry record) in the compiled mib. The mib-entry record of the agent-capabilitie
will contain reference and modules part(s) this info in the assocList field).

• The option no_defs, if present, specifies that if a managed object does not have an instrumentation function,
the default instrumentation function should NOT be used, instead this is reported as an error, and the compilation
aborts.

• The option verbosity specifies the verbosity of the SNMP mib compiler. I.e. if warning, info, log, debug and
trace messages shall be shown.

Default is silence.

Note that if the option warnings is true and the option verbosity is silence, warning messages will
still be shown.

• The option warnings specifies whether warning messages should be shown.

Default is true.

• The option warnings_as_errors, if present, specifies whether warnings should be treated as errors.

snmpc

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 171

The MIB compiler understands both SMIv1 and SMIv2 MIBs. It uses the MODULE-IDENTITY statement to determine
if the MIB is version 1 or 2.

The MIB compiler can be invoked from the OS command line by using the command erlc. erlc recognizes the
extension .mib, and invokes the SNMP MIB compiler for files with that extension. The options db, group_check,
deprecated, description, verbosity, imports and module_identity have to be specified to erlc
using the syntax +term. See erlc(1) for details.

is_consistent(Mibs) -> ok | {error, Reason}

Types:

Mibs = [MibName]

MibName = string()

Checks for multiple usage of object identifiers and traps between MIBs.

mib_to_hrl(MibName) -> ok | {error, Reason}

Types:

MibName = string()

Generates a .hrl file with definitions of Erlang constants for the objects in the MIB. The .hrl file is called
<MibName>.hrl. The MIB must be compiled, and present in the current directory.

The mib_to_hrl generator can be invoked from the OS command line by using the command erlc. erlc
recognizes the extension .bin, and invokes this function for files with that extension.

See Also
erlc(1)

snmpc(command)

172 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpc(command)
Command

The snmpc program provides a way to run the SNMP MIB compiler of the Erlang system.

Exports

snmpc [options] file.mib | file.bin

snmpc compile a SNMP MIB file, see compile/1,2 for more info.

It can also be used to generate a header file (.hrl) with definitions of Erlang constants for the objects in the MIB, see
mib_to_hrl/1.

Compiler options
The following options are supported (note that most of these relate to the compilation of the MIB file):

--help

Prints help info.

--version

Prints application and mib format version.

--verbosity verbosity

Print debug info.

verbosity = trace | debug | log | info | silence

Defaults to silence.

--warnings | --W

Print warning messages.

--wae | --Werror

Warnings as errors. Indicates that warnings shall be treated as errors.

--o directory

The directory where the compiler should place the output files. If not specified, output files will be placed in the
current working directory.

--i Directory

Specifies the path to search for imported (compiled) MIB files. By default, the current working directory is always
included.

This option can be present several times, each time specifying one path.

--il Directory

This option (include_lib), specifies a list of directories to search for imported MIBs. It assumes that the first
element in the directory name corresponds to an OTP application. The compiler will find the current installed
version. For example, the value ["snmp/mibs/"] will be replaced by ["snmp-3.1.1/mibs/"] (or what the current
version may be in the system). The current directory and the "snmp-home"/priv/mibs/ are always listed last in
the include path.

snmpc(command)

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 173

--sgc

This option (skip group check), if present, disables the group check of the mib compiler. That is, should the
OBJECT-GROUP and the NOTIFICATION-GROUP macro(s) be checked for correctness or not.

--dep

Keep deprecated definition(s). If not specified the compiler will ignore deprecated definitions.

--desc

The DESCRIPTION field will be included.

--ref

The REFERENCE field will be included.

--imp

The IMPORTS field will be included.

--mi

The MODULE-IDENTITY field will be included.

--mc

The MODULE-COMPLIANCE field will be included.

--ac

The AGENT-CAPABILITIES field will be included.

--mod module

The module which implements all the instrumentation functions.

The name of all instrumentation functions must be the same as the corresponding managed object it implements.

--nd

The default instrumentation functions will not be used if a managed object have no instrumentation function.
Instead this will be reported as an error, and the compilation aborts.

--rrnac

This option, if present, specifies that the row name assign check shall not be done strictly according to the SMI
(which allows only the value 1).

With this option, all values greater than zero is allowed (>= 1). This means that the error will be converted to
a warning.

By default it is not included, but if this option is present it will be.

SEE ALSO
erlc(1), compile(3), snmpc(3)

snmpm

174 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpm
Erlang module

The module snmpm contains interface functions to the SNMP manager.

Common Data Types
The following data types are used in the functions below:

oid() = [byte()] - The oid() type is used to represent an ASN.1 OBJECT IDENTIFIER
snmp_reply() = {error_status(), error_index(), varbinds()}
error_status() = noError | atom()
error_index() = integer()
varbinds() = [varbind()]
atl_type() = read | write | read_write
target_name() = string() - Is a unique *non-empty* string
vars_and_vals() = [var_and_val()]
var_and_val() = {oid(), value_type(), value()} | {oid(), value()}
value_type() = o ('OBJECT IDENTIFIER') |
 i ('INTEGER') |
 u ('Unsigned32') |
 g ('Unsigned32') |
 s ('OCTET SRING') |
 b ('BITS') |
 ip ('IpAddress') |
 op ('Opaque') |
 c32 ('Counter32') |
 c64 ('Counter64') |
 tt ('TimeTicks')
value() = term()
community() = string()
sec_model() = any | v1 | v2c | usm
sec_name() = string()
sec_level() = noAuthNoPriv | authNoPriv | authPriv

Exports

monitor() -> Ref

Types:

Ref = reference()

Monitor the SNMP manager. In case of a crash, the calling (monitoring) process will get a 'DOWN' message (see the
erlang module for more info).

demonitor(Ref) -> void()

Types:

Ref = reference()

Turn off monitoring of the SNMP manager.

notify_started(Timeout) -> Pid

Types:

snmpm

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 175

Timeout = integer()

Pid = pid()

Request a notification (message) when the SNMP manager has started.

The Timeout is the time the request is valid. The value has to be greater then zero.

The Pid is the process handling the supervision of the SNMP manager start. When the manager has started a
completion message will be sent to the client from this process: {snmpm_started, Pid}. If the SNMP manager
was not started in time, a timeout message will be sent to the client: {snmpm_start_timeout, Pid}.

A client application that is dependent on the SNMP manager will use this function in order to be notified of when the
manager has started. There are two situations when this is useful:

• During the start of a system, when a client application could start prior to the SNMP manager but is dependent
upon it, and therefor has to wait for it to start.

• When the SNMP manager has crashed, the dependent client application has to wait for the SNMP manager to be
restarted before it can reconnect.

The function returns the pid() of a handler process, that does the supervision on behalf of the client application. Note
that the client application is linked to this handler.

This function is used in conjunction with the monitor function.

cancel_notify_started(Pid) -> void()

Types:

Pid = pid()

Cancel a previous request to be notified of SNMP manager start.

register_user(Id, Module, Data) -> ok | {error, Reason}

register_user(Id, Module, Data, DefaultAgentConfig) -> ok | {error, Reason}

Types:

Id = term()

Module = snmpm_user()

Data = term()

DefaultAgentConfig = [default_agent_config()]

default_agent_config() = {Item, Val}

Item = community | timeout | max_message_size | version | sec_model |
sec_name | sec_level

Val = term()

Reason = term()

snmpm_user() = Module implementing the snmpm_user behaviour

Register the manager entity (=user) responsible for specific agent(s).

Module is the callback module (snmpm_user behaviour) which will be called whenever something happens (detected
agent, incoming reply or incoming trap/notification). Note that this could have already been done as a consequence
of the node config. (see users.conf).

The argument DefaultAgentConfig is used as default values when this user register agents.

The type of Val depends on Item:

snmpm

176 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

community = string()
timeout = integer() | snmp_timer()
max_message_size = integer()
version = v1 | v2 | v3
sec_model = any | v1 | v2c | usm
sec_name = string()
sec_level = noAuthNoPriv | authNoPriv | authPriv

register_user_monitor(Id, Module, Data) -> ok | {error, Reason}

register_user_monitor(Id, Module, Data, DefaultAgentConfig) -> ok | {error,
Reason}

Types:

Id = term()

Module = snmpm_user()

DefaultAgentConfig = [default_agent_config()]

default_agent_config() = {Item, Val}

Item = community | timeout | max_message_size | version | sec_model |
sec_name | sec_level

Val = term()

Data = term()

Reason = term()

snmpm_user() = Module implementing the snmpm_user behaviour

Register the monitored manager entity (=user) responsible for specific agent(s).

The process performing the registration will be monitored. Which means that if that process should die, all agents
registered by that user process will be unregistered. All outstanding requests will be canceled.

Module is the callback module (snmpm_user behaviour) which will be called whenever something happens (detected
agent, incoming reply or incoming trap/notification). Note that this could have already been done as a consequence
of the node config. (see users.conf).

The argument DefaultAgentConfig is used as default values when this user register agents.

The type of Val depends on Item:

community = string()
timeout = integer() | snmp_timer()
max_message_size = integer()
version = v1 | v2 | v3
sec_model = any | v1 | v2c | usm
sec_name = string()
sec_level = noAuthNoPriv | authNoPriv | authPriv

unregister_user(Id) -> ok | {error, Reason}

Types:

Id = term()

Unregister the user.

snmpm

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 177

which_users() -> Users

Types:

Users = [UserId]

UserId = term()

Get a list of the identities of all registered users.

register_agent(UserId, TargetName, Config) -> ok | {error, Reason}

Types:

UserId = term()

Addr = ip_address()

TargetName = target_name()

Config = [agent_config()]

agent_config() = {Item, Val}

Item = engine_id | address | port | community | timeout | max_message_size
| version | sec_model | sec_name | sec_level | tdomain

Val = term()

Reason = term()

Explicitly instruct the manager to handle this agent, with UserId as the responsible user.

Called to instruct the manager that this agent shall be handled. This function is used when the user knows in advance
which agents the manager shall handle. Note that there is an alternate way to do the same thing: Add the agent to the
manager config files (see agents.conf).

TargetName is a non-empty string, uniquely identifying the agent.

The type of Val depends on Item:

[mandatory] engine_id = string()
[mandatory] address = ip_address()
[optional] port = integer()
[optional] tdomain = transportDomainUdpIpv4 | transportDomainUdpIpv6
[optional] community = string()
[optional] timeout = integer() | snmp_timer()
[optional] max_message_size = integer()
[optional] version = v1 | v2 | v3
[optional] sec_model = any | v1 | v2c | usm
[optional] sec_name = string()
[optional] sec_level = noAuthNoPriv | authNoPriv | authPriv

Note that if no tdomain is given, the default value, transportDomainUdpIpv4, is used.

Note that if no port is given, the default value is used.

unregister_agent(UserId, TargetName) -> ok | {error, Reason}

Types:

UserId = term()

TargetName = target_name()

Unregister the agent.

snmpm

178 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

agent_info(TargetName, Item) -> {ok, Val} | {error, Reason}

Types:

TargetName = target_name()

Item = atom()

Reason = term()

Retrieve agent config.

update_agent_info(UserId, TargetName, Info) -> ok | {error, Reason}

update_agent_info(UserId, TargetName, Item, Val) -> ok | {error, Reason}

Types:

UserId = term()

TargetName = target_name()

Info = [{item(), item_value()}]

Item = item()

item() = atom()

Val = item_value()

item_value() = term()

Reason = term()

Update agent config. The function update_agent_info/3 should be used when several values needs to be
updated atomically.

See function register_agent) for more info about what kind of items are allowed.

which_agents() -> Agents

which_agents(UserId) -> Agents

Types:

UserId = term()

Agents = [TargetName]

TargetName = target_name()

Get a list of all registered agents or all agents registered by a specific user.

register_usm_user(EngineID, UserName, Conf) -> ok | {error, Reason}

Types:

EngineID = string()

UserName = string()

Conf = [usm_config()]

usm_config() = {Item, Val}

Item = sec_name | auth | auth_key | priv | priv_key

Val = term()

Reason = term()

Explicitly instruct the manager to handle this USM user. Note that there is an alternate way to do the same thing: Add
the usm user to the manager config files (see usm.conf).

The type of Val depends on Item:

snmpm

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 179

sec_name = string()
auth = usmNoAuthProtocol | usmHMACMD5AuthProtocol | usmHMACSHAAuthProtocoltimeout
auth_key = [integer()] (length 16 if auth = usmHMACMD5AuthProtocol,
 length 20 if auth = usmHMACSHAAuthProtocol)
priv = usmNoPrivProtocol | usmDESPrivProtocol | usmAesCfb128Protocol
priv_key = [integer()] (length is 16 if priv = usmDESPrivProtocol | usmAesCfb128Protocol).

unregister_usm_user(EngineID, UserName) -> ok | {error, Reason}

Types:

EngineID = string()

UserName = string()

Reason = term()

Unregister this USM user.

usm_user_info(EngineID, UserName, Item) -> {ok, Val} | {error, Reason}

Types:

EngineID = string()

UsmName = string()

Item = sec_name | auth | auth_key | priv | priv_key

Reason = term()

Retrieve usm user config.

update_usm_user_info(EngineID, UserName, Item, Val) -> ok | {error, Reason}

Types:

EngineID = string()

UsmName = string()

Item = sec_name | auth | auth_key | priv | priv_key

Val = term()

Reason = term()

Update usm user config.

which_usm_users() -> UsmUsers

Types:

UsmUsers = [{EngineID,UserName}]

EngineID = string()

UsmName = string()

Get a list of all registered usm users.

which_usm_users(EngineID) -> UsmUsers

Types:

UsmUsers = [UserName]

UserName = string()

Get a list of all registered usm users with engine-id EngineID.

snmpm

180 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

sync_get2(UserId, TargetName, Oids) -> {ok, SnmpReply, Remaining} | {error,
Reason}

sync_get2(UserId, TargetName, Oids, SendOpts) -> {ok, SnmpReply, Remaining} |
{error, Reason}

Types:

UserId = term()

TargetName = target_name()

Oids = [oid()]

SendOpts = send_opts()

send_opts() = [send_opt()]

send_opt() = {context, string()} | {timeout, pos_integer()} | {extra,
term()} | {community, community()} | {sec_model, sec_model()} | {sec_name,
string()} | {sec_level, sec_level()} | {max_message_size, pos_integer()}

SnmpReply = snmp_reply()

Remaining = integer()

Reason = {send_failed, ReqId, ActualReason} | {invalid_sec_info, SecInfo,
SnmpInfo} | term()

ReqId = term()

ActualReason = term()

SecInfo = [sec_info()]

sec_info() = {sec_tag(), ExpectedValue, ReceivedValue}

sec_tag() = atom()

ExpectedValue = ReceivedValue = term()

SnmpInfo = term()

Synchronous get-request.

Remaining is the remaining time of the given (or default) timeout time.

When Reason is {send_failed, ...} it means that the net_if process failed to send the message. This could happen because
of any number of reasons, i.e. encoding error. ActualReason is the actual reason in this case.

The send option extra specifies an opaque data structure passed on to the net-if process. The net-if process included
in this application makes, with one exception, no use of this info, so the only use for it in such a option (when using
the built in net-if) would be tracing. The one usage exception is: Any tuple with snmpm_extra_info_tag as its
first element is reserved for internal use.

Some of the send options (community, sec_model, sec_name, sec_level and max_message_size) are
override options. That is, for this request, they override any configuration done when the agent was registered.

For SnmpInfo, see the user callback function handle_report.

snmpm

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 181

sync_get(UserId, TargetName, Oids) -> {ok, SnmpReply, Remaining} | {error,
Reason}

sync_get(UserId, TargetName, ContextName, Oids) -> {ok, SnmpReply, Remaining}
| {error, Reason}

sync_get(UserId, TargetName, Oids, Timeout) -> {ok, SnmpReply, Remaining} |
{error, Reason}

sync_get(UserId, TargetName, ContextName, Oids, Timeout) -> {ok, SnmpReply,
Remaining} | {error, Reason}

sync_get(UserId, TargetName, ContextName, Oids, Timeout, ExtraInfo) -> {ok,
SnmpReply, Remaining} | {error, Reason}

Types:

UserId = term()

TargetName = target_name()

ContextName = string()

Oids = [oid()]

Timeout = integer()

ExtraInfo = term()

SnmpReply = snmp_reply()

Remaining = integer()

Reason = {send_failed, ReqId, R} | {invalid_sec_info, SecInfo, SnmpInfo} |
term()

R = term()

SecInfo = [sec_info()]

sec_info() = {sec_tag(), ExpectedValue, ReceivedValue}

sec_tag() = atom()

ExpectedValue = ReceivedValue = term()

SnmpInfo = term()

Synchronous get-request.

Remaining is the remaining time of the given or default timeout time.

When Reason is {send_failed, ...} it means that the net_if process failed to send the message. This could happen because
of any number of reasons, i.e. encoding error. R is the actual reason in this case.

ExtraInfo is an opaque data structure passed on to the net-if process. The net-if process included in this application
makes, with one exception, no use of this info, so the only use for it in such a configuration (when using the built in
net-if) would be tracing. The one usage exception is: Any tuple with snmpm_extra_info_tag as its first element
is reserved for internal use.

For SnmpInfo, see the user callback function handle_report.

async_get2(UserId, TargetName, Oids) -> {ok, ReqId} | {error, Reason}

async_get2(UserId, TargetName, Oids, SendOpts) -> {ok, ReqId} | {error,
Reason}

Types:

UserId = term()

TargetName = target_name()

Oids = [oid()]

snmpm

182 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

SendOpts = send_opts()

send_opts() = [send_opt()]

send_opt() = {context, string()} | {timeout, pos_integer()} | {extra,
term()} | {community, community()} | {sec_model, sec_model()} | {sec_name,
string()} | {sec_level, sec_level()} | {max_message_size, pos_integer()}

ReqId = term()

Reason = term()

Asynchronous get-request.

The reply, if it arrives, will be delivered to the user through a call to the snmpm_user callback function handle_pdu.

The send option timeout specifies for how long the request is valid (after which the manager is free to delete it).

The send option extra specifies an opaque data structure passed on to the net-if process. The net-if process included
in this application makes, with one exception, no use of this info, so the only use for it in such a option (when using
the built in net-if) would be tracing. The one usage exception is: Any tuple with snmpm_extra_info_tag as its
first element is reserved for internal use.

Some of the send options (community, sec_model, sec_name, sec_level and max_message_size) are
override options. That is, for this request, they override any configuration done when the agent was registered.

async_get(UserId, TargetName, Oids) -> {ok, ReqId} | {error, Reason}

async_get(UserId, TargetName, ContextName, Oids) -> {ok, ReqId} | {error,
Reason}

async_get(UserId, TargetName, Oids, Expire) -> {ok, ReqId} | {error, Reason}

async_get(UserId, TargetName, ContextName, Oids, Expire) -> {ok, ReqId} |
{error, Reason}

async_get(UserId, TargetName, ContextName, Oids, Expire, ExtraInfo) -> {ok,
ReqId} | {error, Reason}

Types:

UserId = term()

TargetName = target_name()

ContextName = string()

Oids = [oid()]

Expire = integer()

ExtraInfo = term()

ReqId = term()

Reason = term()

Asynchronous get-request.

The reply, if it arrives, will be delivered to the user through a call to the snmpm_user callback function handle_pdu.

The Expire time indicates for how long the request is valid (after which the manager is free to delete it).

ExtraInfo is an opaque data structure passed on to the net-if process. The net-if process included in this application
makes, with one exception, no use of this info, so the only use for it in such a configuration (when using the built in
net-if) would be tracing. The one usage exception is: Any tuple with snmpm_extra_info_tag as its first element
is reserved for internal use.

snmpm

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 183

sync_get_next2(UserId, TargetName, Oids) -> {ok, SnmpReply, Remaining} |
{error, Reason}

sync_get_next2(UserId, TargetName, Oids, SendOpts) -> {ok, SnmpReply,
Remaining} | {error, Reason}

Types:

UserId = term()

TargetName = target_name()

Oids = [oid()]

SendOpts = send_opts()

send_opts() = [send_opt()]

send_opt() = {context, string()} | {timeout, pos_integer()} | {extra,
term()} | {community, community()} | {sec_model, sec_model()} | {sec_name,
string()} | {sec_level, sec_level()} | {max_message_size, pos_integer()}

SnmpReply = snmp_reply()

Remaining = integer()

Reason = {send_failed, ReqId, ActualReason} | {invalid_sec_info, SecInfo,
SnmpInfo} | term()

ReqId = term()

ActualReason = term()

SecInfo = [sec_info()]

sec_info() = {sec_tag(), ExpectedValue, ReceivedValue}

sec_tag() = atom()

ExpectedValue = ReceivedValue = term()

SnmpInfo = term()

Synchronous get-next-request.

Remaining is the remaining time of the given (or default) timeout time.

When Reason is {send_failed, ...} it means that the net_if process failed to send the message. This could happen because
of any number of reasons, i.e. encoding error. ActualReason is the actual reason in this case.

The send option extra specifies an opaque data structure passed on to the net-if process. The net-if process included
in this application makes, with one exception, no use of this info, so the only use for it in such a option (when using
the built in net-if) would be tracing. The one usage exception is: Any tuple with snmpm_extra_info_tag as its
first element is reserved for internal use.

Some of the send options (community, sec_model, sec_name, sec_level and max_message_size) are
override options. That is, for this request, they override any configuration done when the agent was registered.

For SnmpInfo, see the user callback function handle_report.

snmpm

184 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

sync_get_next(UserId, TargetName, Oids) -> {ok, SnmpReply, Remaining} |
{error, Reason}

sync_get_next(UserId, TargetName, ContextName, Oids) -> {ok, SnmpReply,
Remaining} | {error, Reason}

sync_get_next(UserId, TargetName, Oids, Timeout) -> {ok, SnmpReply,
Remaining} | {error, Reason}

sync_get_next(UserId, TargetName, ContextName, Oids, Timeout) -> {ok,
SnmpReply, Remaining} | {error, Reason}

sync_get_next(UserId, TargetName, ContextName, Oids, Timeout, ExtraInfo) ->
{ok, SnmpReply, Remaining} | {error, Reason}

Types:

UserId = term()

TargetName = target_name()

ContextName = string()

Oids = [oid()]

Timeout = integer()

ExtraInfo = term()

SnmpReply = snmp_reply()

Remaining = integer()

Reason = {send_failed, ReqId, R} | {invalid_sec_info, SecInfo, SnmpInfo} |
term()

R = term()

Synchronous get-next-request.

Remaining time of the given or default timeout time.

When Reason is {send_failed, ...} it means that the net_if process failed to send the message. This could happen because
of any number of reasons, i.e. encoding error. R is the actual reason in this case.

ExtraInfo is an opaque data structure passed on to the net-if process. The net-if process included in this application
makes, with one exception, no use of this info, so the only use for it in such a configuration (when using the built in
net-if) would be tracing. The one usage exception is: Any tuple with snmpm_extra_info_tag as its first element
is reserved for internal use.

async_get_next2(UserId, TargetName, Oids) -> {ok, ReqId} | {error, Reason}

async_get_next2(UserId, TargetName, Oids, SendOpts) -> {ok, ReqId} | {error,
Reason}

Types:

UserId = term()

TargetName = target_name()

Oids = [oid()]

send_opt() = {context, string()} | {timeout, pos_integer()} | {extra,
term()} | {community, community()} | {sec_model, sec_model()} | {sec_name,
string()} | {sec_level, sec_level()} | {max_message_size, pos_integer()}

ReqId = integer()

Reason = term()

Asynchronous get-next-request.

snmpm

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 185

The reply will be delivered to the user through a call to the snmpm_user callback function handle_pdu.

The send option timeout specifies for how long the request is valid (after which the manager is free to delete it).

The send option extra specifies an opaque data structure passed on to the net-if process. The net-if process included
in this application makes, with one exception, no use of this info, so the only use for it in such a option (when using
the built in net-if) would be tracing. The one usage exception is: Any tuple with snmpm_extra_info_tag as its
first element is reserved for internal use.

Some of the send options (community, sec_model, sec_name, sec_level and max_message_size) are
override options. That is, for this request, they override any configuration done when the agent was registered.

async_get_next(UserId, TargetName, Oids) -> {ok, ReqId} | {error, Reason}

async_get_next(UserId, TargetName, ContextName, Oids) -> {ok, ReqId} |
{error, Reason}

async_get_next(UserId, TargetName, Oids, Expire) -> {ok, ReqId} | {error,
Reason}

async_get_next(UserId, TargetName, ContextName, Oids, Expire) -> {ok, ReqId}
| {error, Reason}

async_get_next(UserId, TargetName, ContextName, Oids, Expire, ExtraInfo) ->
{ok, ReqId} | {error, Reason}

Types:

UserId = term()

TargetName = target_name()

ContextName = string()

Oids = [oid()]

Expire = integer()

ExtraInfo = term()

ReqId = integer()

Reason = term()

Asynchronous get-next-request.

The reply will be delivered to the user through a call to the snmpm_user callback function handle_pdu.

The Expire time indicates for how long the request is valid (after which the manager is free to delete it).

ExtraInfo is an opaque data structure passed on to the net-if process. The net-if process included in this application
makes, with one exception, no use of this info, so the only use for it in such a configuration (when using the built in
net-if) would be tracing. The one usage exception is: Any tuple with snmpm_extra_info_tag as its first element
is reserved for internal use.

sync_set2(UserId, TargetName, VarsAndVals) -> {ok, SnmpReply, Remaining} |
{error, Reason}

sync_set2(UserId, TargetName, VarsAndVals, SendOpts) -> {ok, SnmpReply,
Remaining} | {error, Reason}

Types:

UserId = term()

TargetName = target_name()

VarsAndVals = vars_and_vals()

SendOpts = send_opts()

snmpm

186 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

send_opts() = [send_opt()]

send_opt() = {context, string()} | {timeout, pos_integer()} | {extra,
term()} | {community, community()} | {sec_model, sec_model()} | {sec_name,
string()} | {sec_level, sec_level()} | {max_message_size, pos_integer()}

SnmpReply = snmp_reply()

Remaining = integer()

Reason = {send_failed, ReqId, ActualReason} | {invalid_sec_info, SecInfo,
SnmpInfo} | term()

ReqId = term()

ActualReason = term()

SecInfo = [sec_info()]

sec_info() = {sec_tag(), ExpectedValue, ReceivedValue}

sec_tag() = atom()

ExpectedValue = ReceivedValue = term()

SnmpInfo = term()

Synchronous set-request.

Remaining is the remaining time of the given (or default) timeout time.

When Reason is {send_failed, ...} it means that the net_if process failed to send the message. This could happen because
of any number of reasons, i.e. encoding error. ActualReason is the actual reason in this case.

When var_and_val() is {oid(), value()}, the manager makes an educated guess based on the loaded mibs.

The send option extra specifies an opaque data structure passed on to the net-if process. The net-if process included
in this application makes, with one exception, no use of this info, so the only use for it in such a option (when using
the built in net-if) would be tracing. The one usage exception is: Any tuple with snmpm_extra_info_tag as its
first element is reserved for internal use.

Some of the send options (community, sec_model, sec_name, sec_level and max_message_size) are
override options. That is, for this request, they override any configuration done when the agent was registered.

For SnmpInfo, see the user callback function handle_report.

sync_set(UserId, TargetName, VarsAndVals) -> {ok, SnmpReply, Remaining} |
{error, Reason}

sync_set(UserId, TargetName, ContextName, VarsAndVals) -> {ok, SnmpReply,
Remaining} | {error, Reason}

sync_set(UserId, TargetName, VarsAndVals, Timeout) -> {ok, SnmpReply,
Remaining} | {error, Reason}

sync_set(UserId, TargetName, ContextName, VarsAndVals, Timeout) -> {ok,
SnmpReply, Remaining} | {error, Reason}

sync_set(UserId, TargetName, ContextName, VarsAndVals, Timeout, ExtraInfo) ->
{ok, SnmpReply, Remaining} | {error, Reason}

Types:

UserId = term()

TargetName = target_name()

ContextName = string()

VarsAndVals = vars_and_vals()

Timeout = integer()

snmpm

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 187

ExtraInfo = term()

SnmpReply = snmp_reply()

Remaining = integer()

Reason = {send_failed, ReqId, ActualReason} | {invalid_sec_info, SecInfo,
SnmpInfo} | term()

ActualReason = term()

Synchronous set-request.

Remaining time of the given or default timeout time.

When Reason is {send_failed, ...} it means that the net_if process failed to send the message. This could happen because
of any number of reasons, i.e. encoding error. R is the actual reason in this case.

When var_and_val() is {oid(), value()}, the manager makes an educated guess based on the loaded mibs.

ExtraInfo is an opaque data structure passed on to the net-if process. The net-if process included in this application
makes, with one exception, no use of this info, so the only use for it in such a configuration (when using the built in
net-if) would be tracing. The one usage exception is: Any tuple with snmpm_extra_info_tag as its first element
is reserved for internal use.

async_set2(UserId, TargetName, VarsAndVals) -> {ok, ReqId} | {error, Reason}

async_set2(UserId, TargetName, VarsAndVals, SendOpts) -> {ok, ReqId} |
{error, Reason}

Types:

UserId = term()

TargetName = target_name()

VarsAndVals = vars_and_vals()

SendOpts = send_opts()

send_opts() = [send_opt()]

send_opt() = {context, string()} | {timeout, pos_integer()} | {extra,
term()} | {community, community()} | {sec_model, sec_model()} | {sec_name,
string()} | {sec_level, sec_level()} | {max_message_size, pos_integer()}

ReqId = term()

Reason = term()

Asynchronous set-request.

The reply will be delivered to the user through a call to the snmpm_user callback function handle_pdu.

The send option timeout specifies for how long the request is valid (after which the manager is free to delete it).

When var_and_val() is {oid(), value()}, the manager makes an educated guess based on the loaded mibs.

The send option extra specifies an opaque data structure passed on to the net-if process. The net-if process included
in this application makes, with one exception, no use of this info, so the only use for it in such a option (when using
the built in net-if) would be tracing. The one usage exception is: Any tuple with snmpm_extra_info_tag as its
first element is reserved for internal use.

Some of the send options (community, sec_model, sec_name, sec_level and max_message_size) are
override options. That is, for this request, they override any configuration done when the agent was registered.

snmpm

188 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

async_set(UserId, TargetName, VarsAndVals) -> {ok, ReqId} | {error, Reason}

async_set(UserId, TargetName, ContextName, VarsAndVals) -> {ok, ReqId} |
{error, Reason}

async_set(UserId, TargetName, VarsAndVals, Expire) -> {ok, ReqId} | {error,
Reason}

async_set(UserId, TargetName, ContextName, VarsAndVals, Expire) -> {ok,
ReqId} | {error, Reason}

async_set(UserId, TargetName, ContextName, VarsAndVals, Expire, ExtraInfo) ->
{ok, ReqId} | {error, Reason}

Types:

UserId = term()

TargetName = target_name()

VarsAndVals = vars_and_vals()

Expire = integer()

ExtraInfo = term()

ReqId = term()

Reason = term()

Asynchronous set-request.

The reply will be delivered to the user through a call to the snmpm_user callback function handle_pdu.

The Expire time indicates for how long the request is valid (after which the manager is free to delete it).

When var_and_val() is {oid(), value()}, the manager makes an educated guess based on the loaded mibs.

ExtraInfo is an opaque data structure passed on to the net-if process. The net-if process included in this application
makes, with one exception, no use of this info, so the only use for it in such a configuration (when using the built in
net-if) would be tracing. The one usage exception is: Any tuple with snmpm_extra_info_tag as its first element
is reserved for internal use.

sync_get_bulk2(UserId, TragetName, NonRep, MaxRep, Oids) -> {ok, SnmpReply,
Remaining} | {error, Reason}

sync_get_bulk2(UserId, TragetName, NonRep, MaxRep, Oids, SendOpts) -> {ok,
SnmpReply, Remaining} | {error, Reason}

Types:

UserId = term()

TargetName = target_name()

NonRep = integer()

MaxRep = integer()

Oids = [oid()]

SendOpts = send_opts()

send_opts() = [send_opt()]

send_opt() = {context, string()} | {timeout, pos_integer()} | {extra,
term()} | {community, community()} | {sec_model, sec_model()} | {sec_name,
string()} | {sec_level, sec_level()} | {max_message_size, pos_integer()}

SnmpReply = snmp_reply()

Remaining = integer()

snmpm

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 189

Reason = {send_failed, ReqId, ActualReason} | {invalid_sec_info, SecInfo,
SnmpInfo} | term()

ReqId = term()

ActualReason = term()

SecInfo = [sec_info()]

sec_info() = {sec_tag(), ExpectedValue, ReceivedValue}

sec_tag() = atom()

ExpectedValue = ReceivedValue = term()

SnmpInfo = term()

Synchronous get-bulk-request (See RFC1905).

Remaining is the remaining time of the given (or default) timeout time.

When Reason is {send_failed, ...} it means that the net_if process failed to send the message. This could happen because
of any number of reasons, i.e. encoding error. ActualReason is the actual reason in this case.

The send option extra specifies an opaque data structure passed on to the net-if process. The net-if process included
in this application makes, with one exception, no use of this info, so the only use for it in such a option (when using
the built in net-if) would be tracing. The one usage exception is: Any tuple with snmpm_extra_info_tag as its
first element is reserved for internal use.

Some of the send options (community, sec_model, sec_name, sec_level and max_message_size) are
override options. That is, for this request, they override any configuration done when the agent was registered.

For SnmpInfo, see the user callback function handle_report.

sync_get_bulk(UserId, TragetName, NonRep, MaxRep, Oids) -> {ok, SnmpReply,
Remaining} | {error, Reason}

sync_get_bulk(UserId, TragetName, NonRep, MaxRep, ContextName, Oids) -> {ok,
SnmpReply, Remaining} | {error, Reason}

sync_get_bulk(UserId, TragetName, NonRep, MaxRep, Oids, Timeout) -> {ok,
SnmpReply, Remaining} | {error, Reason}

sync_get_bulk(UserId, TragetName, NonRep, MaxRep, ContextName, Oids, Timeout)
-> {ok, SnmpReply, Remaining} | {error, Reason}

sync_get_bulk(UserId, TragetName, NonRep, MaxRep, ContextName, Oids, Timeout,
ExtraInfo) -> {ok, SnmpReply, Remaining} | {error, Reason}

Types:

UserId = term()

TargetName = target_name()

NonRep = integer()

MaxRep = integer()

ContextName = string()

Oids = [oid()]

Timeout = integer()

ExtraInfo = term()

SnmpReply = snmp_reply()

Remaining = integer()

Reason = {send_failed, ReqId, R} | {invalid_sec_info, SecInfo, SnmpInfo} |
term()

snmpm

190 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

Synchronous get-bulk-request (See RFC1905).

Remaining time of the given or default timeout time.

When Reason is {send_failed, ...} it means that the net_if process failed to send the message. This could happen because
of any number of reasons, i.e. encoding error. R is the actual reason in this case.

ExtraInfo is an opaque data structure passed on to the net-if process. The net-if process included in this application
makes, with one exception, no use of this info, so the only use for it in such a configuration (when using the built in
net-if) would be tracing. The one usage exception is: Any tuple with snmpm_extra_info_tag as its first element
is reserved for internal use.

async_get_bulk2(UserId, TargetName, NonRep, MaxRep, Oids) -> {ok, ReqId} |
{error, Reason}

async_get_bulk2(UserId, TargetName, NonRep, MaxRep, Oids, SendOpts) -> {ok,
ReqId} | {error, Reason}

Types:

UserId = term()

TargetName = target_name()

NonRep = integer()

MaxRep = integer()

Oids = [oid()]

SendOpts = send_opts()

send_opts() = [send_opt()]

send_opt() = {context, string()} | {timeout, pos_integer()} | {extra,
term()} | {community, community()} | {sec_model, sec_model()} | {sec_name,
string()} | {sec_level, sec_level()} | {max_message_size, pos_integer()}

ReqId = integer()

Reason = term()

Asynchronous get-bulk-request (See RFC1905).

The reply will be delivered to the user through a call to the snmpm_user callback function handle_pdu.

The send option timeout specifies for how long the request is valid (after which the manager is free to delete it).

The send option extra specifies an opaque data structure passed on to the net-if process. The net-if process included
in this application makes no use of this info, so the only use for it in such a configuration (when using the built in
net-if) would be tracing.

Some of the send options (community, sec_model, sec_name, sec_level and max_message_size) are
override options. That is, for this request, they override any configuration done when the agent was registered.

snmpm

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 191

async_get_bulk(UserId, TargetName, NonRep, MaxRep, Oids) -> {ok, ReqId} |
{error, Reason}

async_get_bulk(UserId, TargetName, NonRep, MaxRep, ContextName, Oids) -> {ok,
ReqId} | {error, Reason}

async_get_bulk(UserId, TargetName, NonRep, MaxRep, Oids, Expire) -> {ok,
ReqId} | {error, Reason}

async_get_bulk(UserId, TargetName, NonRep, MaxRep, ContextName, Oids, Expire)
-> {ok, ReqId} | {error, Reason}

async_get_bulk(UserId, TargetName, NonRep, MaxRep, ContextName, Oids, Expire,
ExtraInfo) -> {ok, ReqId} | {error, Reason}

Types:

UserId = term()

TargetName = target_name()

NonRep = integer()

MaxRep = integer()

ContextName = string()

Oids = [oid()]

Expire = integer()

ExtraInfo = term()

ReqId = integer()

Reason = term()

Asynchronous get-bulk-request (See RFC1905).

The reply will be delivered to the user through a call to the snmpm_user callback function handle_pdu.

The Expire time indicates for how long the request is valid (after which the manager is free to delete it).

ExtraInfo is an opaque data structure passed on to the net-if process. The net-if process included in this application
makes, with one exception, no use of this info, so the only use for it in such a configuration (when using the built in
net-if) would be tracing. The one usage exception is: Any tuple with snmpm_extra_info_tag as its first element
is reserved for internal use.

cancel_async_request(UserId, ReqId) -> ok | {error, Reason}

Types:

UserId = term()

ReqId = term()

Reason = term()

Cancel a previous asynchronous request.

snmpm

192 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

log_to_txt(LogDir, Mibs)

log_to_txt(LogDir, Mibs, OutFile) -> ok | {error, Reason}

log_to_txt(LogDir, Mibs, OutFile, LogName) -> ok | {error, Reason}

log_to_txt(LogDir, Mibs, OutFile, LogName, LogFile) -> ok | {error, Reason}

log_to_txt(LogDir, Mibs, OutFile, LogName, LogFile, Start) -> ok | {error,
Reason}

log_to_txt(LogDir, Mibs, OutFile, LogName, LogFile, Start, Stop) -> ok |
{error, Reason}

Types:

LogDir = string()

Mibs = [MibName]

MibName = string()

OutFile = string()

LogName = string()

LogFile = string()

Start = Stop = null | datetime() | {local_time,datetime()} |
{universal_time,datetime()}

Reason = disk_log_open_error() | file_open_error() | term()

disk_log_open_error() = {LogName, term()}

file_open_error() = {OutFile, term()}

Converts an Audit Trail Log to a readable text file. OutFile defaults to "./snmpm_log.txt". LogName defaults to
"snmpm_log". LogFile defaults to "snmpm.log". See snmp:log_to_txt for more info.

log_to_io(LogDir) -> ok | {error, Reason}

log_to_io(LogDir, Mibs) -> ok | {error, Reason}

log_to_io(LogDir, Mibs) -> ok | {error, Reason}

log_to_io(LogDir, Mibs, LogName) -> ok | {error, Reason}

log_to_io(LogDir, Mibs, LogName, LogFile) -> ok | {error, Reason}

log_to_io(LogDir, Mibs, LogName, LogFile, Start) -> ok | {error, Reason}

log_to_io(LogDir, Mibs, LogName, LogFile, Start, Stop) -> ok | {error,
Reason}

Types:

LogDir = string()

Mibs = [MibName]

MibName = string()

LogName = string()

LogFile = string()

Start = Stop = null | datetime() | {local_time,datetime()} |
{universal_time,datetime()}

Reason = disk_log_open_error() | file_open_error() | term()

disk_log_open_error() = {LogName, term()}

file_open_error() = {OutFile, term()}

Converts an Audit Trail Log to a readable format and prints it on stdio. LogName defaults to "snmpm_log". LogFile
defaults to "snmpm.log". See snmp:log_to_io for more info.

snmpm

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 193

change_log_size(NewSize) -> ok | {error, Reason}

Types:

NewSize = {MaxBytes, MaxFiles}

MaxBytes = integer()

MaxFiles = integer()

Reason = term()

Changes the log size of the Audit Trail Log. The application must be configured to use the audit trail log function.
Please refer to disk_log(3) in Kernel Reference Manual for a description of how to change the log size.

The change is permanent, as long as the log is not deleted. That means, the log size is remembered across reboots.

set_log_type(NewType) -> {ok, OldType} | {error, Reason}

Types:

NewType = OldType = atl_type()

Reason = term()

Changes the run-time Audit Trail log type.

Note that this has no effect on the application configuration as defined by configuration files, so a node restart will
revert the config to whatever is in those files.

This function is primarily useful in testing/debugging scenarios.

load_mib(Mib) -> ok | {error, Reason}

Types:

Mib = MibName

MibName = string()

Reason = term()

Load a Mib into the manager. The MibName is the name of the Mib, including the path to where the compiled mib
is found. For example,

 Dir = code:priv_dir(my_app) ++ "/mibs/",
 snmpm:load_mib(Dir ++ "MY-MIB").

unload_mib(Mib) -> ok | {error, Reason}

Types:

Mib = MibName

MibName = string()

Reason = term()

Unload a Mib from the manager. The MibName is the name of the Mib, including the path to where the compiled
mib is found. For example,

 Dir = code:priv_dir(my_app) ++ "/mibs/",
 snmpm:unload_mib(Dir ++ "MY-MIB").

snmpm

194 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

which_mibs() -> Mibs

Types:

Mibs = [{MibName, MibFile}]

MibName = atom()

MibFile = string()

Get a list of all the mib's loaded into the manager.

name_to_oid(Name) -> {ok, Oids} | {error, Reason}

Types:

Name = atom()

Oids = [oid()]

Transform a alias-name to its oid.

Note that an alias-name is only unique within the mib, so when loading several mib's into a manager, there might be
several instances of the same aliasname.

oid_to_name(Oid) -> {ok, Name} | {error, Reason}

Types:

Oid = oid()

Name = atom()

Reason = term()

Transform a oid to its aliasname.

oid_to_type(Oid) -> {ok, Type} | {error, Reason}

Types:

Oid = oid()

Type = atom()

Reason = term()

Retreive the type (asn1 bertype) of an oid.

backup(BackupDir) -> ok | {error, Reason}

Types:

BackupDir = string()

Backup persistent data handled by the manager.

BackupDir cannot be identical to DbDir.

info() -> [{Key, Value}]

Types:

Key = atom()

Value = term()

Returns a list (a dictionary) containing information about the manager. Information includes statistics counters,
miscellaneous info about each process (e.g. memory allocation), and so on.

snmpm

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 195

verbosity(Ref, Verbosity) -> void()

Types:

Ref = server | config | net_if | note_store | all

Verbosity = verbosity()

verbosity() = silence | info | log | debug | trace

Sets verbosity for the designated process. For the lowest verbosity silence, nothing is printed. The higher the
verbosity, the more is printed.

format_reason(Reason) -> string()

format_reason(Prefix, Reason) -> string()

Types:

Reason = term()

Prefix = integer() | string()

This utility function is used to create a formatted (pretty printable) string of the error reason received from either:

• The Reason returned value if any of the sync/async get/get-next/set/get-bulk functions returns {error,
Reason}

• The Reason parameter in the handle_error user callback function.

Prefix should either be an indention string (e.g. a list of spaces) or a positive integer (which will be used to create
the indention string of that length).

snmpm_conf

196 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpm_conf
Erlang module

The module snmpm_conf contains various utility functions to used for manipulating (write/append/read) the config
files of the SNMP manager.

Exports

manager_entry(Tag, Val) -> manager_entry()

Types:

Tag = address | port | engine_id | max_message_size

Val = term()

manager_entry() = term()

Create an entry for the manager config file, manager.conf.

The type of Val depends on the value of Tag, see Manager Information for more info.

write_manager_config(Dir, Conf) -> ok

write_manager_config(Dir, Hdr, Conf) -> ok

Types:

Dir = string()

Hdr = string()

Conf = [manager_entry()]

Write the manager config to the manager config file.

Dir is the path to the directory where to store the config file.

Hdr is an optional file header (note that this text is written to the file as is).

See Manager Information for more info.

append_manager_config(Dir, Conf) -> ok

Types:

Dir = string()

Conf = [manager_entry()]

Append the config to the current manager config file.

Dir is the path to the directory where to store the config file.

See Manager Information for more info.

read_manager_config(Dir) -> Conf

Types:

Dir = string()

Conf = [manager_entry()]

Read the current manager config file.

Dir is the path to the directory where to store the config file.

snmpm_conf

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 197

See Manager Information for more info.

users_entry(UserId) -> users_entry()

users_entry(UserId, UserMod) -> users_entry()

users_entry(UserId, UserMod, UserData) -> users_entry()

Types:

UserId = term()

UserMod = atom()

UserData = term()

standard_entry() = term()

Create an entry for the manager users config file, users.conf.

users_entry(UserId) translates to the following call: users_entry(UserId,
snmpm_user_default).

users_entry(UserId, UserMod) translates to the following call: users_entry(UserId, UserMod,
undefined).

See Users for more info.

write_users_config(Dir, Conf) -> ok

write_users_config(Dir, Hdr, Conf) -> ok

Types:

Dir = string()

Hdr = string()

Conf = [users_entry()]

Write the manager users config to the manager users config file.

Dir is the path to the directory where to store the config file.

Hdr is an optional file header (note that this text is written to the file as is).

See Users for more info.

append_users_config(Dir, Conf) -> ok

Types:

Dir = string()

Conf = [users_entry()]

Append the users config to the current manager users config file.

Dir is the path to the directory where to store the config file.

See Users for more info.

read_users_config(Dir) -> Conf

Types:

Dir = string()

Conf = [users_entry()]

Read the current manager users config file.

Dir is the path to the directory where to store the config file.

snmpm_conf

198 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

See Users for more info.

agents_entry(UserId, TargetName, Comm, Ip, Port, EngineID, Timeout,
MaxMessageSize, Version, SecModel, SecName, SecLevel) -> agents_entry()

Types:

UserId = term()

TargetName = string()

Comm = string()

Ip = string()

Port = integer()

EngineID = string()

Timeout = integer()

MaxMessageSize = integer()

Version = v1 | v2 | v3

SecModel = v1 | v2c | usm

SecName = string()

SecLevel = noAuthNoPriv | authNoPriv | authPriv

agents_entry() = term()

Create an entry for the manager agents config file, agents.conf.

See Agents for more info.

write_agents_config(Dir, Conf) -> ok

write_agents_config(Dir, Hdr, Conf) -> ok

Types:

Dir = string()

Hdr = string()

Conf = [_entry()]

Write the manager agents config to the manager agents config file.

Dir is the path to the directory where to store the config file.

Hdr is an optional file header (note that this text is written to the file as is).

See Agents for more info.

append_agents_config(Dir, Conf) -> ok

Types:

Dir = string()

Conf = [agents_entry()]

Append the agents config to the current manager agents config file.

Dir is the path to the directory where to store the config file.

See Agents for more info.

read_agents_config(Dir) -> Conf

Types:

snmpm_conf

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 199

Dir = string()

Conf = [agents_entry()]

Read the current manager agents config file.

Dir is the path to the directory where to store the config file.

See Agents for more info.

usm_entry(EngineID, UserName, AuthP, AuthKey, PrivP, PrivKey) -> usm_entry()

usm_entry(EngineID, UserName, SecName, AuthP, AuthKey, PrivP, PrivKey) ->
usm_entry()

Types:

EngineID = string()

UserName = string()

SecName = string()

AuthP = usmNoAuthProtocol | usmHMACMD5AuthProtocol |
usmHMACSHAAuthProtocol

AuthKey = [integer()]

PrivP = usmNoPrivProtocol | usmDESPrivProtocol | usmAesCfb128Protocol

PrivKey = [integer()]

usm_entry() = term()

Create an entry for the agent community config file, community.conf.

See Security data for USM for more info.

write_usm_config(Dir, Conf) -> ok

write_usm_config(Dir, Hdr, Conf) -> ok

Types:

Dir = string()

Hdr = string()

Conf = [usm_entry()]

Write the manager usm config to the manager usm config file.

Dir is the path to the directory where to store the config file.

Hdr is an optional file header (note that this text is written to the file as is).

See Security data for USM for more info.

append_usm_config(Dir, Conf) -> ok

Types:

Dir = string()

Conf = [usm_entry()]

Append the usm config to the current manager usm config file.

Dir is the path to the directory where to store the config file.

See Security data for USM for more info.

snmpm_conf

200 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

read_usm_config(Dir) -> Conf

Types:

Dir = string()

Conf = [usm_entry()]

Read the current manager usm config file.

Dir is the path to the directory where to store the config file.

See Security data for USM for more info.

snmpm_mpd

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 201

snmpm_mpd
Erlang module

The module snmpm_mpd implements the version independent Message Processing and Dispatch functionality in
SNMP for the manager. It is supposed to be used from a Network Interface process (Definition of Manager Net if).

Exports

init_mpd(Vsns) -> mpd_state()

Types:

Vsns = [Vsn]

Vsn = v1 | v2 | v3

This function can be called from the net_if process at start-up. The options list defines which versions to use.

It also initializes some SNMP counters.

process_msg(Msg, TDomain, Addr, Port, State, NoteStore, Logger) -> {ok, Vsn,
Pdu, PduMS, MsgData} | {discarded, Reason}

Types:

Msg = binary()

TDomain = snmpUDPDomain

Addr = {integer(), integer(), integer(), integer()}

Port = integer()

State = mpd_state()

NoteStore = pid()

Logger = function()

Vsn = 'version-1' | 'version-2' | 'version-3'

Pdu = #pdu

PduMs = integer()

MsgData = term()

Processes an incoming message. Performs authentication and decryption as necessary. The return values should be
passed the manager server.

NoteStore is the pid() of the note-store process.

Logger is the function used for audit trail logging.

In the case when the pdu type is report, MsgData is either ok or {error, ReqId, Reason}.

generate_msg(Vsn, NoteStore, Pdu, MsgData, Logger) -> {ok, Packet} |
{discarded, Reason}

Types:

Vsn = 'version-1' | 'version-2' | 'version-3'

NoteStore = pid()

Pdu = #pdu

MsgData = term()

snmpm_mpd

202 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

Logger = function()

Packet = binary()

Reason = term()

Generates a possibly encrypted packet to be sent to the network.

NoteStore is the pid() of the note-store process.

MsgData is the message specific data used in the SNMP message. In SNMPv1 and SNMPv2c, this message data is
the community string. In SNMPv3, it is the context information.

Logger is the function used for audit trail logging.

generate_response_msg(Vsn, Pdu, MsgData, Logger) -> {ok, Packet} |
{discarded, Reason}

Types:

Vsn = 'version-1' | 'version-2' | 'version-3'

Pdu = #pdu

MsgData = term()

Logger = function()

Packet = binary()

Reason = term()

Generates a possibly encrypted response packet to be sent to the network.

MsgData is the message specific data used in the SNMP message. This value is received from the process_msg
function.

snmpm_network_interface

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 203

snmpm_network_interface
Erlang module

This module defines the behaviour of the manager network interface. A snmpm_network_interface compliant
module must export the following functions:

• start_link/2

• stop/1

• send_pdu/7

• inform_response/4

• note_store/2

• info/1

• get_log_type/1

• set_log_type/2

• verbosity/2

The semantics of them and their exact signatures are explained below.

Exports

start_link(Server, NoteStore) -> {ok, Pid} | {error, Reason}

Types:

Server = pid()

NoteStore = pid()

Start-link the network interface process.

Server is the pid of the managing process.

NoteStore is the pid of the note-store process.

stop(Pid) -> void()

Types:

Pid = pid()

Stop the network interface process.

send_pdu(Pid, Pdu, Vsn, MsgData, Addr, Port, ExtraInfo) -> void()

Types:

Pid = pid()

Pdu = pdu()

Vsn = 'version-1' | 'version-2' | 'version-3'

MsgData = term()

Addr = address()

Port = integer()

ExtraInfo = term()

Request the network interface process (Pid) to send this pdu (Pdu).

snmpm_network_interface

204 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

ExtraInfo is some opaque data that is passed to the net-if process. It originates from the ExtraInfo parameter in
the calls to the synchronous get-request, asynchronous get-request, synchronous get-next-request, asynchronous get-
next-request, synchronous set-request and asynchronous set-request functions. Whether the net-if process chooses to
use this is implementation dependent. The net-if process included in this application ignores it.

inform_response(Pid, Ref, Addr, Port) -> void()

Types:

Pid = pid()

Ref = term()

Addr = address()

Port = integer()

Instruct the network interface process to send the response (acknowledgment) to an inform-request.

Ref is something that can be used to identify the inform-request, e.g. request-id of the inform-request.

Addr and Port identifies the agent, from which the inform-request originated.

note_store(Pid, NoteStore) -> void()

Types:

Pid = pid()

NoteStore = pid()

Change the pid of the note-store process. This is used when the server re-starts the note_store (e.g. after a crach).

info(Pid) -> [{Key, Value}]

Types:

Pid = pid()

The info returned is basically up to the implementer to decide. The implementation provided by this application
provides info about memory allocation and various socket information.

The info returned by this function is returned together with other info collected by the manager when the info function
is called (tagged with the key net_if).

verbosity(Pid, Verbosity) -> void()

Types:

Pid = pid()

Verbosity = verbosity()

Change the verbosity of the network interface process.

get_log_type(Pid) -> {ok, LogType} | {error, Reason}

Types:

Pid = pid()

LogType = atl_type()

Reason = term()

The Audit Trail Log is managed by the network interface process. So, it is this process that has to return the actual
log-type.

snmpm_network_interface

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 205

set_log_type(Pid, NewType) -> {ok, OldType} | {error, Reason}

Types:

Pid = pid()

NewType = OldType = atl_type()

Reason = term()

The Audit Trail Log is managed by the network interface process. So, it is this process that has to do the actual changing
of the type.

See set_log_type for more info.

snmpm_user

206 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpm_user
Erlang module

This module defines the behaviour of the manager user. A snmpm_user compliant module must export the following
functions:

• handle_error/3

• handle_agent/4

• handle_pdu/4

• handle_trap/3

• handle_inform/3

• handle_report/3

The semantics of them and their exact signatures are explained below.

Note that if an agent is registered using the old, no longer documented, functions (using Addr and Port), the old variant
of the callback functions, handle_pdu, handle_trap, handle_inform and handle_report, will be called.

Exports

handle_error(ReqId, Reason, UserData) -> Reply

Types:

ReqId = integer()

Reason = {unexpected_pdu, SnmpInfo} | {invalid_sec_info, SecInfo,
SnmpInfo} | {empty_message, Addr, Port} | term()

Addr = ip_address()

Port = integer()

UserData = term()

Reply = ignore

This function is called when the manager needs to communicate an "asynchronous" error, to the user: e.g. failure
to send an asynchronous message (i.e. encoding error), a received message was discarded due to security error, the
manager failed to generate a response message to a received inform-request, or when receiving an unexpected PDU
from an agent (could be an expired async request).

If ReqId is less then 0, it means that this information was not available to the manager (that info was never retrieved
before the message was discarded).

For SnmpInfo see handle_agent below.

handle_agent(Addr, Port, Type, SnmpInfo, UserData) -> Reply

Types:

Addr = ip_address()

Port = integer()

Type = pdu | trap | report | inform

SnmpInfo = SnmpPduInfo | SnmpTrapInfo | SnmpReportInfo | SnmpInformInfo

ErrorStatus = atom()

ErrorIndex = integer()

Varbinds = [varbind()]

snmpm_user

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 207

varbind() = #varbind

UserData = term()

Reply = ignore | {register, UserId, TargetName, agent_info()}

UserId = term()

TargetName = target_name()

agent_info() = [{agent_info_item(), agent_info_value()}]

This function is called when a message is received from an unknown agent.

Note that this will always be the default user that is called.

For more info about the agent_info(), see register_agent.

The arguments Type and SnmpInfo relates in the following way:

• pdu - SnmpPduInfo (see handle_pdu for more info).

• trap - SnmpTrapInfo (see handle_trap for more info).

• report - SnmpReportInfo (see handle_report for more info).

• inform - SnmpInformInfo (see handle_inform for more info).

The only user which would return {register, UserId, TargetName, agent_info()} is the default user.

handle_pdu(TargetName, ReqId, SnmpPduInfo, UserData) -> Reply

Types:

TargetName = target_name()

ReqId = term()

SnmpPduInfo = {ErrorStatus, ErrorIndex, Varbinds}

ErrorStatus = atom()

ErrorIndex = integer()

Varbinds = [varbind()]

varbind() = #varbind

UserData = term()

Reply = ignore

Handle the reply to an asynchronous request, such as async_get, async_get_next or async_set.

It could also be a late reply to a synchronous request.

ReqId is returned by the asynchronous request function.

handle_trap(TargetName, SnmpTrapInfo, UserData) -> Reply

Types:

TargetName = TargetName2 = target_name()

SnmpTrapInfo = {Enteprise, Generic, Spec, Timestamp, Varbinds} |
{ErrorStatus, ErrorIndex, Varbinds}

Enterprise = oid()

Generic = integer()

Spec = integer()

Timestamp = integer()

ErrorStatus = atom()

ErrorIndex = integer()

snmpm_user

208 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

Varbinds = [varbind()]

varbind() = #varbind

UserData = term()

Reply = ignore | unregister | {register, UserId, TargetName2,
agent_info()}

UserId = term()

agent_info() = [{agent_info_item(), agent_info_value()}]

Handle a trap/notification message from an agent.

For more info about the agent_info(), see register_agent

The only user which would return {register, UserId, TargetName2, agent_info()} is the default
user.

handle_inform(TargetName, SnmpInformInfo, UserData) -> Reply

Types:

TargetName = TargetName2 = target_name()

SnmpInformInfo = {ErrorStatus, ErrorIndex, Varbinds}

ErrorStatus = atom()

ErrorIndex = integer()

Varbinds = [varbind()]

varbind() = #varbind

UserData = term()

Reply = ignore | unregister | {register, UserId, TargetName2,
agent_info()}

UserId = term()

agent_info() = [{agent_info_item(), agent_info_value()}]

Handle a inform message.

For more info about the agent_info(), see register_agent

The only user which would return {register, UserId, TargetName2, agent_info()} is the default
user.

If the inform request behaviour configuration option is set to user or {user, integer()}, the response
(acknowledgment) to this inform-request will be sent when this function returns.

handle_report(TargetName, SnmpReportInfo, UserData) -> Reply

Types:

TargetName = TargetName2 = target_name()

Addr = ip_address()

Port = integer()

SnmpReportInfo = {ErrorStatus, ErrorIndex, Varbinds}

ErrorStatus = atom()

ErrorIndex = integer()

Varbinds = [varbind()]

varbind() = #varbind

UserData = term()

snmpm_user

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 209

Reply = ignore | unregister | {register, UserId, TargetName2,
agent_info()}

UserId = term()

agent_info() = [{agent_info_item(), agent_info_value()}]

Handle a report message.

For more info about the agent_info(), see register_agent

The only user which would return {register, UserId, TargetName2, agent_info()} is the default
user.

snmpm_network_interface_filter

210 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpm_network_interface_filter
Erlang module

This module defines the behaviour of the manager network interface filter. A
snmpm_network_interface_filter compliant module must export the following functions:

• accept_recv/2

• accept_send/2

• accept_recv_pdu/3

• accept_send_pdu/2

The semantics of them and their exact signatures are explained below.

The purpose of the network interface filter is to allow for filtering of messages (accept or reject) receive and send.
This is done on two levels:

• The first level is at the UDP entry / exit point, i.e. immediately after the receipt of the message, before any message
processing is done (accept_recv) and immediately before sending the message, after all message processing is
done (accept_send).

• The second level is at the MPD entry / exit point, i.e. immediately after the basic message processing
(accept_recv_pdu) / immediately before the basic message processing (accept_send_pdu).

Note that the network interface filter is something which is used by the network interface implementation provided by
the application (snmpm_net_if and snmpm_net_if_mt). The default filter accepts all messages.

A network interface filter can e.g. be used during testing or for load regulation.

DATA TYPES

port() = integer() > 0
pdu_type() = 'get-request' | 'get-next-request' | 'get-response' |
 'set-request' | trap | 'get-bulk-request' | 'inform-request' |
 report | trappdu

Exports

accept_recv(Addr, Port) -> boolean()

Types:

Addr = ip_address()

Port = port()

Called at the reception of a message (before any processing has been done).

For the message to be rejected, the function must return false.

accept_send(Addr, Port) -> boolean()

Types:

Addr = ip_address()

Port = port()

snmpm_network_interface_filter

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 211

Called before the sending of a message (after all processing has been done).

For the message to be rejected, the function must return false.

accept_recv_pdu(Addr, Port, PduType) -> boolean()

Types:

Addr = ip_address()

Port = port()

PduType = pdu_type()

Called after the basic message processing (MPD) has been done, but before the pdu is handed over to the server for
primary processing.

For the pdu to be rejected, the function must return false.

accept_send_pdu(Addr, Port, PduType) -> boolean()

Types:

Addr = ip_address()

Port = port()

PduType = pdu_type() > 0

Called before the basic message processing (MPD) is done, when a pdu has been received from the master-agent.

For the message to be rejected, the function must return false.

	Simple Network Management Protocol (SNMP)
	SNMP User's Guide
	SNMP Introduction
	Scope and Purpose
	Prerequisites
	Definitions
	About This Manual
	Where to Find More Information

	Agent Functional Description
	Features
	SNMPv1, SNMPv2 and SNMPv3
	Operation
	Sub-agents and MIB Loading
	Contexts and Communities
	Management of the Agent
	STANDARD-MIB and SNMPv2-MIB
	Data Types

	SNMP-FRAMEWORK-MIB and SNMP-MPD-MIB
	SNMP-TARGET-MIB and SNMP-NOTIFICATION-MIB
	snmpNotifyTable
	snmpTargetAddrTable
	snmpTargetParamsTable

	SNMP-VIEW-BASED-ACM-MIB
	vacmContextTable
	vacmSecurityToGroupTable
	vacmAccessTable
	vacmViewTreeFamilyTable
	MIB View Semantics

	SNMP-COMMUNITY-MIB
	SNMP-USER-BASED-SM-MIB
	OTP-SNMPEA-MIB

	Notifications
	Notification Sending
	Notification Filters
	Sub-agent Path

	Discovery

	Manager Functional Description
	Features
	Operation
	MIB loading

	The MIB Compiler
	Operation
	Importing MIBs
	MIB Consistency Checking
	.hrl File Generation
	Emacs Integration
	Compiling from a Shell or a Makefile
	Deviations from the Standard

	Running the application
	Configuring the application
	Modifying the Configuration Files
	Starting the application
	Debugging the application

	Definition of Agent Configuration Files
	Agent Information
	Contexts
	System Information
	Communities
	MIB Views for VACM
	Security data for USM
	Notify Definitions
	Target Address Definitions
	Target Parameters Definitions

	Definition of Manager Configuration Files
	Manager Information
	Users
	Agents
	Security data for USM

	Agent Implementation Example
	MIB
	Default Implementation
	Manual Implementation
	Code
	Association File
	Transcript
	Trap Sending

	Manager Implementation Example
	The example manager
	A simple standard test

	Instrumentation Functions
	Instrumentation Functions
	New / Delete Operations
	Get Operation
	Set Operation
	Is-set-ok Operation
	Undo Operation
	GetNext Operation
	GetNext Example

	Using the ExtraArgument
	Default Instrumentation
	Table Operations

	Atomic Set

	Definition of Instrumentation Functions
	Variable Instrumentation
	f(new [, ExtraArgs])
	f(delete [, ExtraArgs])
	f(get [, ExtraArgs])
	Valid Return Values

	f(is_set_ok, NewValue [, ExtraArgs])
	Valid return values

	f(undo, NewValue [, ExtraArgs])
	Valid return values

	f(set, NewValue [, ExtraArgs])
	Valid return values

	Table Instrumentation
	f(new [, ExtraArgs])
	f(delete [, ExtraArgs])
	f(get, RowIndex, Cols [, ExtraArgs])
	Arguments
	Valid Return Values

	f(get_next, RowIndex, Cols [, ExtraArgs])
	Arguments
	Valid Return Values

	f(is_set_ok, RowIndex, Cols [, ExtraArgs])
	Arguments
	Valid Return Values

	f(undo, RowIndex, Cols [, ExtraArgs])
	Arguments
	Valid Return Values

	f(set, RowIndex, Cols [, ExtraArgs])
	Arguments
	Valid Return Values

	Definition of Agent Net if
	Mandatory Functions
	Messages
	Outgoing Messages
	Incoming Messages
	Notes

	Definition of Manager Net if
	Mandatory Functions
	Messages
	Notes

	Audit Trail Log
	Agent Logging
	Manager Logging

	Advanced Agent Topics
	When to use a Sub-agent
	Special Set Transaction Mechanism
	Process Communication
	Frequent Loading of MIBs
	Interaction With Other SNMP Agent Toolkits

	Agent Semantics
	Sub-agents and Dependencies
	Distributed Tables
	Fault Tolerance
	Using the SNMP Agent in a Distributed Environment

	Using Mnesia Tables as SNMP Tables
	Creating the Mnesia Table
	Instrumentation Functions
	Adding Own Actions
	Extending the Mnesia Table

	Deviations from the Standard

	SNMP Appendix A
	Appendix A

	SNMP Appendix B
	Appendix B
	RowStatus (from RFC1903)

	Reference Manual
	snmp
	config/0
	start/0
	start/1
	start_agent/0
	start_agent/1
	start_manager/0
	start_manager/1
	date_and_time/0
	date_and_time_to_universal_time_dst/1
	date_and_time_to_string/1
	date_and_time_to_string/2
	date_and_time_to_string2/1
	local_time_to_date_and_time_dst/1
	universal_time_to_date_and_time/1
	validate_date_and_time/1
	validate_date_and_time/2
	passwd2localized_key/3
	octet_string_to_bits/1
	bits_to_octet_string/1
	read_mib/1
	log_to_txt/5
	log_to_txt/6
	log_to_txt/7
	log_to_io/4
	log_to_io/5
	log_to_io/6
	change_log_size/2
	print_version_info/0
	print_version_info/1
	versions1/0
	versions2/0
	print_versions/1
	print_versions/2
	enable_trace/0
	disable_trace/0
	set_trace/1
	reset_trace/1
	set_trace/2

	snmp
	snmpa
	add_agent_caps/2
	del_agent_caps/1
	get_agent_caps/0
	get/2
	get/3
	get_next/2
	get_next/3
	backup/1
	backup/2
	info/0
	info/1
	old_info_format/1
	load_mibs/1
	load_mibs/2
	unload_mibs/1
	unload_mibs/2
	which_mibs/0
	which_mibs/1
	whereis_mib/1
	whereis_mib/2
	current_request_id/0
	current_context/0
	current_community/0
	current_address/0
	enum_to_int/2
	enum_to_int/3
	int_to_enum/2
	int_to_enum/3
	name_to_oid/1
	name_to_oid/2
	oid_to_name/1
	oid_to_name/2
	which_aliasnames/0
	which_tables/0
	which_variables/0
	which_notifications/0
	log_to_txt/1
	log_to_txt/2
	log_to_txt/3
	log_to_txt/4
	log_to_txt/5
	log_to_txt/6
	log_to_txt/7
	log_to_io/1
	log_to_io/2
	log_to_io/3
	log_to_io/4
	log_to_io/5
	log_to_io/6
	change_log_size/1
	set_log_type/1
	set_log_type/2
	mib_of/1
	mib_of/2
	me_of/1
	me_of/2
	invalidate_mibs_cache/0
	invalidate_mibs_cache/1
	enable_mibs_cache/0
	enable_mibs_cache/1
	disable_mibs_cache/0
	disable_mibs_cache/1
	which_mibs_cache_size/0
	which_mibs_cache_size/1
	gc_mibs_cache/0
	gc_mibs_cache/1
	gc_mibs_cache/1
	gc_mibs_cache/2
	gc_mibs_cache/2
	gc_mibs_cache/3
	enable_mibs_cache_autogc/0
	enable_mibs_cache_autogc/1
	disable_mibs_cache_autogc/0
	disable_mibs_cache_autogc/1
	update_mibs_cache_age/1
	update_mibs_cache_age/2
	update_mibs_cache_gclimit/1
	update_mibs_cache_gclimit/2
	register_notification_filter/3
	register_notification_filter/4
	register_notification_filter/4
	register_notification_filter/5
	unregister_notification_filter/1
	unregister_notification_filter/2
	which_notification_filter/0
	which_notification_filter/1
	set_request_limit/1
	set_request_limit/2
	register_subagent/3
	unregister_subagent/2
	send_notification2/3
	send_notification/3
	send_notification/4
	send_notification/5
	send_notification/6
	send_notification/7
	discovery/2
	discovery/3
	discovery/3
	discovery/4
	discovery/4
	discovery/5
	discovery/6
	convert_config/1
	restart_worker/0
	restart_worker/1
	restart_set_worker/0
	restart_set_worker/1
	print_mib_info/0
	print_mib_tables/0
	print_mib_variables/0
	verbosity/2

	snmpa_conf
	agent_entry/2
	write_agent_config/2
	write_agent_config/3
	append_agent_config/2
	read_agent_config/1
	standard_entry/2
	write_standard_config/2
	write_standard_config/3
	append_standard_config/2
	read_standard_config/1
	context_entry/1
	write_context_config/2
	write_context_config/3
	append_context_config/2
	read_context_config/1
	community_entry/1
	community_entry/5
	write_community_config/2
	write_community_config/3
	append_community_config/2
	read_community_config/1
	target_addr_entry/5
	target_addr_entry/6
	target_addr_entry/8
	target_addr_entry/10
	target_addr_entry/11
	write_target_addr_config/2
	write_target_addr_config/3
	append_target_addr_config/2
	read_target_addr_config/1
	target_params_entry/2
	target_params_entry/4
	target_params_entry/5
	write_target_params_config/2
	write_target_params_config/3
	append_target_params_config/2
	read_target_params_config/1
	vacm_s2g_entry/3
	vacm_acc_entry/8
	vacm_vtf_entry/2
	vacm_vtf_entry/4
	write_vacm_config/2
	write_vacm_config/3
	append_vacm_config/2
	read_vacm_config/1
	usm_entry/1
	usm_entry/13
	write_usm_config/2
	write_usm_config/3
	append_usm_config/2
	read_usm_config/1
	notify_entry/3
	write_notify_config/2
	write_notify_config/3
	append_notify_config/2
	read_notify_config/1

	snmpa_discovery_handler
	stage1_finish/3

	snmpa_error_report
	config_err/2
	user_err/2

	snmpa_error
	config_err/2
	user_err/2

	snmpa_error_io
	config_err/2
	user_err/2

	snmpa_error_logger
	config_err/2
	user_err/2

	snmpa_local_db
	dump/0
	match/2
	print/0
	print/1
	print/2
	table_create/1
	table_create_row/3
	table_delete/1
	table_delete_row/2
	table_exists/1
	table_get_row/2

	snmpa_mpd
	init/1
	process_packet/6
	process_packet/7
	generate_response_msg/5
	generate_response_msg/6
	generate_msg/5
	generate_msg/6
	discarded_pdu/1

	snmpa_network_interface
	start_link/4
	info/1
	verbosity/2
	get_log_type/1
	set_log_type/2

	snmpa_network_interface_filter
	accept_recv/2
	accept_send/2
	accept_recv_pdu/3
	accept_send_pdu/2

	snmpa_notification_delivery_info_receiver
	delivery_targets/3
	delivery_info/4

	snmpa_notification_filter
	handle_notification/2

	snmpa_supervisor
	start_sub_sup/1
	start_master_sup/1
	start_sub_agent/3
	stop_sub_agent/1

	snmp_community_mib
	configure/1
	reconfigure/1
	add_community/5
	add_community/6
	delete_community/1

	snmp_framework_mib
	configure/1
	init/0
	add_context/1
	delete_context/1

	snmp_generic
	get_status_col/2
	get_status_col/2
	get_index_types/1
	get_table_info/2
	table_func/2
	table_func/4
	table_get_elements/3
	table_next/2
	table_row_exists/2
	table_set_elements/3
	variable_func/2
	variable_func/3
	variable_get/1
	variable_set/2

	snmp_index
	delete/1
	delete/2
	get/2
	get_last/1
	get_next/2
	insert/3
	key_to_oid/2
	new/1

	snmp_notification_mib
	configure/1
	reconfigure/1
	add_notify/3
	delete_notify/1

	snmp_pdus
	dec_message/1
	dec_message_only/1
	dec_pdu/1
	dec_scoped_pdu/1
	dec_scoped_pdu_data/1
	dec_usm_security_parameters/1
	enc_encrypted_scoped_pdu/1
	enc_message/1
	enc_message_only/1
	enc_pdu/1
	enc_scoped_pdu/1
	enc_usm_security_parameters/1

	snmp_standard_mib
	configure/1
	inc/1
	inc/2
	reconfigure/1
	reset/0
	sys_up_time/0

	snmp_target_mib
	configure/1
	reconfigure/1
	set_target_engine_id/2
	add_addr/10
	add_addr/11
	delete_addr/1
	add_params/5
	delete_params/1

	snmp_user_based_sm_mib
	configure/1
	reconfigure/1
	add_user/13
	delete_user/1

	snmp_view_based_acm_mib
	configure/1
	reconfigure/1
	add_sec2group/3
	delete_sec2group/1
	add_access/8
	delete_access/1
	add_view_tree_fam/4
	delete_view_tree_fam/1

	snmpc
	compile/1
	compile/2
	is_consistent/1
	mib_to_hrl/1

	snmpc(command)
	snmpm
	monitor/0
	demonitor/1
	notify_started/1
	cancel_notify_started/1
	register_user/3
	register_user/4
	register_user_monitor/3
	register_user_monitor/4
	unregister_user/1
	which_users/0
	register_agent/3
	unregister_agent/2
	agent_info/2
	update_agent_info/3
	update_agent_info/4
	which_agents/0
	which_agents/1
	register_usm_user/3
	unregister_usm_user/2
	usm_user_info/3
	update_usm_user_info/4
	which_usm_users/0
	which_usm_users/1
	sync_get2/3
	sync_get2/4
	sync_get/3
	sync_get/4
	sync_get/4
	sync_get/5
	sync_get/6
	async_get2/3
	async_get2/4
	async_get/3
	async_get/4
	async_get/4
	async_get/5
	async_get/6
	sync_get_next2/3
	sync_get_next2/4
	sync_get_next/3
	sync_get_next/4
	sync_get_next/4
	sync_get_next/5
	sync_get_next/6
	async_get_next2/3
	async_get_next2/4
	async_get_next/3
	async_get_next/4
	async_get_next/4
	async_get_next/5
	async_get_next/6
	sync_set2/3
	sync_set2/4
	sync_set/3
	sync_set/4
	sync_set/4
	sync_set/5
	sync_set/6
	async_set2/3
	async_set2/4
	async_set/3
	async_set/4
	async_set/4
	async_set/5
	async_set/6
	sync_get_bulk2/5
	sync_get_bulk2/6
	sync_get_bulk/5
	sync_get_bulk/6
	sync_get_bulk/6
	sync_get_bulk/7
	sync_get_bulk/8
	async_get_bulk2/5
	async_get_bulk2/6
	async_get_bulk/5
	async_get_bulk/6
	async_get_bulk/6
	async_get_bulk/7
	async_get_bulk/8
	cancel_async_request/2
	log_to_txt/2
	log_to_txt/3
	log_to_txt/4
	log_to_txt/5
	log_to_txt/6
	log_to_txt/7
	log_to_io/1
	log_to_io/2
	log_to_io/2
	log_to_io/3
	log_to_io/4
	log_to_io/5
	log_to_io/6
	change_log_size/1
	set_log_type/1
	load_mib/1
	unload_mib/1
	which_mibs/0
	name_to_oid/1
	oid_to_name/1
	oid_to_type/1
	backup/1
	info/0
	verbosity/2
	format_reason/1
	format_reason/2

	snmpm_conf
	manager_entry/2
	write_manager_config/2
	write_manager_config/3
	append_manager_config/2
	read_manager_config/1
	users_entry/1
	users_entry/2
	users_entry/3
	write_users_config/2
	write_users_config/3
	append_users_config/2
	read_users_config/1
	agents_entry/12
	write_agents_config/2
	write_agents_config/3
	append_agents_config/2
	read_agents_config/1
	usm_entry/6
	usm_entry/7
	write_usm_config/2
	write_usm_config/3
	append_usm_config/2
	read_usm_config/1

	snmpm_mpd
	init_mpd/1
	process_msg/7
	generate_msg/5
	generate_response_msg/4

	snmpm_network_interface
	start_link/2
	stop/1
	send_pdu/7
	inform_response/4
	note_store/2
	info/1
	verbosity/2
	get_log_type/1
	set_log_type/2

	snmpm_user
	handle_error/3
	handle_agent/5
	handle_pdu/4
	handle_trap/3
	handle_inform/3
	handle_report/3

	snmpm_network_interface_filter
	accept_recv/2
	accept_send/2
	accept_recv_pdu/3
	accept_send_pdu/3

